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In this paper we deal with solving robustly and efficiently one-dimensional linear parabolic 
singularly perturbed systems of convection-diffusion type, where the diffusion parameters 
can be different at each equation and even they can have different orders of magnitude. 
The numerical algorithm combines the classical upwind finite difference scheme to 
discretize in space and the fractional implicit Euler method together with an appropriate 
splitting by components to discretize in time. We prove that if the spatial discretization 
is defined on an adequate piecewise uniform Shishkin mesh, the fully discrete scheme is 
uniformly convergent of first order in time and of almost first order in space. The technique 
used to discretize in time produces only tridiagonal linear systems to be solved at each 
time level; thus, from the computational cost point of view, the method we propose is 
more efficient than other numerical algorithms which have been used for these problems. 
Numerical results for several test problems are shown, which corroborate in practice both 
the uniform convergence and the efficiency of the algorithm.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this work we consider an initial and boundary value problem for one-dimensional parabolic singularly perturbed cou-
pled convection-diffusion systems. In the lowest dimensional case, there are two equations in the system and the considered 
problem can be written as follows.

Find u(x, t) : Q →R2, a solution of{
Lεu ≡ ∂u

∂t
(x, t) +Lx,ε(t)u(x, t) = f(x, t), (x, t) ∈ Q ,

u(0, t) = g0(t),u(1, t) = g1(t), t ∈ [0, T ], u(x,0) = ϕ(x), x ∈ (0,1),
(1)

where the spatial differential operator Lx,ε(t) is defined as

Lx,ε(t)u ≡ −Dε
∂2u

∂x2
+ B(x)

∂u

∂x
+A(x, t)u, (2)

* Corresponding author.
E-mail addresses: clavero@unizar.es (C. Clavero), jcjorge@unavarra.es (J.C. Jorge).
https://doi.org/10.1016/j.apnum.2022.09.012
0168-9274/© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2022.09.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:clavero@unizar.es
mailto:jcjorge@unavarra.es
https://doi.org/10.1016/j.apnum.2022.09.012
http://creativecommons.org/licenses/by/4.0/


C. Clavero and J.C. Jorge Applied Numerical Mathematics 183 (2023) 317–332
Q ≡ � × (0, T ] with � = (0, 1), u = (u1, u2)
T , the diffusion matrix is Dε = diag(ε1, ε2), the convection matrix is B(x) =

diag(b11(x), b22(x)), the reaction matrix is A(x, t) = (akp(x, t)), k, p = 1, 2, g0 = (g1,0, g2,0)
T , g1 = (g1,1, g2,1)

T , and ϕ =
(ϕ1, ϕ2)

T .
Henceforth, we suppose that the equations of (1) have been ordered and scaled in such a way that 0 < ε1 ≤ ε2 ≤ 1; 

also, we assume that the diffusion parameters εk, k = 1, 2 can be very small and, besides, they can have different order of 
magnitude. Let ε = (ε1, ε2)

T . Moreover, the coefficients of the convection matrix satisfy

bkk(x) ≥ β > 0, k = 1,2, (3)

and the coefficients of the reaction matrix A satisfy

akk ≥ 0, akp ≤ 0, if k �= p and
2∑

p=1

akp ≥ 0, k, p ∈ {1,2}, ∀(x, t) ∈ Q . (4)

Notice that we have weakened somewhat the usual restrictions imposed for the reaction matrix in many works for singularly 
perturbed coupled systems (see [2,6,12,20,24]); here, A is not necessarily an M-matrix.

Problems of this type have been considered in several recent papers; for instance, in [13] a two-dimensional version of 
(1) is considered and it is proved that this problem has a unique solution. In [13], the authors follow the ideas developed 
in [11] for proving the existence and uniqueness of a solution to a stationary coupled system. Such techniques can also be 
used in our problem to deduce the existence and uniqueness of a solution. Moreover, in [20] it is shown that the solution 
of (1) has overlapping boundary layers of width O(εk| lnεk|), k = 1, 2 at the outflow boundary x = 1. Therefore, uniformly 
convergent methods are needed to find good numerical approximations for arbitrary values of the diffusion parameters 
with a reasonable computational cost. To assure that the exact solution u ∈ C4,2(Q ), we assume that the source term of 
the differential equation, f(x, t) = ( f1, f2)

T , the initial and boundary conditions as well as the coefficients of the differential 
equations are sufficiently smooth functions, and that sufficient compatibility conditions among all of these data hold (see 
[16] for a detailed discussion).

Singularly perturbed convection-diffusion coupled systems model many physical phenomena like, for instance, diffusion-
convection enzyme models, tubular models in chemical reactor theory or neutron transport problems with diffusion coeffi-
cients (see [23]); because of that, these problems and the construction and analysis of efficient numerical schemes to solve 
them have received much attention in the recent years. In [1,17,19,24], 1D convection-diffusion elliptic systems with equal 
or different diffusion parameters at each equation of the system were analyzed. In [20], problem (1) was also considered 
and in [14] a similar problem to (1) but with discontinuous coefficients in the convection matrix was considered. In [25]
another case with an additional coupling in the convective terms but with equal diffusion parameters was analyzed. In 
[18] an elliptic 2D system of convection-diffusion type was considered. In all of these cases, the computational cost of the 
methods is, in general, substantially increased, in comparison with analogue schemes for singularly perturbed scalar convec-
tion diffusion equations, due to the coupling of the components of the discrete solution. To reduce this computational cost, 
an iterative scheme was proposed in [22] for a stationary reaction-diffusion system, the Schwarz domain decomposition 
method was used in [27] and in [3,4], additive schemes were analyzed for 1D and 2D parabolic reaction-diffusion systems 
respectively. The additive schemes reduce the computational cost, because they decouple the components of the discrete 
solution in such a way that only tridiagonal or block tridiagonal, respectively, linear systems must be solved at each time 
level of the discretization. Nevertheless, the analysis of the uniform convergence is quite tricky.

With a similar aim of computational cost reduction, the splitting by components technique was proposed in [6] to solve 
a 1D parabolic system of reaction-diffusion type with an arbitrary number of equations; the same idea was applied in [7]
to solve efficiently a coupled 2D parabolic system of convection-diffusion type which has the same diffusion parameter in 
all equations of the system. In this paper we adapt this technique to solve efficiently problem (1). This technique permits 
also to calculate the numerical approximation of the solution decoupling the components of the system. The numerical 
algorithm is easy to implement and the analysis of its uniform convergence is considerably simpler than the one developed 
for the additive schemes. Moreover, the ideas exposed in this paper can be extended to coupled systems with an arbitrary 
number of equations.

