000119602 001__ 119602
000119602 005__ 20241125101124.0
000119602 0247_ $$2doi$$a10.1016/j.apnum.2022.09.012
000119602 0248_ $$2sideral$$a130414
000119602 037__ $$aART-2023-130414
000119602 041__ $$aeng
000119602 100__ $$0(orcid)0000-0003-1263-1996$$aClavero Gracia, Carmelo$$uUniversidad de Zaragoza
000119602 245__ $$aA splitting uniformly convergent method for one-dimensional parabolic singularly perturbed convection-diffusion systems
000119602 260__ $$c2023
000119602 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119602 5203_ $$aIn this paper we deal with solving robustly and efficiently one-dimensional linear parabolic singularly perturbed systems of convection-diffusion type, where the diffusion parameters can be different at each equation and even they can have different orders of magnitude. The numerical algorithm combines the classical upwind finite difference scheme to discretize in space and the fractional implicit Euler method together with an appropriate splitting by components to discretize in time. We prove that if the spatial discretization is defined on an adequate piecewise uniform Shishkin mesh, the fully discrete scheme is uniformly convergent of first order in time and of almost first order in space. The technique used to discretize in time produces only tridiagonal linear systems to be solved at each time level; thus, from the computational cost point of view, the method we propose is more efficient than other numerical algorithms which have been used for these problems. Numerical results for several test problems are shown, which corroborate in practice both the uniform convergence and the efficiency of the algorithm.
000119602 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R$$9info:eu-repo/grantAgreement/ES/IUMA/MTM2017-83490-P
000119602 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000119602 590__ $$a2.2$$b2023
000119602 592__ $$a1.006$$b2023
000119602 591__ $$aMATHEMATICS, APPLIED$$b46 / 332 = 0.139$$c2023$$dQ1$$eT1
000119602 593__ $$aApplied Mathematics$$c2023$$dQ1
000119602 593__ $$aNumerical Analysis$$c2023$$dQ1
000119602 593__ $$aComputational Mathematics$$c2023$$dQ1
000119602 594__ $$a5.6$$b2023
000119602 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119602 700__ $$aJorge Ulecia, Juan Carlos
000119602 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000119602 773__ $$g183 (2023), 317-332$$pAppl. numer. math.$$tAPPLIED NUMERICAL MATHEMATICS$$x0168-9274
000119602 8564_ $$s832806$$uhttps://zaguan.unizar.es/record/119602/files/texto_completo.pdf$$yVersión publicada
000119602 8564_ $$s1709572$$uhttps://zaguan.unizar.es/record/119602/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119602 909CO $$ooai:zaguan.unizar.es:119602$$particulos$$pdriver
000119602 951__ $$a2024-11-22-11:57:18
000119602 980__ $$aARTICLE