000119617 001__ 119617
000119617 005__ 20241125101128.0
000119617 0247_ $$2doi$$a10.1002/ghg.2176
000119617 0248_ $$2sideral$$a129751
000119617 037__ $$aART-2023-129751
000119617 041__ $$aeng
000119617 100__ $$0(orcid)0000-0003-2484-2504$$aGarcía-Mariaca, Alexander$$uUniversidad de Zaragoza
000119617 245__ $$aEnergy and economic analysis feasibility of CO2 capture on a natural gas internal combustion engine
000119617 260__ $$c2023
000119617 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119617 5203_ $$aCO2 capture by amine scrubbing is a widely developed technology in its most advanced stage of evolution. However, it has never been used to capture CO2 from mobile sources. The present study performs an energy and economic analysis of an amine scrubbing CO2 capture storage (CCS) system, which takes for the amine regeneration process the waste heat from the exhaust gases of a turbocharged natural gas internal combustion engine (mobile source). The selected engine for the study is an M936G, widely used in freight and passenger transport. A primary and a tertiary amine were chosen for the simulations. In order to reduce volume and increase autonomy, captured CO2 is stored as a liquid, therefore, a specific installation is planned. The system is hybridised with an organic rankine cycle (ORC) to reduce the energy penalty on the CCS system. Results show that a CCS system operating with Monoethanolamine (MEA) at 30 wt% achieved a maximum CO2 capture rate of 66%, with a penalty over the power engine of only 10%. On the other hand, the economic analysis showed that the CCS system with MEA and without ORC is 31.8% cheaper than a hydrogen fuel cells bus and 26% cheaper than a battery-electric bus.
000119617 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000119617 590__ $$a2.7$$b2023
000119617 592__ $$a0.605$$b2023
000119617 591__ $$aENERGY & FUELS$$b111 / 171 = 0.649$$c2023$$dQ3$$eT2
000119617 593__ $$aEnvironmental Engineering$$c2023$$dQ2
000119617 591__ $$aENVIRONMENTAL SCIENCES$$b192 / 358 = 0.536$$c2023$$dQ3$$eT2
000119617 593__ $$aEnvironmental Chemistry$$c2023$$dQ2
000119617 591__ $$aENGINEERING, ENVIRONMENTAL$$b53 / 81 = 0.654$$c2023$$dQ3$$eT2
000119617 594__ $$a4.9$$b2023
000119617 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000119617 700__ $$0(orcid)0000-0002-6103-7136$$aLlera-Sastresa, Eva$$uUniversidad de Zaragoza
000119617 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000119617 773__ $$g13, 2 (2023), 144-159$$pGreenh. gases$$tGreenhouse gases$$x2152-3878
000119617 8564_ $$s887876$$uhttps://zaguan.unizar.es/record/119617/files/texto_completo.pdf$$yPostprint
000119617 8564_ $$s1881561$$uhttps://zaguan.unizar.es/record/119617/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000119617 909CO $$ooai:zaguan.unizar.es:119617$$particulos$$pdriver
000119617 951__ $$a2024-11-22-11:58:12
000119617 980__ $$aARTICLE