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Abstract 1	
Preconceptional and prenatal exposure to environmental toxics may have an effect on an individual 2	
future health, being pregnancy and early life critical and sensitive windows of susceptibility.  3	

The aim of this review is to summarize the current evidence on the toxic effects of environment exposure 4	
during pregnancy, neonatal and childhood.  5	

Alcohol use is related to Fetal Alcohol Spectrum Disorders (FASD) being Fetal Alcohol Syndrome (FAS) 6	
its most extreme form. Smoking is associated with placental abnormalities, preterm birth, increased risk 7	
of abortion, stillbirth or impaired growth and development, as well as to intellectual impairment, obesity 8	
and cardiovascular diseases later in life. Negative birth outcomes have been linked to drugs of abuse.  9	

Pregnant and lactating women should be aware of the risks of chemicals acting as Endocrine Disruptor 10	
Compounds (EDCs) and heavy metals vehiculized by food intake and with deleterious effects on 11	
pregnancy and development. EDCs can work by altering body hormones and function, and its major 12	
evidence of effects on prenatal exposure has been found for preeclampsia and intrauterine growth 13	
restriction, preterm birth and thyroid function. Metals can accumulate in the placenta causing fetal growth 14	
restriction. 15	

Evidence of air pollution effects over pregnancy is constantly growing. It has been related to preterm 16	
birth, with worrying evidence that synergies between its components enhance their adverse effects; fetal 17	
growth restriction; increased uterine vascular resistance and impaired vascularization of the placenta; 18	
increased gestational diabetes and reduced telomeres length.  19	

Initial studies suggest association between preeclampsia and environmental noise, particularly early 20	
onset preeclampsia.  21	

EDCs, heavy metals and air pollution are believed to have negative effects on the placenta, with 22	
consequential reduction in fetal growth, increased preterm birth, thyroid function disorders and neural 23	
tube defects.   24	

Physical activity during pregnancy is believed to have psychological benefits and has also been 25	
associated with shorter and less complicated labour, lower incidence of gestational diabetes, preterm 26	
birth, large for gestational age new-borns and hypertensive disorders.  27	

The advantages of breast-feeding outweigh any risks from contaminants. However, it is important to 28	
assess health outcomes of toxic exposures via breastfeeding that could have deleterious consequences 29	
for new-born infants.  30	

In conclusion, there is rising evidence of the negative effects of environmental exposure during 31	
pregnancy and breastfeeding and should be considered a major public health issue in the early future.	  32	
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1. Introduction  33	
 34	
Environment, lifestyle and personal factors are considered to be health determinants with the capacity 35	
to influence disease, quality of life and mortality.  36	

Environmental contaminants include those apparently under control, like food or abuse substances such 37	
as alcohol and tobacco. However, we must not forget about air pollution, chemicals, water contamination 38	
and radiation, often depending on governmental and industry policies.  39	

We live surrounded by pollutants and objects with chemical components, but we don’t always have 40	
information about security exposure limits or the synergic effects of their combinations, thus representing 41	
a major public health concern(1,2). 42	

Scientific evidence over the past years has raised concern that preconceptional and prenatal exposure 43	
to toxic environmental agents may have a critical and lasting effect on future health and susceptibility to 44	
disease(2–4). Given that development continues after birth, critical and sensitive windows occur 45	
periconceptually (before, during and shortly after fertilization of the egg) and during pregnancy, but also 46	
during infancy, childhood and puberty(4) [Fig.1]. 47	

We must not forget that most classes of environmental pollutants can cross into the fetal environment. 48	
Some of them are xenobiotic and can accumulate in the placenta and foetus resulting in an even higher 49	
fetal than maternal exposure and damage.  50	

The World Health Organization (WHO) warns that an estimated 12.6 million people die every year as a 51	
consequence of an unhealthy environment(5). Scientific societies such as the International Federation 52	
of Gynaecology and Obstetrics (FIGO) work to raise awareness of this fact and prevent exposure to 53	
toxins that negatively influence the health of mothers and their new-borns(6) 54	
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 55	
Figure 1: Human organogenesis and windows of susceptibility: prenatal and postnatal exposure. Modified from WHO State of the 56	
Science of EDCs 2012. Summary for Decision-Makers(7) 57	