The paper is structured as follows. In section 2, we study the asymptotic behavior of the exact solution of the continuous 
problem and we obtain appropriate estimates for its derivatives which describe the asymptotic behavior of the solution with 
respect to the diffusion parameters. In Section 3, we construct a spatial semidiscretization of the continuous problem; for 
that, we use the upwind scheme defined on a nonuniform mesh of Shishkin type obtaining a family of stiff Initial Value 
Problems and we prove that their solutions converge uniformly to the solution of (1) with the order of almost one. In 
section 4, we give our proposal for an efficient time integration of the stiff Initial Value Problems derived from the previous 
semidiscretization stage. This process combines the fractional implicit Euler method joint to a splitting by components (see 
[5]) and we prove that it is a first order uniformly convergent method. In Section 5, the numerical results for some test 
problems are shown; from them we can observe the uniformly convergent behavior of the algorithm and also its efficiency 
in comparison with other classical methods. We also include the results for a coupled system with a higher number of 
equations, showing that our technique can be successfully applied to systems with an arbitrary number of equations. Finally, 
in Section 6, some conclusions are given.
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Henceforth, C denotes a generic positive constant independent of the diffusion parameters εk, k = 1, 2 and the dis-
cretization parameters N and M , and C = (C, C)T . Also v ≤ w means that vk ≤ wk, k = 1, 2, |v| = (|v1|, |v2|)T and 
‖f‖G = max{‖ f1‖G , ‖ f2‖G} where ‖ f ‖G is the maximum norm of f on the closed set G .

2. Asymptotic behavior of the exact solution

In this section we study the asymptotic behavior of the solution u of (1) and we obtain appropriate estimates for its 
derivatives; from them, we deduce the existence of overlapping boundary layers on x = 1. Such estimates arise from the 
following inverse positivity result, and its subsequent uniform bounding for the solution of (1); the proof is similar to the 
ones in [2] for the elliptic case and in [12] for the parabolic case.

Lemma 1 (Maximum principle). Let w ∈ C(Q̄ ) ∩ C2(Q ) be such that Lε(t)w ≥ 0 on Q , such that w ≥ 0 on {0, 1} × [0, T ]. Then, 
w ≥ 0, ∀(x, t) ∈ Q .

Notice that the previous lemma guarantees the uniqueness of the solution of (1).

Lemma 2 (Uniform bounding). The exact solution of (1) satisfies

‖u‖Q ≤ max{‖ϕ‖[0,1],‖g0‖[0,T ],‖g1‖[0,T ]‖} + 1

β
‖f‖Q (5)

Following the ideas in [9], using Lemma 1 and appropriate barrier functions it is not difficult to prove that the exact 
solution of (1) satisfies∣∣∣∣∂ruk

∂tr

∣∣∣∣ ≤ C, r = 0,1,2, k = 1,2. (6)

Lemma 3. The components uk, k = 1, 2 of u solution of (1) satisfy∣∣∣∣∣∂ luk

∂xl

∣∣∣∣∣ ≤ Cε−l
k , l = 1,2, k = 1,2,∣∣∣∣∂3u1

∂x3

∣∣∣∣ ≤ Cε−1
1 (ε−2

1 + ε−1
2 ),

∣∣∣∣∂3u2

∂x3

∣∣∣∣ ≤ Cε−1
2 (ε−1

1 + ε−2
2 ).

(7)

Proof. It is an easy adaptation of Lemma 3 in [2]. �
The estimates (7) are not sufficiently fine globally and do not reflect in detail the boundary layer behavior of u near 

x = 1; therefore, they are not adequate to analyze the uniform convergence of the spatial discretization in next section. To 
refine those estimates, we decompose the exact solution as u = v + w where v is called the regular component and w is 
the singular component. The regular component v is the solution of the problem⎧⎪⎪⎨⎪⎪⎩

Lεv = f, in Q ,

v(x,0) = ϕ(x), x ∈ [0,1],
v(0, t) = g(0, t), t ∈ [0, T ],
v(1, t) = v1(t), t ∈ [0, T ],

(8)

and the singular component w is the solution of the problem⎧⎪⎪⎨⎪⎪⎩
Lεw = 0, in Q ,

w(x,0) = u(x,0) − v(x,0), x ∈ [0,1],
w(0, t) = u(0, t) − v(0, t), t ∈ [0, T ],
w(1, t) = u(1, t) − v1(t), t ∈ [0, T ],

(9)

where v1(t) is chosen appropriately.

Lemma 4. The regular component v = (v1, v2)
T satisfies∣∣∣∣∂r vk

∂tr

∣∣∣∣ ≤ C, r = 0,1,2,

∣∣∣∣∣∂ l vk

∂xl

∣∣∣∣∣ ≤ C, l = 1,2,

∣∣∣∣∂2 vk

∂t∂x

∣∣∣∣ ≤ C,

∣∣∣∣ ∂3 vk

∂t∂x2

∣∣∣∣ ≤ C, k = 1,2,∣∣∣∣∂3 v1
3

∣∣∣∣ ≤ Cε−1
1 ,

∣∣∣∣∂3 v2
3

∣∣∣∣ ≤ Cε−1
2 .

(10)
∂x ∂x
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Proof. The proof follows the usual ideas in the context of singularly perturbed problems and it adapts the ideas in [10], 
where a weakly coupled system of convection-diffusion type in the stationary case was considered. First, we write the 
components of v in the form

vk = vk,0 + ε2 vk,1 + ε2
2 vk,2, k = 1,2, (11)

where vk,p, k = 1, 2, p = 0, 1, 2 are the solution of the following problems:

∂v1,0

∂t
+ b1

∂v1,0

∂x
+ a11 v1,0 + a12 v2,0 = f1, v1,0(0, t) = g1,0(t), v1,0(x,0) = ϕ1(x),

∂v2,0

∂t
+ b2

∂v2,0

∂x
+ a21 v1,0 + a22 v2,0 = f2, v2,0(0, t) = g2,0(t), v2,0(x,0) = ϕ2(x),

∂v1,1

∂t
+ b1

∂v1,1

∂x
+ a11 v1,1 + a12 v2,1 = ε1

ε2

∂2 v1,0

∂x2
, v1,1(0, t) = 0, v1,1(x,0) = 0,

∂v2,1

∂t
+ b2

∂v2,1

∂x
+ a21 v1,1 + a22 v2,1 = ∂2 v2,0

∂x2
, v2,1(0, t) = 0, v2,1(x,0) = 0,

∂v1,2

∂t
− ε1

∂2 v1,2

∂x2
+ b1

∂v1,2

∂x
+ a11 v1,2 + a12 v2,2 = ε1

ε2

∂2 v1,1

∂x2
,

v1,2(0, t) = 0, v1,2(1, t) = 0, v1,2(x,0) = 0,

∂v2,2

∂t
− ε2

∂2 v2,2

∂x2
+ b2

∂v2,2

∂x
+ a21 v1,2 + a22 v2,2 = ∂2 v2,1

∂x2
,

v2,2(0, t) = 0, v2,2(1, t) = 0, v2,2(x,0) = 0.

