000119719 001__ 119719
000119719 005__ 20240319081016.0
000119719 0247_ $$2doi$$a10.3390/photonics9100672
000119719 0248_ $$2sideral$$a130583
000119719 037__ $$aART-2022-130583
000119719 041__ $$aeng
000119719 100__ $$aBueno, Juan M.
000119719 245__ $$aCollagen organization, polarization sensitivity and image quality in human corneas using second harmonic generation microscopy
000119719 260__ $$c2022
000119719 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119719 5203_ $$aIn this paper, a Second-Harmonic-Generation (SHG) microscope was used to study the relationship between collagen structural arrangement, image quality and polarization sensitivity in human corneas with different organizations. The degree of order (or alternatively, the Structural Dispersion, SD) was quantified using the structure tensor method. SHG image quality was evaluated with different objective metrics. Dependence with polarization was quantified by means of a parameter defined as polarimetric modulation, which employs polarimetric SHG images acquired with four independent polarization states. There is a significant exponential relationship between the quality of the SHG images and the SD of the samples. Moreover, polarization sensitivity strongly depends on collagen arrangement. For quasi- or partially organized specimens, there is a polarization state that noticeably improves the image quality, providing additional information often not seen in other SHG images. This does not occur in non-organized samples. This fact is closely related to polarimetric modulation, which linearly decreases with the SD. Understanding in more detail the relationships that take place between collagen distribution, image quality and polarization sensitivity brings the potential to enable the development of optimized SHG image acquisition protocols and novel objective strategies for the analysis and detection of pathologies related to corneal collagen disorders, as well as surgery follow-ups.
000119719 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-113919RB-I00
000119719 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000119719 590__ $$a2.4$$b2022
000119719 592__ $$a0.479$$b2022
000119719 591__ $$aOPTICS$$b56 / 99 = 0.566$$c2022$$dQ3$$eT2
000119719 593__ $$aAtomic and Molecular Physics, and Optics$$c2022$$dQ2
000119719 593__ $$aRadiology, Nuclear Medicine and Imaging$$c2022$$dQ2
000119719 593__ $$aInstrumentation$$c2022$$dQ2
000119719 594__ $$a2.3$$b2022
000119719 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119719 700__ $$aMartínez-Ojeda, Rosa M.
000119719 700__ $$aYago, Inés
000119719 700__ $$0(orcid)0000-0002-9068-7728$$aÁvila, Francisco J.$$uUniversidad de Zaragoza
000119719 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000119719 773__ $$g9, 10 (2022), 672 [12 pp.]$$pPhotonics (Basel)$$tPhotonics$$x2304-6732
000119719 8564_ $$s10513974$$uhttps://zaguan.unizar.es/record/119719/files/texto_completo.pdf$$yVersión publicada
000119719 8564_ $$s2656547$$uhttps://zaguan.unizar.es/record/119719/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119719 909CO $$ooai:zaguan.unizar.es:119719$$particulos$$pdriver
000119719 951__ $$a2024-03-18-15:38:11
000119719 980__ $$aARTICLE