	58	

2. Environmental exposures in pregnancy 59	
 60	
Pregnancy exposure to toxic environmental agents has an influence on perinatal outcomes but also on 61	
infancy and childhood health [Table 1]. 62	

 63	

 64	
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 65	

Table 1: Environmental contaminant exposure during pregnancy and adverse health outcomes 66	

2.1. Toxic effect of prenatal exposure to substance use  67	

	68	

Different toxic substances have been studied to assess their effects on pregnancy, neonatal and early 69	
life.  70	

2.1.1. Alcohol 71	
 72	

In our society, there is a high prevalence of alcohol consumption during pregnancy. The RCOG (Royal 73	
College of Obstetricians and Gynaecologists) has reported that 29% of British pregnant women drinks 74	
alcohol(8). Studies in Barcelona reveal, through the use of biological matrices, a 45% mild-moderate 75	
social consumption(9,10). 76	

Alcohol consumption during pregnancy may lead to adverse effects on fetal development described 77	
within the Fetal Alcohol Spectrum Disorders (FASD)(11). Currently, there is no definition of a safe 78	
amount and consumption period during pregnancy, implying it should be avoided. FASD affect up to 1% 79	
of world’s paediatric population and its most extreme form is defined as Fetal Alcohol Syndrome 80	
(FAS)(11–13). Its clinical features can be broadly divided into: morphological malformations, especially 81	

!

CONTAMINANT( CHEMICALS(COMPOUNDS( ADVERSE(HEALTH(OUTCOMES(

Alcohol( ! Fetal!Alcohol!Spectrum! Disorders!(FASD),!growth! restriction,!
behavioural! problems!

Cannabis,(cocaine,( heroin(
and(methamphetamine(

! Fetal! loss,!preterm!birth,!small<for<gestational! age,! birth!defects,!
behavioral! problems!

Air(pollutants(

(

CO,!NO,!NO2!,!SO2!,!O3! Preterm!Birth!and!small<for<gestational<age!infants!
Autism!spectrum!disorder!

Increased!risk!of!sudden!infant!death!
blood!pressure!
Type!1!diabetes!

!
Polycyclic(aromatic(
hydrocarbons((PAHS)(

Coal!or!fossil!fuel,!forest!fires,!waste!
incineration!

Preterm!Birth!and!!Small<for<gestational<age!infants!
Asthma!and!allergic!disease!

Particulate(matters( Toxics!with!aerodynamic!diameter!
(PM10<PM2.5)!

Preterm!Birth!and!lower!birth!weight.!
Asthma!

!
Persistent(organic(
compounds(

(

Organochlorine!Compounds!
Polychlorobiphenyls!(PCBs)!
Perfluoroalkylaed!substances!

!

Lower!birth!weight.!
Small<for<gestational<age!infants!

Adverse!neurodevelopmental!outcome!
Attention!deficit!hyperactivity!disorder!

Autism!spectrum!disorder!
Congenital!anomalies!

Asthma!and!allergic!disease!
Increased!risk!of!sudden!infant!death!

blood!pressure!
Leukemia!

!
Not(persistent(organic(

compounds(
Phthalates,!Phenols,!and!Parabens! Behavioral!problems!

Attention!deficit!hyperactivity!disorder!
Congenital!anomalies!

!
Tobacco(smoke( Nicotine,!CO,!aniline,!methanol,!

hydrogen!sulfide,!arsenic,!lead,!
cadmium.!

!

Preterm!Birth!
Small<for<gestational<age!infants!

Adverse!neurodevelopmental!outcome!
Attention!deficit!hyperactivity!disorder!

Asthma!and!allergic!disease!
Increased!risk!of!sudden!infant!death!

Congenital!anomalies!
Leukemia!

!
Toxic(Metals( Lead,!cadmium,!mercury,!arsenic! Small<for<gestational<age!infants!

