
THE ANOMALY FLOW ON NILMANIFOLDS

MATTIA PUJIA* AND LUIS UGARTE

Abstract. We study the Anomaly flow on 2-step nilmanifolds with respect to any Hermitian
connection in the Gauduchon line. In the case of flat holomorphic bundle, the general solution to
the Anomaly flow is given for any initial invariant Hermitian metric. The solutions depend on two
constants K1 and K2, and we study the qualitative behaviour of the Anomaly flow in terms of
their signs, as well as the convergence in Gromov-Hausdorff topology. The sign of K1 is related to
the conformal invariant introduced by Fu, Wang and Wu. In the non-flat case, we find the general
evolution equations of the Anomaly flow under certain initial assumptions. This allows us to detect
non-flat solutions to the Hull-Strominger-Ivanov system on a concrete nilmanifold, which appear
as stationary points of the Anomaly flow with respect to the Strominger-Bismut connection.
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1. Introduction

The Anomaly flow is a coupled flow of Hermitian metrics introduced by Phong, Picard and Zhang
in [30]. The flow, which was originally proposed as a new tool to detect explicit solutions to the
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Hull-Strominger system, leads to some interesting problems in complex non-Kähler geometry and
its study is just began [7, 9, 10, 31, 32, 33, 34].

Let X be a 3-dimensional complex manifold equipped with a nowhere vanishing (3, 0)-form Ψ and
a holomorphic vector bundle π : E → X. In this paper we consider the coupled flow of Hermitian
metrics (ωt, Ht), with ωt on X and Ht along the fibers of E, given by

∂t(‖Ψ‖ωt ω2
t ) = i∂∂ωt −

α′

4
(Tr(Rmτ

t ∧Rmτ
t )− Tr(Aκt ∧Aκt )) ,

H−1
t ∂tHt =

ω2
t ∧Aκt
ω3
t

,

(1)

where Rmτ and Aκ are, respectively, the curvature tensors of Gauduchon connections ∇τ on (X,ωt)

and ∇κ on (E,Ht), and α′ ∈ R is the so-called slope parameter.

Phong, Picard and Zhang proved that, if the connections ∇τ and ∇κ in (1) are both Chern,
then the flow preserves the conformally balanced condition d(‖Ψ‖ω ω2) = 0 and, under an extra
assumption on the initial metric ω0, it is well-posed [30]. If furthermore ω0 is conformally balanced
and the flow is defined for every t ∈ [0,∞), then its limit points (ω∞, H∞) are automatically
solutions to the Hull-Strominger system [30].

More generally, any stationary solution to the Anomaly flow (1), satisfying the conformally
balanced condition and for which the curvature form Aκ is of type (1, 1), is a solution to the
Hull-Strominger system [22, 42]:

ω2 ∧Aκ = 0 , (Aκ)2,0 = (Aκ)0,2 = 0 ,

i ∂∂ω =
α′

4
(Tr(Rmτ ∧Rmτ )− Tr(Aκ ∧Aκ)) ,

d(‖Ψ‖ω ω2) = 0 .

(2)

Here, the first two equations represent the Hermitian-Yang-Mills equation for the connection ∇κ;
the third equation follows by the Green-Schwarz cancellation mechanism in string theory and it is
known as anomaly cancellation; while, the last equation was originally formulated as

d∗ω = i(∂̄ − ∂) ln ‖Ψ‖ω ,

where d∗ is the co-differential, and the above equivalent expression is due to Li and Yau [27].
We mention that the Hull-Strominger system arises from the supersymmetric compactification of

the 10-dimensional heterotic string theory and it has been extensively studied both from physicists
and mathematicians (see e.g. [1, 2, 6, 8, 12, 14, 18, 19, 20, 28, 38, 44]).

The Anomaly flow turned out to be a powerful tool in the study of the Hull-Strominger system.
In particular, it was used to give an alternative proof of the outstanding results obtained by Fu and
Yau in [18, 19] about the existence of solutions to (2). More precisely, in [32] Phong, Picard and
Zhang studied the flow on a torus fibration over a K3 surface, showing that if ω0 is conformally
balanced and satisfies some extra assumptions, then the flow has a long-time solution which always
converges to a solution of the Hull-Strominger system, once the connections ∇τ and ∇κ are both
Chern.

In a attempt to better understand the ‘general’ behaviour of the Anomaly flow, a simplified
version of the flow with ‘flat’ bundle was proposed in [31], namely

∂t(‖Ψ‖ωt ω2
t ) = i∂∂ωt −

α′

4
Tr(Rmτ

t ∧Rmτ
t ) . (3)
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Then, following the approach proposed by Fei and Yau in [11] to solve the Hull-Strominger system
on complex unimodular Lie groups, Phong, Picard and Zhang investigated this new flow on such
Lie groups [34].

In the present paper we study the behaviour of the Anomaly flows (1) and (3) on a class of
nilmanifolds. We will assume the trace Tr(Aκt ∧ Aκt ) to be of a special type (see Assumption 3.1)
and all the involved structures are to be intended invariant.

Our first result characterizes the solutions to the Anomaly flows under our hypotheses.

Theorem A. Let M = Γ \G be a 2-step nilmanifold of dimension 6 with first Betti number b1 ≥ 4.
Let J be a non-parallelizable complex structure on M . Then, there always exists a preferable (1, 0)-
coframe {ζi} on X = (M,J) such that the family of Hermitian metrics ωt solving (1) or (3) is
given by

ωt =
i

2
r(t)2

(
ζ11̄ + a ζ22̄ + b ζ12̄ + b̄ ζ21̄

)
+
i

2
c ζ33̄ ,

for some a, c ∈ R and b ∈ C depending on ω0. Furthermore, if ωt is a solution to the Anomaly
flow (3), then r(t)2 solves the ODE

d

dt
r(t)2 = K1 +

K2

r(t)4
, (4)

with K1,K2 ∈ R constants depending on K1 = K1(ω0) and K2 = K2(ω0, α
′, τ).

As a direct consequence, we have that the qualitative behaviour of the Anomaly flow (3) only
depends on signs of the constants K1 and K2. Remarkably, this implies that the Anomaly flow (3)
admits both immortal and ancient invariant solutions on the same nilmanifolds, and, as far as we
know, this provides the second example of a metric flow with such a property (the first one is the
pluriclosed flow [3]). We also show that the constant K1 is closely related to a conformal invariant
of the metric ω0 introduced and studied in [17].

Our second result is about the convergence of the Anomaly flow (3) in Gromov-Hausdorff topol-
ogy. In particular, under the same assumption of Theorem A, we have

Theorem B. Let ωt be an immortal solution to the Anomaly flow (3). Then, (X, (1 + t)−1ωt)

converges either to a point or to a real torus T4 in the Gromov-Hausdorff topology as t → +∞,
depending on the initial metric ω0 and the signs of K1 and K2 in (4).

It is worth noting that, Theorem A holds for any initial invariant Hermitian metric ω0 on X.
Nonetheless, in view of the Hull-Strominger system, it would be desirable for the Anomaly flows
to preserve the locally conformally balanced condition. Under the assumptions of Theorem A, our
third result states as follows

Theorem C. The Anomaly flows (1) and (3) preserve the balanced condition.

The last part of this paper is devoted to the study of the Anomaly flow (1) in some interesting
non-flat cases. In particular, we consider a class of Lie groups G arising from Theorem A, and we
equip them with holomorphic tangent bundles, that is E = T 1,0G.

Theorem D. If the initial metrics (ω0, H0) are both diagonal, then ωt and Ht hold diagonal along
the Anomaly flow (1).
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As a relevant application of this theorem, we obtain solutions to the field equations of the heterotic
string on the nilmanifold corresponding to the nilpotent Lie group N3. In [23] Ivanov proved that,
in order to solve such field equations, the solution to the Hull-Strominger system (2) must satisfy
the extra condition that Rm is the curvature of an SU(3)-instanton with respect to ω (see also [13]).
In our setting, this means that the curvature of the Gauduchon connection ∇τ has to satisfy

ω2 ∧Rmτ = 0 , (Rmτ )2,0 = (Rmτ )0,2 = 0 . (5)

Following [33], we will refer to the whole system given by (2) and (5) as the Hull-Strominger-Ivanov
system. Explicit solutions to this system were found in [13] on nilmanifolds, and more recently
in [28] on solvmanifolds and on the quotient of SL(2,C).

As an application of Theorem D, given the nilpotent Lie group N3, we prove that if ∇κt is the
Strominger-Bismut connection of Ht and the initial metric ω0 is balanced, then the flow reduces to
an ODE of the form of (4). This allows us to prove that the Anomaly flow (1) always converges to
a solution of the Hull-Strominger-Ivanov system when ∇τt is the Strominger-Bismut connection of
the metric ωt (see Theorem 5.8).

It is worth noting that a generalization of the Anomaly flow to Hermitian manifolds of any
dimension has been proposed in [35]; while, in [9] Fei and Phong proved that this generalized
Anomaly flow is related to a flow in the Hermitian curvature flows family, that is, a family of
parabolic flows introduced by Streets and Tian in [41]. We mention that the Hermitian curvature
flow related to the Anomaly flow has been studied on 2-step nilpotent complex Lie groups by the
first named author in [37], who proved long-time existence and convergence results. We also refer to
[3, 5, 25, 29, 36, 39, 46] for some recent results on Hermitian curvature flows in different homogeneous
settings.

The paper is organized as follows. Section 2 is devoted to basic computations on our class of
nilpotent Lie groups. In particular, we show that under our assumptions we can always find a
preferable real coframe on such Lie groups, namely an adapted basis. Then, by using this basis, we
explicitly compute Tr(Rmτ ∧Rmτ ). In Section 3 we begin the study of the Anomaly flows and we
prove Theorem A and Theorem C. In Section 4 we focus on the Anomaly flow (3), showing that we
can always reduce the flow to the ODE (4). We also study the qualitative behaviour of the Anomaly
flow (3) depending on the signs of K1, K2. These results will in turn imply Theorem B. In Section 5
we study the Anomaly flow (1) on a special class of nilpotent Lie groups and we prove Theorem D.
We also investigate the behaviour of the flow on an explicit example. Finally, Appendix A and
Appendix B contain some technical computations which we used in the paper.

Acknowledgement. The authors would like to thank the anonymous referees for several useful
suggestions, which improved the presentation of the paper.

2. Preliminaries

In this section, we consider a nilpotent Lie group G of (real) dimension 6 endowed with a left-
invariant Hermitian structure (J, ω). In particular, we will find a coframe which adapts to the
Hermitian structure, allowing us to explicitly compute the trace of the curvature for any Hermitian
connection in the Gauduchon family.

Let us recall that, given a smooth manifold M equipped with a Hermitian structure (J, ω), a
connection ∇ on the tangent bundle TM is said to be a Hermitian connection if ∇J = 0 and
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∇ω = 0. Gauduchon introduced in [21] a 1-parameter family {∇τ}τ∈R of canonical Hermitian
connections, which can be defined via

ω(J(∇τXY ), Z) = ω(J(∇LCX Y ), Z) +
1− τ

4
T (X,Y, Z) +

1 + τ

4
C(X,Y, Z), (6)

where ∇LC is the Levi-Civita connection of the Riemannian manifold (M,ω), and T and C are
given by

T (·, ·, ·) := −dω(J ·, J ·, J ·) and C(·, ·, ·) := dω(J ·, ·, ·).
These connections are distinguished by the properties of their torsion tensors and, in view of (6),
the Chern connection ∇c and the Strominger-Bismut connection ∇+ can be recovered by taking
τ = 1 and τ = −1, respectively.

2.1. Adapted bases.

Let G be a 6-dimensional Lie group equipped with a left-invariant complex structure J and a
left-invariant Hermitian metric ω. Let {Z1, Z2, Z3} be a left-invariant (1,0)-frame of (G, J), and
{ζ1, ζ2, ζ3} its dual frame. Then, we can always write

2ω = i(r2 ζ11̄ + s2 ζ22̄ + k2 ζ33̄) + u ζ12̄ − ū ζ21̄ + v ζ23̄ − v̄ ζ32̄ + z ζ13̄ − z̄ ζ31̄ , (7)

where r, s, k ∈ R∗ and u, v, z ∈ C satisfy

r2s2 > |u|2, s2k2 > |v|2, r2k2 > |z|2 , (8)

and
8i detω = r2s2k2 + 2Re (iūv̄z)− k2|u|2 − r2|v|2 − s2|z|2 > 0 (9)

by the positive definiteness of the metric. Here

detω =
1

8
det

i r2 u z

−u i s2 v

−z −v i k2

.
In the following, we focus on Lie groups G which are 2-step nilpotent and such that (G, J) is not

a complex Lie group, that is, the left-invariant complex structure J is not complex parallelizable.
Notice that, the latter condition excludes just two cases (the complex torus and the Iwasawa mani-
fold), both of which have already been studied in [34] (see also [37]). Additionally, we will suppose
that the dimension of the first Chevalley-Eilenberg cohomology group H1(g) of the Lie algebra g

of G is at least 4. We denote such dimension by b1(g), since by the Nomizu theorem it coincides
with the first Betti number of the nilmanifold Γ\G obtained as the quotient of G by a co-compact
lattice Γ.