(12)

Then, trivially it holds

∂r+l vk,p

∂tr∂xl
≤ C, k = 1,2, p = 0,1, 0 ≤ r + l ≤ 3. (13)

Moreover, using Lemma 3 it follows

∂ l v2,2

∂xl
≤ Cε−l

2 , l = 0,1,2. (14)

To obtain more precise estimates, we now decompose v1,2 in the form

v1,2 = q0 + ε1q1 + ε2
1q2 (15)

where

∂q0

∂t
+ b1

∂q0

∂x
+ a11q0 + a12 v2,2 = ε1

ε2

∂2 v1,1

∂x2
, q0(0, t) = 0, q0(x,0) = 0,

∂q1

∂t
+ b1

∂q1

∂x
+ a11q1 = ∂2q0

∂x2
, q1(0, t) = 0, q1(x,0) = 0,

∂q2

∂t
− ε1

∂2q2

∂x2
+ b1

∂q2

∂x
+ a11q2 = ∂2q1

∂x2
,

q2(0, t) = 0, q2(1, t) = 0, q2(x,0) = 0.

Then, following to [22] we can obtain

∂ l v1,2

∂xl
≤ Cε−l

2 , l = 1,2,
∂3 v1,2

∂x3
≤ Cε−1

1 ε−2
2 . (16)

Finally, differentiating respect to x the last equation in (12), from (13)-(16) we deduce

∂3 v2,2

∂x3
≤ Cε−3

2 . (17)

Taking into account the decompositions (11) and (15), the required result follows. �
Remark 1. Note that v1(t) is given by adding the values at x = 1 of the functions which appear in (11) and (15).

Next, we study the singular component; to simplify the presentation we denote

Bγ (x) = e−β(1−x)/γ , (18)

where γ is any positive constant and β is defined in (3).
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Lemma 5. The singular component w = (w1, w2)
T satisfies∣∣∣∣∂r wk

∂tr

∣∣∣∣ ≤ C Bε2(x), r = 0,1,2, k = 1,2, (19)∣∣∣∣∣∂ l w1

∂xl

∣∣∣∣∣ ≤ C
(
ε−l

1 Bε1(x) + ε−l+1
2 Bε2(x)

)
, l = 1,2,3, (20)∣∣∣∣∣∂ l w2

∂xl

∣∣∣∣∣ ≤ Cε−l
2 Bε2(x), l = 1,2, (21)∣∣∣∣∂3 w2

∂x3

∣∣∣∣ ≤ Cε−1
2

(
ε−1

1 Bε1(x) + ε−2
2 Bε2(x)

)
. (22)

Proof. Taking into account (6), proceeding as in [2], we define the barrier function ψ = (C Bε2 (x), C Bε2 (x))T . Then, trivially 
it holds Lε(t)w ≥ 0 and from Lemma 1, the estimate (19) for r = 0 follows.

Moreover, the technique developed in [9], together with Lemma 1 and the same barrier function ψ permits to prove that∣∣∣∣∂r wk

∂tr

∣∣∣∣ ≤ C Bε2(x), r = 1,2, k = 1,2. (23)

From problem (9), if we denote z1,1 = ∂ w1

∂x
we have

−ε1
∂z1,1

∂x
+ b1z1,1 = −(a11 w1 + a12 w2) − ∂ w1

∂t
≡ h1,1(x, t),

with |h1,1(x, t)| ≤ C Bε2 (x). Then, the technique in [15] proves that it holds∣∣∣∣∂ w1

∂x

∣∣∣∣ ≤ Cε−1
1 Bε1(x). (24)

In the same way, using the second equation in (9) we can obtain∣∣∣∣∂ w2

∂x

∣∣∣∣ ≤ Cε−1
2 Bε2(x). (25)

Now, differentiating once with respect to x the first equation in (9) and denoting z1,2 = ∂2 w1

∂x2 , we have

−ε1
∂z1,2

∂x
+ b1z1,2 = −∂(a11 w1 + a12 w2)

∂x
− ∂2 w1

∂t∂x
− ∂b1

∂x

∂ w1

∂x
≡ h1,2(x, t).

Following to [9] we can deduce |h1,2(x, t)| ≤ C
(
ε−1

1 Bε1 (x) + ε−1
2 Bε2 (x)

)
, and therefore the technique in [15] permits to 

prove ∣∣∣∣∂2 w1

∂x2

∣∣∣∣ ≤ C
(
ε−2

1 Bε1(x) + ε−1
2 Bε2(x)

)
. (26)

Differentiating respect to x the second equation in (9), similarly we can deduce∣∣∣∣∂2 w2

∂x2

∣∣∣∣ ≤ Cε−2
2 Bε2(x). (27)

Differentiating twice with respect to x the first equation in (9) and repeating the previous procedure we can obtain∣∣∣∣∂3 w1

∂x3

∣∣∣∣ ≤ C
(
ε−3

1 Bε1(x) + ε−2
2 Bε2(x)

)
. (28)

Finally, differentiating once with respect to x the second equation in (9) we have

−ε2
∂3 w2

∂x3
+ b2

∂2 w2

∂x2
= −∂(a21 w1 + a22 w2)

∂x
− ∂2 w2

∂t∂x
− ∂b2

∂x

∂ w2

∂x
≡ h1,2(x, t),

and using the previous estimates, directly it follows∣∣∣∣∂3 w2

∂x3

∣∣∣∣ ≤ Cε−1
2

(
ε−1

1 Bε1(x) + ε−2
2 Bε2(x)

)
. (29)

From (24)-(29) the required result follows. �
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Remark 2. Following the ideas of [2,10], where a weakly coupled convection-diffusion system in the stationary case was 
considered, we could obtain the estimates∣∣∣∣∣∂ l w1

∂xl

∣∣∣∣∣ ≤ C
(
ε−l

1 Bε1(x) + ε−l
2 Bε2(x)

)
, l = 1,2,3,

for the derivatives of the first component w1 of the singular component, which suggests a stronger influence of the solution 
of the second equation in the system into the first one, which is not so precise as the estimates in Lemma 5 provide. 
Moreover, the estimates (19) for the derivatives of the second component are better than those ones given in [12,20].

3. The spatial discretization on a Shishkin mesh

To discretize problem (1) in space, we use the simple upwind scheme. From the knowledge of the behavior of the exact 
solution which we have described in the previous section, we are ready to choose a suitable mesh, capable of capturing 
its boundary layer behavior at x = 1. For that, we construct an adequate piecewise uniform mesh of Shishkin type, �N ≡
{0 = x0 < x1 < . . . < xN = 1}, which is defined as follows (see [18]). Let N be a positive integer divisible by 3; we define the 
transition parameters

σε2 = min {2/3,σ0ε2 ln N}, σε1 = min
{
σε2/2,σ0ε1 ln N

}
, (30)

which separate the coarse and the fine mesh, where σ0 is a constant to be fixed later such that

σ0 ≥ 2

β
. (31)

Then, the grid points are given by

xi =
⎧⎨⎩ iH, i = 0, . . . , N/3,

xN/3 + (i − N/3)hε2 , i = N/3 + 1, . . . ,2N/3,

x2N/3 + (i − 2N/3)hε1 , i = 2N/3 + 1, . . . , N,

(32)

with H = 3(1 − σε2 )/N, hε2 = 3(σε2 − σε1)/N, hε1 = 3σε1/N . We denote by hi = xi − xi−1, i = 1, . . . , N , and hi = (hi +
hi+1)/2, i = 1, . . . , N − 1.