Adverse!neurodevelopmental!outcome!
!
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craniofacial features (midfacial hypoplasia, wide spaced eyes and a smooth philtrum); growth restriction 82	
and central nervous system impairment, resulting in motor, cognitive, learning and behavioural 83	
disorders(13,14).  84	

During fetal development, alcohol affects multiple metabolic pathways, partly through the alteration of 85	
DNA methyltransferase activities, which shapes the global epigenetic pattern of the developing 86	
foetus(15,16). Consequently, the expression of key genes is deregulated(17–20), affecting 87	
organogenesis especially of the fetal brain(21). Moreover, ethanol metabolism generates high amounts 88	
of reactive oxygen species (ROS), promoting oxidative stress and inhibiting endogenous antioxidant 89	
mechanisms(22). The increase of ROS alters both protein structures and mitochondrial respiration: 90	
which finally induces cellular apoptosis(23). 91	

Prenatal Ethanol Exposed (PEE) detection is focused on the use of alcohol consumption questionnaires 92	
and biomarkers in biological matrices. Determination of fatty acid ethyl esters (FAEEs) or ethyl-93	
glucuronide (EtG) in meconium and maternal hair is the best procedure to identify PEE new-94	
borns(10,24,25). 95	

2.1.2. Tobacco 96	
 97	

The global prevalence of smoking during pregnancy is high: according to a national survey conducted 98	
in the United States, in 2012, 15,9% of pregnant women smoke cigarettes. Similar patterns of use have 99	
been observed in Europe(26).    100	

Smoking during gestation is associated with pregnancy complications such as severe preeclampsia, 101	
placental abruption, placenta previa, preterm birth, increased risk of abortion, stillbirth or impaired growth 102	
and development among many others(27–30), and with long term consequences such as intellectual 103	
impairment later in life, leukaemia or asthma and allergic disease(29,31–36). Lean body mass of babies 104	
from non-smoker mothers seems to be more affected than fat mass(37), and during the first years of 105	
life, children from smoking mothers show complete catch-up growth(38). Based on the programming 106	
effect(39), maternal smoking during pregnancy might determine children's weight status, blood pressure 107	
or cardiovascular diseases in the medium-long term future. Although underlying mechanisms are not 108	
clear, longitudinal studies sustain that children from smoker-mothers have a higher risk of developing 109	
obesity over time(40,41). There is also a causal association between maternal exposure to cigarette 110	
smoke and the risk of orofacial clefts, congenital heart disease, neural tube defects and gastrointestinal 111	
malformations(42–44). 112	

Thus, the deleterious effect of tobacco during pregnancy is well defined. However, due to its thousands 113	
of biologically active and toxic compounds, it is difficult to determine the causative agent of these 114	
adverse events. The anorexigenic effect of nicotine and its blood flow restriction to the placenta, the 115	
carbon monoxide exposure involving tissue hypoxia and the effect on DNA methylation are some of the 116	
most studied mechanisms(28,45). 117	
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2.1.3. Drugs of abuse 118	
 119	
Prenatal substance abuse has increased noticeably among pregnant women, but the prevalence is still 120	
underestimated. In 2017, the American National Survey on Drug Use and Health (NSDUH) assessed 121	
that 194,000 pregnant women, aged from 15 to 44 years, had used illegal drugs in the past 122	
month(46,47). Hair testing is the most sensitive and specific analysis to detect the concentration of 123	
chronic drug exposure(48).  124	

Negative birth outcomes have been linked to drugs of abuse, although the clear influence of each 125	
substance is unknown because of the confounding effects of coexisting substances. Moreover, addicted 126	
women often experience inadequate prenatal care, malnutrition, chronic illness and poverty, which 127	
exacerbate the impairment of fetal development(26).  128	

The principal consequences of opioid exposure in pregnancy are postnatal growth delay, microcephaly, 129	
neurobehavioral disabilities and sudden infant death syndrome(49,50). Maternal opiate use increases 130	
the risk of neonatal abstinence syndrome (NAS)(50), which comprises a wide range of symptoms, 131	
including irritability, poor feeding, tremors, hypertonia, vomiting, loose stools, seizures, and respiratory 132	
distress.  133	

Cannabis, cocaine, heroin and methamphetamine are the most consumed substances and can cause 134	
fetal loss, preterm birth, small-for-gestational age, birth defects and admission to the neonatal intensive 135	
care unit(51). Cocaine and methamphetamine have been linked to premature rupture of membranes 136	
and placental abruption, preeclampsia and gestational hypertension(52–55). In addition, all types of 137	
drugs induce epigenetic changes in brain morphology, synaptic plasticity and behaviour(56). Prenatal 138	
drugs use has been associated with microcephaly and adverse consequences for the growth of fetal 139	
and adolescent brains(57), leading to lack of attention, reduced executive functioning skills and 140	
disabilities in learning and memory, with consequent poorer academic attainment and more behavioural 141	
problems(58–60).  142	