Under these assumptions we are able to study a large family of Hermitian metrics in a unified
setting. Indeed, by means of [43, Proposition 2] (see also [4, Proposition 2.4]), if J is not complex
parallelizable and b1(g) = dimH1(g) ≥ 4, then there exists a left-invariant (1,0)-coframe {ζ1, ζ2, ζ3}
on (G, J) satisfying {

dζ1 = dζ2 = 0,

dζ3 = ρ ζ12 + ζ11̄ + λ ζ12̄ + (x+ i y) ζ22̄ ,
(10)

where x, y, λ ∈ R with λ ≥ 0, and ρ ∈ {0, 1}. (See Table 1 in Section 4.2 for a description of all the
real Lie groups supporting such Hermitian structures.)
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Our first result shows that we can always find a preferable (real) left-invariant coframe {e1, . . . , e6}
on G associated to any left-invariant Hermitian structure (J, ω). In the following, we refer to such
a coframe as adapted basis.

Proposition 2.1. Let G be a 2-step nilpotent Lie group of dimension 6 with b1(g) ≥ 4, g being
the Lie algebra of G. Let J be a left-invariant non-parallelizable complex structure on G and ω a
left-invariant J-Hermitian metric. Suppose that J and ω are defined by (10) and (7), respectively.
Then, there exists a (real) left-invariant coframe {e1, . . . , e6} on G, such that:

(a) The complex structure J and the metric ω satisfy

Je1 = −e2, Je3 = −e4, Je5 = −e6, ω = e12 + e34 + e56. (11)

(b) The coframe satisfies the following structure equations

de1 = de2 = de3 = de4 = 0 ,

de5 = ke
∆e

(ρ+ λ) e13 − ke
∆e

(ρ− λ) e24 + 2 ke
∆2
e

(
r2
e y − λue1

)
e34 ,

de6 =− 2ke
r2
e
e12 + 2keue1

r2
e∆e

e13 + ke
r2
e∆e

(
r2
e(ρ− λ) + 2ue2

)
e14

+ ke
r2
e∆e

(
r2
e(ρ+ λ)− 2ue2

)
e23 + 2keue1

r2
e∆e

e24 ,

− 2 ke
r2
e∆2

e

(
r4
e x− λ r2

e ue2 + u2
e1 + u2

e2

)
e34.

(12)

Here, x, y, λ ∈ R with λ ≥ 0, and ρ ∈ {0, 1} are the coefficients in (10) which define the
complex structure J , whereas the coefficients re, se, ke, ue1, ue2 ∈ R, which depends on the
coefficients of ω, are given by

r2
e = r2 − |z|

2

k2
, s2

e = s2 − |v|
2

k2
, k2

e = k2, ue1 + i ue2 := ue = u− iv̄z

k2
. (13)

The term ∆e in the equations (12) stands for ∆e :=
√
r2
es

2
e − |ue|2 =

√
8i detω
k2 .

(c) The 4-form e1234 is a positive multiple of the (2, 2)-form ζ121̄2̄, concretely

e1234 =
2i detω

k2
ζ121̄2̄. (14)

Proof. Starting from a left-invariant (1, 0)-coframe {ζ1, ζ2, ζ3} satisfying (10) and a generic J-
Hermitian metric ω in the form of (7), we first consider the left-invariant (1,0)-coframe

σ1 := ζ1 , σ2 := ζ2 , σ3 := ζ3 − iv

k2
ζ2 − iz

k2
ζ1 . (15)

This map defines an automorphism of the complex structure J which preserves the complex structure
equations (10), i.e. the (1, 0)-coframe {σ1, σ2, σ3} still satisfies

dσ1 = dσ2 = 0, dσ3 = ρ σ12 + σ11̄ + λσ12̄ + (x+ i y)σ22̄. (16)

With respect to this coframe, the Hermitian metric ω can be written as

2ω = i (r2
σ σ

11̄ + s2
σ σ

22̄ + k2
σ σ

33̄) + uσ σ
12̄ − uσ σ21̄, (17)

where the metric coefficients are given by

r2
σ = r2 − |z|

2

k2
, s2

σ = s2 − |v|
2

k2
, k2

σ = k2, uσ = u− iv̄z

k2
. (18)

Notice that from (8) we have r2
σ, s

2
σ, k

2
σ > 0 and r2

σs
2
σ > |uσ|2.
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Let us now consider the left-invariant (1, 0)-coframe

τ1 := rσ σ
1 +

i uσ
rσ

σ2, τ2 :=
∆σ

rσ
σ2, τ3 := kσ σ

3 , (19)

where ∆σ :=
√
r2
σs

2
σ − |uσ|2. Then, a direct calculation yields that ω can be written as

ω =
i

2
τ11̄ +

i

2
τ22̄ +

i

2
τ33̄

and, by using (16), the complex structure equations become
dτ1 = dτ2 = 0,

dτ3 = ρ kσ
∆σ

τ12 + kσ
r2
σ
τ11̄ + kσ

r2
σ∆σ

(
iuσ + λr2

σ

)
τ12̄ − ikσuσ

r2
σ∆σ

τ21̄

+ kσ
r2
σ∆2

σ

(
|uσ|2 − ir2

σuσλ+ r4
σx+ i r4

σy
)
τ22̄.

(20)

Finally, let us consider the real left-invariant coframe {e1, . . . , e6} on G given by

e1 + i e2 := τ1, e3 + i e4 := τ2, e5 + i e6 := τ3. (21)

Then, with respect to this real coframe, (11) holds and hence (a) is proved.

Now, let us set uσ1+i uσ2 := uσ. By means of (20), a direct computation yields that the structure
equations in terms of the real coframe {e1, . . . , e6} are given by

de1 = de2 = de3 = de4 = 0,

∆σ
kσ
de5 = (ρ+ λ) e13 − (ρ− λ) e24 + 2

∆σ

(
r2
σ y − λuσ1

)
e34,

r2
σ∆σ

kσ
de6 = −2∆σ e

12 + 2uσ1 e
13 +

(
r2
σ(ρ− λ) + 2uσ2

)
e14 +

(
r2
σ(ρ+ λ)− 2uσ2

)
e23

+2uσ1 e
24 − 2

∆σ

(
r4
σ x− λr2

σuσ2 + u2
σ1 + u2

σ2

)
e34 .

Therefore, setting re := rσ, se := sσ, ke := kσ, ue := uσ (thus, ue1 := uσ1 and ue2 := uσ2) and
∆e = ∆σ, we get (12) and (b) follows. Notice that (13) is precisely (18) in the new notation.
Moreover, from (13) we get

∆2
e = r2

es
2
e − |ue|2 =

1

k2

(
r2s2k2 + 2Re (iūv̄z)− k2|u|2 − r2|v|2 − s2|z|2

)
=

8i detω

k2
,

due to (9).
Finally, in order to prove (c), it is enough to note that 4 e1234 = τ121̄2̄ = ∆2

e ζ
121̄2̄. �

Remark 2.2. In the balanced case, adapted bases were found in [45, Theorem 2.11] by considering
a partition of the space of metrics into the subsets “u = 0” and “u 6= 0” for a given left-invariant
metric (7). However, the study of the Anomaly flow requires to consider a global setting involving
the whole space of left-invariant Hermitian metrics ω on (G, J), as it has been obtained in our
Proposition 2.1.

2.2. Trace of the curvature.

In the following, we explicitly compute the trace of the curvature of a Hermitian connection in the
Gauduchon family {∇τ}τ∈R for our class of nilpotent Lie groups. We will adopt the convention
used in [13] (see also [28]).
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Let us consider a 6-dimensional Lie group G equipped with a left-invariant Hermitian structure
(J, ω). Let also {e1, . . . , e6} be an adapted basis to the Hermitian structure on G, i.e. J and ω are
expressed by (11). The connection 1-forms σij associated to any linear connection ∇ are

σij(ek) := ω(J(∇ekej), ei),

that is, ∇Xej = σ1
j (X) e1 + · · ·+ σ6

j (X) e6; while, the curvature 2-forms Rmi
j of ∇ are given by

Rmi
j := dσij +

∑
1≤k≤6

σik ∧ σkj . (22)

Then, the trace of the 4-form Rm ∧Rm can be defined via

Tr(Rm ∧Rm) =
∑

1≤i<j≤6

Rmi
j ∧Rmi

j . (23)

Remarkably, the connection 1-forms (στ )ij associated to a canonical connection ∇τ in the Gaudu-
chon family can be explicitly obtained as follows. Let us denote by ckij the structure constants of G
with respect to {e1, . . . , e6}, i.e.

d ek =
∑

1≤i<j≤6

ckij e
ij , k = 1, . . . , 6.

Since dek(ei, ej) = −ek([ei, ej ]), the connection 1-forms (σLC)ij of the Levi-Civita connection satisfy

(σLC)ij(ek) = −1

2
(ω(Jei, [ej , ek])− ω(Jek, [ei, ej ]) + ω(Jej , [ek, ei])) =

1

2
(cijk − ckij + cjki),

and hence, by means of (6), the connection 1-forms (στ )ij of ∇τ are given by

(στ )ij(ek) =(σLC)ij(ek) +
1− τ

4
T (ek, ej , ei) +

1 + τ

4
C(ek, ej , ei)

=
1

2
(cijk − ckij + cjki) +

1− τ
4

T (ek, ej , ei) +
1 + τ

4
C(ek, ej , ei)

=
1

2
(cijk − ckij + cjki)−

1− τ
4

dω(Jek, Jej , Jei) +
1 + τ

4
dω(Jek, ej , ei).

We are now in a position to compute the trace of Rmτ ∧ Rmτ for our class of nilpotent Lie
groups. In our next proposition, we show that the trace is of a special type. This will allow us to
substantially simplify the Anomaly flow equations.

Proposition 2.3. Let G be a 2-step nilpotent Lie group of dimension 6 with b1(g) ≥ 4, g being
the Lie algebra of G. Let J be a left-invariant non-parallelizable complex structure on G and ω a
left-invariant J-Hermitian metric. Suppose that J and ω are defined, respectively, by (10) and (7)
in terms of a left-invariant (1, 0)-coframe {ζ l}3l=1. Then, for any Gauduchon connection ∇τ , the
trace of its curvature satisfies

Tr(Rmτ∧Rmτ ) = C ζ121̄2̄,
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where C = C(ρ, λ, x, y; r, s, k, u, v, z; τ) is a constant depending both on the Hermitian structure and
the connection. More precisely, we have

Tr(Rmτ∧Rmτ ) = − (τ − 1) k4
e

2(r2
es

2
e − |ue|2)2

{
[
(ρ− λ2 + 5x)(s4

e−2λs2
eue2 + 2x|ue|2)− 3λ2x(u2

e1−u2
e2)− 6λue1y(s2

e−λue2) + 6y2|ue|2

+ τ(ρ+ λ2 − 2x)(s4
e − 2λs2

eue2 + 2x|ue|2)

+ τ2
(

(−2ρ+ x)(s4
e−2λs2

eue2 + 2x|ue|2)− λ2x(u2
e1−u2

e2)− 2λue1y(s2
e−λue2) + 2y2|ue|2

)]
+ r2

e λ
[
(ρ− λ2 + 2x)(λs2

e − 2ue2x− 2ue1y)− 6ue2(x2 + y2)

+ τ(ρ+ λ2 − 2x)(λs2
e − 2ue2x− 2ue1y)

+ τ2
(
− 2ρ(λs2

e − 2ue2x− 2ue1y)− 2ue2(x2 + y2)
)]

+ r4
e(x

2 + y2)
[
(ρ− λ2 + 5x) + τ (ρ+ λ2 − 2x) + τ2 (−2ρ+ x)

]}
ζ121̄2̄ ,

where re, se, ke and ue = ue1 + i ue2 are given in Proposition 2.1.

