000119663 001__ 119663
000119663 005__ 20230519145528.0
000119663 0247_ $$2doi$$a10.1016/j.jmrt.2021.08.014
000119663 0248_ $$2sideral$$a126841
000119663 037__ $$aART-2021-126841
000119663 041__ $$aeng
000119663 100__ $$aFuentes-García J.A.
000119663 245__ $$aSonochemical route for mesoporous silica-coated magnetic nanoparticles towards pH-triggered drug delivery system
000119663 260__ $$c2021
000119663 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119663 5203_ $$aThis work reports a pH-triggered release system based on core@shell mesoporous magnetic nanoparticles (MNP@mSiO2) obtained using a simple and rapid ultrasound-assisted method. Performed characterization reveals magnetic cores of Fe2.9Mn0.1O4 (38 ± 6 nm) and specific loss power values adequate for hyperthermia (463 W/g), surrounded by a mesoporous silica shell (10 ± 2 nm) with large surface area (269 m2 g-1) functionalized with hydroxyl groups (-OH). MNP@mSiO2 were loaded with DOX and amino-silane grops, providing pH-triggered DOX release at acidic environments, driving by dipolar intermolecular interactions. The experimental DOX release kinetics at pH 5.5, 6.6 and 7.4 were determined and adjusted to Gompertz dissolution model (Nash–Sutcliffe efficiency coefficient (NSE>0.9)), where the only strongly pH-dependent variable is the percentage of DOX released. The pH-triggered response observed in the system was ~20% of the DOX loaded into the MNP@mSiO2 is released at pH 6.6 or 7.4, whereas up to 80 wt% is released at pH 5.5. Time to 50% of release and dissociation rate of the system remaining constant, suggesting no-pH influence on these parameters. The biological assays highlight negligible hemolytic effect and cytocompatibility of the hybrid material, pointing out the potential use of MNP@mSiO2 as a magnetic driven drug delivery system with pH-triggered drug release kinetics at acidic environments. These results probe the feasibility of sonochemical methods in the elaboration of biocompatible and controlled properties nanomaterials for drug release applications, with the advantage of accurately responses predictions by mathematical model and using minimal processing steps or laboratory equipment. © 2021 The Authors
000119663 536__ $$9info:eu-repo/grantAgreement/ES/MICIU/PID2019-106947RB-C21
000119663 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000119663 590__ $$a6.267$$b2021
000119663 591__ $$aMETALLURGY & METALLURGICAL ENGINEERING$$b8 / 79 = 0.101$$c2021$$dQ1$$eT1
000119663 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b99 / 345 = 0.287$$c2021$$dQ2$$eT1
000119663 592__ $$a0.964$$b2021
000119663 593__ $$aBiomaterials$$c2021$$dQ1
000119663 593__ $$aMetals and Alloys$$c2021$$dQ1
000119663 593__ $$aCeramics and Composites$$c2021$$dQ1
000119663 594__ $$a5.9$$b2021
000119663 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119663 700__ $$aAlavarse A.C.
000119663 700__ $$ade Castro C.E.
000119663 700__ $$aGiacomelli F.C.
000119663 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra M.R.$$uUniversidad de Zaragoza
000119663 700__ $$aBonvent J.-J.
000119663 700__ $$0(orcid)0000-0003-1558-9279$$aGoya G.F.$$uUniversidad de Zaragoza
000119663 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000119663 773__ $$g15 (2021), 52-67$$pJournal of Materials Research and Technology$$tJournal of Materials Research and Technology$$x2238-7854
000119663 8564_ $$s2774185$$uhttps://zaguan.unizar.es/record/119663/files/texto_completo.pdf$$yVersión publicada
000119663 8564_ $$s2265733$$uhttps://zaguan.unizar.es/record/119663/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119663 909CO $$ooai:zaguan.unizar.es:119663$$particulos$$pdriver
000119663 951__ $$a2023-05-18-15:28:28
000119663 980__ $$aARTICLE