000119668 001__ 119668 000119668 005__ 20230519145540.0 000119668 0247_ $$2doi$$a10.1007/s10455-021-09781-6 000119668 0248_ $$2sideral$$a127038 000119668 037__ $$aART-2021-127038 000119668 041__ $$aeng 000119668 100__ $$aPujia M. 000119668 245__ $$aThe anomaly flow on nilmanifolds 000119668 260__ $$c2021 000119668 5060_ $$aAccess copy available to the general public$$fUnrestricted 000119668 5203_ $$aWe study the Anomaly flow on 2-step nilmanifolds with respect to any Hermitian connection in the Gauduchon line. In the case of flat holomorphic bundle, the general solution to the Anomaly flow is given for any initial invariant Hermitian metric. The solutions depend on two constants K1 and K2, and we study the qualitative behaviour of the Anomaly flow in terms of their signs, as well as the convergence in Gromov–Hausdorff topology. The sign of K1 is related to the conformal invariant introduced by Fu, Wang and Wu. In the non-flat case, we find the general evolution equations of the Anomaly flow under certain initial assumptions. This allows us to detect non-flat solutions to the Hull-Strominger-Ivanov system on a concrete nilmanifold, which appear as stationary points of the Anomaly flow with respect to the Strominger-Bismut connection. © 2021, The Author(s), under exclusive licence to Springer Nature B.V. 000119668 536__ $$9info:eu-repo/grantAgreement/ES/AEI-FEDER/MTM2017-85649-P$$9info:eu-repo/grantAgreement/ES/DGA/E22-20R 000119668 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000119668 590__ $$a0.762$$b2021 000119668 591__ $$aMATHEMATICS$$b223 / 333 = 0.67$$c2021$$dQ3$$eT3 000119668 592__ $$a0.794$$b2021 000119668 593__ $$aPolitical Science and International Relations$$c2021$$dQ1 000119668 593__ $$aAnalysis$$c2021$$dQ1 000119668 594__ $$a1.5$$b2021 000119668 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000119668 700__ $$0(orcid)0000-0003-2207-8653$$aUgarte L.$$uUniversidad de Zaragoza 000119668 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología 000119668 773__ $$g60, 3 (2021), 501-537$$pAnn. glob. anal. geom.$$tAnnals of Global Analysis and Geometry$$x0232-704X 000119668 8564_ $$s589878$$uhttps://zaguan.unizar.es/record/119668/files/texto_completo.pdf$$yPostprint 000119668 8564_ $$s1615193$$uhttps://zaguan.unizar.es/record/119668/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000119668 909CO $$ooai:zaguan.unizar.es:119668$$particulos$$pdriver 000119668 951__ $$a2023-05-18-15:40:11 000119668 980__ $$aARTICLE