Proof. By means of Proposition 2.1, there always exists an adapted basis {e1, . . . , e6} on the Lie
group G for the left-invariant Hermitian structure (J, ω). Therefore, let (στ )ij be the connection
1-forms of the Gauduchon connection ∇τ in this basis. Since ∇τ is Hermitian, then the forms
(στ )ij satisfy the condition (στ )ij = −(στ )ji . Moreover, a direct computation yields the following
connection 1-forms:

(στ )1
2 =− ke

r2
e

(τ−1) e6 ,

(στ )1
3 = λ ke

2
√
r2
es

2
e−|ue|2

(τ−1) e5 + ke ue1
r2
e

√
r2
es

2
e−|ue|2

(τ−1) e6 ,

(στ )1
4 =− ke(λ r2

e−2ue2)

2r2
e

√
r2
es

2
e−|ue|2

(τ−1) e6 ,

(στ )1
5 =− ke

2r2
e

(τ+1) e1 + ke
2r2
e

√
r2
es

2
e−|ue|2

(
ρr2
e(τ−1)+(ue2−λr2

e)(τ+1)
)
e3 − ke ue1

2r2
e

√
r2
es

2
e−|ue|2

(τ+1) e4 ,

(στ )1
6 = ke

2r2
e

(τ+1) e2 − ke ue1
2r2
e

√
r2
es

2
e−|ue|2

(τ+1) e3 + ke
2r2
e

√
r2
es

2
e−|ue|2

(
ρr2
e(τ−1)−(ue2−λr2

e)(τ+1)
)
e4 ,

(στ )3
4 =− ke (λue1−r2

ey)
r2
es

2
e−|ue|2

(τ−1) e5 − ke (|ue|2−λ r2
eue2+r4

ex)
r2
e(r2

es
2
e−|ue|2)

(τ−1) e6 ,

(στ )3
5 =− ke (ρ r2

e (τ−1)−ue2 (τ+1))

2r2
e

√
r2
es

2
e−|ue|2

e1 + ke ue1(τ+1)

2r2
e

√
r2
es

2
e−|ue|2

e2 − ke (|ue|2−λ r2
eue2+r4

ex)
2r2
e(r2

es
2
e−|ue|2)

(τ+1) e3

+ ke (λue1−r2
ey)

2(r2
es

2
e−|ue|2)

(τ+1) e4 ,

(στ )3
6 = ke ue1(τ+1)

2r2
e

√
r2
es

2
e−|ue|2

e1 − ke (ρ r2
e (τ−1)+ue2 (τ+1))

2r2
e

√
r2
es

2
e−|ue|2

e2 + ke (λue1−r2
ey)

2(r2
es

2
e−|ue|2)

(τ+1) e3

+ ke (|ue|2−λ r2
eue2+r4

ex)
2r2
e(r2

es
2
e−|ue|2)

(τ+1) e4 ,

(στ )5
6 =0 ,
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together with the following relations:

(στ )2
3 = −(στ )1

4 , (στ )2
4 = (στ )1

3 , (στ )2
5 = −(στ )1

6 , (στ )2
6 = (στ )1

5 ,

(στ )4
5 = −(στ )3

6 , (στ )4
6 = (στ )3

5 .

Finally, by using the curvature 2-forms (Rmτ )ij explicitly given in Appendix A and equation (23),
the result follows from a long but direct calculation. �

Let G be a nilpotent Lie group endowed with a left-invariant complex structure J defined by
(10). Moreover, let us consider the following left-invariant closed (3,0)-form

Ψ := ζ1 ∧ ζ2 ∧ ζ3. (24)

Given the Chern connection ∇c of the metric ω, i.e. τ = 1 in the Gauduchon family, one always
has ∇cΨ = 0; whereas, by the proof of the previous proposition, one gets

Corollary 2.4. Under the hypotheses of Proposition 2.3. If τ 6= 1, then ∇τΨ = 0 if and only if the
Hermitian metric ω is balanced.

Proof. In terms of an adapted basis {el}6l=1 as in Proposition 2.1, we have that

∇τ ((e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6)) = 0

if and only if the connection 1-forms satisfy (στ )1
2 + (στ )3

4 + (στ )5
6 = 0. Since the left-invariant

(3,0)-forms are related by Ψ = c (e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6) for some non-zero constant c,
we get that ∇τΨ = 0 if and only if

(στ )1
2 + (στ )3

4 + (στ )5
6 = − ke (τ − 1)

r2
es

2
e − |ue|2

(
(λue1 − r2

ey) e5 + (s2
e − λue2 + r2

ex) e6
)

= 0,

where we have made use of the connection 1-forms given in the proof of Proposition 2.3. Therefore,
given τ 6= 1, the above equality holds if and only if

λue1 − r2
ey = 0 = s2

e − λue2 + r2
ex. (25)

On the other hand, by means of the structure equations in the adapted basis, one directly gets
that the metric ω satisfies the balanced condition dω2 = 0 if and only if

0 = ω ∧ dω = (e12 + e34 + e56) ∧ de56,

which is equivalent to (25). �

3. The first Anomaly flow equation on nilpotent Lie groups

We now study the behaviour of a general solution to the first equation in the Anomaly flow for our
class of nilpotent Lie groups, under certain assumptions. In particular, since we focus on invariant
solutions, the first statement in Theorem A and Theorem C will follow, respectively, by Theorem
3.7 and Theorem 3.4 below.

Let G be a 6-dimensional 2-step nilpotent Lie group with b1 ≥ 4, endowed with a left-invariant
non-parallelizable complex structure J . Let {ζ1, ζ2, ζ3} be a left-invariant (1, 0)-coframe on (G, J)

satisfying (10) and let
Ψ := ζ1 ∧ ζ2 ∧ ζ3

be the left-invariant closed (3,0)-form defined in (24).
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Assumption 3.1. Let (ωt, Ht) be the couple of left-invariant Hermitian metrics solving the Anomaly
flow (1) and let Tr(At ∧At) be a multiple of the (2,2)-form ζ121̄2̄.

Remark 3.2. Since we are considering left-invariant metrics, the evolution equation of ωt reduces
to an ODE on the Lie algebra level. We stress that, all the stated results will also hold for the
Anomaly flow (3) with flat bundle.

Let ωt be a solution to the Anomaly flow (1) on (G, J) given by

ωt =
i

2

(
r(t)2ζ11̄ + s(t)2ζ22̄ + k(t)2ζ33̄

)
+

1

2
u(t) ζ12̄ − 1

2
u(t) ζ21̄

+
1

2
v(t) ζ23̄ − 1

2
v(t) ζ32̄ +

1

2
z(t) ζ13̄ − 1

2
z(t) ζ31̄ ,

(26)

where r(t), s(t), k(t) are positive real functions and u(t), v(t), z(t) are complex functions. Then, we
have

Proposition 3.3. Let Assumption 3.1 hold. Then, for every Gauduchon connection ∇τt on (G,ωt),
the evolution equation of ωt in the Anomaly flow reduces to the ODE

d

dt
(‖Ψ‖ωt ω2

t ) = K(t, α′, τ) ζ121̄2̄ , (27)

with K(t, α′, τ) depending on the structure equations (10) of (G, J) and on the curvature At of the
connection on (E,Ht).

Proof. By means of (10) and (26), a direct computation yields that

2i∂∂̄ωt = −k(t)2(∂̄ζ3 ∧ ∂ζ 3̄ − ∂ζ3 ∧ ∂̄ζ 3̄) = k(t)2(ρ+ λ2 − 2x)ζ121̄2̄ . (28)

On the other hand, by means of Proposition 2.3, the trace of the curvature of a Gauduchon con-
nection ∇τ on (G,ωt) satisfies

Tr(Rmτ
t ∧Rmτ

t ) = C(t) ζ121̄2̄ .

Therefore, by the assumption on the curvature At, we have

∂t(‖Ψ‖ωt ω2
t ) = i∂∂ωt −

α′

4
(Tr(Rmτ

t ∧Rmτ
t )− Tr(At ∧At)) = K(t, α′, τ) ζ121̄2̄ ,

where K(t, α′, τ) also depends on (G, J) and At. �

Let us now analyze equation (27) in more detail. A direct computation yields that

2ωt ∧ ωt =
(
r(t)2s(t)2−|u(t)|2

)
ζ121̄2̄ +

(
r(t)2k(t)2−|z(t)|2

)
ζ131̄3̄ +

(
s(t)2k(t)2−|v(t)|2

)
ζ232̄3̄

− i
(
r(t)2v(t)− i z(t)u(t)

)
ζ121̄3̄ + i

(
r(t)2v(t) + i u(t)z(t)

)
ζ131̄2̄

+ i
(
s(t)2z(t) + i u(t)v(t)

)
ζ122̄3̄ − i

(
s(t)2z(t)− i u(t)v(t)

)
ζ231̄2̄

− i
(
k(t)2u(t)− i z(t)v(t)

)
ζ132̄3̄ + i

(
k(t)2u(t) + i v(t)z(t)

)
ζ231̄3̄ .

Therefore, by substituting in (27), one gets that the following relations hold along the flow:
d

dt

(
‖Ψ‖ωt(r(t)2s(t)2−|u(t)|2)

)
= 2K(t, α′, τ), (29)

and
d

dt

(
‖Ψ‖ωt(r(t)2k(t)2−|z(t)|2)

)
= 0 =⇒ r(t)2k(t)2−|z(t)|2 =

c1

‖Ψ‖ωt
, (30)
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d

dt

(
‖Ψ‖ωt(s(t)2k(t)2−|v(t)|2)

)
= 0 =⇒ s(t)2k(t)2−|v(t)|2 =

c2

‖Ψ‖ωt
, (31)

d

dt

(
‖Ψ‖ωt(r(t)2v(t)− i z(t)u(t))

)
= 0 =⇒ r(t)2v(t)− i z(t)u(t) =

c3

‖Ψ‖ωt
, (32)

d

dt

(
‖Ψ‖ωt(s(t)2z(t) + i u(t)v(t))

)
= 0 =⇒ s(t)2z(t) + i u(t)v(t) =

c4

‖Ψ‖ωt
, (33)

d

dt

(
‖Ψ‖ωt(k(t)2u(t)− i z(t)v(t))

)
= 0 =⇒ k(t)2u(t)− i z(t)v(t) =

c5

‖Ψ‖ωt
, (34)

for some constants c1, c2 ∈ R with c1, c2 > 0, and c3, c4, c5 ∈ C, which are determined by the initial
metric ω0.

3.1. Special Hermitian metrics along the flow.

In [30] Phong, Picard and Zhang proved that the Anomaly flow preserves the conformally balanced
condition, once the connections ∇τ and ∇κ are both Chern. In the following, we extend such a
result to any connection in the Gauduchon family for our class of nilpotent Lie groups. Moreover,
we also show that the locally conformally Kähler condition is preserved along the flow.

A Hermitian metric ω is said to be locally conformally Kähler if it is conformal to some local
Kähler metric in a neighborhood of each point. Recall that, this condition is also characterized by
the existence of a closed 1-form θ, the Lee form, satisfying dω = θ ∧ ω.

Theorem 3.4. Under Assumption 3.1, we have:
(i) If ω0 is balanced, then ωt remains balanced along the Anomaly flow.

(ii) If ω0 is locally conformally Kähler, then ωt remains locally conformally Kähler along the
Anomaly flow.

Remark 3.5. By [15, Theorem 1.2], the pluriclosed condition ∂∂̄ω = 0 for a left-invariant metric
ω on (G, J) only depends on the complex structure J (see also [43]). Therefore, if the initial metric
ω0 is pluriclosed, the solution ωt to the Anomaly flow holds pluriclosed.

Proof of Theorem 3.4. In view of [43, Proposition 25], the left-invariant Hermitian metric ωt is
balanced if and only if

s(t)2k(t)2 − |v(t)|2 + (x+ i y)
(
r(t)2k(t)2 − |z(t)|2

)
= i λ

(
k(t)2 u(t) + i v(t)z(t)

)
. (35)

On the other hand, by means of (30) and (31), the left-hand side of (35) reduces to

s(t)2k(t)2 − |v(t)|2 + (x+ i y)
(
r(t)2k(t)2 − |z(t)|2

)
=
c1(x+ i y) + c2

‖Ψ‖ωt
,

while, by means of (34), the right-hand side of (35) is equal to

i λ
(
k(t)2 u(t) + i v(t)z(t)

)
=

i λ c̄5

‖Ψ‖ωt
.

Thus, ωt is a balanced metric if and only if c1(x+ i y)+ c2 = i λ c̄5. Since the constants c1, c2 and c5

only depend on the initial metric ω0, it follows that ωt satisfies the balanced condition if and only
if ω0 does.

Let us now prove (ii). By means of [43, Proposition 32], if ω0 is locally conformally Kähler, we
must have

ρ = λ = y = 0 and x = 1
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in the complex structure equations (10). Moreover, ωt is locally conformally Kähler if and only if

r(t)2k(t)2−|z(t)|2 = s(t)2k(t)2−|v(t)|2 and k(t)2u(t) = i z(t)v(t).

Therefore, in view of (30), (31) and (34), it follows that ωt is a locally conformally Kähler metric if
and only if c1 − c2 = c5 = 0. Finally, since the constants c1, c2, c5 only depend on the initial metric
ω0, we get that ωt is locally conformally Kähler if and only if ω0 is locally conformally Kähler as
well, and the claim follows. �

3.2. Reduction to almost diagonal initial metrics and the general solution.

In the following, we prove that any initial Hermitian metric ω0 can be taken to be almost diagonal.
Then, we use this result to obtain the general solution ωt to the first evolution equation in the
Anomaly flow (1).

