SECTIONS OF CONVEX BODIES IN JOHN’S AND MINIMAL
SURFACE AREA POSITION

DAVID ALONSO-GUTIERREZ AND SILOUANOS BRAZITIKOS

ABSTRACT. We prove several estimates for the volume, the mean width, and
the value of the Wills functional of sections of convex bodies in John’s position,
as well as for their polar bodies. These estimates extend some well-known
results for convex bodies in John’s position to the case of lower-dimensional
sections, which had mainly been studied for the cube and the regular simplex.
Some estimates for centrally symmetric convex bodies in minimal surface area
position are also obtained.

1. INTRODUCTION AND NOTATION

For any convex body K C R™ (i.e., a compact convex set with non-empty inte-
rior), it is said that any affine image of K is a position of K. Every position of the
Euclidean ball, BY, is called an ellipsoid. A well-known theorem by John (see [29])
states that every convex body K C R™ has a unique maximal volume ellipsoid,
E(K), contained in it. The volume ratio of K is defined as

varat(K) = (|5|(I§Q>/

Here and in what follows |-| denotes the volume of a convex body in the appropriate
dimension. Notice that the volume ratio does not depend on the position of the
convex body K.

A convex body K C R” is said to be in John’s position if the maximal volume
ellipsoid contained in K is the Euclidean unit ball BY. In other words, K is in
John’s position if BY is contained in K and for every non-degenerate linear map
T € GL(n) and every a € R™ such that a+T(BY) C K we have that |a+T(BY)| =
|T(BY)| < |B%|. By the uniqueness of £(K), this position is uniquely determined
up to orthogonal transformations. It is well known that, denoting by BJ. the n-
dimensional cube and by S,, the centered regular simplex with inradius r(S,) = 1
in R™, both BZ and S,, are in John’s position.

Ball proved in [6] that the simplex maximizes the volume ratio among all convex
bodies in R™ and the cube maximizes the volume ratio among all the centrally
symmetric convex bodies in R™. The proof consists of the following three steps:
first, since the volume ratio of a convex body does not depend on its position, it
can be assumed that the convex body is John’s position; second, substitute the
convex body by a polytope which contains the convex body and is also in John’s
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position; finally, obtain an upper bound for the volume of such polytope by using
Brascamp—Lieb inequality (see Theorem 2.1 below).

Dual to John’s position is the so called Loéwner’s position. A convex body is
said to be in Lowner’s position if the minimal volume ellipsoid containing it is the
Euclidean unit ball. It is well known (see, for instance, [4, Proposition 4.7]) that a
convex body K C R” is in John’s position if and only if K° is in Lowner’s position.
Here K° denotes the polar body of K defined by

K°={zxeR": (z,y) <1,Vye K}.

Ball observed in [6] that a reverse form of the Brascamp-Lieb inequality would
provide that, among all convex bodies in Lowner’s position, the centered regular
simplex S, with circumradius R(Sn) = 1 has the smallest volume. Moreover,
among all centrally symmetric convex bodies in Lowner’s position, the ¢}-ball, BY,
has the smallest volume. The needed reverse form of the Brascamp—-Lieb inequality
was obtained by Barthe in [9] (see Theorem 2.1 below).

Vaaler showed in [43] that if Fy € G,k is a k-dimensional linear subspace of R"

in the Grassmannian manifold G,, j, then |B% N Fy| > |BE |. Ball obtained in [5] a

reverse inequality proving that |B% N Fy| < 2"7" |BE |. He also obtained the bound

n n
(L) BN R <\ [HBLI,

which is optimal if and only if k | n (see [26]).

It follows from results of Ball [7] that the k-dimensional sections of a regular
simplex with largest volume are exactly its k-dimensional faces. Webb showed in
[44] that for every hyperplane through the origin Fy € Gy n—1,

1 n(n+1)

1 Snflﬁ'
(v/2n(n+1))»1 n—1 | |

(1.2) 1S N Fo| 7T <

There is equality for the sections passing through the origin that contain n — 1 of
the vertices.

Dirksen proved in [15, Theorem 6.1] (see also [16]) the following estimate for the
volume of k-dimensional sections of S,, through the origin:

1 n(n+1)
(k + 1) QkT(L;JrkU k(k + 1)

(1.3) 1S, N Fo|'* < |Sk|H*

for every Fy € G, . Besides, this estimate is asymptotically sharp.

