000119601 001__ 119601
000119601 005__ 20240319080952.0
000119601 0247_ $$2doi$$a10.1016/j.apmt.2022.101628
000119601 0248_ $$2sideral$$a129703
000119601 037__ $$aART-2022-129703
000119601 041__ $$aeng
000119601 100__ $$0(orcid)0000-0002-1791-0188$$aBonet-Aleta, Javier$$uUniversidad de Zaragoza
000119601 245__ $$aManganese oxide nano-platforms in cancer therapy: recent advances on the development of synergistic strategies targeting the tumor microenvironment
000119601 260__ $$c2022
000119601 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119601 5203_ $$aThe use of inorganic nanomaterials to tackle and exploit the intrinsic chemical nature of the tumor microenvironment (TME) has emerged as a promising strategy in cancer therapy. Manganese oxide nanoparticles (MnxOy) offer unique advantages in terms of redox properties and specificity towards the TME scenario: low O2 concentrations, mildly acidic pH and high oxidative stress; environmental conditions that often lead to a reduction in the efficacy of cancer treatments. MnxOy-based nanoplatforms have recently demonstrated exciting properties as inorganic nanocatalysts to operate under TME constraints. Alternatively, Mn-nanocatalysts have also displayed synergistic anticancer response in combination with other active co-adjuvant elements (drugs, enzymes or nanomaterials). The aim of this review is to provide new insights on the main functionalities of Mn-based nanomaterials applied to cancer therapy. We analyze its capacity as oxygen supplier in hypoxic scenarios, its role to induce the selective depletion of glutathione (GSH) to maximize cell stress or its capacity to promote starvation therapy via glucose oxidation. We aim at providing an insightful view of the operating mechanisms behind each of these critical processes and highlight the versatility and catalytic richness of Mn-based nanoparticles in this developing field. We also provide a general and comprehensive analysis of the Mn fate when trafficking through the intracellular levels.
000119601 536__ $$9info:eu-repo/grantAgreement/EC/H2020/742684/EU/Catalytic Dual-Function Devices Against Cancer/CADENCE$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 742684-CADENCE
000119601 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000119601 590__ $$a8.3$$b2022
000119601 592__ $$a1.627$$b2022
000119601 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b66 / 343 = 0.192$$c2022$$dQ1$$eT1
000119601 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ1
000119601 594__ $$a12.4$$b2022
000119601 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119601 700__ $$0(orcid)0000-0002-1603-7305$$aCalzada-Funes, Javier$$uUniversidad de Zaragoza
000119601 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.$$uUniversidad de Zaragoza
000119601 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000119601 773__ $$g29 (2022), 101628 [16 pp.]$$tApplied Materials Today$$x2352-9407
000119601 8564_ $$s14168014$$uhttps://zaguan.unizar.es/record/119601/files/texto_completo.pdf$$yVersión publicada
000119601 8564_ $$s2538648$$uhttps://zaguan.unizar.es/record/119601/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119601 909CO $$ooai:zaguan.unizar.es:119601$$particulos$$pdriver
000119601 951__ $$a2024-03-18-13:08:57
000119601 980__ $$aARTICLE