A Hermitian metric ω is said to be almost diagonal if its metric coefficients satisfy v = z = 0

in (7). Our next result shows that we can always choose a preferable (1, 0)-coframe on (G, J) such
that the metric ω is almost diagonal.

Lemma 3.6. Let ω be a left-invariant Hermitian metric on (G, J). Then, there exists an automor-
phism which preserves both the complex structure equations (10) and the (3,0)-form Ψ, and such
that ω reduces to an almost diagonal form.

Proof. To prove this lemma we essentially use the same argument as in Proposition 2.1. Let us
consider the automorphisms induced by (15). By construction this automorphism preserves the
complex structure equations (see (16)). Moreover, a direct computation yields that

Ψ = ζ1 ∧ ζ2 ∧ ζ3 = σ1 ∧ σ2 ∧ σ3

and hence the holomorphic (3,0)-form Ψ is also preserved. Finally, in terms of the coframe {σl}3l=1

the Hermitian metric ω expresses as in (17) and hence the claim follows. �

We are now in a position to describe the general solution to the Anomaly flow starting from an
almost diagonal metric.

Theorem 3.7. Under Assumption 3.1, the Anomaly flow preserves the almost diagonal condition.
More concretely, if ω0 is almost diagonal, then ωt evolves as

ωt =
i

2

(
r(t)2ζ11̄ +

c2

c1
r(t)2ζ22̄ +

c1c2−|c5|2

8
ζ33̄

)
+

c5

2c1
r(t)2 ζ12̄ − c̄5

2c1
r(t)2 ζ21̄, (36)

where c1, c2 > 0 and c5 ∈ C, with c1c2 > |c5|2, are constants determined by the initial metric ω0.
Furthermore,

‖Ψ‖ωt =
8 c1

(c1c2−|c5|2) r(t)2
.

Proof. Since equations (32) and (33) hold, the functions v(t) and z(t) satisfy

v(t) =
c3 s(t)

2 + i c4 u(t)

‖Ψ‖ωt(r(t)2s(t)2 − |u(t)|2)
, z(t) =

−i c3 u(t) + c4 r(t)
2

‖Ψ‖ωt(r(t)2s(t)2 − |u(t)|2)
,

for any t in the defining interval. On the other hand, since we assumed ω0 to be almost diagonal,
i.e. v(0) = z(0) = 0, we get c3 = c4 = 0. Therefore, v(t) = 0 and z(t) = 0 and hence the solution
ωt holds almost diagonal.
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Let us now prove the second part of the statement. As a direct consequence of (30), (31) and
(34), it follows that

(r(t)2s(t)2 − |u(t)|2)k(t)4 =
c1c2 − |c5|2

‖Ψ‖2ωt
,

which implies

‖Ψ‖2ωt =
c1c2 − |c5|2

(r(t)2s(t)2 − |u(t)|2)k(t)4
,

with c1c2 − |c5|2 > 0 by the positive definiteness of the metric ω0. Moreover, by the definition of
‖Ψ‖2ωt , we have

‖Ψ‖2ωt =
1

detωt
=

8

(r(t)2s(t)2 − |u(t)|2)k(t)2

and hence

k(t) =

√
c1 c2 − |c5|2

8
.

In particular, k(t) is constant. Finally, by means of (30), (31) and (34), we have

0 = c2 r(t)
2k(t)2 − c1 s(t)

2k(t)2 = (c2 r(t)
2 − c1 s(t)

2)k(t)2

and
0 = c5 r(t)

2k(t)2 − c1 u(t)k(t)2 = (c5 r(t)
2 − c1 u(t))k(t)2 ,

which respectively imply

s(t)2 =
c2

c1
r(t)2 and u(t) =

c5

c1
r(t)2 ,

and the claim follows. �

When the initial metric ω0 is diagonal (that is, u(0)=v(0)=z(0)=0), the above result simplifies to

Corollary 3.8. Under Assumption 3.1, the Anomaly flow preserves the diagonal condition. Specif-
ically, if ω0 is diagonal, then ωt is given by

ωt =
i

2

(
r(t)2ζ11̄ +

c2

c1
r(t)2ζ22̄ +

c1c2

8
ζ33̄

)
,

where c1 =
√

8 r(0)k(0)
s(0) > 0 and c2 =

√
8 s(0)k(0)
r(0) > 0. Moreover, ‖Ψ‖ωt = 8

c2 r(t)2 .

Our next result describes the evolution of the trace Tr(Rmτ
t ∧ Rmτ

t ) along the Anomaly flow,
under the assumption for the initial metric ω0 to be almost diagonal.

Proposition 3.9. Under the hypotheses of Theorem 3.7, the trace of the curvature of the Gauduchon
connection ∇τ of (G,ωt) satisfies

Tr(Rmτ
t ∧Rmτ

t ) =
C

r(t)4
ζ121̄2̄,

where C = C(ω0, τ) is a constant depending only on the initial metric ω0 and the connection ∇τ .
Proof. The result is a consequence of Proposition 2.3. Indeed, the coefficients re, se, ke and
ue = ue1 + i ue2 appearing in Proposition 2.3 are related to the coefficients of the metric ωt via (13).
On the other hand, by means of Theorem 3.7, the metric ωt holds almost diagonal and by (13) and
(36) we get

r2
e = r(t)2, s2

e =
c2

c1
r(t)2, k2

e =
c1c2 − |c5|2

8
, ue =

c5

c1
r(t)2. (37)

Therefore, the claim follows by (37) and the formula of the trace given in Proposition 2.3. �
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4. The Anomaly flow with flat holomorphic bundle

We now focus on the Anomaly flow (3). In particular, we show that this flow always reduces to a
single ODE, which we call model problem. As a consequence, the second part of Theorem A will
directly follow by Theorem 4.1 below. Moreover, the qualitative behaviour of the model problem
will be investigated.

Let G be a 6-dimensional 2-step nilpotent Lie group with b1 ≥ 4, equipped with a left-invariant
non-parallelizable complex structure J . Let {ζ1, ζ2, ζ3} be a left-invariant (1, 0)-coframe on (G, J)

satisfying (10) and let Ψ be the left-invariant closed (3,0)-form defined in (24), i.e. Ψ := ζ1∧ζ2∧ζ3.
In view of Proposition 3.3 and Theorem 3.7, the coefficient r(t)2 of the metric ωt in (36) evolves

as

∂t r(t)
2 =

c1

4
K(t, α′, τ) ,

where the right-hand side is given by

K(t, α′, τ) ζ121̄2̄ = i∂∂ωt −
α′

4
Tr(Rmτ ∧Rmτ ) .

On the other hand, by means of (28) and Theorem 3.7, we get

i∂∂ωt = B ζ121̄2̄ ,

for the constant B = B(ω0) = c1c2−|c5|2
16 (ρ + λ2 − 2x) ∈ R; while, by means of Proposition 3.9, we

have

Tr(Rmτ
t ∧Rmτ

t ) =
C

r(t)4
ζ121̄2̄ ,

for a constant C = C(ω0, τ) ∈ R. Therefore, we get

c1

4
K(t, α′, τ) = K1 +

K2

r(t)4
,

where K1 = c1
4 B and K2 = −α′ c1

16 C, and the following theorem holds.

Theorem 4.1. The Anomaly flow (3) is equivalent to the model problem

d

dt
r(t)2 = K1 +

K2

r(t)4
, (38)

where K1,K2 ∈ R are constants depending on K1 = K1(ω0) and K2 = K2(ω0, α
′, τ).

4.1. Qualitative behaviour of the model problem.

We now investigate the qualitative behaviour of the model problem (38), which can be rewritten as

h′(t) = K1 +
K2

h(t)2
, h(t) > 0 . (39)

A solution h(t) to (39) is said to be immortal, eternal or ancient if its defining interval (T−, T+) is
equal to (−ε,+∞), (−∞,+∞) or (−∞, ε) for some ε > 0, respectively.

When either K1 = 0 or K2 = 0 the ODE (39) can be explicitly solved, otherwise we work as
follows.
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• K1 > 0 and K2 > 0.

Under these assumptions, (39) does not admit any stationary point. Nonetheless, we have the
following

Proposition 4.2. Any solution h(t) to the model problem (39) is immortal. In particular, h(t) ∼
K1 · t as t→ +∞.

Proof. Let h(t) be a solution to the model problem (39). Since

h′(t) = K1 +
K2

h(t)2
> 0 ,

it follows that h(t) ≥ h(0), for every t ∈ [0, T+). On the other hand,

h′(t) ≤ K1 +
K2

h(0)2

and the long-time existence follows, since h(t) ≤ c t+ h(0) with c := K1 + K2
h(0)2 .

Let us now suppose by contradiction that h′(t)→ 0 as t→ +∞. Then, this would imply

lim
t→∞

(
K1 +

K2

h(t)2

)
= 0 ,

which is not possible since K1,K2 > 0. Therefore, we have

lim
t→∞

h′(t) = K1

and hence h(t) ∼ K1 · t as t → +∞. Finally, a similar argument shows that if the solution exists
backward in time for any t < 0, then

h(t) ∼ K1 · t , as t→ −∞ ,

which is not possible since h(t) > 0. �

• K1 > 0 and K2 < 0.

Let us denote by h0 :=
√
−K2/K1. Then, we have

Proposition 4.3. Let h(t) be a solution to the model problem (39). It follows that
(i) if h(0) = h0, then the solution is stationary;

(ii) if h(0) > h0, then the solution is eternal and h(t) ∼ K1 · t as t→ +∞;

(iii) if h(0) < h0, then the solution is ancient.
Furthermore, any solution detects the stationary point as t→ −∞.

Proof. Let h(t) be the solution to (39). Then, a direct computation yields that h0 is the unique
stationary point to the flow, and the first claim follows.

Now, let us suppose h(0) > h0. Then, there exists ε > 0 such that h(0) =
√
−K2
K1

+ ε. Therefore,
we have

h′(0) =
εK2

1

−K2 + εK1
> 0 ,

and hence h(t)′ > 0 for every t ∈ (T−, T+). On the other hand,

h′(t) ≤ K1 =⇒ h(t) ≤ K1 t+ h(0) , for any t ≥ 0 ,
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and the long-time existence follows. Moreover, since h(t) is always increasing and h0 is the unique
stationary point to the flow, it follows h(t) → h0 as t → −∞. Thus, the solution h(t) is eternal.
Finally, let us assume by contradiction that h′(t)→ 0 as t→ +∞. Then, this would be equivalent
to require

lim
t→∞

K1 +
K2

h(t)2
= 0 ,

which is not possible since h(0) > h0, and hence

lim
t→∞

h′(t) = K1

proves the second claim.
Now, let us assume h(0) =

√
−K2
K1
− ε < h0 for some ε > 0. Then, a direct computation yields

that

h′(0) =
−εK2

1

−K2 + εK1
< 0 ,

which in turn implies h′(t) < 0 for every t ∈ (T−, T+). On the other hand, it follows

h(t) ≤ −εK2
1

−K2 + εK1
t+ h(0) , for any t ≥ 0 ,

and hence T+ < +∞. Moreover, since h(t) is decreasing, we have

lim
t→T+

h′(t) = lim
t→T+

(
K1 +

K2

h(t)2

)
= −∞ .

Finally, since h(t) is always decreasing and there exists a unique stationary solution h0 to the flow,
we have that h(t)→ h0 as t→ −∞ and the last claim follows. �

• K1 < 0 and K2 < 0.

Under these assumptions, we have

Proposition 4.4. Any solution h(t) to (39) is ancient. In particular, h(t) ∼ −K1 · t as t→ −∞.

The proof of this result can be easily recovered using the same arguments as in Proposition 4.2.

• K1 < 0 and K2 > 0.

Arguing in the same way of Proposition 4.3, we get

Proposition 4.5. Let h(t) be a solution to (39). It follows that

(i) if h(0) = h0, then the solution is stationary;

(ii) if h(0) > h0, then the solution is eternal and h(t) ∼ −K1 · t as t→ −∞;

(iii) if h(0) < h0, then the solution is immortal.

Furthermore, any solution detects the stationary point as t→ +∞.
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4.2. The sign of K1 and its relation to the Fu-Wang-Wu conformal invariant.

We now investigate the relation between the constant K1 appearing in the model problem (38) and
the conformal invariant of ω0 introduced and studied by Fu, Wang and Wu in [17]. We also study
the sign of K1 in our class of nilpotent Lie groups.

Let X be a compact n-dimensional complex manifold and ω a Hermitian metric on X. In [17],
the notion of Gauduchon metric has been generalized by the so-called k-th Gauduchon equation

∂∂ωk ∧ ωn−k−1 = 0 , 1 ≤ k ≤ n− 1 .

