A multi-splitting method to solve 2D parabolic reaction-diffusion singularly  perturbed systems
Resumen: In this paper we design and analyze a numerical method to solve a type of reaction–diffusion 2D parabolic singularly perturbed systems. The method combines the central finite difference scheme on an appropriate piecewise uniform mesh of Shishkin type to discretize in space, and the fractional implicit Euler method together with a splitting by directions and components of the reaction–diffusion operator to integrate in time. We prove that the method is uniformly convergent of first order in time and almost second order in space. The use of this time integration technique has the advantage that only tridiagonal linear systems must be solved to obtain the numerical solution at each time step; because of this, our method provides a remarkable reduction of computational cost, in comparison with other implicit methods which have been previously proposed for the same type of problems. Full details of the uniform convergence are given only for systems with two equations; nevertheless, our ideas can be easily extended to systems with an arbitrary number of equations as it is shown in the numerical experiences performed. The numerical results show in practice the qualities of our proposal.
Idioma: Inglés
DOI: 10.1016/j.cam.2022.114569
Año: 2023
Publicado en: Journal of Computational and Applied Mathematics 417 (2023), 114569 [14 pp.]
ISSN: 0377-0427

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R
Financiación: info:eu-repo/grantAgreement/ES/IUMA/MTM2017-83490-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2022-10-20-09:19:21)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-10-20, last modified 2022-10-20


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)