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Abstract

We study the parametric distribution of log-growth rates of CO2 emissions and CO2 per capita emissions for 207 countries and
territories taking data from 1994 to 2010. We define the log-growth rates for different duration periods, from one year apart to
fifteen years apart. The considered densities have been the following: the normal (N), the asymmetric double Laplace normal
(adLN), the exponential tails normal (ETN) and a mixture of two normal (2N) or three normal (3N) distributions. The main result
is that the best density is different depending on the period considered, in such a way that there is not a systematically dominant
function. Thus, the behaviour may change from one year to the next one, and possibly this is influenced by policy measures such as
the Kyoto protocol or the Clean Development Mechanism. Moreover, a policy measure that can be derived from this paper is that
some countries can still reduce their emissions of CO2 compared with others, as seen by the non-uniformity of the preferred density
for each period. We also model a stochastic differential equation whose associated Fokker–Planck equation has as a solution the
observed time-dependent probability density function.

© 2021 Published by Elsevier Ltd.
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1. Introduction

The study of the statistical distribution of CO2 emissions is a relevant topic since with its knowledge the pollution
costs can be easier allocated and identified for each country. This target can be better reached after analyzing in depth
the density of the distribution of CO2 emissions. However, the study of the statistical distribution of log-growth rates
of CO2 emissions has not been carried out yet. On levels, some previous work is [2]. Possibly the log-growth rates
of these quantities have never been modelled before due to the skewness and, above all, very high kurtosis of the
data. In this paper we perform the first attempt, to the best of our knowledge, to define the densities that fit best to the
observed data. The distributions chosen are the exponentiated versions of that in [2], that is to say, the normal (N),
the asymmetric double Laplace normal (adLN) (exponentiated version of the double Pareto lognormal, dPLN), the
exponential tails normal (ETN) (exponentiated version of the Pareto tails lognormal, PTLN)2 and the exponentiated
version of two densities recently introduced in the literature of city sizes and strike size [28, 6, 22, 21, 48, 38, 39, 7],
namely a mixture of two (2N) or three (3N) normal distributions (see also, e.g., [35]).

∗Corresponding author
E-mail address: aramos@unizar.es

1gpena@unizar.es (G. Peña), mpajovin@unizar.es (M. Puente-Ajovı́n), fsanz@unizar.es (F. Sanz-Gracia)
2[2] also estimate the lognormal upper-tail Pareto (LNUTP) but we do not consider it explicitly because is a particular case of the PTLN. The

cited distributions (LN, dPLN and PTLN) are designed to be estimated with data on levels.
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The need to manage CO2 emissions has emerged in the global policy agenda [27]. The reason is that currently
greenhouse effect gases are probably growing, and the climate of the earth is becoming warmer [46]. Thus, the analysis
of the statistical distribution of log-growth rates of CO2 emissions is worldwide relevant for economic policy and it is
a useful tool for designing efficient international regulatory policies [2]. In contrast to other studies where the authors
analyze the structural composition of CO2 emissions among sectors within a country [5], this paper sheds further
light on the distribution of CO2 emissions among countries. The main conclusion is that there is not an uniformly
outperforming distribution. On the contrary, we find a great variability, depending on the years considered, regarding
the best density. This outcome is in line with the key message derived from [38, 39]. This reflects the effort made
by most countries in the reduction of CO2 emissions, with some countries with a higher effort than others, leading to
year-to-year shifts in the statistical distribution of CO2 emissions among nations.

The rest of the paper is organized as follows. The next Section describes the distributions we employ. Section 3
shows the data sets used in this study. The results are reported in Section 4. In Section 5 we discuss briefly the results.
Finally, we offer some conclusions.

2. The distributions and generating mechanisms

2.1. The distributions
For CO2 or CO2 emissions per capita (CO2 pc), we have computed the log-growth rates of these quantities by

using the well-known formula
g = ln(xfinal) − ln(xinitial) (1)

where xfinal and xinitial are the values of the CO2/CO2 pc corresponding emissions in the final and initial samples,
respectively, of the period considered for computing the log-growth rate g.

As for the distributions, we will consider first the usual normal distribution (N), which will serve us as a baseline
model, given by

fN(g; µ, σ) =
1

σ
√

2π
exp

(
−

(g − µ)2

2σ2

)
, (2)

where now g, µ ∈ (−∞,∞), σ > 0. The corresponding cumulative distribution function (CDF) is

Φ(g; µ, σ) =
1
2

+
1
2

erf
(

g − µ

σ
√

2

)
. (3)

where erf denotes the error function associated to the standard normal distribution.
The 2-mixture of normal distributions (2N), is [20, 21, 22, 28, 38, 39, 7]

f2N(g; µ1, σ1, µ2, σ2, p1) = p1 fN(g; µ1, σ1) + (1 − p1) fN(g; µ2, σ2) , (4)

where 0 ≤ p1 ≤ 1, 0 ≤ 1 − p1 ≤ 1, and g, µi ∈ (−∞,∞), σi > 0, i = 1, 2. and the 3-mixture of normal distributions
(3N) is

f3N(g; µ1, σ1, µ2, σ2, µ3, σ3, p1, p2) = p1 fN(g; µ1, σ1) + p2 fN(g; µ2, σ2) + (1 − p1 − p2) fN(g; µ3, σ3) , (5)

where 0 ≤ p1, p2 ≤ 1, 0 ≤ 1 − p1 − p2 ≤ 1, and g, µi ∈ (−∞,∞), σi > 0, i = 1, 2, 3.
According to [2] and [41], the exponentiated version of the dPLN is the asymmetric double Laplace normal (adLN)

introduced by [42, 43, 44] and later used, e.g., by [33]:

fadLN(g;α, β, µ, σ) =
αβ

(α + β)

(
exp

(
−α(g − µ) +

1
2
α2σ2

)
Φ(g; µ + ασ2, σ)

+ exp
(
β(g − µ) +

1
2
β2σ2

)
Φ(−g;−µ + βσ2, σ)

)
(6)

where µ ∈ R, α, β, σ > 0 are the four parameters of the distribution. It has the property that it approximates different
exponential laws in each of its two tails: fadLN(g) ≈ exp(−αg) when g → ∞ and fadLN(g) ≈ exp(βg) when g → −∞.
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The body is approximately normal, although it is not possible to delineate exactly the switch between the normal
and the exponential behaviors since the adLN distribution is the convolution of an asymmetric double Laplace with a
normal distribution.