Let us denote by �N the subgrid of �N
composed only by the interior points of it, i.e., by �N ⋂

�, by [v]�N (analogously 
[v]�N for scalar functions) the restriction operators, applied to vector functions defined on �, to the mesh �N . For all 
xi ∈ �N , we introduce the semidiscretization approach UN (t) ≡ (UN

i (t)), i = 1, . . . N − 1, with UN
i (t) ≡ (U1,i, U2,i)

T ≈ u(xi, t), 
as the solution of the following Initial Value Problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

LN
ε UN ≡ dUN

dt
(t) +LN

ε (t)U
N
(t) = [f(x, t)]�N , in �N × [0, T ],

UN
0 (t) = g0(t), in [0, T ],

UN
N(t) = g1(t), in [0, T ],

UN(0) = [ϕ(x)]�N ,

(33)

where UN
(t) is the natural extension to �N × [0, T ] of the semidiscrete functions UN (t), defined on �N × [0, T ], by adding 

the corresponding boundary data. Here LN
ε (t) is the discretization of the operator Lx,ε(t) using the upwind scheme. i.e., for 

any sufficiently smooth continuous function z(x, t) we use the approximations

δ2
x z(xi, t) = 1

hi

(
z(xi+1, t) − z(xi, t)

hi+1
− z(xi, t) − z(xi−1, t)

hi

)
for the second derivative and

D−
x z(xi, t) = z(xi, t) − z(xi−1, t)

hi

for the first derivative respectively, at the grid point xi . Then, the numerical scheme can be written as

(LN
ε (t)U

N
)k,i = r−

k,i Ū
N
k,i−1 + r+

k,i Ū
N
k,i+1 + rc

k,i Ū
N
k,i + ak1(xi, t)Ū N

1,i + ak2(xi, t)Ū N
2,i, (34)

with

r−
k,i = −εk

hihi
− bkk(xi)

hi
, r+

k,i = −εk

hi+1hi
, rc

k,i = −(r−
k,i + r+

k,i), (35)

for k = 1, 2 and i = 1, . . . N − 1. Below we denote LN
ε (t) = (LN

ε,1(t), LN
ε,2(t))

T .
The uniform well-posedness of (33) is a consequence of the following semidiscrete maximum principle (see [7]).
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Lemma 6. Under the assumption [f(x, t)]�N , ≤ 0, it holds that UN
(t) reaches its maximum componentwise value at the boundary 

∂�N × [0, T ] ⋃�N × {0}.

The proof of this result is similar to the proof of the semidiscrete maximum principle stated in [6]. From Lemma 6, the 
next result immediately follows.

Lemma 7. If [f(x, t)]�N ≥ 0, g0(t) ≥ 0, g1(t) ≥ 0, and [ϕ(x)]�N ≥ 0, then UN
(t) ≥ 0.

Using now a well known barrier-function technique, see [26] for instance, the following result can be proved.

Lemma 8 (Uniform stability). The unique solution of problem (33) satisfies the uniform bound

‖U
N
(t)‖

�
N×[0,T ] ≤ max{‖[ϕ(x)]�N ‖

�N ,‖g0(t)‖[0,T ],‖g1(t)‖[0,T ]} + 1

β
‖[f(x, t)]�N ‖�N ×[0,T ].

From Taylor expansions, we know that for any sufficiently smooth continuous function z(x, t), it holds∣∣∣∣( ∂2

∂x2
− δ2

x

)
z(xi, t)

∣∣∣∣ ≤ C max
ξ∈[xi−1,xi+1]

∣∣∣∣∂2z

∂x2
(ξ, t)

∣∣∣∣ , (36)∣∣∣∣( ∂2

∂x2
− δ2

x

)
z(xi, t)

∣∣∣∣ ≤ C(xi+1 − xi−1) max
ξ∈[xi−1,xi+1]

∣∣∣∣∂3z

∂x3
(ξ, t)

∣∣∣∣ , (37)∣∣∣∣( ∂

∂x
− D−

x

)
z(xi, t)

∣∣∣∣ ≤ C(xi+1 − xi−1) max
ξ∈[xi−1,xi ]

∣∣∣∣∂2z

∂x2
(ξ, t)

∣∣∣∣ , (38)∣∣∣∣( ∂

∂x
− D−

x

)
z(xi, t)

∣∣∣∣ ≤ C max
ξ∈[xi−1,xi ]

∣∣∣∣∂z

∂x
(ξ, t)

∣∣∣∣ . (39)

The main result in this section proves the uniform convergence of the spatial discretization.

Theorem 1. Under the previous smoothness assumptions for u, the error associated with the spatial discretization on the Shishkin 
mesh satisfies

‖[u(x, t)]N − UN(t)‖�N ≤ C N−1 ln N, ∀ t ∈ [0, T ], (40)

where C is independent of ε and N, and therefore the spatial discretization is an almost first order uniformly convergent scheme.

Proof. We only show the details when σε2 = σ0ε2 ln N, σε1 = σ0ε1 ln N , which is the most interesting case. The other 
simpler cases can be studied in similar way as in [2].

Following to the continuous problem, we decompose the numerical solution in the form UN (t) = VN (t) + WN (t), where 
the regular component VN (t) is the solution of the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dVN

dt
(t) +LN

ε (t)V
N
(t) = [f(x, t)]�N , in �N × [0, T ],

VN
0 (t) = v(0, t), in [0, T ],

VN
N(t) = v(1, t), in [0, T ],

VN(0) = [ϕ(x)]�N ,

(41)

and the singular component WN (t) is the solution of the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dWN

dt
(t) +LN

ε (t)W
N
(t) = 0, in �N × [0, T ],

WN
0 (t) = w(0, t), in [0, T ],

WN
N(t) = w(1, t), in [0, T ],

WN(0) = 0 in �N .

(42)

Then, it trivially holds

‖[u(x, t)]N − UN(t)‖�N ≤ ‖[v(x, t)]N − VN(t)‖�N + ‖[w(x, t)]N − WN(t)‖�N

and we analyze the error of the regular and the singular components separately.
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We remember that the local error at any time t ∈ [0, T ], at the grid point xi ∈ �N , i = 1, . . . N − 1, is given by

υi,N,u(t) ≡ Lεu(xi, t) − (LN
ε [u(x, t)]N )i .