2.2. The effect of maternal food intake 143	
 144	
Pregnant and lactating women should be aware of the risks of heavy metals and other food toxic 145	
compounds(61). These chemicals act as Endocrine Disruptor Compounds (EDCs) with deleterious 146	
effects on pregnancy and development commented later on.  147	

Highly toxic chemicals such as mercury, lead, arsenic, cadmium and chromium are elements that can 148	
be vehiculized in foods and accumulated in the body(62) [Table 2]. They can be found in the environment 149	
by means of voluntary application (plaguicides) and involuntary migration (from food containers and 150	
plastic utensils), and then introduced in the food chain. In fact, food and specially those aliments from 151	
animal origin with a high fat content are considered to be the main source of exposure to many pollutants 152	
for the majority of the population(63). 153	
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Other compounds that can also be present in foods are organophosphate pesticides (OPPs), 154	
polychlorinated biphenyl ethers (PBDEs)(64), acrylamide(65), perfluoroalkyl(66), as well as some 155	
mycotoxins(67) and bacteria-derived toxics(68). 156	

 157	

158	
Table 2: Toxic chemicals and main dietary sources 159	

2.3. The effect of maternal physical activity 160	
 161	

Until a few decades ago, pregnant women were discouraged from exercise. However, this was mainly 162	
due to social and cultural biases and unfounded concerns about safety for the foetus, rather than based 163	
on scientific investigation. In recent years, there has been a growing interest in the effects of physical 164	
exercise during pregnancy, so that the beneficial effects of regular physical exercise, both for the mother 165	
and the foetus, are well-established, based mostly on systematic reviews and randomized 166	
metanalysis(69–71). These physical benefits include maternal fitness and the prevention of excessive 167	
weight gain, as well as psychological benefits. Regular exercise during pregnancy has also been 168	
associated with shorter and less complicated labour, as well as the prevention of maternal-fetal diseases 169	
such as gestational diabetes, preterm birth, being born large for gestational age and a lower incidence 170	
of hypertensive disorders(72–74). Evenson et al identified, summarized and contrasted 11 clinical or 171	
public health guidelines for physical activity during pregnancy from nine countries around the world 172	
(Australia, Canada, Denmark, France, Japan, Norway, Spain, United Kingdom, United States). These 173	
clinical guidelines mostly indicated the recommendation for physical activity during pregnancy, its 174	
intensity and duration/time, as well as absolute and relative contraindications and indications for 175	
discontinuing exercise during pregnancy(75). 176	

Pregnancy may be one of the most important times to adopt a routine of regular exercise given that 177	
lifestyle during pregnancy imprints the future health of the child. 178	

TOXIC&COMPOUND& FOOD&PRESENCE& TOXIC&COMPOUND& FOOD&PRESENCE&

!

Mercury&(59)!

!
Fish/seafood!(swordfish,!
sharks)!!
Wild!mushrooms!!
Dietary!supplements!
Non<alcoholic!beverages!!

&
&
Cadmium&(60,61)&!

!
Cereals/grains!(rice,!wheat)!!
Vegetables!(roots)!
Meat/poultry!!
Seafood!(bivalve!molluscs)!!

!

Methylmercury&

!
Tuna,!swordfish,!cod,!
whiting!and!pike.!!

&
&
Hexavalent&Chromium&(62)&&

!
Drinking!water!
Special!nutritional!use!
products,!!
Herbs,!spices,!condiments!
Sugar!!

!

Lead&(63)&

!
Bread!and!rolls!!
Tea!
Tap!water!
Potatoes!
Fermented!milk!!
Beer<like!beverages!!

&
&
Aluminium&(64)!

!
Cereals!!
Vegetables!
Beverages!!
Infant! formulae!!

!

Arsenic&(65)&

!
Fish/seafood!
Algae!(hijiki)!!
Cereals!(rice!grains)!!

! !

!