Finally, we call “exponential tails normal” (ETN) to the exponentiated version of the PTLN of [31, 32, 2], and is
as follows

fETN(g;α, τl, µ, σ, τr, β) =


de exp(αg), −∞ < g ≤ τl

d fN(g; µ, σ), τl ≤ g ≤ τr

dc exp(−βg), τr ≤ g < ∞
(7)

where the continuity constants are e =
fN(τl; µ, σ)
exp(τlα)

, c =
fN(τr; µ, σ)
exp(−τrβ)

, and the normalization constant d is given by

d =

(
1
α

fN(τl; µ, σ) + Φ(τr; µ, σ) − Φ(τl; µ, σ) +
1
β

fN(τr; µ, σ)
)−1

. (8)

The ETN distribution has, by construction, exponential tails and normal body separated by two definite thresh-
olds: τl (left tail-body) and τr (right tail-body). This distribution is very appropriate when modelling data that have
exponential tails, which can originate straight lines in log-rank or log-corank plots as we will see later.

2.2. The generating mechanisms
The log-growth rates data we have at hand are collected at specific moments in time, i.e., on a yearly basis, and

one could observe the probability density functions at that given times. If one uses a parametric description, the
parameters of the corresponding distribution are estimated at those moments in time. If one interpolates in a smooth
way (for example, by higher order polynomials) the values of the parameters for all times, one could construct a
time-dependent probability density function f (g, t) that approximates the true one that could be observed if we had
log-growth rates data on an approximately continuous time basis.3 Another possibility could be to estimate a three
dimensional stochastic kernel f (g, t) to approximate the true one (see, e.g., [40]). Then, let us derive a stochastic
process whose associated f (g, t) is one of the so constructed approximations.

In order to achieve this task, let our log-growth variable g ∈ (−∞,∞), and its dependence of time by gt. We
assume that its evolution or dynamics is governed by the Itô differential equation (see, e.g., [36, 17])

dgt = b(gt, t)dt +
√

a(gt, t)dBt (9)

where Bt is a standard Brownian motion (Wiener process) (see, e.g.,[25, 29] and references therein). The quantity
a(gt, t) corresponds to the diffusion term, and b(gt, t) to the drift term. This process can be associated to the forward
Kolmogorov equation or Fokker-Planck equation for the time-dependent probability density function (conditional on
the initial data) f (g, t) (see also [15, 16]):

∂ f (g, t)
∂t

= −
∂

∂g
(b(g, t) f (g, t)) +

1
2
∂2

∂g2 (a(g, t) f (g, t)). (10)

Since the approximate probability density function f (g, t) is evolving on time and perhaps there is no limiting
stationary distribution, let us propose a way of solving (10) for the cited f (g, t) by specifying the diffusion term and
the drift term (see, e.g., [37] for another recent approach to time-dependent solutions of the Fokker–Planck equation).
In fact, if we take a(g, t) = s2, where s > 0 is a real constant, then by choosing

b(g, t) =
s2

2 f (g, t)
∂ f (g, t)
∂g

−
1

f (g, t)
∂ cdf(g, t)

∂t
(11)

where cdf(g, t) is the CDF corresponding to f (g, t), it is solved (10) for f (g, t) [9, 10]. However, we remark that we
do not claim that the solution of (10) with this choice of a(g, t) and b(g, t) is unique, only that f (g, t) is a solution by

3It is not inconceivable that this could be possible in the near future.
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construction. Also, b(g, t) might have bounded discontinuities in the variable g, as in the case of the ETN, in a finite
number of points in the domain [18]. And a third remark is that we may add to the expression of b(g, t) in (11) a term
of the form h(t)/ f (g, t), where h(t) is an arbitrary function of t.

With this set-up in mind, the corresponding expressions for the parameterizations given by the adLN and the ETN
are very long to be shown here, and seem not to provide a special insight;4 however, for the normal (N), 2-mixture of
normal distributions (2N) and 3-mixture of normal distributions (3N) the expressions take rather remarkable forms,
which we show next.

For the normal (N) case, let us denote for the sake of brevity the corresponding time-dependent density function
by

jN(g, t) = fN(g; µ(t), σ(t)) .

Also, let us denote for convenience the following expression:

k(g; µ, σ, s) = µ̇ +
g − µ
2σ2

(
2σσ̇ − s2

)
where µ is real and σ > 0 are supposed to depend smoothly on t (explicit dependence is omitted for notational
simplicity), the dot means derivative with respect to t, and s > 0 is a real constant. Then, if we select a(g, t) = s2 and
b(g, t) = k(g; µ, σ, s) then f (g, t) = jN(g, t) solves the corresponding Fokker–Plank equation (10). Note that if µ, σ are
constants, the drift term just becomes

−
s2

2σ2 (g − µ)

so, up to a redefinition of s, σ, we recover as a special case the well-known mean reverting process of [49, 26, 50].
For the 2-mixture of normal distributions (2N), let us denote likewise

j2N(g, t) = f2N(g; µ1(t), σ1(t), µ2(t), σ2(t), p1(t)) ,

the quantity

π1(g, t) =
Φ(g; µ1(t), σ1(t)) − Φ(g; µ2(t), σ2(t))

j2N(g, t)

and the time-dependent posterior probabilities (see, e.g., [35])