Taking into account that the contribution of the time derivatives to the local error is zero, we deduce that

υi,N,u(t) = Lε(t)u(xi, t) − (LN
ε [u(x, t)]N )i

For the regular component, using (37), (38) and the estimates (10) for the derivatives, we obtain |υi,N,v(t)| ≤ CN−1 and 
from Lemma 7 it follows

|v(xi, t) − VN
i (t)| ≤ CN−1. (43)

For the singular component we distinguish several cases depending on the location of the mesh point xi , i = 1, 2, . . . , N −1.
Case 1: We assume that xi ∈ (0, 1 − σε2 ]. As it is usual, in this case the error is bounded directly using that

|w(xi, t) − WN
i (t)| ≤ |w(xi, t)| + |WN

i (t)|.
From (19) we obtain

|w(xi, t)| ≤ Ce−βσε2 /ε2 ≤ CN−2.

On the other hand, we define the barrier function

ψε2,i =
N∏

j=i+1

(
1 + βh j

2ε2

)−1

, i = 1,2, . . . , N − 1,

and �ε2,i = (ψε2,i, ψε2,i)
T . Then, we can prove

LN
ε [�ε2,i] ≥ C

ψε2,i

2ε2 + βhi+1
.

Using that ψε2,i ≥ e
− βxi

2ε2 , we deduce |WN
i (t)| ≤ CN−2 (see [2] for more details where same idea was used in this case).

From previous estimates, in this case we obtain

|w(xi, t) − WN
i (t)| ≤ CN−2. (44)

Case 2: We assume that xi ∈ [1 − σε1 , 1). In this case we define a new barrier function, given by

ψε1,i =
N∏

j=i+1

(
1 + βh j

2ε1

)−1

, i = 1,2, . . . , N − 1.

Then, using the remainder of Taylor expansion in integral form, we have

∣∣∣LN
ε,1(t)

(
w(xi, t) − WN

i (t)
)∣∣∣ ≤ C

xi−1∫
xi−1

(
ε1

∣∣∣∣∂3 w1

∂x3

∣∣∣∣ +
∣∣∣∣∂2 w1

∂x2

∣∣∣∣) (s, t)ds ≤

C
(
ε−1

1 exp(−β(1 − xi)/ε1) sinh(βhε1/ε1) + exp(−β(1 − xi)/ε2) sinh(βhε1/ε2)
)

≤
C

(
ε−1

1 N−1 ln Nψε1,i + N−1 ln Nψε2,i

)
.

Similarly, we can prove

∣∣∣LN
ε,2(t)

(
w(xi, t) − WN

i (t)
)∣∣∣ ≤ C

xi−1∫
xi−1

(
ε2

∣∣∣∣∂3 w2

∂x3

∣∣∣∣ +
∣∣∣∣∂2 w2

∂x2

∣∣∣∣) (s, t)ds ≤

C
(

N−1 ln Nψε1,i + ε−1
2 N−1 ln Nψε2,i

)
.

Then, it holds

|υi,N,w(t)| ≤ C
(
ε−1

1 N−1 ln Nψε1,i + ε−1
2 N−1 ln Nψε2,i

)
.
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Case 3: We assume that xi ∈ (1 − σε2 , 1 − σε1 ). In this case we use ideas given in [2,21]. Let x∗ the value where

ε−1
1 exp(−β(1 − xi)/ε1) + ε−1

2 exp(−β(1 − xi)/ε2),

attains the maximum in the interval [xi−1, xi+1]. Now we must distinguish two subcases; in the first one we assume that it 
holds

ε−1
1 exp(−β(1 − xi)/ε1) ≤ ε−1

2 exp(−β(1 − xi)/ε2). (45)

Then, using (37) and (38) we have∣∣∣LN
ε,1(t)

(
w(xi, t) − WN

i (t)
)∣∣∣ ≤ C(xi+1 − xi−1) max

ξ∈[xi−1,xi+1]

(
ε1

∣∣∣∣∂3 w1

∂x3

∣∣∣∣ +
∣∣∣∣∂2 w1

∂x2

∣∣∣∣) (ξ, t) ≤
Chε2

(
ε−2

1 exp(−β(1 − x∗)/ε1) + ε−2
2 exp(−β(1 − x∗)/ε2)

)
≤

Cε−1
2 N−1 ln N exp(−β(1 − xi)/ε2)exp(βhε2/ε2) ≤

ε−1
2 N−1 ln Nψε2,i .

Similarly, we can prove∣∣∣LN
ε,2(t)

(
w(xi, t) − WN

i (t)
)∣∣∣ ≤ C(xi+1 − xi−1) max

ξ∈[xi−1,xi+1]

(
ε2

∣∣∣∣∂3 w2

∂x3

∣∣∣∣ +
∣∣∣∣∂2 w2

∂x2

∣∣∣∣) (ξ, t) ≤
Chε2

(
ε−1

1 exp(−β(1 − x∗)/ε1) + ε−2
2 exp(−β(1 − x∗)/ε2)

)
≤

Cε−1
2 N−1 ln Nψε2,i .

Then, in this subcase it holds

|υi,N,w(t)| ≤ Cε−1
2 N−1 ln Nψε2,i .

In the last case, which is not considered in [2], we assume that (45) does not hold. Then, using (36) and (39) we have∣∣∣LN
ε,1(t)

(
w(xi, t) − WN

i (t)
)∣∣∣ ≤ C max

ξ∈[xi−1,xi+1]

(
ε1

∣∣∣∣∂2 w1

∂x2

∣∣∣∣ +
∣∣∣∣∂ w1

∂x

∣∣∣∣) (ξ, t) ≤
C

(
ε−1

1 exp(−β(1 − x∗)/ε1) + exp(−β(1 − x∗)/ε2)
)

≤
Cε−1

1 exp(−βσε1/(2ε1))exp(−β(1 − xi+1)/(2ε1)) ≤Cε−1
1 N−1 ln Nψε1,i+1.

Similarly, we can prove∣∣∣LN
ε,2(t)

(
w(xi, t) − WN

i (t)
)∣∣∣ ≤ C max

ξ∈[xi−1,xi+1]

(
ε2

∣∣∣∣∂2 w2

∂x2

∣∣∣∣ +
∣∣∣∣∂ w2

∂x

∣∣∣∣) (ξ, t) ≤
Cε−1

2 exp(−β(1 − xi+1)/ε2) ≤
Cε−1

1 exp(−βσε1/(2ε1))exp(−β(1 − xi+1)/(2ε1)) ≤Cε−1
1 N−1 ln Nψε1,i+1.

Then, in this subcase it holds

|υi,N,w(t)| ≤ C
(
ε−1

1 N−1 ln Nψε1,i+1

)
.

To finish the proof we consider the barrier function

ψε1,ε2,i = C N−1 ln N(ε−1
1 ψε1,i+1 + ε−1

2 ψε2,i), i = 1,2, . . . , N − 1,

and �ε1,ε2,i = (ψε1,ε2,i, ψε1,ε2,i)
T ; using the maximum principle we can obtain

|w(xi, t) − WN
i (t)| ≤ CN−1 ln N. (46)

Then, from (43), (44) and (46) the required result follows. �
4. The fully discrete scheme: uniform convergence

In this section we describe the numerical algorithm which we propose to solve efficiently the continuous problem (1). 
Our method is the result of applying an appropriate time integrator to the semidiscrete problems (33).