!
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2.4. Prenatal exposure to air pollution as a potential risk factor 179	

Air pollution has a heterogeneous composition: particulate matter (PM), ozone pollution (O3), carbon 180	
monoxide (CO), nitrogen oxides (NO2, NOX) and sulfur dioxide (SO2)(76,77). PM is a mixture of 181	
suspended particles with different chemical compositions usually classified by its size (PM10, 182	
PM2.5)(77). It has been widely studied due to its ability to trigger oxidative stress and inflammation in 183	
the lung’s alveoli(78–80) and to cross the alveolar epithelium into the systemic circulation(81). 184	

Evidence of pollution effects over pregnancy is constantly growing, and its relation with adverse perinatal 185	
outcomes such as low birth weight (<2500 g) or pregnancy-induced hypertensive disorders is being well 186	
established(78,82,83). Olsson et al. observed a positive association between NOx levels and an 187	
increased risk for pregnancy-induced hypertensive disorders (OR 1.12, 95% CI 1.06 to 1.18 per 188	
10μg/m3 increase in the NOx level)(84). A systematic review conducted by Pedersen et al.(85), 189	
concludes that pregnancy-induced hypertensive disorders were associated with PM2.5 (OR=1.57; 95% 190	
CI, 1.26–1.96 per a 5μg/m3 increment), NO2 (OR=1.20; 95% CI, 1.00–1.44 per a 10-μg/ m3 increase) 191	
and PM10, (OR=1.13; 95% CI, 1.02–1.26, per a 10-μg/m3 increase). As for fetal growth, PM2,5 192	
exposure was negatively associated with reduced head circumference at birth and birth weight(86) while 193	
NO2 was significantly linked to a shorter length at birth(86–88). NOx has been related to a decrease of 194	
abdominal circumference and femoral length and a reduce of birth weight(89). 195	

Exposure to PM and O3 has been associated to a higher risk of preterm birth (27,87,88,90). Moreover, 196	
synergies between PM2.5 and O3 showed more risk (RR 3,63) than their independent effects (RR 0,99 197	
and 1,34, respectively)(91). 198	

PM10, NO and O3 have been associated to macrosomia(92) and PM2,5 has been related in animal 199	
studies to profound metabolic effects (like glucose intolerance, decrease insulin sensitivity and altered 200	
hepatic glucose and lipid metabolism) through oxidative stress(93).  201	

In a multicentric European birth cohort of 1396 subjects, the Helix Project, exposure levels of NO2 and 202	
PM 2,5 were inversely associated with telomer length(94) 203	

Regarding the fetal nervous system, in utero exposure to PM2.5 during the first trimester was found to 204	
decrease placental transcription of brain-derived neurotrophic factor (BDNF). This factor plays an 205	
important role in fetal neurodevelopment(95). Furthermore, neuropathological changes (microglial 206	
activation, ventriculomegaly, increased size of the Corpus Callosum, reduction in hippocampal size) 207	
were found to be induced by prenatal exposure to ultrafine particles in mice(96). In addition, Guxens et 208	
al. showed cerebral cortex alterations and impairment of inhibitory control function in children exposed 209	
to fine particles during gestation. This impaired function is related to attention-deficit or hyperactivity 210	
disorder(97). According to Danish investigators, gestational exposure to air pollution may also increase 211	
the risk of autism spectrum disorder(98). 212	
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2.5. Prenatal exposure to endocrine disruptors and toxic metals  213	
 214	

EDCs are exogenous chemicals (phenols, phthalates, parabens, flame retardants and heavy metals) 215	
that can alter the hormonal and homeostatic systems of the organism(99). Exposure to EDCs may occur 216	
in pregnancy by way of personal hygiene products, cosmetics, cleaning products, electronic devices 217	
and consumption of animal, plant or processed foods(2). 218	

EDCs can work by altering normal hormonal production and levels and mimicking their function. Its main 219	
effects on prenatal exposure have been studied with major evidence on preeclampsia and intrauterine 220	
growth restriction, preterm birth and thyroid dysfunction(100,101).  221	

When talking about hypertensive disorders of pregnancy, evidence is strongest for links between 222	
persistent chemicals (lead, cadmium, organochlorine pesticides and polycyclic biphenyls) and 223	
preeclampsia, although low-exposure levels associations are not always detectable. However, results 224	
have been inconclusive for bisphenols, phthalates and organophosphates(101). 225	