τ1(g, t) = p1(t) fN(g; µ1(t), σ1(t))/ j2N(g, t)
τ2(g, t) = (1 − p1(t)) fN(g; µ2(t), σ2(t))/ j2N(g, t)

Then, let the diffusion and drift terms be defined by a(g, t) = s2 for s > 0 constant, and

b(g, t) = k(g; µ1, σ1, s)τ1(g, t) + k(g; µ2, σ2, s)τ2(g, t) − ṗ1π1(g, t) (12)

so that we obtain that f (g, t) = j2N(g, t) in this case is a solution of the corresponding Fokker–Planck equation (10).
Note that the sign of the drift term depends on different contributions: The sign of the individual k’s, that in particular
depend on how µi(t), σi(t), i = 1, 2, do behave, the τi(g, t), i = 1, 2, are always positive (and take values between 0
and 1) and also the sign of the difference of the CDF’s corresponding to the first component and the last one in the
mixture, multiplied by the sign of the derivative of the mixing parameter ṗ1(t). So in general the drift term has no
definite sign and a complex behaviour is allowed. This is also a time-dependent generalization of a stationary model
presented for the first time, as far as we know, in [7].

For the 3-mixture of normal distributions (3N) it is rather similar to the case of the 2N. Let us denote then

j3N(g, t) = f3N(g; µ1(t), σ1(t), µ2(t), σ2(t), µ3(t), σ3(t), p1(t), p2(t)) ,

4But such developments are available upon request from the authors.
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the quantities

π1(g, t) =
Φ(g; µ1(t), σ1(t)) − Φ(g; µ3(t), σ3(t))

j3N(g, t)

π2(g, t) =
Φ(g; µ2(t), σ2(t)) − Φ(g; µ3(t), σ3(t))

j3N(g, t)

and the time-dependent posterior probabilities

τ1(g, t) = p1(t) fN(g; µ1(t), σ1(t))/ j3N(g, t)
τ2(g, t) = p2(t) fN(g; µ2(t), σ2(t))/ j3N(g, t)
τ3(g, t) = (1 − p1(t) − p2(t)) fN(g; µ3(t), σ3(t))/ j3N(g, t)

Then, let us take the diffusion and drift terms be defined respectively by a(g, t) = s2 for s > 0 constant, and

b(g, t) = k(g; µ1, σ1, s)τ1(g, t) + k(g; µ2, σ2, s)τ2(g, t) + k(g; µ3, σ3, s)τ3(g, t) − ṗ1π1(g, t) − ṗ2π2(g, t) (13)

so that we obtain that f (g, t) = j3N(g, t) again in this case is a solution of the corresponding Fokker–Planck equation
(10). The sign of the drift term is also indefinite on this occasion, and the interpretation of the contributing terms is
similar to the one of the case of the 2N. This is once more a time-dependent generalization of the stationary 3N model
of [7].

3. The datasets

We have taken the data from the source mentioned in [2] and [1], that is, the Oak Ridge National Laboratory
(ORNL) for 207 countries and territories (in the cited reference these countries and territories are listed explicitly;
we refer the reader therein for more information), although we have enlarged the previously considered years (2000,
2005, 2010) [2] to 1994, 1995, 1999, 2004 and 2009. We have considered both the CO2 emissions and the CO2
emissions per capita (CO2 pc). The descriptive statistics are shown, respectively, in Tables 1 and 2. On these tables,
the skewness of the different samples is remarkable and above all, the kurtosis departs in a great measure from that
of the normal distribution, and this fact may explain the previous difficulties in modelling statistically the log-growth
rates of CO2/CO2 pc emissions.

CO2 lgr Obs Mean SD Skewness Kurtosis Min Max
1994-1995 207 0.038 0.191 2.34 23.977 -0.971 1.358
1999-2000 207 0.03 0.124 2.161 22.643 -0.53 0.976
2004-2005 207 0.028 0.08 0.641 6.157 -0.251 0.348
2009-2010 207 0.052 0.113 0.323 7.361 -0.386 0.524
1994-1999 206 0.066 0.355 1.695 15.026 -1.145 2.526
1995-2000 207 0.13 0.291 0.323 7.886 -1.159 1.392
1999-2004 207 0.17 0.282 2.524 22.177 -0.693 2.416
2000-2005 207 0.168 0.259 2.77 26.285 -0.693 2.338
2004-2009 207 0.116 0.266 1.659 13.292 -0.536 1.964
2005-2010 207 0.14 0.247 1.72 13.201 -0.441 1.852
1994-2004 207 0.308 0.525 3.8 34.706 -0.976 5.063
1995-2005 207 0.298 0.422 2.521 20.517 -0.827 3.603
1999-2009 207 0.285 0.393 1.066 7.933 -1.039 2.295
2000-2010 207 0.307 0.382 1.521 9.975 -0.693 2.392
1995-2010 207 0.438 0.509 1.314 9.763 -0.882 3.596

Table 1: Descriptive statistics of the CO2 emissions’ log-growth rates samples.

4. Results

We have estimated the parameters of the five densities considered by maximum log-likelihood (ML). The results
are available from the authors upon request. Among several possibilities we have defined four log-growth rates one
year apart (short run), six five years apart (medium run), four ten years apart and one fifteen years apart (long run).