Then, since the k-th Gauduchon equation may not admit a solution, Fu, Wang and Wu considered
the equation (in the conformal class of ω) given by

i

2
∂∂(evωk) ∧ ωn−k−1 = γk(ω) evωn , 1 ≤ k ≤ n− 1 , (40)

proving that there always exist a unique constant γk(ω) and a function v ∈ C∞(X) (unique up to
a constant) satisfying (40). Moreover, the constant γk(ω) is invariant under biholomorphisms and
it smoothly depends on the metric ω, and its sign is invariant in the conformal class of ω [17].

Now, let (X,ω) be a compact non-Kähler Hermitian manifold. In view of [24, Lemma 3.7] and
[24, Proposition 3.8], for any 1 ≤ k ≤ n− 2 it follows that

(i) if ω is balanced, then the constant γk(ω) > 0;

(ii) if ω is locally conformally Kähler, then the constant γk(ω) < 0.
Therefore, we can apply these results to compute the sign ofK1 = K1(ω0) in the model problem (38).
Indeed, by [26, Proposition 2.7], any left-invariant Hermitian metric ω0 on (G, J) given by (7)
satisfies

i

2
∂∂̄ω0 ∧ ω0 =

k4
0

8i detω0

(
ρ+ λ2 − 2x

)
ω3

0 ,

and hence

γ1(ω0) =
k4

0

8i detω0

(
ρ+ λ2 − 2x

)
.

On the other hand, since K1(ω0) =
c1 k2

0
8 (ρ+ λ2 − 2x) in the model problem (38), we get

K1(ω0) =
c1 i detω0

k2
0

γ1(ω0).

In particular, the sign of K1(ω0) is equal to the one of γ1(ω0), which is an invariant of the conformal
class of ω0. Actually, in our context we have that

signK1 = sign (ρ+ λ2 − 2x),

and hence it only depends on the complex structure J . This fact for γ1 was first noticed in [16].
Moreover, since an invariant Hermitian metric on a complex nilmanifold of complex dimension 3 is
1-st Gauduchon if and only if it is pluriclosed [16, Proposition 3.3], we have the following proposition.

Proposition 4.6. The sign of K1 in the model problem (38) only depends on the complex structure J
on G. Moreover:

(i) If ω0 is balanced, then K1 > 0.

(ii) If ω0 is locally conformally Kähler, then K1 < 0.

(iii) The metric ω0 is pluriclosed if and only if K1 = 0.
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In Table 1, we provide the classification of the Lie groups admitting a complex structure satisfy-
ing (10), together with the sign of the invariant K1.

The first column of Table 1 describes the nilpotent Lie algebra associated to the Lie group. Here
we use the notation for which the algebras are named as nk and then described (see e.g. [43]).
Moreover, we denote by Nk the Lie group corresponding to nk (second column of the table). About
the other columns, we use the following convention. The symbol “X” means that the sign ofK1 is the
one given in the table for any complex structure on the corresponding Lie group Nk, whereas “X(J)”
means that there exist complex structures J on Nk such that the sign of K1 is the one described by
the column. Therefore, different complex structures may lead to different sings on the same group
Nk. Finally, we use “−” to denote that there are no complex structures of the given sign.

Lie algebra Lie group K1 < 0 K1 = 0 K1 > 0

n2 = (0, 0, 0, 0, 12, 34) N2 X(J) X(J) X(J)

n3 = (0, 0, 0, 0, 0, 12+34) N3 X(J) − X(J)

n4 = (0, 0, 0, 0, 12, 14+23) N4 X(J) X(J) X(J)

n5 = (0, 0, 0, 0, 13+42, 14+23) N5 X(J) X(J) X(J)

n6 = (0, 0, 0, 0, 12, 13) N6 − − X

n8 = (0, 0, 0, 0, 0, 12) N8 − X −

Table 1. The sign of K1

Let us recall that the groups N2, N3, N4, N5 and N6 admit left-invariant balanced metrics, while
N3 is the unique group admitting locally conformally Kähler metrics [43]. We refer to [26] for a
classification of the complex structures satisfying K1 < 0, = 0 or > 0.

Remark 4.7. The nilpotent Lie group N3 is given by the product of R with the 5-dimensional
generalized Heisenberg group, while N5 is the real Lie group underlying the Iwasawa manifold.

We stress that, by an appropriate choice either of the Gauduchon connection ∇τ or of the slope
parameter α′, the sign of the constant K2 = K2(ω0, α

′, τ) in the model problem (38) can take any
value. Therefore, the results presented in Section 4.1 apply to every nilpotent Lie group in Table 1.
In particular, we get

Proposition 4.8. Any Lie group in Table 1 with K1 6= 0 admits both immortal and ancient left-
invariant solutions to the Anomaly flow (3).

This result also extends to nilmanifolds arising from the quotient of a Lie group Nk by a co-
compact lattice.

4.3. Convergence of the nilmanifolds.

We are now in a position to prove our convergence result. Note that, a main ingredient in the
proof of Theorem B will be given by the qualitative behaviour of the model problem studied in
Section 4.1, together with Theorem 3.7.

Let us recall that a family of compact metric spaces (Xt, dt) converges to a metric space (X̄, d̄)

in Gromov-Hausdorff topology as t → T , if for any increasing sequence tn → T there exists a
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sequence of εtn-approximations ϕtn : Xtn → X̄ satisfying εtn → 0. By definition, ϕ : X → X̄ is an
ε-approximation if

|dt(x, x′)− d̄(ϕ(x), ϕ(x′))| < ε , for any x, x′ ∈ X ,

and for all y ∈ X̄ there exists x ∈ X such that d̄(y, ϕ(x)) < ε (see e.g. [40]).

Proof of Theorem B. Let M = Γ \G be a nilmanifold arising from our class of nilpotent Lie groups
and let {ζ1, ζ2, ζ3} be an invariant (1,0)-frame of X = (M,J). By means of (10), M gives rise to a
fibration over a real 4-dimensional tours π : M → T4 with fibers spanned by the real and imaginary
part of ζ3. On the other hand, by means of Theorem 3.7 and the results presented in Section 4.1,
one gets that either {ζ1, ζ2, ζ3} or {ζ3} shrink to zero along (1 + t)−1ωt as t → ∞, depending on
the signs of K1 and K2, and hence the claim follows. �

5. Evolution of the holomorphic vector bundle

In this section we study the Anomaly flow (1) on a class of Lie groups belonging to (10). Explicit
computations will be performed on the nilpotent Lie group N3. In particular, we will prove that
under certain choices of the initial metric and the connection, the Anomaly flow converges to a
(non-flat) solution of the Hull-Strominger-Ivanov system.

Let G be a 6-dimensional Lie group and let J be a left-invariant non-parallelizable complex
structure on G. Let us suppose that there exists a left-invariant (1, 0)-coframe {ζ1, ζ2, ζ3} on G

satisfying the structure equations{
dζ1 = dζ2 = 0,

dζ3 = ρ ζ12 + ζ11̄ + (x+ i y) ζ22̄ ,
(41)

where x, y ∈ R and ρ ∈ {0, 1} (i.e. we are considering λ = 0 in (10)). Let also the holomorphic
vector bundle be E := T 1,0G, and

Ψ := ζ1 ∧ ζ2 ∧ ζ3 .

Moreover, let the left-invariant Hermitian metrics (ω0, H0) be both diagonal, i.e.

ω0 =
i

2

(
r2

0 ζ
11̄ + s2

0 ζ
22̄ + k2

0 ζ
33̄
)

and

H0 =
i

2

(
r̃2

0 ζ
11̄ + s̃2

0 ζ
22̄ + k̃2

0 ζ
33̄
)
.

Then, our main result is the following

Theorem 5.1. The left-invariant metrics ωt and Ht solving the Anomaly flow (1) remain diagonal
along the flow, and the coefficients of Ht evolve via
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

d

dt
r̃(t)2 =

1

3c1c2
2

[
2
(
c2(κ+ 1)2 − c1ρ(κ− 1)2

)
r(t)2k̃(t)2

− c1c2(κ− 1)(c1x+ c2)r̃(t)2
] k̃(t)2

r(t)4r̃(t)2
,

d

dt
s̃(t)2 =

1

3c2
1c2

[
2
(
c1(κ+ 1)2(x2 + y2)− c2ρ(κ− 1)2

)
r(t)2k̃(t)2

− c2
1(κ− 1)

(
c1(x2 + y2) + c2x

)
s̃(t)2

] k̃(t)2

r(t)4s̃(t)2
,

d

dt
k̃(t)2 =

2

3c2
1c

2
2

[
ρ(κ− 1)2

(
c2

1s̃(t)
4 + c2

2r̃(t)
4
)

− c1c2(κ+ 1)2
(
(x2 + y2)r̃(t)4 + s̃(t)4

)] k̃(t)6

r(t)2r̃(t)4s̃(t)4
.

(42)

To prove our statement, we need the following lemma.

Lemma 5.2. Under the hypotheses of Theorem 5.1,

Tr(Aκ0 ∧Aκ0) = C0 ζ
121̄2̄,

where C0 = C0(λ, x, y;ω0, H0;κ) is a constant depending both on the Hermitian structures and the
connection ∇κ.

Proof. The proof directly follows by Lemma 7.1 in Appendix B. �

Proof of Theorem 5.1. Let us focus on the evolution of Ht via

H−1
t ∂tHt =

ω2
t ∧Aκt
ω3
t

. (43)

We first show that there exists T̃ > 0 such that Ht holds diagonal for any t ∈ [0, T̃ ). To this end,
it is enough to prove that ω2

t ∧ (Aκt )i
j̄

= 0 for any i 6= j and t = 0. Thus, let H and ω be two
left-invariant diagonal Hermitian metrics on G given by

H =
i

2

(
r̃2 ζ11̄ + s̃2 ζ22̄ + k̃2 ζ33̄

)
, s̃2, r̃2, k̃2 > 0 ,

and

ω =
i

2

(
r2 ζ11̄ + s2 ζ22̄ + k2 ζ33̄

)
, s2, r2, k2 > 0 .

If we consider {e1, . . . , e6} a left-invariant coframe on G such that

δ1 ζ
1 = e1+ i e2 = e1−i Je1 , δ2 ζ

2 = e3+ i e4 = e3−i Je3 , δ3 ζ
3 = e5+ i e6 = e5−i Je5 ,

with δ1 = r, δ2 = s and δ3 = k, then we get

(Aκ)ij̄ =
1

δiδj

(
(Aκ)e

i

ej + i (Aκ)e
i

Jej − i (Aκ)Je
i

ej + (Aκ)Je
i

Jej

)
,
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where (Aκ)e
i

ej
are the curvature 2-forms of ∇κ explicitly computed in Appendix B (see the proof of

Lemma 7.1). Thus, the only non-zero entries in the right-hand side of (43) are given by

ω2 ∧ (Aκ)1
1̄

ω3
=

1

12

k̃2

r4s2k2r̃4

[
r2k̃2

(
(κ+ 1)2s2 − ρ(κ− 1)2r2

)
− 4k2r̃2(κ− 1)(xr2 + s2)

]
,

ω2 ∧ (Aκ)2
2̄

ω3
=

1

12

k̃2

r4s2k2s̃4

[
s2k̃2

(
(κ+ 1)2(x2 + y2)r2 − ρ(κ− 1)2s2

)
− 4k2s̃2(κ− 1)

(
(x2 + y2)r2 + x s2

) ]
,

ω2 ∧ (Aκ)3
3̄

ω3
=

1

12

k̃4

r4s2k2r̃4s̃4

[
ρ(κ− 1)2

(
r4s̃4 + s4r̃4

)
− (κ+ 1)2r2s2

(
(x2 + y2)r̃4 + s̃4

) ]
,

(44)

and hence our claim follows, since ω0 and H0 are both diagonal.
On the other hand, by means of Lemma 5.2 and Corollary 3.8, there also exists T̂ > 0 such that

ωt holds diagonal for any t ∈ [0, T̂ ). Therefore, by the existence of T̂ > 0 and T̃ > 0, it follows that
ωt and Ht hold diagonal for any t along the flow. Finally, the evolution equations in (42) are a direct
consequence of (44), taking into account that s(t)2 = c2

c1
r(t)2 and k(t)2 = c1c2

8 by Corollary 3.8. �

Remark 5.3. Under the assumptions of Theorem 5.1, we have

Tr(Aκt ∧Aκt ) = Ct ζ
121̄2̄,

where Ct = Ct(ρ, x, y;ωt, Ht;κ) is a one-parameter function depending both on the Hermitian
structures and the connection ∇κ.

Remark 5.4. Theorem 5.1 applies to the following Lie groups Nk in Table 1 and complex structures
in (41): (1) ρ = 0, y = 1 and x ∈ R, the Lie group is N2; (2) ρ = y = 0 and x = ±1, the Lie group
is N3; (3) ρ = 1, y ≥ 0 and 1 + 4x > 4y2, the Lie group is N5; (4) ρ = x = y = 0, the Lie group is
N8. By [4], this is a classification of all the complex structures in (41). Regarding the existence of
balanced Hermitian metrics, the list reduces to:

• ρ = y = 0, x = −1, the Lie group is N3;

• ρ = 1, y = 0 and x ∈ (−1/4, 0), the Lie group is N5.