Metals and metalloids accumulate in the placenta, causing a decrease in uterine blood flow and having 226	
a negative impact on fetal growth(100,102). It has also been described that plasticizers, like 227	
diethylhexylphthalate (DEHP) and its active metabolites, and bisphenols A (BPA) induce preeclampsia 228	
and growth restriction(103–105). The exposure to pesticides such as dichlorodiphenyltrichloroethane 229	
(DDT) and its metabolites have also been suggested to have a detrimental effect on fetal growth(106). 230	
Organochlorine pesticides may lead to preterm birth through disturbance of normal estrogen-231	
progesterone ratio(107), might increase the risk of autism spectrum disorder(108) and with also 232	
evidence of thyroid disrupting properties(109).  233	

Flame-retardants such as PBDE and tetrabromopisphenol A (TBBPA) have been linked to growth 234	
restriction and preterm birth, as well as impairment of the thyroid hormone function(110,111).  235	

A growing number of studies suggest a link between congenital anomalies and maternal exposure to 236	
organic solvents, pesticides and dioxins (cleft lip and palate, neural tube defects, and congenital heart 237	
disease)(112,113). Toluene embryopathy has been described after maternal inhalation of paint or 238	
glue(114). Phthalates have antiandrogenic-like properties and have a great role in hypospadias and 239	
cryptorchidie(115). Pesticides are considered to be a risk factor for childhood leukaemia(116). Finally, 240	
maternal exposure to BPA increases rates of depression, behavioural problems and alterations in white 241	
matter in preschool aged children(117,118).  242	

2.6. Prenatal noise stress 243	
 244	
Noise pollution is a major environmental health concern. It is estimated that 113 million people in Europe 245	
are exposed to excessive environmental noise levels according to the European Environmental Noise 246	
Directive (2002/49/EC), majorly from road traffic noise. The implication of environmental noise on 247	
several health disorders is already recognized(119,120). 248	
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Exposure to noise has been associated with cardiovascular effects, like hypertension, stroke and 249	
myocardial infarction in many studies(120), with high-quality evidence for the association between road 250	
traffic noise and incidence of ischemic heart disease(121). The suggested biological pathways indicate 251	
that repeated exposure to noise causes stress responses, as well as sleep disturbance, leading to 252	
endocrine and sympathetic responses, which increase blood pressure, heart rate, and cardiac output 253	
through the release of catecholamines(119) and corticosteroids(122), and to oxidative-stress and 254	
immunological responses(123). These reactions persist even while asleep and can lead to chronic 255	
physiological deregulations(120). However, few studies have investigated the effect of exposure to noise 256	
in pregnant women, being preeclampsia of special interest. A recent study of 269.263 deliveries in 257	
Quebec, Canada(124), showed that women exposed to  > 65 dB(A) had 1.29 times the odds of severe 258	
(95%CI: 1.09-1.54) and 1.71 times the odds of early onset (95%CI: 1.20–2.43) preeclampsia compared 259	
to those exposed to <50 dB(A)(124). 260	

A Danish prospective cohort study with 72,745 women showed that a 10-dB increase in road traffic 261	
noise was associated with a 10% increase in the risk of preeclampsia(125). These associations were 262	
stronger for the mild subtypes of preeclampsia and early preeclampsia and not evident for severe 263	
preeclampsia. They concluded that the effects of air pollution and noise were generally difficult to 264	
separate. 265	

In conclusion, these initial studies suggest that exposure to environmental noise is associated with 266	
preeclampsia, particularly early onset preeclampsia. However, more studies are needed. 267	

 3. Environmental effects on placenta 268	
	269	

The placenta is a highly sensitive organ to environmental contaminants with estrogenic activity as it 270	
expresses the oestrogen receptors ERα and ERβ(126). Although there are many reports in the literature 271	
of the in vitro action of different EDCs in human placenta, some controversies remain regarding the 272	
timing, dose and duration of exposure(127). It is important to emphasize that the effects of EDCs in 273	
human trophoblasts are dose-dependent with low doses being more effective than high doses(115): 274	
This is concerning because the efficacious low doses correspond to the levels detected in the human 275	
population. 276	

Fergusson et al.(128) found a positive association between BPA levels and an increase of plasma 277	
soluble vascular endothelial growth factor receptor 1 (sFlt-1) as well as an increase in the ratio of sFlt-1 278	
to placental growth factor (PlGF), suggesting an altered placentation and trophoblast function related to 279	
preeclampsia and hypertensive disorders(129).  280	