In Tables 3 and 4 we show standard Kolmogorov-Smirnov (KS), Cramér-von Mises (CM) and Anderson-Darling
(AD) tests in order to assess the goodness-of-fit for CO2 and CO2 pc log-growth rates, respectively. A first conclu-
sion from the Tables stems from the fact that the estimation algorithm does not always converge and for some years,
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CO2 pc lgr Obs Mean SD Skewness Kurtosis Min Max
1994-1995 206 0.02 0.198 2.337 22.955 -0.981 1.386
1999-2000 206 0.021 0.12 3.168 25.526 -0.288 0.982
2004-2005 207 0.013 0.08 -0.28 9.282 -0.405 0.325
2009-2010 207 0.038 0.123 1.006 9.188 -0.405 0.693
1994-1999 206 0.066 0.355 1.695 15.026 -1.145 2.526
1995-2000 205 0.067 0.275 0.71 7.695 -1.113 1.293
1999-2004 207 0.105 0.268 2.631 23.093 -0.641 2.266
2000-2005 206 0.097 0.24 3.199 29.448 -0.565 2.174
2004-2009 207 0.033 0.262 1.711 15.821 -0.693 1.946
2005-2010 207 0.058 0.248 2.615 23.23 -0.553 2.079
1994-2004 206 0.171 0.498 4.105 38.165 -1.012 4.792
1995-2005 206 0.164 0.393 2.729 21.469 -0.693 3.272
1999-2009 207 0.137 0.361 1.091 8.812 -1.157 1.963
2000-2010 206 0.155 0.344 1.555 10.621 -0.693 2.079
1995-2010 206 0.222 0.457 1.539 10.388 -0.981 3.085

Table 2: Descriptive statistics of the CO2 pc emissions per capita log-growth rates samples.

N 2N
CO2 lgr KS CM AD KS CM AD
1994-1995 0 (0.210) 0 (3.422) 0 (17.863) 0.470 (0.059) 0.635 (0.090) 0.641 (0.607)
1999-2000 0 (0.148) 0 (1.730) 0 (9.754) 0.855 (0.042) 0.906 (0.045) 0.952 (0.281)
2004-2005 0.003 (0.127) 0.004 (0.916) 0.003 (4.992) 0.711 (0.049) 0.926 (0.041) 0.970 (0.250)
2009-2010 0.017 (0.108) 0.008 (0.778) 0.004 (4.786) 0.982 (0.032) 0.964 (0.033) 0.938 (0.300)
1994-1999 0.001 (0.136) 0.001 (1.138) 0.001 (6.258) 0.271 (0.070) 0.510 (0.117) 0.625 (0.624)
1995-2000 0.007 (0.117) 0.019 (0.631) 0.010 (3.850) 0.784 (0.046) 0.885 (0.049) 0.946 (0.289)
1999-2004 0.003 (0.125) 0.004 (0.912) 0.002 (5.286) 0.498 (0.058) 0.382 (0.152) 0.453 (0.839)
2000-2005 0 (0.143) 0 (1.270) 0 (7.127) 0.282 (0.069) 0.207 (0.236) 0.228 (1.315)
2004-2009 0.306 (0.067) 0.209 (1.535) 0.168 (1.535) – – –
2005-2010 0.043 (0.096) 0.099 (0.349) 0.084 (2.067) – – –
1994-2004 0.001 (0.136) 0 (1.311) 0 (7.507) 0.931 (0.038) 0.969 (0.032) 0.987 (0.212)
1995-2005 0.013 (0.110) 0.013 (0.702) 0.007 (4.194) 0.997 (0.028) 0.999 (0.018) 0.998 (0.155)
1999-2009 0.126 (0.082) 0.096 (0.355) 0.051 (2.482) 0.230 (0.072) 0.447 (0.133) 0.412 (0.904)
2000-2010 0.063 (0.091) 0.067 (0.413) 0.043 (2.610) – – –
1995-2010 0.219 (0.073) 0.158 (0.276) 0.105 (1.892) 0.983 (0.032) 0.983 (0.028) 0.985 (0.216)

3N adLN
CO2 lgr KS CM AD KS CM AD
1994-1995 0.628 (0.052) 0.908 (0.045) 0.974 (0.244) 0.065 (0.091) 0.047 (0.473) 0.031 (2.907)
1999-2000 0.963 (0.035) 0.988 (0.026) 0.999 (0.148) 0.615 (0.053) 0.580 (0.101) 0.454 (0.838)
2004-2005 0.982 (0.032) 0.994 (0.022) 0.998 (0.155) 0.796 (0.045) 0.785 (0.065) 0.826 (0.422)
2009-2010 0.983 (0.032) 0.994 (0.022) 0.999 (0.143) 0.799 (0.045) 0.898 (0.046) 0.780 (0.467)
1994-1999 – – – – – –
1995-2000 0.977 (0.033) 0.978 (0.030) 0.997 (0.170) 0.730 (0.048) 0.877 (0.050) 0.868 (0.380)
1999-2004 0.907 (0.039) 0.960 (0.034) 0.970 (0.251) – – –
2000-2005 0.902 (0.040) 0.949 (0.037) 0.948 (0.286) – – –
2004-2009 – – – 0.915 (0.039) 0.933 (0.040) 0.959 (0.270)
2005-2010 – – – 0.975 (0.033) 0.989 (0.025) 0.986 (0.214)
1994-2004 0.999 (0.023) 0.999 (0.013) 0.999 (0.128) 0.845 (0.043) 0.754 (0.070) 0.751 (0.495)
1995-2005 – – – 0.976 (0.033) 0.972 (0.031) 0.974 (0.243)
1999-2009 0.649 (0.051) 0.895 (0.047) 0.955 (0.275) 0.357 (0.064) 0.708 (0.077) 0.651 (0.597)
2000-2010 – – – 0.993 (0.030) 0.987 (0.026) 0.967 (0.256)
1995-2010 0.999 (0.023) 0.999 (0.013) 0.999 (0.116) 0.979 (0.033) 0.964 (0.033) 0.962 (0.265)