Our next result shows that if the initial metric ω0 is balanced, then there always exists a connec-
tion ∇κ such that (42) only admits constant solutions.

Proposition 5.5. Under the hypotheses of Theorem 5.1, if the initial metric ω0 is balanced, then
there exists a Gauduchon connection ∇κ for which the right-hand side of the system (42) identically
vanishes, and the only admissible solutions to the Anomaly flow (1) are those with constant Ht, i.e
Ht ≡ H0.

Proof. As we already showed in the proof of Theorem 3.4, a diagonal metric ω0 is balanced if and
only if c1(x+ i y) + c2 = 0, which is equivalent to require

x = −c2

c1
and y = 0 , (45)
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with c1 =
√

8 r0k0
s0

> 0 and c2 =
√

8 s0k0
r0

> 0 by Corollary 3.8. Therefore, by means of (45), the
system (42) can be written as

d

dt
r̃(t)2 =

2

3c1c2
2

(
c2(κ+ 1)2 − c1ρ(κ− 1)2

) k̃(t)4

r(t)2r̃(t)2
,

d

dt
s̃(t)2 =

2

3c3
1

(
c2(κ+ 1)2 − c1ρ(κ− 1)2

) k̃(t)4

r(t)2s̃(t)2
,

d

dt
k̃(t)2 =

2

3c3
1c

2
2

(
c1ρ(κ− 1)2 − c2(κ+ 1)2

)(c2
1s̃(t)

4 + c2
2r̃(t)

4
)
k̃(t)6

r(t)2r̃(t)4s̃(t)4
.

Then, the right-hand side of the system identically vanishes if and only if

c2(κ+ 1)2 − c1ρ (κ− 1)2 = (c2 − ρ c1)κ2 + 2(c2 + ρ c1)κ+ c2 − ρ c1 = 0 . (46)

Finally, since the discriminant of this quadratic polynomial is given by

∆ = 32ρc1c2 ≥ 0 ,

the claim follows. �

Remarkably, by the proof of Proposition 5.5, we can distinguish the following two remarkable
cases:

• If c2 = ρ c1, then the only solution to the polynomial (46) is κ = 0. Therefore, ∇κ is given
by the Lichnerowicz connection ∇0.

• If c2 6= ρ c1, then the solutions to (46) are either the Strominger-Bismut connection (κ =

−1) when ρ = 0, or the Gauduchon connections ∇κ± corresponding to the values κ± =
c1+c2±2

√
c1c2

c1−c2 when ρ = 1.

Remark 5.6. Given a solution Ht to (42), it may happen that its Gauduchon connection ∇κt does
not satisfy the condition (Aκt )2,0 = (Aκt )0,2 = 0. For instance, let us consider the Lie group arising
from (41) when ρ = 1, x = −1

8 and y = 0, which corresponds to N5 (see Remark 5.4). Then, the

diagonal metric ω0 = i
2

(
ζ11̄ + 1

8 ζ
22̄ + ζ33̄

)
on N5 is balanced and, by means of Proposition 5.5, one

gets that for κ± = 9±4
√

2
7 the system (42) is solved by the constant metric Ht ≡ i

2

(
ζ11̄ + ζ22̄ + ζ33̄

)
.

Nonetheless, the Gauduchon connections ∇κ± do not satisfy the condition (Aκ
±
t )2,0 = (Aκ

±
t )0,2 = 0.

Indeed, by Appendix B (see the proof of Lemma 7.1) one gets that (Aκ
±

)1
2 has non-zero component

in e14 + e23 = −i
4
√

2
(ζ12 − ζ 1̄2̄), and hence its (2, 0) and (0, 2) components do not identically vanish.

In the following section we prove that, on the Lie group N3, solutions to the Hull-Strominger-
Ivanov system can obtained as stationary points to the Anomaly flow.

5.1. Anomaly flow on N3 and solutions to the Hull-Strominger-Ivanov system.
Let us consider the simply-connected nilpotent Lie group N3, which admits a left-invariant (1, 0)-
coframe {ζ1, ζ2, ζ3} satisfying the structure equations{

dζ1 = dζ2 = 0,

dζ3 = ζ11̄ − ζ22̄ .
(47)

Next we study the Anomaly flow (1) on N3 for ∇κ being the Chern connection (i.e. κ = 1) and
the Strominger-Bismut connection (i.e. κ = −1).
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• The Chern connection on T 1,0N3.

We start investigating the setting of Theorem 5.1 in the special case when κ = 1, i.e. ∇κt is the
Chern connection on (T 1,0N3, Ht).

Theorem 5.7. If κ = 1, then the coefficients of ωt and Ht evolve via the ODEs system

d

dt
r(t)2 =

c2
1c2

25
+ α′(1− τ)(τ2 − 2τ + 5)

c3
1(c2

1 + c2
2)

211 r(t)4
,

d

dt
r̃(t)2 =

8

3c1c2

k̃(t)4

r(t)2r̃(t)2
,

d

dt
s̃(t)2 =

8

3c1c2

k̃(t)4

r(t)2s̃(t)2
,

d

dt
k̃(t)2 = − 8

3c1c2

(
r̃(t)4 + s̃(t)4

) k̃(t)6

r(t)2r̃(t)4s̃(t)4
.

(48)

Moreover, if ω0 and H0 are both balanced, then Ht evolves as

Ht =
i

2
r̃(t)2ζ11̄ +

i

2
r̃(t)2ζ22̄ +

i

2

r̃4
0k̃

2
0

r̃(t)4
ζ33̄ ,

where the function r̃(t)2 satisfies

d

dt
r̃(t)2 =

8

3c2
1

r̃(0)8k̃(0)4

r(t)2r̃(t)10
(49)

In particular, if τ 6= 1 (i.e. ∇τt is different from the Chern connection), then there exists a convenient
choice of α′ such that the solution to the system is given by ωt ≡ ω0 and r̃(t) = 12

√
A t+B, with

A =
16 r̃8

0 k̃
4
0

c21 r
2
0

and B = r̃12
0 .

Proof. By means of Proposition 3.3, the first equation of the Anomaly flow (1) reduces to

d

dt
r(t)2 =

c1

4
K(t, α′, τ) , (50)

where K(t, α′, τ) is given by

K(t, α′, τ) ζ121̄2̄ = i∂∂ωt −
α′

4

(
Tr(Rmτ

t ∧Rmτ
t )− Tr(A1

t ∧A1
t )
)
.

By Corollary 3.8 and Proposition 2.3, a direct computation yields that

i∂∂ωt =
c1c2

23
ζ121̄2̄ ,

Tr(Rmτ
t ∧Rmτ

t ) = (τ − 1)(τ2 − 2τ + 5)
c2

1 + c2
2

27

c2
1

r(t)4
ζ121̄2̄ ,

while, by means of Lemma 7.1, for κ = 1 we have Tr(A1
t ∧ A1

t ) = 0. Therefore, by using (50) and
(42) for κ = 1, ρ = 0 = y and x = −1, one gets the ODEs system (48).

Now, let ω0 and H0 be both balanced. By means of (35) and (30)–(34), the balanced condition
implies that

c2 = c1 and s̃2
0 = r̃2

0 .
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The latter equality, together with the fact that the functions r̃(t)2 and s̃(t)2 satisfy similar equations
in (48), leads to s̃(t)2 = r̃(t)2. Thus, the ODEs system (48) reduces to

d

dt
r(t)2 =

c3
1

25
+ α′(1− τ)(τ2 − 2τ + 5)

c5
1

210 r(t)4
,

d

dt
r̃(t)2 =

8

3c2
1

k̃(t)4

r(t)2r̃(t)2
,

d

dt
k̃(t)2 = − 16

3c2
1

k̃(t)6

r(t)2r̃(t)4
.

(51)

Therefore, by considering the quotient of d
dt r̃(t)

2 with d
dt k̃(t)2, we get∫

1

r̃(t)2
dr̃(t)2 = −1

2

∫
1

k̃(t)2
dk̃(t)2 .

This in turn implies

k̃(t) =
r̃2

0k̃0

r̃(t)2
,

and hence (49) follows.
Finally, for any value of r2

0 and τ 6= 1, there exists a convenient value of α′ making the right-hand
side of the first equation in (51) equal to zero. In this case we can explicitly solve the system with

r̃(t) = 12
√
A t+B,

where A =
16 r̃8

0 k̃
4
0

c21 r
2
0

and B = r̃12
0 . �

We stress that the explicit solutions found in Theorem 5.7 are not stationary solutions to the flow,
and hence they do not solve the Hull-Strominger system. In the next subsection, we will construct
stationary solutions assuming ∇κt to be the Strominger-Bismut connection.

• The Strominger-Bismut connection on T 1,0N3.

Here we consider the setting of Theorem 5.1 in the special case when κ = −1, i.e. ∇κt is the
Strominger-Bismut connection on (T 1,0N3, Ht).

Theorem 5.8. If κ = −1, then the coefficients of ωt and Ht evolve via the ODEs system

d

dt
r(t)2 =

c2
1c2

25
+ α′(1− τ)(τ2 − 2τ + 5)

c3
1(c2

1 + c2
2)

84 r(t)4
− α′ c1

2

k̃(t)4(r̃(t)4 + s̃(t)4)

r̃(t)4s̃(t)4
,

d

dt
r̃(t)2 =

2

3c2
(c2 − c1)

k̃(t)2

r(t)4
,

d

dt
s̃(t)2 =

2

3c2
(c1 − c2)

k̃(t)2

r(t)4
,

d

dt
k̃(t)2 = 0 .

(52)

If the initial metric ω0 is balanced, then Ht ≡ H0 is constant, the Strominger-Bismut connection
∇−1 of H0 is a (non-flat) instanton with respect to ωt, and the Anomaly flow reduces to the ODE

d

dt
r(t)2 = K1 +

K2

r(t)4
, (53)
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where K1 = K1(ω0, α
′, H0) and K2 = K2(ω0, α

′, τ) are given by

K1 :=
c3

1

25
− α′ c1

2

k̃4
0(r̃4

0 + s̃4
0)

r̃4
0 s̃

4
0

, K2 := α′(1− τ)(τ2 − 2τ + 5)
c5

1

210
. (54)

Therefore, starting from any balanced initial metric ω0 on N3, we have the following:

(i) Given α′ 6= 0 and τ ∈ R, the metric H0 can be conveniently chosen in order to obtain
K1 < 0, = 0 or > 0 in (53), and so there always exists a stationary point to the Anomaly
flow which solves the Hull-Strominger system.

(ii) Furthermore, if α′ 6= 0 and τ = −1 (i.e. ∇τt is the Strominger-Bismut connection of ωt),
then ∇−1

t is an instanton with respect to ωt, and hence there exists a stationary point to
the Anomaly flow which solves the Hull-Strominger-Ivanov system.

Proof. The first part of the statement follows the same argument of Theorem 5.7. We just mention
that, by means of Lemma 7.1 for κ = −1, ρ = 0 = y and x = −1, we have

Tr(A−1
t ∧A

−1
t ) = −8

r̃(t)4 + s̃(t)4

r̃(t)4s̃(t)4
k̃(t)4 ζ121̄2̄ . (55)

Hence, the ODEs system (52) is obtained starting from (42).
Now, let us assume ω0 balanced. By means of (35) and (30)–(34), we have

c1 = c2 ,

and hence the ODEs system (52) reduces to r̃(t), s̃(t), k̃(t) constant (i.e. Ht ≡ H0), and

d

dt
r(t)2 = K1 +

K2

r(t)4
,

with K1 and K2 as given in (54). Therefore, we get that ω2
t ∧ A−1 = 0 for any t ∈ (T−, T+) and,

by means of the curvature forms given in the proof of Lemma 7.1, a direct computation yields that
the curvature of the Strominger-Bismut connection satisfies

(A−1)2,0 = (A−1)0,2 = 0 . (56)

Hence, ∇−1 is an instanton with respect to ωt for any t ∈ (T−, T+). It is non-flat because
Tr(A−1 ∧A−1) 6= 0 by (55).

Finally, the last two claims are consequences of (54), (56) and similar arguments to those in
Section 4. In greater detail, given α′ 6= 0 and τ ∈ R, we can choose a metric H0 such that K1 has
opposite sign to that of K2 (notice that if K2 = 0 then we can take H0 so that K1 also vanishes).
Now, (i) follows from a qualitative analysis similar to that given in Section 4. For the proof of
(ii), it only remains to prove that the Strominger-Bismut connection ∇−1

t of the metric ωt is an
instanton with respect to ωt. This follows from Appendix A for τ = −1, ρ = λ = y = 0, x = −1

and u = 0 (because the metric ωt remains diagonal). Indeed, in this case it is direct to check that
(Rm−1

t )2,0 = (Rm−1
t )0,2 = 0, so there exists a stationary point to the Anomaly flow which solves

the system given by (2) and (5), i.e. the Hull-Strominger-Ivanov system. �

By Theorem 5.8 (ii), when both ∇τt and ∇κt are Strominger-Bismut connections and the initial
metric ω0 is balanced, the Anomaly flow (1) always converges to a solution of the Hull-Strominger-
Ivanov system. We note that explicit solutions of this kind were previously found in [13, Theorem
5.1] and in [28, Theorem 3.3] by means of other methods.
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6. Appendix A

In this Appendix we provide the curvature forms for a connection ∇τ in the Gauduchon family
given any left-invariant metric ω.