Let us consider, for simplicity, a constant time step τ = T /M; we denote UN,m ≡ (UN,m
i ), i = 1, . . . N − 1, where UN,m

i ≡
(U N,m

1,i , U N,m
2,i )T are the numerical approaches of u(xi, tm), i = 1, . . . , N − 1 at tm = mτ , for m = 0, 1, . . . , M and let us denote 

U
N,m ≡ (UN,m

), i = 0, . . . N . Using these notations, the fully discrete scheme is given by
i
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Initialize

U
N,0 = [ϕ]

�
N ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For m = 0,1, . . . , M − 1,

First half step
U N,m+1/2

2,i = U N,m
2,i , i = 0, . . . , N,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U N,m+1/2
1,0 = g1,0(tm+1),

U N,m+1/2
1,i − U N,m

1,i

τ
+ (LN

ε (tm+1)U
N,m+1/2

)1,i = f1(xi, tm+1), i = 1, . . . , N − 1,

U N,m+1/2
1,N = g1,1(tm+1),

Second half step
U N,m+1

1,i = U N,m+1/2
1,i , i = 0, . . . , N,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U N,m+1
2,0 = g2,0(tm+1),

U N,m+1
2,i − U N,m+1/2

2,i

τ
+ (LN

ε (tm+1)U
N,m+1

)2,i = f2(xi, tm+1), i = 1, . . . , N − 1,

U N,m+1
2,n = g2,1(tm+1).

(47)

Observe that in the half steps of (47), only tridiagonal linear systems are involved to obtain the numerical approaches 
UN,• . Because of that, we obtain a remarkable cost reduction with our method, if we compare it with classical implicit 
methods (see, for example, [12]).

Next, we describe the main theoretical results of this time integration process which take an important role in the 
analysis of the uniform and unconditional convergence of our method, formulated and proven in the last theorem of this 
section.

4.1. Analysis of time integration: uniform stability

Theorem 2. The linear systems involved in (47) are associated with tridiagonal matrices of the form

AN,k ≡ IN + τLN
ε,k, k = 1,2,

which are inverse positive and satisfy

‖(AN,k)
−1‖∞ ≤ 1, k = 1,2; (48)

therefore, (47) has a unique solution.

Notice that the non zero coefficients of i-th row of the tridiagonal matrix LN
ε,k are r−

k,i, rc
k,i + akk(xi, tm+1), r+

k,i , which 
are defined in (35). From this result, using a similar process to this one in the proof of Corollary 1 of [6], it is proven the 
following contractive behavior of the method.

Theorem 3 (Uniform stability). Two solutions of (47) obtained with different initial conditions, UN,0 and ŨN,0 , satisfy

‖UN,m+1 − ŨN,m+1‖�N ≤ ‖UN,m − ŨN,m‖�N . (49)

4.2. Analysis of time integration: uniform consistency

To complete the uniform convergence of the time integration process, first we study its uniform consistency. To do this, 
we introduce the local errors in time eN,m , at times tm , which are defined by

eN,m = UN(tm) − ÛN,m,

being ÛN,m the result of the m-th step of scheme (47), if we change U
N,m−1

by U
N
(tm−1). By doing similar calculations to 

the proof of Theorem 6 of [6], the following result can be obtained.

Theorem 4 (Uniform consistency). Under the assumptions made for the data of problem (1), it holds

‖eN,m‖�N ≤ C M−2, ∀τ ∈ (0, τ0] and m = 1,2, . . . , M. (50)

Now, combining the two main results of the preceding short subsections, we are ready to prove that the time integration 
process is uniformly convergent of first order.
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Fig. 1. Components u1 (left) and u2 (right) of example (53) for ε1 = 10−4, ε2 = 10−3 with N = 48, M = 32.

4.3. Analysis of time integration: uniform convergence

Let us introduce the global errors in time, at times tm , as (U
N
(tm) − UN,m) for m = 1, . . . , M . They can be bounded in the 

form

‖U
N
(tm) − UN,m‖

�
N ≤ ‖eN,m‖

�
N + ‖ÛN,m − UN.m‖

�
N .

Now, using the stability result (49), we obtain

‖U
N
(tm) − UN,m‖

�
N ≤ ‖eN,m‖

�
N + ‖U

N
(tm−1) − UN,m−1‖

�
N .

Applying m times this recurrence and the bounds (50) for the local error, it is straightforward to prove that

‖U
N
(tm) − UN,m‖

�
N ≤

m∑
i=1

‖eN,i‖
�

N ≤ C M−1. (51)

Therefore, the time integration process is uniformly convergent of first order.
Combining this result and the uniform convergence of the spatial discretization process, we are ready to state the main 

uniform convergence result of the paper.

Theorem 5 (Uniform convergence). Assuming that u ∈ C4,2(Q ), the global error associated to the numerical method defined by (47)
on the Shishkin mesh defined in (32) satisfies

max
0≤m≤M

‖UN,m − [u(x, tm)]
�

N ‖
�

N ≤ C
(
N−1 ln N + M−1) , (52)

where the constant C is independent of the diffusion parameter ε and the discretization parameters N and M.

5. Numerical results

In this section we show the numerical results obtained with the algorithm proposed in this paper to solve successfully 
some problems of type (1). The data which we have chosen for the first numerical test are:

A =
(

10 − x2 − t2 −(1 + x2 + t2)

−xtex 10 + 3 cos(x + t)

)
, B =

(
10 + 3 sin(x) 0

0 1 + x(1 − x2)

)
,

f(x, t) = (5t2 sin(x + t),2t sin(t)ext)T ,

g0(t) = (10t2,10t2)T ,g1(t) = (10 sin(t),10 sin(t))T , ϕ(x) = (5 sin(πx),0)T ,

(53)

and T = 1. Fig. 1 displays the numerical solution for ε1 = 10−4, ε2 = 10−3. From it, we clearly see the presence of regular 
boundary layers at the outflow boundary.

To observe more in detail the overlapping boundary layers at x = 1, Fig. 2 displays both components at the final time 
T = 1; the graph of the right hand side contains a zoom of the boundary layer region. In it, it is seen that the layer 
associated to the first component is sharper than the associated to the second one.

As the exact solution of this example is unknown, to approximate the maximum errors for each component uk, k = 1, 2, 
given by
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Fig. 2. Components of example (53) for ε1 = 10−4, ε2 = 10−3 at T = 1.

