000119758 001__ 119758
000119758 005__ 20240319081026.0
000119758 0247_ $$2doi$$a10.1088/1758-5090/ac8cb3
000119758 0248_ $$2sideral$$a130536
000119758 037__ $$aART-2022-130536
000119758 041__ $$adeu
000119758 100__ $$aMontero-Calle, Pilar
000119758 245__ $$aFabrication of human myocardium using multidimensional modelling of engineered tissues
000119758 260__ $$c2022
000119758 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119758 5203_ $$aBiofabrication of human tissues has seen a meteoric growth triggered by recent technical advancements such as human induced pluripotent stem cells (hiPSCs) and additive manufacturing. However, generation of cardiac tissue is still hampered by lack of adequate mechanical properties and crucially by the often unpredictable post-fabrication evolution of biological components. In this study we employ melt electrowriting (MEW) and hiPSC-derived cardiac cells to generate fibre-reinforced human cardiac minitissues. These are thoroughly characterized in order to build computational models and simulations able to predict their post-fabrication evolution. Our results show that MEW-based human minitissues display advanced maturation 28 post-generation, with a significant increase in the expression of cardiac genes such as MYL2, GJA5, SCN5A and the MYH7/MYH6 and MYL2/MYL7 ratios. Human iPSC-cardiomyocytes are significantly more aligned within the MEW-based 3D tissues, as compared to conventional 2D controls, and also display greater expression of C ×43. These are also correlated with a more mature functionality in the form of faster conduction velocity. We used these data to develop simulations capable of accurately reproducing the experimental performance. In-depth gauging of the structural disposition (cellular alignment) and intercellular connectivity (C ×43) allowed us to develop an improved computational model able to predict the relationship between cardiac cell alignment and functional performance. This study lays down the path for advancing in the development of in silico tools to predict cardiac biofabricated tissue evolution after generation, and maps the route towards more accurate and biomimetic tissue manufacture.
000119758 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T39-20R$$9info:eu-repo/grantAgreement/ES/DGA/LMP94_21$$9info:eu-repo/grantAgreement/EC/H2020/874827/EU/Computational biomechanics and bioengineering 3D printing to develop a personalized regenerative biological ventricular assist device to provide lasting functional support to damaged hearts/BRAV3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 874827-BRAV3$$9info:eu-repo/grantAgreement/ES/ISCIII/FEDER/CB16-11-00292$$9info:eu-repo/grantAgreement/ES/ISCIII/FEDER/RD16-0011-0005$$9info:eu-repo/grantAgreement/ES/ISCIII/PI19-01350$$9info:eu-repo/grantAgreement/ES/ISCIII-RICORDS/RD21-0017-002$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105674RB-I00$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ISCIII-CB16-12-00489
000119758 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000119758 590__ $$a9.0$$b2022
000119758 592__ $$a1.534$$b2022
000119758 591__ $$aMATERIALS SCIENCE, BIOMATERIALS$$b6 / 45 = 0.133$$c2022$$dQ1$$eT1
000119758 593__ $$aBiochemistry$$c2022$$dQ1
000119758 591__ $$aENGINEERING, BIOMEDICAL$$b11 / 96 = 0.115$$c2022$$dQ1$$eT1
000119758 593__ $$aBioengineering$$c2022$$dQ1
000119758 593__ $$aMedicine (miscellaneous)$$c2022$$dQ1
000119758 593__ $$aBiomedical Engineering$$c2022$$dQ1
000119758 593__ $$aBiotechnology$$c2022$$dQ1
000119758 593__ $$aBiomaterials$$c2022$$dQ1
000119758 594__ $$a17.0$$b2022
000119758 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119758 700__ $$aFlandes-Iparraguirre, María
000119758 700__ $$aMountris, Konstantinos
000119758 700__ $$aS de la Nava, Ana
000119758 700__ $$0(orcid)0000-0001-8946-4829$$aLaita, Nicolás$$uUniversidad de Zaragoza
000119758 700__ $$aRosales, Ricardo M
000119758 700__ $$aIglesias-García, Olalla
000119758 700__ $$ade-Juan-Pardo, Elena M
000119758 700__ $$aAtienza, Felipe
000119758 700__ $$aFernández-Santos, María Eugenia
000119758 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, Estefanía$$uUniversidad de Zaragoza
000119758 700__ $$0(orcid)0000-0001-8741-6452$$aDoblaré, Manuel$$uUniversidad de Zaragoza
000119758 700__ $$aGavira, Juan J
000119758 700__ $$aFernández-Avilés, Francisco
000119758 700__ $$aPrósper, Felipe
000119758 700__ $$0(orcid)0000-0002-1960-407X$$aPueyo, Esther$$uUniversidad de Zaragoza
000119758 700__ $$aMazo, Manuel M
000119758 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000119758 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000119758 773__ $$g14, 4 (2022), 045017 [17 pp]$$pBIOFABRICATION$$tBIOFABRICATION$$x1758-5082
000119758 8564_ $$s3179237$$uhttps://zaguan.unizar.es/record/119758/files/texto_completo.pdf$$yVersión publicada
000119758 8564_ $$s1020289$$uhttps://zaguan.unizar.es/record/119758/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119758 909CO $$ooai:zaguan.unizar.es:119758$$particulos$$pdriver
000119758 951__ $$a2024-03-18-16:47:13
000119758 980__ $$aARTICLE