The proof of these volume estimates for sections of the cube and the regular
simplex follow the lines of Ball’s upper bound of the volume ratio. However, only
sections of BY and S,, which are two particular convex bodies, are being consid-
ered. Passing to the general case, we observe that it is not possible to obtain an
upper bound for the volume of sections of a general centered convex body K with-
out any additional assumption since, considering different positions of K, we can
obtain sections with volume as large as desired. However, B], and S,, are in John'’s
position. We will consider convex bodies in John’s position and generalize these
(and other known results), to sections of such convex bodies. We will also obtain
some estimates for sections of convex bodies in minimal surface area position.
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1.1. Volume of sections of convex bodies in John’s position. In a recent
article [32], Markessinis claimed to have obtained an upper bound for the volume
of k-dimensional central sections of convex bodies in John’s position. However,
although the estimate given for central sections of centrally symmetric convex bod-
ies in John’s position is correct, the proof in the not necessarily symmetric case
is not correct. In the following theorem we give an upper bound for the volume
of central (and non-central) k-dimensional sections of an arbitrary convex body in
John’s position.

Theorem 1.1. Let K C R" be a convex body in John’s position and Fy € Gy, .
Then

1 1
‘KmFoll/k < _ n(n+ )|Sk|1/k
or 1y \ R

Furthermore, if K is centrally symmetric

n
KRS <\ [RBs

Moreover, if Fy is a k-dimensional affine subspace at distance h from the origin
and K is a conver body in John’s position then

1+4 25
|KﬁFh|1/k< Tl(n+1) f n |Sk|1/k
k(k+1)+E \n+ R

Remark. The proof in the symmetric case is the same as the one given by Markessi-
nis, which follows Ball’s ideas in [5]. Nevertheless, we will reproduce it for the sake
of completeness. We can also obtain it as a direct consequence of Theorem 1.5,
as well as a consequence of Theorem 8.1 below (see Section 2.6). This estimate
is a sharp generalization of Ball’s estimate (1.1) for the cube. Moreover, the case
k = 1 gives one more proof of John’s theorem in the symmetric case: if K is a
centrally symmetric convex body in R™ whose maximal volume ellipsoid is B then
K C \/nB%.

Remark. Many other generalizations and extensions of Ball’s estimates for sections
of B have been obtained, for instance, in [28], [30], or [31].

Remark. The proof in the non-symmetric case follows Dirksen’s ideas from [16].
However, the decomposition of the identity in a linear subspace of R™*! in order
to apply Theorem 2.1 is not obtained by projecting the vectors in an orthonormal
basis of R**1. It comes out by projecting the vectors providing a more general
decomposition of the identity in R™*!. As a consequence, a different maximization
problem from the one in Dirksen’s proof has to be considered. Notice that we recover
the estimate in (1.3), which is asymptotically sharp for the simplex. Besides, if we
n(n—k)
(k+1)
the origin, which is the distance from the origin to any k-dimensional face of S,, we

obtain that

from

take non-central sections by k-dimensional subspaces a distance h =

+1)
KNF 1/k< LS 1/k
| hl PSRN
which is exactly the volume of the k-dimensional faces of S,,. The estimate for
general affine subspaces can also be obtained as a direct consequence of Theorem

8.1 below.
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1.2. Volume of projections of convex bodies in Léwner’s position. Let us
recall that if Fy € Gy, 1 is a linear subspace and K N Fy contains the origin in its
relative interior, the polar body of KNFy in Fy is Pr, K°, the projection of the polar
body of K onto Fy. Contrary to the case of the volume of sections of the cube, not
much is known about the projections of the cross-polytope. For example, a dual
statement to Vaaler’s theorem, claiming that if Fy € G, then |Pg, (B})| < |BY/,
has only been confirmed if k = 2,3, and n — 1 (see [8], [12], and [27]) and a dual
statement of Ball’s upper bound |BZ N Fp| < 27" | B | has only been proved when
k=2ork=n—1 (see [12] and [27]). Nevertheless, concerning the volume of polar
bodies of sections of convex bodies in John’s position (i.e, projections of convex
bodies in Lowner’s position whenever they contain the origin in its interior), it was
proved by Barthe in his PhD thesis (see also [1]) that in the case of the £}-balls, if
1<p<2and Fy € G, then

1_1
P (B" 1/k:> E P2 Bk‘l/k
PR > (2)7 By,

where Pp, denotes the orthogonal projection onto Fy. In particular, we have the
following estimate for the projections of B}: for every Fy € G,

n k
P BOI > [ E B

We obtain a similar lower bound for the volume of k-dimensional projections of
convex bodies in Lowner’s position.