Fig. 3. Components of example (56) for ε1 = 10−5, ε2 = 10−4, ε3 = 10−3, with N = 64, M = 32 (left u1, center u2, right u3).

max
0≤m≤M

max
0≤i≤N

|Um
N,i,k − uk(xi, tm)|,k = 1,2,

we use a variant of the double-mesh principle (see [8] for instance), i.e., we calculate

dN,M
ε,k = max

0≤m≤M
max

0≤i≤N
|Um

N,i,k − Û 2m
2N,2i,k|, dN,M

k = max
ε

dN,M
ε,k ,k = 1,2, (54)

where {Û2m
2N } is the numerical solution on a finer mesh {(x̂ j, ̂tm)} that consists of the mesh points of the coarse mesh and 

their midpoints. From the double-mesh differences computed in (54), we obtain the corresponding orders of convergence, 
given by

pk = log(dN,M
ε,k /d2N,2M

ε,k )/ log 2, puni
k = log(dN,M

k /d2N,2M
k )/ log 2,k = 1,2. (55)

Table 1 shows the maximum errors and the orders of convergence for some values of ε2, taking σ0 = 2 in (30) and 
M = N/2; for each value of ε2, the diffusion parameter ε1 is in the set R = {ε1|ε1 = ε2, 2−2ε2, . . . , 2−32}. For each value of 
ε2, the first and second rows correspond to the first component and the third and the fourth ones to the second one. From 
this table, we observe the almost first order of uniform convergence according to the theoretical results. This fact indicates 
that, from a numerical point of view, the errors associated to the spatial discretization dominate in the global errors.

To show that the splitting technique can be extended successfully to systems with more components, we consider a 
second example where the system of partial differential equations has three coupled equations and the unknown solution 
has three components. The data of this problem are given by

A =
⎛⎝ 5 + xt −(x2 + t2) −(2 + xt)

−5xte−x 6 + cos(xt) − sin(x + t)
−3xe−t −(xt + sin(xt)) 5(x + 1)e−xt

⎞⎠ , B =
⎛⎝ 5 + x sin(x) 0 0

0 1 + x2 0
0 0 3 − x cos(x)

⎞⎠ ,

f(x, t) = (10t2 sin(x + t),−2(1 − e−t)ex,−3t cos(x + t))T ,g0 = g1 = ϕ = 0,

(56)

and T = 1, for which again the exact solution is unknown. Fig. 3 displays the numerical approximation for the three com-
ponents, showing again the overlapping boundary layers at x = 1.

As in the previous example, to see more clearly the overlapping boundary layers at x = 1, Fig. 4 displays the components 
at the final time T = 1; from it, we can observe that the layer associated to the first component is sharper than the 
associated to the second one and this one is sharper than the associated one to the third component.
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Table 1
Maximum errors and orders of convergence for example (53).

ε2 N = 48 N = 96 N = 192 N = 384 N = 768 N = 1536

5.7355E-1 5.3868E-1 4.9110E-1 3.6168E-1 2.4754E-1 1.5576E-1
2−6 0.0905 0.1334 0.4413 0.5470 0.6683

3.0874E-1 1.6282E-1 9.5811E-2 5.6207E-2 3.2010E-2 1.7871E-2
0.9231 0.7650 0.7695 0.8122 0.8409

5.8292E-1 5.4407E-1 4.9470E-1 3.6390E-1 2.4905E-1 1.5665E-1
2−8 0.0995 0.1372 0.4430 0.5471 0.6688

3.9442E-1 2.2502E-1 1.2104E-1 6.2643E-2 3.3959E-2 1.8941E-2
0.8097 0.8946 0.9502 0.8834 0.8422

5.8624E-1 5.4575E-1 4.9577E-1 3.6457E-1 2.4949E-1 1.5699E-1
2−10 0.1032 0.1386 0.4435 0.5472 0.6683

4.1851E-1 2.4662E-1 1.3500E-1 7.0777E-2 3.6279E-2 1.9359E-2
0.7630 0.8694 0.9316 0.9641 0.9061

5.8713E-1 5.4631E-1 4.9605E-1 3.6474E-1 2.4961E-1 1.5702E-1
2−12 0.1040 0.1392 0.4436 0.5472 0.6688

4.2472E-1 2.5239E-1 1.3880E-1 7.3116E-2 3.7569E-2 1.9481E-2
0.7508 0.8627 0.9247 0.9607 0.9474

... ... ... ... ... ... ...
... ... ... ... ...

5.8743E-1 5.4650E-1 4.9615E-1 3.6480E-1 2.4966E-1 1.5702E-1
2−24 0.1042 0.1394 0.4437 0.5471 0.6690

4.2680E-1 2.5435E-1 1.4009E-1 7.3918E-2 3.8013E-2 1.9408E-2
0.7468 0.8604 0.9224 0.9595 0.9698

eN,M
1 5.8743E-1 5.4650E-1 4.9615E-1 3.6480E-1 2.4966E-1 1.5708E-1

puni
1 0.1042 0.1394 0.4437 0.5471 0.6685

eN,M
2 4.2680E-1 2.5435E-1 1.4009E-1 7.3918E-2 3.8013E-2 1.9521E-2

puni
2 0.7468 0.8604 0.9224 0.9595 0.9614

Fig. 4. Components of example (56) for ε1 = 10−5, ε2 = 10−4, ε3 = 10−3 at T = 1.

To obtain the numerical solution, we have used the same ideas as in [6] for extend our splitting technique to systems 
with more components. First, following to [18] we construct the appropriate piecewise uniform Shishkin mesh to solve 
a system with three equations which may have three different diffusion parameters. For that, we define the transition 
parameters

σε3 = min {3/4,σ0ε3 ln N}, σε2 = min
{

2σε3/3,σ0ε2 ln N
}
, σε1 = min

{
σε2/2,σ0ε1 ln N

}
, (57)

where N is a positive integer multiple of 4; then, the grid points are given by

xi =

⎧⎪⎪⎨⎪⎪⎩
iH, i = 0, . . . , N/4,

xN/4 + (i − N/4)hε3 , i = N/4 + 1, . . . , N/2,

xN/2 + (i − N/2)hε2 , i = N/2 + 1, . . . ,3N/4,

x + (i − 3N/4)h , i = 3N/4 + 1, . . . , N/,
3N/4 ε1
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Table 2
Maximum errors and orders of convergence for example (56).

ε3 N = 32 N = 64 N = 128 N = 256 N = 512

8.7654E-2 6.9700E-2 4.7361E-2 3.2337E-2 2.0392E-2
0.3307 0.5574 0.5505 0.6652
1.5112E-2 1.0158E-2 6.5394E-3 3.9704E-3 2.3217E-3

2−6 0.5731 0.6354 0.7199 0.7741
1.0400E-2 5.4425E-3 2.7760E-3 1.3944E-3 7.7145E-4
0.9342 0.9712 0.9933 0.8540

8.8799E-2 7.0251E-2 4.7756E-2 3.2506E-2 2.0500E-2
0.3380 0.5568 0.5550 0.6650
1.4962E-2 1.0073E-2 6.4828E-3 3.9401E-3 2.3044E-3

2−8 0.5708 0.6359 0.7184 0.7738
1.0879E-2 5.7790E-3 2.9761E-3 1.5089E-3 8.0340E-4
0.9126 0.9574 0.9799 0.9093

8.9115E-2 7.0406E-2 4.7870E-2 3.2554E-2 2.0532E-2
0.3400 0.5566 0.5563 0.6650
1.4909E-2 1.0046E-2 6.4634E-3 3.9294E-3 2.2981E-3

2−10 0.5695 0.6363 0.7180 0.7738
1.0994E-2 5.8648E-3 3.0268E-3 1.5380E-3 8.1200E-4
0.9066 0.9543 0.9767 0.9215

... ... ... ... ... ...
... ... ... ...