ETN
CO2 lgr KS CM AD
1994-1995 0.063 (0.092) 0.045 (0.481) 0.028 (2.975)
1999-2000 0.596 (0.053) 0.579 (0.101) 0.445 (0.852)
2004-2005 – – –
2009-2010 – – –
1994-1999 0.266 (0.070) 0.525 (0.113) 0.600 (0.653)
1995-2000 0.005 (0.121) 0.008 (0.784) 0.006 (4.269)
1999-2004 0.819 (0.044) 0.842 (0.055) 0.802 (0.446)
2000-2005 0.940 (0.037) 0.997 (0.020) 0.986 (0.215)
2004-2009 0.995 (0.029) 0.999 (0.018) 0.999 (0.150)
2005-2010 0.962 (0.035) 0.999 (0.017) 0.997 (0.162)
1994-2004 0.894 (0.040) 0.816 (0.060) 0.809 (0.439)
1995-2005 0.994 (0.029) 0.996 (0.021) 0.994 (0.186)
1999-2009 0.015 (0.109) 0.055 (0.446) 0.067 (2.254)
2000-2010 0.960 (0.035) 0.955 (0.035) 0.940 (0.298)
1995-2010 – – –

Table 3: Outcomes of the KS, CM and AD tests in the format p-value (statistic) for the CO2 log-growth rates’ samples. Non-rejections at the 5%
level are marked in bold.
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N 2N
CO2 pc lgr KS CM AD KS CM AD
1994-1995 0 (0.207) 0 (3.687) 0 (18.796) 0.011 (0.112) 0.063 (0.423) 0.094 (1.978)
1999-2000 0 (0.187) 0 (2.550) 0 (13.151) 0.016 (0.109) 0.157 (0.277) 0.224 (1.326)
2004-2005 0 (0.152) 0 (1.749) 0 (9.032) 0.005 (0.121) 0.118 (0.320) 0.186 (1.462)
2009-2010 0 (0.136) 0 (1.421) 0 (7.885) 0.045 (0.096) 0.303 (0.183) 0.425 (0.882)
1994-1999 0.001 (0.137) 0.001 (1.132) 0.001 (6.241) 0.372 (0.064) 0.531 (0.112) 0.642 (0.607)
1995-2000 0.001 (0.138) 0.003 (0.964) 0.002 (5.518) 0.279 (0.069) 0.666 (0.085) 0.794 (0.453)
1999-2004 0.001 (0.138) 0.001 (1.254) 0 (6.855) 0.323 (0.066) 0.201 (0.240) 0.234 (1.294)
2000-2005 0.001 (0.141) 0 (1.403) 0 (7.727) 0.206 (0.074) 0.305 (0.182) 0.339 (1.036)
2004-2009 0.148 (0.079) 0.075 (0.394) 0.069 (2.234) – – –
2005-2010 0.003 (0.126) 0.010 (0.740) 0.009 (4.011) – – –
1994-2004 0 (0.151) 0 (1.594) 0 (8.827) 0.751 (0.047) 0.581 (0.101) 0.676 (0.571)
1995-2005 0.001 (0.133) 0.002 (1.090) 0.001 (6.014) 0.334 (0.066) 0.594 (0.098) 0.652 (0.596)
1999-2009 0.103 (0.085) 0.043 (0.487) 0.025 (3.081) 0.082 (0.088) 0.320 (0.176) 0.376 (0.965)
2000-2010 0.016 (0.109) 0.045 (0.478) 0.027 (3.026) 0.888 (0.041) 0.951 (0.036) 0.967 (0.255)
1995-2010 0.023 (0.104) 0.023 (0.593) 0.013 (3.637) 0.401 (0.062) 0.466 (0.127) 0.603 (0.649)

3N adLN
CO2 pc lgr KS CM AD KS CM AD
1994-1995 0.019 (0.106) 0.102 (0.344) 0.172 (1.518) – – –
1999-2000 0.007 (0.118) 0.230 (0.221) 0.364 (0.987) – – –
2004-2005 – – – – – –
2009-2010 0.035 (0.099) 0.333 (0.171) 0.492 (0.785) – – –
1994-1999 – – – – – –
1995-2000 0.314 (0.067) 0.668 (0.084) 0.824 (0.424) 0 (0.149) 0.002 (1.058) 0.001 (5.830)
1999-2004 – – – – – –
2000-2005 0.199 (0.075) 0.298 (0.185) 0.329 (1.056) – – –
2004-2009 – – – – – –
2005-2010 – – – – – –
1994-2004 – – – 0.729 (0.048) 0.654 (0.087) 0.685 (0.562)
1995-2005 0.437 (0.061) 0.441 (0.134) 0.476 (0.807) – – –
1999-2009 0.770 (0.046) 0.962 (0.034) 0.991 (0.198) 0.514 (0.057) 0.673 (0.083) 0.660 (0.587)
2000-2010 0.778 (0.046) 0.580 (0.101) 0.654 (0.593) 0.673 (0.050) 0.874 (0.050) 0.869 (0.379)
1995-2010 0.970 (0.034) 0.976 (0.030) 0.973 (0.246) 0.566 (0.055) 0.572 (0.103) 0.668 (0.579)