Theorem 1.2. Let K C R™ be a convex body in Léwner’s position and Fy € Gy, .
Then

k-
P > [ E15 0

Furthermore, if K is centrally symmetric

P > [ E Bl
n

Remark. In the symmetric case, the proof follows the idea of the proof of the
aforementioned result for B). This relies on the use of the reverse Brascamp-Lieb
inequality (see Theorem 2.1 below) together with the use of a decomposition of the
identity in a linear subspace of R™. As in the proof of Theorem 1.1, unlike in the
case in which K = By}, the decomposition of the identity in the linear subspace
does not arise by projecting the canonical basis, but by projecting the vectors in a
general decomposition of the identity in R™.

In the non-symmetric case, the proof follows the idea of the proof of Ball’s ob-
servation in [6] together with the reverse form of Brascamp-Lieb inequality. Again,
in this case the decomposition of the identity in a linear subspace in R"*! arises
by projecting the vectors in a decomposition of the identity in R"*' rather than
an orthonormal basis in R”*!. Some estimates of the volume of projections of the
regular simplex were obtained in [19]. However, the estimates do not rely on the
use of the reverse Brascamp—Lieb inequality.
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1.3. The mean width. The mean width of a convex body K C R"™ is defined as
W) = [ huc®)do(6),
Snfl

where, for every z € R", hgi(x) := sup{(z,y) : y € K} is the support function
of K at z and do denotes the uniform probability measure on S"~!. In [40], the
authors proved that among all centrally symmetric convex bodies in John’s position
in R", w(K) is maximized when K = B?. . The not necessarily symmetric case was
treated in [10], where it was proved that among all convex bodies in John’s position
in R", w(K) is maximized when K = S,,, where S,, denotes the regular simplex in
John’s position. If we pass to the mean width of sections, then a direct consequence
of [11, Theorem 10] is that for any k-dimensional linear subspace Fy € Gy, 1,

n
wBLAR) < | FuBl),

and this estimate is sharp when k | n.

Furthermore, it was proved in [40] that among all centrally symmetric convex
bodies in Lowner’s position in R”, w(K) is minimized when K = B}. Finally, in
[41] it was proved that among all convex bodies in Lowner’s position in R™, w(K)
is minimized if K = S,,. We will prove the following results on the mean width of
sections of convex bodies in John’s position:

Theorem 1.3. Let K C R" be a convex body in John’s position and Fy € Gy, 1.

Then
n [logn
< (O—4 ] —=—
w(K N Fpy) < Ok; \/ logkw(sk)’

where C' is an absolute constant. Furthermore, if K is centrally symmetric then

w(K N Fy) < \/Zw(Bfo).

We shall also prove the following result on the mean width of projections of
convex bodies in Lowner’s position:

Theorem 1.4. Let K C R"™ be a convex body in Lowner’s position. Then, for any
k-dimensional linear subspace Fy € Gy,

w(Pr, (K)) = 1/ —w(Sk).

n

Furthermore, if K is centrally symmetric then

w(Pr, (K)) > \/Ewwf).

Remark. The proofs of the latter two theorems follow the idea of the previously
known results, by applying the Brascamp—Lieb inequality or its reverse form on
a linear subspace of R™ or R"*!. However, we were not able to handle the tech-
nical problems, arised from projecting a decomposition of the identity instead of
an orthonormal basis, in the non-symmetric case in Theorem 1.3 and a different
approach was considered.



6 D.ALONSO AND S. BRAZITIKOS

1.4. The Wills functional. For any compact convex set K C R", by Steiner’s
formula (see [42, Equation (4.1)]), the volume of K + ¢BY can be expressed as a
polynomial in the variable ¢
n = n %
|K +tBY| = ; (Z,>W1(K)t , V>0,

where the numbers W;(K) are the so-called quermaBintegrals of K. We have that
Wo(K) = |K]| is the volume of K, nW;(K) = |0K]| is the surface area of K, and
Win—1 = |B¥|w(K) is a multiple of the mean width of K. If K is contained in a
k-dimensional subspace Fy € Gy, i, we can compute its quermafintegrals in R™, but
also its quermafintegrals with respect to the subspace F{y, which we identify with
RF. If we denote these quermaBintegrals by Wi(k)(K), fori =0,...,k, we have that
(see e.g. [39, Property 3.1])

5 B

K2

W ppi(K), Y0 <i<k,

while W;(K) =0 for all 0 <4 < n — k. In order to avoid the issue that quermafin-
tegrals depend on the space where the convex body is embedded, McMullen [34]
defined the intrinsic volumes of a compact convex set K C R" as

()
By~

In [45], Wills introduced and studied the functional

Vi(K) = (K), Y0<i<n.

