000119590 001__ 119590
000119590 005__ 20230519145503.0
000119590 0247_ $$2doi$$a10.1016/j.memsci.2021.119057
000119590 0248_ $$2sideral$$a126096
000119590 037__ $$aART-2021-126096
000119590 041__ $$aeng
000119590 100__ $$aGrima, L
000119590 245__ $$aHigh CO2 permeability in supported molten-salt membranes with highly dense and aligned pores produced by directional solidification
000119590 260__ $$c2021
000119590 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119590 5203_ $$aComposite molten salt-ceramic membranes are promising devices for high-temperature CO2 separation. Intensive material properties impact on separation performance as do membrane geometry (thickness) and microstructure (pore volume fraction, size, connectivity, and tortuosity factor). Although controlling pore size is considered somewhat routine, achieving pore alignment and connectivity is still challenging. Here we report the production of the first gas separation membrane using a porous ceramic matrix obtained from a directionally-solidified magnesium-stabilised zirconia (MgSZ) - MgO fibrilar eutectic as the membrane support. MgO was removed from the parent material by acid-etching to create a porous matrix with highly aligned pores with diameters of similar to 1 mu m. X-ray nano-computed tomography of a central portion (similar to 32, 000 mu m(3)) of the support identified similar to 21% porosity, with all pores aligned within 10 degrees and similar to 76% percolating along the longest sampled length. Employing the matrix as a support for a carbonate molten salt, a high CO2 permeability of 1.41x10(-10) mol m(-1).s(-1).Pa-1 at 815 degrees C was achieved, among the highest reported for supported molten-carbonate membranes (typically 10(-12) to 10(-10) mol m(-1).s(-1).Pa-1 at similar temperatures). We suggest that the high permeability is attributable to the excellent pore characteristics resulting from directional solidification, namely a dense array of parallel, micron-scale pores connecting the feed and permeate sides of the membrane.
000119590 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2016-77769R
000119590 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000119590 590__ $$a10.53$$b2021
000119590 591__ $$aPOLYMER SCIENCE$$b4 / 90 = 0.044$$c2021$$dQ1$$eT1
000119590 591__ $$aENGINEERING, CHEMICAL$$b11 / 143 = 0.077$$c2021$$dQ1$$eT1
000119590 592__ $$a1.771$$b2021
000119590 593__ $$aBiochemistry$$c2021$$dQ1
000119590 593__ $$aPhysical and Theoretical Chemistry$$c2021$$dQ1
000119590 593__ $$aFiltration and Separation$$c2021$$dQ1
000119590 594__ $$a14.8$$b2021
000119590 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000119590 700__ $$aMutch, GA
000119590 700__ $$0(orcid)0000-0003-3480-398X$$aOliete, PB$$uUniversidad de Zaragoza
000119590 700__ $$0(orcid)0000-0002-4781-3231$$aBucheli, W
000119590 700__ $$0(orcid)0000-0003-0747-405X$$aMerino, RI
000119590 700__ $$aPapaioannou, EI
000119590 700__ $$aBailey, JJ
000119590 700__ $$aKok, MD
000119590 700__ $$aBrett, DJL
000119590 700__ $$aShearing, PR
000119590 700__ $$aMetcalfe, IS
000119590 700__ $$0(orcid)0000-0002-5793-2058$$aSanjuan, ML
000119590 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000119590 773__ $$g630 (2021), 119057 [15 pp]$$pJ. membr. sci.$$tJOURNAL OF MEMBRANE SCIENCE$$x0376-7388
000119590 8564_ $$s1146783$$uhttps://zaguan.unizar.es/record/119590/files/texto_completo.pdf$$yPostprint
000119590 8564_ $$s1816294$$uhttps://zaguan.unizar.es/record/119590/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000119590 909CO $$ooai:zaguan.unizar.es:119590$$particulos$$pdriver
000119590 951__ $$a2023-05-18-15:02:59
000119590 980__ $$aARTICLE