ETN
CO2 pc lgr KS CM AD
1994-1995 0 (0.154) 0.013 (0.697) 0.017 (3.398)
1999-2000 – – –
2004-2005 – – –
2009-2010 – – –
1994-1999 – – –
1995-2000 – – –
1999-2004 0.179 (0.076) 0.359 (0.161) 0.299 (1.122)
2000-2005 0.305 (0.068) 0.383 (0.152) 0.369 (0.978)
2004-2009 – – –
2005-2010 0.336 (0.066) 0.687 (0.081) 0.733 (0.513)
1994-2004 0.745 (0.047) 0.666 (0.085) 0.694 (0.552)
1995-2005 0.517 (0.057) 0.640 (0.089) 0.688 (0.559)
1999-2009 0.477 (0.059) 0.806 (0.061) 0.814 (0.434)
2000-2010 – – –
1995-2010 0.749 (0.047) 0.733 (0.073) 0.825 (0.424)

Table 4: Outcomes of the KS, CM and AD tests in the format p-value (statistic) for the CO2 pc log-growth rates’ samples. Non-rejections at the
5% level are marked in bold.
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Figure 1: Kernels of CO2 log-growth rates. 2000-2005 in black, 2005-2010 in red.

especially in Table 4, we simply cannot find the ML estimators. As stated above, the peculiar skewness and kurtosis
of the data may explain this difficulty for achieving convergence. Another possible explanation, of a very different
nature, may be related to the Kyoto Protocol, which entered into force since February 2005, and the Clean Develop-
ment Mechanism (CDM), which was settled in 2006 and allowed purchases and sales of greenhouse gases between
countries.

Moreover, other trading emissions mechanisms, as the European Union Emissions Trading Scheme, founded in
2005 as the first large emissions trading scheme in the world, were thought to reduce the CO2 emissions for each
industry.

The results of this paper suggest that there is a reallocation of CO2 emissions in the studied countries every year,
probably higher since the implementation of these policies. Many of the non-convergence periods coincide with those
years and, therefore, both the Kyoto Protocol and the CDM might have had an impact on the CO2/CO2 pc emissions,
at least from a statistical point of view. Other works have already considered the period 2005-2009 as different from
1995-2005 regarding the CO2 emissions. For instance, [3] show that in the 1995-2005 period there was an increase
in emissions, in contrast to the decrease from 2005-2009. Nonetheless, they think that this shift is due to the impact
of the Global Financial Crisis (GFC) on the sample. However, in contrast to our approach, neither the Kyoto protocol
(2005) nor the CDM effects are considered.

In this context, we have explored whether the implementation of these trading mechanisms and the Kyoto’s pro-
tocol has produced some effects in the intensity of the emissions. To do so, we have estimated two Epanechnikov
kernels with adaptive bandwidth, one for the CO2 log-growth rates (Figure 1) and one for the CO2 pc log-growth rates
(Figure 2), distinguishing between two periods: pre-protocol (2000-2005) and post-protocol (2005-2010). In both
cases, the kernel in red (2005-2010) is more platykurtic and is slightly but significantly shifted left, which reveals that
the emissions in the post-protocol period show lower growth rates than those in the pre-protocol period.

Returning to the analysis of the estimated distributions, we can see that the N is nearly always rejected (non
rejections in bold) and, therefore, it does not offer a good description of the data. The 2N performs well for CO2 but
not so for CO2 pc, with four rejections. The 3N behaves similarly to the 2N. The adLN, whenever it can be estimated,
is in general non rejected. The ETN, when estimated, is rejected in three periods for CO2 emissions and in one for
CO2 pc. As we see, the evidence regarding the performance of the different densities is mixed and, in any case, not
conclusive. Once the goodness-of-fit is examined, we turn our attention to the selection of the most appropriate model,
out of those studied, by means of information criteria. We use the corrected Akaike Information Criterion like in [2]:

AICc = 2k − 2L̂ +
2(k + 1)(k + 2)

n − k − 2

where k is the number of estimated parameters, n is the sample size and L̂ is the maximum log-likelihood of the
8
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Figure 2: Kernels of CO2 pc log-growth rates. 2000-2005 in black, 2005-2010 in red.

corresponding model [24]. Likewise, we adopt as well the adjusted Bayesian or Schwartz Information Criterion:

BICa = k ln
(

n + 2
24

)
− 2L̂

see [47] for details. The minimum values of each of these criteria point out to the selected model according to it.
For log-growth rates of CO2 emissions we see in Table 5 that, according to both criteria, the 3N and the adLN are

selected five times each, while the ETN is the best in three periods and the 2N in two. In Table 6 the variability is even
larger. In fact, the 2N, the 3N and the ETN outperform the other densities four times each, the adLN two times and
the N, due to the fact that it is the only distribution that can be estimated in that period, once.

As a complementary approach, we show in Figures 3 and 4 the plots of the log-ranks and log-coranks, respectively,
for the last samples of each type of period (one, five, ten and fifteen years), both for CO2 and CO2 pc emissions’ log-
growth rates. The variability in the selected models is covered with these choices, and there is at least one example
of the non-rejected models (except the N) with these selections. When the 2N or the 3N is selected, we can observe
remarkable curvatures at the tails, when the adLN is selected the curvature is lighter, and when the ETN is selected,
we observe practically straight lines at the tails as expected. The presence of these curvatures or not at the tails might
explain the variability in the most appropriate model in each case, and even from one year to another the curvature
of the tails might change remarkably, making difficult to model these data sets with a single specification. However,
in the shown graphs we observe very good fits for each selected model, so the case-by-case modelling yields good
results. We recall that by taking the logs of the ranks or coranks the discrepancies at the tails are amplified (see, e.g.,
[19]). The fact that the tails of the log-growth rates are not always exponential (not straight lines in log-rank/corank
plots) is not new; for example in [34] it has been observed for log-growth rates of city sizes, and in other fields,
including economics, by [12, 13, 14, 8, 11].