(1.4) W(K) =3 Vi(K)
1=0

because of its possible relation with the so-called lattice-point enumerator G(K) =
#(K NZ™). It was proved in [2] that, among symmetric convex bodies in John’s
position, W(K) is maximized if K = B . Here, we prove the following:

Theorem 1.5. Let K C R”™ be a centrally symmetric convex body in John’s posi-
tion. Then, for any Fy € Gy, 1 and every A > 0,

WK N Fy)) < W <>\\/%B§o> .

Remark. The proof of this Theorem follows the idea of the proof of the result in [2].
What is new here is the consideration of dilations of K N Fy and /ZBE . This is
indeed something different since the Wills functional is not homogeneous. Consid-
ering the dilations is important for the applications. Indeed, as direct consequences
of obtaining Theorem 1.5 for such dilations, we can obtain the symmetric cases of
Theorem 1.1 and Theorem 1.3, providing a different proof in those cases.

We also prove the following estimate for the Wills functional of projections of
convex bodies in Lowner’s position:

Theorem 1.6. Let K C R" be a centrally symmetric convex body in Léwner’s
position. Then, for any Fy € Gy, 1,

W(PFo(K)) P W
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1.5. Sections of convex bodies in minimal surface area position. The main
tool used to obtain most of the estimates above is the fact that a decomposition of
the identity operator is associated to any convex body in John’s position, and that
this decomposition allows the use of the Brascamp-Lieb inequality (see Theorem
2.1 below). When K is a polytope in minimal surface area, then there is again a
decomposition of the identity associated to K (see Section 2.7). A similar use of the
Brascamp-Lieb inequality, together with an approximation by polytopes, will lead
to similar estimates for sections of convex bodies in minimal surface area position.
Namely, we can prove the following:

Theorem 1.7. Let K C R” be a convex body in minimal surface area position and
let IIK and II* K denote its projection body and polar projection body, respectively.
Then, for any k—dz’mensional linear subspace Fy € Gy, ), we have

( ) |H*KQFO| kl ‘a}qk;

(0) 1P, (1K) > (221"

Furthermore, if K is centrally symmetric, then for any k-dimensional linear sub-
space Fy € G, 1, we have

(i) W(KOFO)\W( 2“5)@"3’“)

(ii) [K N Fp|V* < o2 il | BE VR,
(iil) w(K N Fp) < %% (BX),
(iv) [(& N Fp)e /% > & Rl (BE )|V /k,
(v) w((K N Fp)°) > &5 58 lw((BE)?).
Remark. Notice that if & = n then (a) recovers the right-hand side of (2.6), (b)
(2.

recovers the left-hand side of (2.7), (ii) recovers the estimate given by Ball’s reverse
isoperimetric inequality in [6] and (iii) recovers the estimate given in [33, Theorem
7.1].

2. PRELIMINARIES

2.1. John’s position. As mentioned in the introduction, a convex body is said
to be in John’s position if the maximal volume ellipsoid contained in it is the
Euclidean unit ball. A classical theorem of John [29] (see also [7]) states that K is
in John’s position if and only if B} C K and there exist m = O(n?) contact points
{u;}72, € OK N S™~! (the intersection of the boundary of K and the Euclidean
unit sphere) and {cj}?";l with ¢; > 0 for every 1 < j < m, such that

(2.1) I, = chuj ® uj, chuj =0 and ch =n.
j=1 j=1 j=1

Here I, denotes the identity operator in R”, u,; @u;(x) = (z, u;)u; for every x € R,
and the third inequality is obtained from the first one by taking traces.