In vitro studies showed that para-Nonylphenol (p-NP) substances, used as plasticizer and surfactant in 281	
the manufacturing industry, could increase β-hCG secretion, cell apoptosis and reduce trophoblasts 282	
migration and invasion. Exposure to BPA and p-NP down-regulated expression of some placental 283	
carriers like ABCG2, a key transporter for xenobiotics(130). 284	
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In addition, PBDEs mixtures enhanced the placental proinflammatory response to infection. This may 285	
increase the risk of infection-mediated preterm birth by lowering the threshold for bacteria to stimulate 286	
a proinflammatory response(131). Rats exposed to PBDEs during gestation showed effects on placenta 287	
and foetus that varied by foetal sex. mRNA expression in the placenta also significantly varied by foetal 288	
sex and dose. Thus, PBDEs are impacting thyroid hormones regulation in a sex-specific manner during 289	
this critical window of development(132). 290	

Higher concentrations of polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyene (BP), 291	
benzo[b]fluorene (BbF) and dibenz[a,h]anthracene (DBA) were found in placenta from preterm 292	
deliveries compared with term deliveries(133).  293	

Related to heavy metals, in the New Hampshire Birth Cohort Study (N = 1159), with every ng/g increase 294	
in the Cadmiun concentration of placenta there was lower placental weight (- 7.81 g; 95% CI: -15.42, -295	
2.48). For placentae with below median Zinc and Selenium concentrations, decrements in placental 296	
weight were - 8.81 g (95% CI: -16.85, -0.76) and - 13.20 g (95% CI: -20.70, -5.70), respectively. 297	
However, no appreciable differences were observed with other elements (arsenic, mercury and 298	
lead)(134).  299	

As far as air pollution is concerned, circulating proinflammatory cytokines induced by PM may disrupt 300	
trophoblastic invasion during placenta formation(135,136). Likewise, PM could enter in uteroplacental 301	
circulation resulting in placenta pathological changes(137). Placenta chorioamnionitis and thrombosis 302	
of placental capillaries have been demonstrated by LiuY in a rat model after PM2.5 exposure. These 303	
changes in placenta tissue lead to reduced maternofoetal exchange surface and to placental 304	
dysfunction(78). Neven et al. analysed placental DNA and found an association between elevated 305	
placental mutation rate and prenatal exposure to PM2.5 and black carbon. They postulated that this 306	
placental mutations could represent some of the earliest effects to air pollutants exposure in the process 307	
of carcinogenesis(137). 308	

4. Breastfeeding: Environmental toxins in human milk and early-life consequences 309	
	310	

Breast feeding is the gold standard of new-born and child nutrition during at least the first 6 months of 311	
life(138). Bottle-feeding is associated to the transfer of toxic substances from recipients to milk. 312	
However, milk transfer of toxic substances to which the mother has previously been exposed, may also 313	
occur during breastfeeding. Several comprehensive reviews conclude that breastfeeding is generally 314	
contraindicated in mothers who use illegal drugs(139), although pharmacokinetic data are sparse in 315	
lactating woman(140). 316	

Smoking and alcohol consumption should be avoided during the breastfeeding period. Alcohol interferes 317	
with the milk ejection reflex, which may reduce milk production. Human milk alcohol levels generally 318	
parallel maternal blood alcohol levels. Studies evaluating infant effects of maternal alcohol consumption 319	
have been mixed, with some mild effects seen in infant sleep patterns, amount of milk consumed during 320	
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breastfeeding sessions and early psychomotor development. Some authors suggest limiting alcohol 321	
intake to the equivalent of 8 ounces of wine or two beer is recommended(139). However, others state 322	
that alcohol consumption during both pregnancy and breastfeeding should be totally avoided since there 323	
is not a proven safe consumption dose(10,47). Nicotine and other compounds are known to be milk-324	
transferred to the infant causing increases in the incidence of respiratory allergy in infants and in Sudden 325	
Infant Death Syndrome (SIDS) risks(141).  326	

Infants are exposed trough breastfeeding to a mixture of environmental chemicals. Lactating mothers 327	
are among the high-risk population to mercury exposure because they may suffer the consequences of 328	
mercury themselves, but also they may transfer significant quantities of mercury to their babies(142).  329	