For the computation of the curvature forms we use (22) with respect to the adapted basis {el}6l=1

found in Proposition 2.1, together with the connection 1-forms (στ )ij obtained in Proposition 2.3.
We first notice that the 2-forms (Rmτ )ij satisfy the following relations:

(Rmτ )2
3 = −(Rmτ )1

4 , (Rmτ )2
4 = (Rmτ )1

3 , (Rmτ )2
5 = −(Rmτ )1

6 , (Rmτ )2
6 = (Rmτ )1

5 ,

(Rmτ )4
5 = −(Rmτ )3

6 , (Rmτ )4
6 = (Rmτ )3

5 .

Next, we give the explicit expression of the 2-forms 2r4
e∆2

e
k2
e

(Rmτ )ij , where ∆e :=
√
r2
es

2
e − |ue|2,

for (i, j) = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (3, 4), (3, 5), (3, 6), (5, 6)}:

2r4
e∆2

e
k2
e

(Rmτ )1
2 = −(τ2−2τ+5)∆2

e e
12 + (τ2−2τ+5)ue1∆e (e13 + e24)

+
(

(τ2−2τ+5)ue2−
(
ρ(τ−1)(τ+3)+λ(τ2+3)

)
r2
e

)
∆e e

14

−
(

(τ2−2τ+5)ue2+
(
ρ(τ−1)(τ+3)−λ(τ2+3)

)
r2
e

)
∆e e

23

−
(

(τ2−2τ+5)|ue|2−2λ(τ2+3)ue2r2
e−(ρ(τ−1)2−λ2(τ+1)2+4x(τ−1))r4

e

)
e34

− λ(τ−1)2
(
λr2
e−2ue2

)
r2
e e

56 ,

2r4
e∆2

e
k2
e

(Rmτ )1
3 = (τ2−2τ+5)ue1∆e e

12

−
[
(τ2−2τ+5)u2

e1+ 1
2

(
ρ(τ−1)2−2λ2(τ−1)−ρλ(τ−1)(τ+3)+x(τ+1)2

)
r4
e

]
e13

−
[
(τ2−2τ+5)ue1ue2−

(
ρ(τ−1)(τ+3)+λ(τ2+3)

)
ue1r2

e+ y
2

(τ+1)2r4
e

]
e14

+
[
(τ2−2τ+5)ue1ue2+

(
ρ(τ−1)(τ+3)−λ(τ2+3)

)
ue1r2

e+ y
2

(τ+1)2r4
e

]
e23

−
[
(τ2−2τ+5)u2

e1+ 1
2

(
ρ(τ−1)2−2λ2(τ−1)+ρλ(τ−1)(τ+3)+x(τ+1)2

)
r4
e

]
e24

+ 1
∆e

[
(τ2−2τ+5)|ue|2ue1−2λ(τ2+3)ue1ue2r2

e

+
(
λ2(τ2+3)ue1+x(τ2−2τ+5)ue1+y(τ+1)2ue2

)
r4
e−λy(τ2+3)r6

e

]
e34

+ 1
∆e

(τ−1)2
(
λr2
e−2ue2

)(
λue1−yr2

e

)
r2
e e

56 ,

2r4
e∆2

e
k2
e

(Rmτ )1
4 =

(
(τ2−2τ+5)ue2+2λ(τ−1)r2

e

)
∆e e

12

−
[
(τ2−2τ+5)ue1ue2+2λ(τ−1)ue1r2

e−
y
2

(τ+1)2r4
e

]
(e13 + e24)

−
[
(τ2−2τ+5)u2

e2−
(
ρ(τ−1)(τ+3)+λ(τ2−2τ+5)

)
ue2r2

e

+ 1
2

(
ρ(τ−1)2−2λ2(τ−1)+ρλ(τ−1)(τ+3)+x(τ+1)2

)
r4
e

]
e14

+
[
(τ2−2τ+5)u2

e2+
(
ρ(τ−1)(τ+3)−λ(τ2−2τ+5)

)
ue2r2

e

+ 1
2

(
ρ(τ−1)2−2λ2(τ−1)−ρλ(τ−1)(τ+3)+x(τ+1)2

)
r4
e

]
e23

+ 1
∆e

[
(τ2−2τ+5)|ue|2ue2+2λ

(
(τ−1)u2

e1−(τ2−τ+4)u2
e2

)
r2
e

+
(
λ2(τ2+3)ue2+x(τ2−2τ+5)ue2−y(τ+1)2ue1

)
r4
e−λx(τ2+3)r6

e

]
e34

− 1
∆e

(τ−1)2
(

2λu2
e2−
(
λs2e+λ

2ue2−2yue1
)
r2
e+λxr4

e

)
r2
e e

56 ,
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2r4
e∆2

e
k2
e

(Rmτ )1
5 = −λ

2
(τ−1)

(
(τ+1)ue2−ρ(τ−1)r2

e

)
r2
e e

15 + (τ−1)
(
ρ(τ−1)−λ

2
(τ+1)

)
ue1r2

e e
16

−λ
2

(τ−1)(τ+1)ue1r2
e e

25

− 1
2

(τ−1)
(

2(τ+1)s2e+2ρ(τ−1)ue2−λ(τ+1)ue2−ρλ(τ−1)r2
e

)
r2
e e

26

+ λ
2∆e

(τ−1)(τ+1)
(
|ue|2−λue2r2

e+xr4
e

)
r2
e e

35

+ 1
2∆e

(τ−1)(τ+1)
(

2ue1s2e−(λ2ue1−2xue1+2yue2)r2
e+λyr4

e

)
r2
e e

36

− λ
2∆e

(τ−1)(τ+1)
(
λue1−yr2

e

)
r4
e e

45

+ 1
2∆e

(τ−1)
[
2ρ(τ−1)|ue|2+(τ+1)(2s2eue2−λ|ue|2)

−
(

2ρ(τ−1)s2e+(τ+1)(2λs2e−λ2ue2−2xue2−2yue1)
)
r2
e−λx(τ+1)r4

e

]
r2
e e

46 ,

2r4
e∆2

e
k2
e

(Rmτ )1
6 = −λ

2
(τ−1)(τ+1)ue1r2

e e
15 − 1

2
(τ−1)

(
2(τ+1)s2e−2ρ(τ−1)ue2−λ(τ+1)ue2+ρλ(τ−1)r2

e

)
r2
e e

16

+ λ
2

(τ−1)
(

(τ+1)ue2+ρ(τ−1)r2
e

)
r2
e e

25 + (τ−1)
(
ρ(τ−1)+λ

2
(τ+1)

)
ue1r2

e e
26

− λ
2∆e

(τ−1)(τ+1)
(
λue1−yr2

e

)
r4
e e

35

− 1
2∆e

(τ−1)
[
2ρ(τ−1)|ue|2−(τ+1)(2s2eue2−λ|ue|2)

−
(

2ρ(τ−1)s2e−(τ+1)(2λs2e−λ2ue2−2xue2−2yue1)
)
r2
e+λx(τ+1)r4

e

]
r2
e e

36

− λ
2∆e

(τ−1)(τ+1)
(
|ue|2−λue2r2

e+xr4
e

)
r2
e e

45

− 1
2∆e

(τ−1)(τ+1)
(

2ue1s2e−(λ2ue1−2xue1+2yue2)r2
e+λyr4

e

)
r2
e e

46 ,

2r4
e∆2

e
k2
e

(Rmτ )3
4 = −

(
(τ2−2τ+5)|ue|2+4λ(τ−1)ue2r2

e−(τ−1)(ρ(τ−1)+4x)r4
e

)
e12

+ 1
∆e

[
(τ2−2τ+5)|ue|2ue1+4λ(τ−1)ue1ue2r2

e

−
(

2λ2(τ−1)ue1+ρλ(τ−1)(τ+3)ue1−x(τ2−2τ+5)ue1+y(τ+1)2ue2
)
r4
e+y(τ−1)(ρ(τ+3)+2λ)r6

e

]
e13

+ 1
∆e

[
(τ2−2τ+5)|ue|2ue2−

(
ρ(τ−1)(τ+3)|ue|2+λ(τ2+3)u2

e1+λ(τ2−4τ+7)u2
e2

)
r2
e

−
(

2λ2(τ−1)ue2−ρλ(τ−1)(τ+3)ue2−x(τ2−2τ+5)ue2−y(τ+1)2ue1
)
r4
e−x(τ−1)(ρ(τ+3)−2λ)r6

e

]
e14

− 1
∆e

[
(τ2−2τ+5)|ue|2ue2+

(
ρ(τ−1)(τ+3)|ue|2−λ(τ2+3)u2

e1−λ(τ2−4τ+7)u2
e2

)
r2
e

−
(

2λ2(τ−1)ue2+ρλ(τ−1)(τ+3)ue2−x(τ2−2τ+5)ue2−y(τ+1)2ue1
)
r4
e+x(τ−1)(ρ(τ+3)+2λ)r6

e

]
e23

+ 1
∆e

[
(τ2−2τ+5)|ue|2ue1+4λ(τ−1)ue1ue2r2

e

−
(

2λ2(τ−1)ue1−ρλ(τ−1)(τ+3)ue1−x(τ2−2τ+5)ue1+y(τ+1)2ue2
)
r4
e−y(τ−1)(ρ(τ+3)−2λ)r6

e

]
e24

− τ2−2τ+5

∆2
e

[
|ue|4−2λ|ue|2ue2r2

e+(2x+λ2)|ue|2r4
e−2λ(xue2+yue1)r6

e+(x2+y2)r8
e

]
e34

+ λ(τ−1)2(λr2
e−2ue2) r2

e e
56 ,
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2r4
e∆2

e
k2
e

(Rmτ )3
5 = − 1

2∆e
(τ−1)(τ+1)

(
λ|ue|2+(λs2e−2yue1)r2

e

)
r2
e e

15 + 1
∆e

(τ−1)(τ+1)
(
λue2−s2e−xr2

e

)
ue1r2

e e
16

+ 1
∆e

(τ−1)(λue1−yr2
e)
(

(τ+1)ue2+ρ(τ−1)r2
e

)
r2
e e

25

+ 1
2∆e

(τ−1)
[
2ρ(τ−1)|ue|2+λ(τ+1)(u2

e1−u2
e2)+2(τ+1)s2eue2

−
(

2ρλ(τ−1)ue2+λ(τ+1)s2e−2x(τ+1)ue2
)
r2
e+2ρx(τ−1)r4

e

]
r2
e e

26

− 1

2∆2
e

(τ−1)
[
λ(τ+1)|ue|2ue2+

(
ρλ(τ−1)|ue|2+λ2(τ+1)(u2

e1−u2
e2)−λ(τ+1)s2eue2

)
r2
e

−
(
ρλs2e(τ−1)−λ(τ+1)(λs2e−4yue1)

)
r4
e+2y2(τ+1)r6

e

]
r2
e e

35

− 1

2∆2
e

(τ−1)
[
(2ρ(τ−1)+λ(τ+1))|ue|2ue1−

(
2ρ(τ−1)s2eue1−(τ+1)(λs2eue1−2λ2ue1ue2−2y|ue|2)

)
r2
e

+2λ(τ+1)(xue1+yue2)r4
e−2xy(τ+1)r6

e

]
r2
e e

36

− 1

2∆2
e

(τ−1)(τ+1)
[
λ|ue|2ue1+(λs2eue1−2λ2ue1ue2−2y|ue|2)r2

e+2λ(xue1+yue2)r4
e−2xyr6

e

]
r2
e e

45

− 1

2∆2
e

(τ−1)
[(

2ρ(τ−1)ue2−(τ+1)(λue2−2s2e)
)
|ue|2+

(
ρλ(τ−1)s2e+λ(τ+1)(λs2e−4xue2)

)
r4
e+2x2(τ+1)r6

e

−
(
ρ(τ−1)(λ|ue|2+2s2eue2)+(τ+1)(3λs2eue2+λ2(u2

e1−u2
e2)−4x|ue|2)

)
r2
e

]
r2
e e

46 ,

2r4
e∆2

e
k2
e

(Rmτ )3
6 = 1

∆e
(τ−1)(λue1−yr2

e)
(

(τ+1)ue2−ρ(τ−1)r2
e

)
r2
e e

15

− 1
2∆e

(τ−1)
[
2ρ(τ−1)|ue|2−(τ+1)(λ(u2

e1−u2
e2)+2s2eue2)