8.9221E-2 7.0459E-2 4.7908E-2 3.2571E-2 2.0543E-2
0.3406 0.5565 0.5567 0.6649
1.3926E-2 9.7226E-3 6.1977E-3 3.7755E-3 2.2114E-3

2−24 0.5184 0.6496 0.7151 0.7718
1.1032E-2 5.8932E-3 3.0436E-3 1.5479E-3 7.8067E-4
0.9046 0.9533 0.9754 0.9876

dN,M
1 8.9222E-2 7.0459E-2 4.7908E-2 3.2571E-2 2.0543E-2

puni
1 0.3406 0.5565 0.5567 0.6649

dN,M
2 1.5112E-2 1.0158E-2 6.5394E-3 3.9704E-3 2.3217E-3

puni
2 0.5731 0.6354 0.7199 0.7741

dN,M
3 1.1032E-2 5.8932E-3 3.0436E-3 1.5479E-3 8.1448E-4

puni
3 0.9046 0.9533 0.9754 0.9264

where H = 4(1 −σε3 )/N, hε3 = 4(σε3 −σε2 )/N, hε2 = 4(σε2 −σε1)/N, hε1 = 4σε1/N . Secondly, we semidiscretize in space this 
problem using again the simple upwind finite difference scheme on this mesh and, finally, we integrate in time the Initial 
Value Problems coming from the spatial discretization, by using the fractional implicit Euler method, with three fractional 
steps, joint to a splitting in three components (see [6] for full details) to obtain the numerical algorithm.

To estimate the maximum errors we use again the double mesh principle. Table 2 shows the maximum errors for some 
values of ε3 taking ε2 in the set R2 = {ε2|ε2 = ε3,2−2ε3, . . . ,2−28} and ε1 in the set R1 = {ε1|ε1 = ε2,2−2ε2, . . . ,2−32}, 
σ0 = 1 in (57) and M = N/2. For each value of ε3, the first and second rows correspond to the first component, the third 
and the fourth ones to the second component and the fifth and sixth ones to the third component. From it, we observe 
again the almost first order of uniform convergence of the numerical algorithm.

One of the most important properties of our method, in comparison with other uniformly convergent classical methods 
used to solve parabolic singularly perturbed systems, is related with the reduction of the computational cost, based on the 
use of the splitting technique to discretize in time, which means that at each time level the value of the numerical solution 
of all components can be decoupled. To confirm this fact, we solve example (56) with a classical algorithm which combines 
the implicit Euler method to discretize in time, on a uniform mesh, and the upwind scheme on the same Shishkin mesh as 
before to discretize in space. Note that this method does not decouple the components of the numerical solution. Table 3
shows the ratio between the maximum errors obtained using our method and the ones related to the classical method, 
for the same values of the diffusion parameter ε; for each value of ε3 the first row corresponds to the ratios for the first 
component, the second row for the second component and the last row for the third component. From this table, it is clear 
that the maximum errors obtained with our algorithm are similar to the obtained ones with the classical first order method.

Next, we compare the computational cost of the classical method and our algorithm. We solve examples (53) and (56)
for some values of N, M = N/2 and fixed values of the diffusion parameters. Tables 4 and 5 show the required CPU time in 
seconds using the splitting and the classical algorithms respectively. All results are obtained in a PC with an i5 processor, 
1.80 GHz, using Fortran Gnu. We can observe that the CPU time tends to enlarge 4 times in both methods as long as N
doubles, as it was expected. Notice that, from the n2 factor of decreasing in terms of computational complexity of our 
algorithm, respect to the classical method used to compare it, a speed up is produced in our method when the number of 
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Table 3
Ratio between the maximum errors of our method and the classical one for 
example (56).

ε3 N = 32 N = 64 N = 128 N = 256 N = 512

1.016 1.009 1.009 1.005 1.005
2−6 0.988 0.993 0.994 0.995 0.995

0.996 0.997 0.998 0.998 1.031

0.994 1.009 1.009 1.005 1.005
2−8 0.986 0.992 0.993 0.994 0.995

0.996 0.998 0.998 0.998 1.017

1.017 1.009 1.009 1.005 1.005
2−10 0.985 0.992 0.993 0.994 0.995

0.996 0.997 0.998 0.998 1.017

... ... ... ... ... ...
... ... ... ...

1.017 1.009 1.009 1.005 1.005
2−24 0.985 0.991 0.993 0.994 0.995

0.996 0.998 0.998 0.998 0.998

Table 4
CPU time for example (53) for ε2 = 2−16 and ε1 = 2−20.

N = 192 N = 384 N = 768 N = 1536 N = 3072

classical 0.06250 0.28125 1.09375 4.39063 17.60938
splitting 0.06250 0.26563 1.03125 4.06250 16.32813
ratio 1 1.059 1.061 1.081 1.078

Table 5
CPU time for example (56) for ε3 = 2−12, ε2 = 2−16 and ε1 = 2−20.

N = 192 N = 384 N = 768 N = 1536 N = 3072

classical 0.12500 0.56251 2.29688 8.98438 36.03125
splitting 0.06250 0.26563 1.12500 4.51563 18.09375
ratio 2 2.118 2.042 1.990 1.991

components n in the system (1) increases; Tables 4 and 5 show the CPU times associated to our method and the classical 
one and also the ratio between them, for examples (53) and (56) respectively; from these tables, we observe that in example 
(53) the CPU times are similar, whereas for example (56) the CPU time related to the classical method is around twice the 
related one to our method. These ratios increase strongly when the number of components in the system increase.

6. Conclusions

We have developed a robust and efficient numerical algorithm for solving a class of parabolic one-dimensional singularly 
perturbed systems of convection-diffusion type, where the convection matrix is diagonal and the diffusion parameters at 
each equation can be different, permitting that they have different orders of magnitude. The proposed method combines 
the fractional implicit Euler method together a splitting by components, to discretize in time, and the upwind scheme, 
to discretize in space, defined on a special nonuniform mesh of Shishkin type. The fully discrete scheme calculates the 
numerical solution by solving only tridiagonal linear systems; then, from the point of view of the computational cost, the 
method is better than other classical implicit methods which require to solve banded linear systems. We have shown that 
the efficiency of the algorithm increases when the number of components in the system grows. Some numerical results 
for two test problems are displayed, which corroborate in practice the good properties of the algorithm, according to the 
theoretical results.
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