BPA has also been widely studied: The temporary tolerability daily intake (t-TDI) of 4 µg/kg. bw-1 day-1 330	
for oral exposure to BPA has been established(143). In lactating mothers, BPA is rapidly introduced into 331	
the breast causing an elevation of BPA content in the milk within hours. Only the unconjugated BPA 332	
present in the milk is active, consequently its determination is more suitable for the  assessment of BPA 333	
risk in breastfed infants(144). Interestingly, while BPA content in mature milk reflects recent ingestion, 334	
its content in colostrum reflects ingestion in the second half of pregnancy(145). The place of residence 335	
of the mother and the use of personal care products showed significant association with BPA 336	
concentration(146).  337	

Human milk contains conjugated and un-conjugated parabens and provides the exposure of the mother, 338	
the foetus, and the neonate in a period of high vulnerability to the endocrine disruptors(147).  In a 339	
Spanish study, the detection frequency ranges of parabens in breast milk were 41-60% and 61-89% for 340	
unconjugated and total (unconjugated + conjugated) parabens, respectively. The frequency of use of 341	
some cosmetic products and human milk protein levels were the main predictors of parabens in milk. 342	
The new-borns estimated daily intake of parabens through human milk (median= 0.014 µg/kg bw-day) 343	
was several orders of magnitude lower than the 1-10 mg/kg bw-day acceptable daily intake as 344	
established by European Food Safety Authority (EFSA)(143,148). In a recent study, Sanchis et al found 345	
high urinary concentrations of Methylparaben (MP), Ethylparaben (EP) and BPA in lactating mothers 346	
although estimated exposures was lower than the reference values for risk assessment. The use of 347	
personal care products was associated with higher urinary levels of MP and Propylparaben (PP). MP 348	
was also associated with the consumption of packaged and bakery products(149). 349	

All these chemicals may influence infant gut microbial function(150), increase risk of hyperkinetic 350	
disorder(151), toxicity to the liver and kidney, cancer, reproductive and respiratory disorders (143,152) 351	
or changes in thyroid and growth hormones that may have effects on neurodevelopment(143,153).    352	

When mother’s milk is not available or is insufficient, pasteurized donor milk is recommended. The use 353	
of illegal drugs, alcohol and tobacco is an exclusion criterion for accepting a nursing mother as a milk 354	
donor. Escuder et al. found that donors do not use illegal drugs during either the donation period or the 355	
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months leading up to it, they are occasionally exposed to tobacco smoke and almost all of them consume 356	
caffeine(154). 357	

Although most scientific evidence indicate that the advantages of breast-feeding outweigh any risks from 358	
contaminants exposure to these toxics can have deleterious consequences especially for a vulnerable 359	
population such as lactating women and breastfed new-born infants. Special caution with preterm infants 360	
should be posed.  361	

5. Conclusions  362	
 363	
Environment exposure is considered to be a health determinant with the capacity to influence disease, 364	
quality of life and mortality. Although this exposure can be deleterious for any person, pregnancy and 365	
early life exposure have been demonstrated to be critical windows of susceptibility, with a lasting effect 366	
on future health and susceptibility to disease(2–4).  367	

The use of alcohol, tobacco and drugs of abuse has been linked to a serious of deleterious effects in 368	
the new-born and later in life, including FASD and other negative pregnancy and birth outcomes. EDCs 369	
and heavy metals vehiculized by food intake or present in the environment are related to preeclampsia, 370	
foetal growth restriction, preterm birth and thyroid misfunction. Air pollution has been linked to preterm 371	
birth, foetal growth restriction, effects on pregnancy vascularization, increased gestational diabetes and 372	
reduced telomeres length. Association between preeclampsia and environmental noise is rising.  On the 373	
contrary, physical activity during pregnancy is believed to have remarkable benefits and therefore should 374	
be recommended during pregnancy. Breastfeeding should be recommended; however, mothers should 375	
be aware of toxic exposures via breastfeeding that could have consequences for new-born infants.  376	

Therefore, doctors should have knowledge of harmful exposures to be able to counsel patients on the 377	
risk and advise them with precautions to minimize exposure, especially during pregnancy and 378	
breastfeeding. Governmental protection should be strengthened, by limiting environmental exposure to 379	
substances with evidence of a deleterious effect. However, only with a global public health policy in the 380	
early future could all this evidence be translated into action.  381	
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