−
(

2ρλ(τ−1)ue2−λ(τ+1)s2e+2x(τ+1)ue2
)
r2
e+2ρx(τ−1)r4

e

]
r2
e e

16

+ 1
2∆e

(τ−1)(τ+1)
[
λ(u2

e1−u2
e2)+(λs2e−2yue1)r2

e

]
r2
e e

25 − 1
∆e

(τ−1)(τ+1)
[
λue2−s2e−xr2

e

]
ue1 r2

e e
26

− 1

2∆2
e

(τ−1)
[(

2(τ+1)s2e−(2ρ(τ−1)+λ(τ+1))ue2
)
|ue|2−

(
ρλ(τ−1)s2e−λ(τ+1)(λs2e−4xue2)

)
r4
e+2x2(τ+1)r6

e

+
(
ρ(τ−1)(2s2eue2+λ|ue|2)−(τ+1)(3λs2eue2+λ2(u2

e1−u2
e2)−4x|ue|2)

)
r2
e

]
r2
e e

36

+ 1

2∆2
e

(τ−1)
[
λ(τ+1)ue2|ue|2−

(
ρλ(τ−1)|ue|2−λ(τ+1)(λ(u2

e1−u2
e2)−s2eue2)

)
r2
e

+
(
ρλ(τ−1)s2e+λ(τ+1)(λs2e−4yue1)

)
r4
e+2y2(τ+1)r6

e

]
r2
e e

45

− 1

2∆2
e

(τ−1)
[
(2ρ(τ−1)−λ(τ+1))ue1|ue|2−2λ(τ+1)(xue1+yue2)r4

e+2xy(τ+1)r6
e

−
(

2ρ(τ−1)s2eue1+λ(τ+1)s2eue1−2(τ+1)(λ2ue1ue2+y|ue|2)
)
r2
e

]
r2
e e

46 ,

2r4
e∆2

e
k2
e

(Rmτ )5
6 = −2r4

e∆2
e

k2
e

[
(Rmτ )1

2 + (Rmτ )3
4

]
− 4(τ−1)(λue2−s2e−xr2

e)r2
e e

12

+ 2
∆e

(τ−1)
(

2ue1(λue2−s2e)−(ρλ+λ2+2x)ue1r2
e+(ρ+λ)yr4

e

)
r2
e e

13

+ 2
∆e

(τ−1)
(

2ue2+(ρ−λ)r2
e

)(
λue2−s2e−xr2

e

)
r2
e e

14

− 2
∆e

(τ−1)
(

2ue2−(ρ+λ)r2
e

)(
λue2−s2e−xr2

e

)
r2
e e

23

+ 2
∆e

(τ−1)
(

2ue1(λue2−s2e)+(ρλ−λ2−2x)ue1r2
e−(ρ−λ)yr4

e

)
r2
e e

24

− 4
∆2
e

(τ−1)
[
(λue2−s2e)|ue|2+

(
λue2s2e−λ2|ue|2−x|ue|2

)
r2
e+
(

2λ(xue2+yue1)−xs2e
)
r4
e−(x2+y2)r6

e

]
r2
e e

34 .

7. Appendix B

This Appendix is devoted to the computation of Tr(Aκ ∧ Aκ) for a Gauduchon connection ∇κ on
the holomorphic tangent bundle T 1,0G. In particular, the proof of Lemma 5.2 will follow.
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Let (G, J) be a Lie group equipped with a left-invariant complex structure. Let {ζ1, ζ2, ζ3} be
a left-invariant (1,0)-coframe satisfying (41). Let also ω and H be two left-invariant J-Hermitian
metrics on G given by

ω =
i

2
(r2 ζ11̄ + s2 ζ22̄ + k2 ζ33̄) and H =

i

2
(r̃2 ζ11̄ + s̃2 ζ22̄ + k̃2 ζ33̄) , (57)

for some r, s, k, r̃, s̃, k̃ ∈ R∗. If ∇κ is a Gauduchon connection of H and Aκ its curvature form, to
compute the trace Tr(Aκ ∧Aκ) by using (22) and (23) we need to write the connection 1-forms σκ

in terms of an adapted basis {el}6l=1 for ω (see Proposition 2.1). In the following, we will denote by
(σκ)ij and (Aκ)ij the connection 1-forms and the curvature 2-forms, respectively, written in terms of
{el}6l=1.

Let {ẽl}6l=1 be an adapted basis for the metric H and {ẽl}6l=1 its dual. In view of Section 2.2, the
connection 1-forms (σκ)ĩ

j̃
associated to ∇κ are given by

∇ẽk ẽj = (σκ)1̃
j̃
(ẽk) ẽ1 + · · ·+ (σκ)6̃

j̃
(ẽk) ẽ6 .

On the other hand, if {el}6l=1 denotes the dual basis of {el}6l=1, andM := (Mp
j ) is the change-of-basis

matrix from {el} to {ẽl}, i.e.

ẽj = Mp
j ep , for every 1 ≤ j ≤ 6 ,

then one gets

∇ẽk ẽj = ∇Mp
k ep

(M q
j eq) = Mp

k M
q
j ∇epeq = Mp

k M
q
j (σκ)lq(ep) el = Mp

k M
q
j N

i
l (σκ)lq(ep)ẽi ,

with N := M−1 (that is, el = N i
l ẽi), and hence

(σκ)ĩ
j̃
(ẽk) = g̃(∇ẽk ẽj , ẽi) = Mp

k M
q
j N

i
l (σκ)lq(ep) . (58)

Since the (1, 0)-coframe {ζ1, ζ2, ζ3} only depends on the complex structure J , by means of (15),
(19) and (21) we have

e1 + i e2 = r ζ1 , r̃ ζ1 = ẽ1 + i ẽ2 ,

e3 + i e4 = s ζ2 , s̃ ζ2 = ẽ3 + i ẽ4 ,

e5 + i e6 = k ζ3 , k̃ ζ3 = ẽ5 + i ẽ6 ,

which directly implies

ẽ1 =
r̃

r
e1 , ẽ2 =

r̃

r
e2 , ẽ3 =

s̃

s
e3 , ẽ4 =

s̃

s
e4 , ẽ5 =

k̃

k
e5 , ẽ6 =

k̃

k
e6 .

Thereby, the change-of-basis matrix M from {el} to {ẽl} is given by the diagonal matrix

M := diag

(
r

r̃
,
r

r̃
,
s

s̃
,
s

s̃
,
k

k̃
,
k

k̃

)
.

Thus, by means of (58), one gets

(σκ)ij(ek) = M i
i N

j
j N

k
k (σκ)ĩ

j̃
(ẽk) , (59)

or, equivalently,

(σκ)ij = M i
i N

j
j N

k
k (σκ)ĩ

j̃
(ẽk) e

k .
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Finally, since the connection 1-forms (σκ)ĩ
j̃
are given in the proof of Proposition 2.3, a direct com-

putation by means of (59) yields that

(σκ)1
2 =− k̃2

k r̃2 (κ−1) e6 ,

(σκ)1
5 =− k̃2

2 k r̃2 (κ+1) e1 + r k̃2

2 s k r̃2 ρ(κ−1) e3 ,

(σκ)1
6 = k̃2

2 k r̃2 (κ+1) e2 + r k̃2

2 s k r̃2 ρ(κ−1) e4 ,

(σκ)3
4 = k̃2

k s̃2
y(κ−1) e5 − k̃2

k s̃2
x(κ−1) e6 ,

(σκ)3
5 =− s k̃2

2 r k s̃2
ρ(κ−1) e1 − k̃2

2 k s̃2
x(κ+1) e3 − k̃2

2 k s̃2
y(κ+1) e4 ,

(σκ)3
6 =− s k̃2

2 r k s̃2
ρ(κ−1) e2 − k̃2

2 k s̃2
y(κ+1) e3 + k̃2

2 k s̃2
x(κ+1) e4 ,

(σκ)1
3 =(σκ)1

4 = (σκ)2
3 = (σκ)2

4 = (σκ)5
6 = 0 ,

(60)

together with the following relations

(σκ)2
5 = −(σκ)1

6 , (σκ)2
6 = (σκ)1

5 , (σκ)4
5 = −(σκ)3

6 , (σκ)4
6 = (σκ)3

5 ,

and (σκ)ij = −(σκ)ji .

Lemma 7.1. Let G be a 2-step nilpotent Lie group equipped with a left-invariant complex structure
J which admits a left-invariant (1, 0)-coframe {ζ l}3l=1 satisfying (41). Let ω and H be two left-
invariant J-Hermitian metrics defined by (57). Then, for any Gauduchon connection ∇κ associated
to H, the trace of its curvature satisfies

Tr(Aκ ∧Aκ) = Cζ121̄2̄ ,

where C = C(ρ, x, y;ω,H;κ) is a constant depending both on the Hermitian structures and the
connection. More precisely, we have

Tr (Aκ ∧Aκ) =
(κ− 1) k̃4

2k2r̃6s̃6

{
ρ(κ− 1)

[
(2κ r2k̃2 + k2r̃2)s̃6 + (x2 + y2)(2κ s2k̃2 + k2s̃2)r̃6

]
+ 4x(κ− 1)

(
(x2 + y2)r̃4 + s̃4

)
k2r̃2s̃2

− x(κ+ 1)2
(

(x2 + y2)s2r̃6 + r2s̃6
)
k̃2
}
ζ121̄2̄.
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Proof. Let (σκ)ij be the connection 1-forms of the Gauduchon connection ∇κ given in (60). By
means of (12) and (22), a direct computations yields that the curvature 2-forms (Aκ)ij of ∇κ are

(Aκ)1
2 = 4(κ−1)k2r̃2k̃2−(κ+1)2r2k̃4

2r2k2r̃4 e12 − ρ(κ−1)((κ+1)r2k̃2+2k2r̃2)k̃2

2rsk2r̃4 (e14 + e23)

+
(κ−1)(ρ(κ−1)r2k̃2+4xk2r̃2)k̃2

2s2k2r̃4 e34 ,

(Aκ)1
3 =− (ρ(κ−1)2+x(κ+1)2)k̃4

4k2r̃2s̃2
(e13 + e24)− y(κ+1)2k̃4

4k2r̃2s̃2
(e14 − e23) ,

(Aκ)1
4 = y(κ+1)2k̃4

4k2r̃2s̃2
(e13 + e24)− (ρ(κ−1)2+x(κ+1)2)k̃4

4k2r̃2s̃2
(e14 − e23) ,

(Aκ)1
5 =− (κ−1)(κ+1)k̃4

2k2r̃4 e26 − ρ(κ−1)2rk̃4

2sk2r̃4 e46 ,

(Aκ)1
6 =− (κ−1)(κ+1)k̃4

2k2r̃4 e16 + ρ(κ−1)2rk̃4

2sk2r̃4 e36 ,

(Aκ)3
4 =

(κ−1)(ρ(κ−1)s2k̃2+4xk2s̃2)k̃2

2r2k2s̃4
e12 +

ρ y(κ−1)((κ+1)s2k̃2+2k2s̃2)k̃2

2rsk2s̃4
(e13 − e24)

− ρ x(κ−1)((κ+1)s2k̃2+2k2s̃2)k̃2

2rsk2s̃4
(e14 + e23) +

(x2+y2)(4(κ−1)k2s̃2−(κ+1)2s2k̃2)k̃2

2s2k2s̃4
e34 ,

(Aκ)3
5 =− ρ(κ−1)2sk̃4

2rk2s̃4
(y e25 − x e26)− (κ−1)(κ+1)k̃4

2k2s̃4

(
y2 e35 − xy(e36 + e45) + x2 e46

)
,

(Aκ)3
6 = ρ(κ−1)2sk̃4

2rk2s̃4
(y e15 − x e16) + (κ−1)(κ+1)k̃4

2k2s̃4

(
xy(e25 − e36)− x2 e26 + y2 e35

)
,

(Aκ)5
6 =− (ρ(κ−1)2s2r̃4−(κ+1)2r2s̃4)k̃4

2r2k2r̃4s̃4
e12 − ρy(κ−1)(κ+1)sk̃4

2rk2s̃4
(e13 − e24)

+ ρ(κ−1)(κ+1)(r2s̃4+x s2r̃4)k̃4

2rsk2r̃4s̃4
(e14 + e23)− (ρ(κ−1)2r2s̃4−(x2+y2)(κ+1)2s2r̃4)k̃4

2s2k2r̃4s̃4
e34 ,

together with the following relations

(Aκ)2
3 = −(Aκ)1

4 , (Aκ)2
4 = (Aκ)1

3 , (Aκ)2
5 = −(Aκ)1

6 , (Aκ)2
6 = (Aκ)1

5 ,

(Aκ)4
5 = −(Aκ)3

6 , (Aκ)4
6 = (Aκ)3

5 .

Therefore, the claim follows by using (23) and (14). �
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