5. Discussion

Now, the relevant question to be answered is as follows: What is really behind the growth rate of CO2? Un-
doubtedly, speaking in general terms, there is some kind of underlying physical process. Maybe the process with
higher explicative power is directly related to human activities. And human activities take place, with an increasing
intensity, in urban areas. The effects of urbanization on CO2 emissions have been analyzed in two ways: first, the
urban scaling hypothesis, according to which city emissions are well described by a power law function of population
[4]; second, the study of how population density influences CO2 emissions per capita [23]. Both approaches ignore
that population and area can be correlated and might affect emissions in an interconnected way, something that is
explicitly considered in the framework defined by [45]. These authors conclude, on the one hand, that the key urban
variable which has a greater effect on emissions is population changes and, on the other hand, for US areas, the larger
the urban nuclei, the higher is the impact of changing its population. In this context, the effects of urbanization on
CO2 emissions, it is also important to take into account the concept of “active population” of a city, used by [30]. The

9
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N 2N
CO2 lgr log-likelihood AICc BICa log-likelihood AICc BICa
1994-1995 49.2459 -94.3737 -94.1633 158.3 -306.18 -305.778
1999-2000 138.323 -272.528 -272.318 204.924 -399.427 -399.026
2004-2005 228.655 -453.191 -452.981 257.467 -504.515 -504.114
2009-2010 157.532 -310.947 -310.736 188.281 -366.143 -365.742
1994-1999 -78.696 161.512 161.712 -38.753 87.928 88.303
1995-2000 -37.923 79.964 80.174 -11.126 32.672 33.074
1999-2004 -30.975 66.069 66.279 7.736 -5.052 -4.651
2000-2005 -13.888 31.894 32.104 32.41 -54.399 -53.998
2004-2009 -18.853 41.823 42.034 – – –
2005-2010 -3.907 11.932 12.142 – – –
1994-2004 -159.859 323.836 324.046 -105.387 221.194 221.596
1995-2005 -114.744 233.606 233.816 -80.768 171.956 172.358
1999-2009 -99.867 203.851 204.062 -82.198 174.816 175.217
2000-2010 -93.879 191.877 192.087 – – –
1995-2010 -153.389 310.897 311.107 -137.006 284.433 284.834

3N adLN
CO2 lgr log-likelihood AICc BICa log-likelihood AICc BICa
1994-1995 169.097 -321.28 -320.879 141.184 -274.07 -273.711
1999-2000 208.395 -399.877 -399.476 197.716 -387.134 -386.775
2004-2005 260.522 -504.13 -503.729 255.509 -502.72 -502.361
2009-2010 192.913 -368.912 -368.512 185.405 -362.512 -362.154
1994-1999 – – – – – –
1995-2000 -9.439 35.792 36.193 -13.622 35.542 35.901
1999-2004 11.391 -5.867 -5.467 – – –
2000-2005 43.598 -70.281 -69.881 – – –
2004-2009 – – – -0.966 10.231 10.589
2005-2010 – – – 15.625 -22.952 -22.593
1994-2004 -102.108 221.129 221.53 -106.599 221.497 221.856
1995-2005 – – – -80.791 169.88 170.238
1999-2009 -74.127 165.167 165.568 -81.822 171.942 172.301
2000-2010 – – – -71.939 152.176 152.534
1995-2010 -134.947 286.808 287.208 -136.614 281.526 281.884

ETN
CO2 lgr log-likelihood AICc BICa
1994-1995 141.254 -269.946 -269.523
1999-2000 197.782 -383 -382.578
2004-2005 – – –
2009-2010 – – –
1994-1999 -34.596 81.758 82.149
1995-2000 -13.426 39.414 39.837
1999-2004 10.854 -9.145 -8.722
2000-2005 44.869 -77.175 -76.752
2004-2009 1.092 10.379 10.802
2005-2010 17.038 -21.513 -21.09
1994-2004 -105.68 223.923 224.346
1995-2005 -80.096 172.754 173.177
1999-2009 -84.675 181.912 182.335
2000-2010 -71.821 156.205 156.627
1995-2010 – – –

Table 5: Maximum log-likelihoods, AICc and BICa for the CO2 log-growth rates’ samples. The preferred values for each criterion are marked in
bold.
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N 2N
CO2 pc lgr log-likelihood AICc BICc log-likelihood AICc BICc
1994-1995 42.156 -80.1927 -79.9926 154.155 -297.887 -297.512
1999-2000 144.596 -285.072 -284.872 221.843 -433.264 -432.889
2004-2005 230.881 -457.643 -457.432 283.317 -556.215 -555.814
2009-2010 141.365 -278.612 -278.401 187.956 -365.492 -365.091
1994-1999 -78.696 161.512 161.712 -38.753 87.928 88.303
1995-2000 -25.68 55.479 55.669 7.729 -5.033 -4.684
1999-2004 -20.917 45.953 46.163 21.9 -33.379 -32.98
2000-2005 1.914 0.292 0.492 52.217 -94.012 -93.636
2004-2009 -15.92 35.958 36.168 – – –
2005-2010 -4.499 13.117 13.327 – – –
1994-2004 -148.332 300.783 300.983 -88.462 187.347 187.722
1995-2005 -99.576 203.271 203.471 -61.937 134.295 134.67
1999-2009 -82.082 168.281 168.491 -61.095 132.61 133.011
2000-2010 -71.986 148.09 148.29 -48.371 107.164 107.539
1995-2010 -130.603 265.325 265.525 -106.845 224.112 224.487

3N adLN
CO2 pc lgr log-likelihood AICc BICc log-likelihood AICc BICc
1994-1995 163.89 -310.862 -310.505 – – –
1999-2000 230.879 -444.839 -444.481 – – –
2004-2005 – – – – – –
2009-2010 189.916 -362.918 -362.518 – – –
1994-1999 – – – – – –
1995-2000 9.591 -2.259 -1.945 -26.234 60.77 61.087
1999-2004 – – – – – –
2000-2005 53.038 -89.157 -88.8 – – –
2004-2009 – – – – – –
2005-2010 – – – – – –
1994-2004 – – – -87.425 183.15 183.488
1995-2005 -60.874 138.665 139.023 – – –
1999-2009 -54.088 125.089 125.49 -60.238 128.774 129.133
2000-2010 -47.411 111.741 112.099 -49.084 106.467 106.805
1995-2010 -100.792 218.502 218.86 -106.634 221.567 221.905

