000119675 001__ 119675
000119675 005__ 20230519145555.0
000119675 0247_ $$2doi$$a10.1002/cnm.3461
000119675 0248_ $$2sideral$$a125692
000119675 037__ $$aART-2021-125692
000119675 041__ $$aeng
000119675 100__ $$0(orcid)0000-0003-2946-3044$$aMountris K.A.$$uUniversidad de Zaragoza
000119675 245__ $$aA dual adaptive explicit time integration algorithm for efficiently solving the cardiac monodomain equation
000119675 260__ $$c2021
000119675 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119675 5203_ $$aThe monodomain model is widely used in in-silico cardiology to describe excitation propagation in the myocardium. Frequently, operator splitting is used to decouple the stiff reaction term and the diffusion term in the monodomain model so that they can be solved separately. Commonly, the diffusion term is solved implicitly with a large time step while the reaction term is solved by using an explicit method with adaptive time stepping. In this work, we propose a fully explicit method for the solution of the decoupled monodomain model. In contrast to semi-implicit methods, fully explicit methods present lower memory footprint and higher scalability. However, such methods are only conditionally stable. We overcome the conditional stability limitation by proposing a dual adaptive explicit method in which adaptive time integration is applied for the solution of both the reaction and diffusion terms. We perform a set of numerical examples where cardiac propagation is simulated under physiological and pathophysiological conditions. Results show that the proposed method presents preserved accuracy and improved computational efficiency as compared to standard operator splitting-based methods. © 2021 John Wiley & Sons Ltd.
000119675 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/LMP124-18$$9info:eu-repo/grantAgreement/ES/DGA-FSE/T39-20R$$9info:eu-repo/grantAgreement/EUR/ERC-2014-StG-638284$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2019-105674RB-I00
000119675 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000119675 590__ $$a2.648$$b2021
000119675 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b32 / 108 = 0.296$$c2021$$dQ2$$eT1
000119675 591__ $$aMATHEMATICAL & COMPUTATIONAL BIOLOGY$$b28 / 57 = 0.491$$c2021$$dQ2$$eT2
000119675 591__ $$aENGINEERING, BIOMEDICAL$$b70 / 98 = 0.714$$c2021$$dQ3$$eT3
000119675 592__ $$a0.668$$b2021
000119675 593__ $$aApplied Mathematics$$c2021$$dQ2
000119675 593__ $$aBiomedical Engineering$$c2021$$dQ2
000119675 593__ $$aSoftware$$c2021$$dQ2
000119675 593__ $$aMolecular Biology$$c2021$$dQ2
000119675 593__ $$aModeling and Simulation$$c2021$$dQ2
000119675 594__ $$a5.1$$b2021
000119675 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000119675 700__ $$0(orcid)0000-0002-1960-407X$$aPueyo E.$$uUniversidad de Zaragoza
000119675 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000119675 773__ $$g37, 7 (2021), 3461 [11 pp]$$tInternational Journal for Numerical Methods in Biomedical Engineering$$x2040-7939
000119675 8564_ $$s514057$$uhttps://zaguan.unizar.es/record/119675/files/texto_completo.pdf$$yPostprint
000119675 8564_ $$s1255898$$uhttps://zaguan.unizar.es/record/119675/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000119675 909CO $$ooai:zaguan.unizar.es:119675$$particulos$$pdriver
000119675 951__ $$a2023-05-18-15:53:34
000119675 980__ $$aARTICLE