ETN
CO2 pc lgr log-likelihood AICc BICc
1994-1995 157.934 -303.302 -302.911
1999-2000 – – –
2004-2005 – – –
2009-2010 – – –
1994-1999 – – –
1995-2000 – – –
1999-2004 27.748 -42.934 -42.511
2000-2005 58.143 -103.721 -103.33
2004-2009 – – –
2005-2010 30.281 -47.999 -47.576
1994-2004 -86.023 184.611 185.002
1995-2005 -54.26 121.086 121.477
1999-2009 -59.399 131.36 131.783
2000-2010 – – –
1995-2010 -103.568 219.702 220.093

Table 6: Maximum log-likelihoods, AICc and BICa for the CO2 pc log-growth rates’ samples. The preferred values for each criterion are marked
in bold.
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Figure 3: Log-rank plots for the whole samples of log-growth rates, using the best model in each case (red) and the empirical data (blue).
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Figure 4: Log-corank plots for the whole samples of log-growth rates, using the best model in each case (red) and the empirical data (blue).
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Figure 5: CO2 log-growth rates between 1994 and 2010 as a function of log of GDP in 1994. Coefficient equal to -0.09, significative at the 5%
level.

point is that it is not residential population the main factor that explains emissions, but “a mixture of residential and
working population, according to the duration of their activities in the region” [30, page 2]. This is a better proxy for
describing socioeconomic interactions, which are the principal origin of emissions. For example5, in Washington D.
C. the residential population is quite small, but the active population in the city is quite large (most of them come to
D. C. for work, shopping, or tourism).

Another possible explanation for CO2 emissions can be found in the heterogeneity in the economic size (Gross
Domestic Product, GDP) of the different countries: We have done the analysis looking for a unique distribution of
the log-growth rates of CO2 for all countries, while it is true that there could be differences in how the level of GDP
affects this growth. In order to explore this possibility, Figure 5 plots the relationship between the CO2 log-growth
rates from the first to the last period (1994 to 2010) against the log of GDP in 1994. As can be seen, both variables
are negatively related.

Following with this Section, devoted to the discussion of the explicative mechanisms underlying CO2 emissions
and CO2 log-growth rates, let us turn now to the statistical point of view. If we take for simplicity the (almost)
never rejected models time-dependent 2N, 3N, we can model the time evolution of the log-growth rates gt as a Itô (or
Stratonovich, since the diffusion term has been chosen to be constant) differential equation [17]

dgt = b(gt, t)dt + s dBt (14)

where s > 0 is a real constant and Bt is a standard Brownian motion or Wiener process. Then, the drift term b(g, t) can
take the different forms (12) or (13), whose sign is indefinite but depends on clear-cut contributions that come from
the different components in the (time-dependent) 2-mixture or 3-mixture of normal distributions. These models, albeit
being relatively simple, exhibit an ample richness in the behaviour of the evolution of the log-growth rates, and many
scenarios could take place. This diversity might explain as well why different behaviours do occur in practice, and that
several models may fit the data at the same time in a reasonable manner. One could even consider a non-parametric
point of view for the observed f (g, t), by means of time-dependent stochastic kernels (see, e.g., [40]), and use (11)
numerically to deal with the stochastic differential equation (14).

5We thank an anonymous referee for suggesting this illustrative example.
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And moreover, the facts explained in the preceding three paragraphs are complementary. Indeed, the variation of
human activities, urbanization, population, population densities, correlation of population and inhabited area, active
population or other important factors not considered so far in the literature might lead to variations of the parameters
of the probability density function at hand, or the dependencies of the non-parametric observed f (g, t) if one takes
that approach. In either case, a time-varying f (g, t) is observed a posteriori but caused by the previous factors, and
by means of the stochastic differential equation (14) and the formula for the drift part (11) one can explain the time
evolution of the log-growth rates from a statistical mechanics point of view, and the door is open for the simulation of
gt and perhaps forecasting, being this task let aside for future work.

6. Conclusions

We have examined the statistical distribution of the log-growth rates of CO2 and CO2 pc emissions from a para-
metric point of view. Three main outcomes emerge. First, this is not a simple task since, in a non-negligible number
of cases, the distributions cannot be estimated, especially for CO2 pc emissions. Second, and more importantly, the
best density is different depending on the period considered, in such a way that no distribution outperforms the others
in a systematic way. This suggests an effective possible reallocation of CO2 emissions since the establishment of new
global institutional and policy measures such as the Kyoto protocol or the Clean Development Mechanism (CDM).
Third, the tails of the distributions of the studied log-growth rates are not always exponential, and this happens inde-
pendently of the length of the period considered, namely one, five, ten or fifteen years. The behavior thus may change
from one year to the next one, and possibly this is influenced in a not small amount by policy measures that are
taken regarding CO2 emissions. These regulations are shown to have a clear impact on the changes in the emissions’
distribution (that is, the distribution of log-growth rates), so countries and territories in fact do react to the different
implementations of policies and carbon markets from one year to another. Therefore, a policy measure that can be
derived from this paper is that there are still some countries that can improve the emission of CO2 compared with
others, as seen by the non-uniformity of the outperforming distribution. Also, the analysis of the spatial component
of the CO2 distribution among countries and the possibility of defining a spatial scaling law are interesting topics for
future research.6
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