Notice that, for any such decomposition of the identity, we have that for every
1<k<m

1= |ul® = ch<uk,uj>2 > cp (up, up)? = c.
j=1
Thus, all the numbers (c;)L; are in the interval (0, 1].
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2.2. Brascamp—Lieb inequality. We will make use of the Brascamp-Lieb in-
equality (see [13]) and the reverse Brascamp-Lieb inequality due to Barthe (see
[9]) in the following form, obtained by Ball (see [5]):

Theorem 2.1. Let m > n, {u;}72; € ™', and {¢;}}=, C (0,1] be such that

I, = chuj ®uj. Then, for any integrable functions {f;}]; : R — [0,00), we

j=1
have that

/ ﬁ f;j(<x,uj>)dx < ﬁ (/ fi (t)dt) : (Brascamp-Lieb inequality).
" =1 j=1 /R

Besides, for any integrable functions {h;}7, : R — [0,00) and h : R™ — [0,00)
satisfying

h(ZjSjuj> > H h(0;)  for every {6;}7, C R,
j=1 j=1
we have that

/ h(z)dz > H (/ hj(t)dt> (Reverse Brascamp—Lieb inequality).
n R

2.3. The regular simplex. Let Aj denote the k-dimensional regular simplex

Ay = conv{ey,...,exr1} C Ho,
k+1
where Hy = {x e RFHL . Zmz = 1} is identified with R* and ( ,ﬁ) is
identified with the origin. It is well known that
o Ay =EH,
o r(Ak) = k(lkﬂ)’
o R(Ar) =/,
o A} =—(k+1)Ag.
o w(Ag) ~ 1°§k7

where a ~ b denotes the fact that there exist two positive absolute constants c1,Co
such that cia < b < cea. Thus, T( Ak is in John’s position and R(A )Ak is in
Lowner’s position. Then, if S denotes the k-dimensional simplex in John’s position
and Sj, denotes the k-dimensional simplex in Lowner’s position, we have that

~ 1
S = VEk T DA, and Sy =/ 0 k+ Ay
Therefore,

ke(k + 1)1+ %
(k1)1/k

1 (k+1)+%
(k1)1/k k

|Sk|1/k= and |§k‘1/k=

Moreover,

w(Sy) ~ Vklogk and w(Sy) ~ lo]ik.




SECTIONS OF CONVEX BODIES IN JOHN’S AND MINIMAL SURFACE AREA POSITION 9

2.4. Mean width. Let K C R"” be a convex body. The mean width of K is defined
by

w(K) = /S  h(6)do(6),

where, for every 8 € S"~1, hy () is the support function of K at § and do denotes
the uniform probability measure on S™~!. If we also assume that K contains
the origin in its interior, then hyx is homogeneous of degree 1. There is a nice
representation of the mean width in terms of the standard Gaussian random vector
G in R" (see, for instance, [3, Proof of Theorem 4.2.2]):

(2.2) Ehk(G) = chw(K),
n| B2 | ( ntl nt1
where ¢, = ‘B\%‘:S 5 ) = ﬁll:((i; ) Indeed, integrating in polar coordinates, one
has
=13

r2
e 2

Ehk(G) = /nhK(x)de:mBg‘/ooor"(;;W/sn_l hic (0)dor(0)
K).

= cn/ hi(0)do(0) = c,w(
Sn—l
Likewise, since for any convex body containing the origin in its interior the
support function of K° is hgo = || - ||k, where || - ||k is the Minkowski gauge
function of K, given by

|z :=inf{A >0 : 2z € AK}
for all x € R™, we have that if G is a standard Gaussian random vector in R"
(2.3) E||G|lk = chw(K®).

We would like to refer the reader to [11], [17], [18], or [47] for more information
on the use of the Gaussian measure of sections of convex bodies.

2.5. Log-concave functions. A function f: R™ — [0,00) is called log-concave if
f(z) = e @) where v : R — (—o00, 0] is a convex function. It is well-known that
any integrable log-concave function f: R™ — [0, 00) is bounded and has moments of
all orders. If K C R"” is a convex body then its indicator function xx is integrable
and log-concave with integral |K|. If additionally K is a convex body containing
the origin, then e~I'lx is integrable and log-concave with integral n!|K|.

v

Given a log-concave function f = e™?, where v : R" — (—o00,00] is a convex
function, its polar function is the function f°:R™ — [0, 00) given by

o) = e~ E0)@),
where £(v) denotes the Legendre transform

L(v)(z) = yseuﬂgm(@, y) —v(y), zeR™

For more information on log-concave functions we refer the reader to [14, Chapter
2].
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2.6. The Wills functional. Let us recall that for any n-dimensional convex body
K, its Wills functional is defined by

W(K) =Y Vi(K),
i=0

where V;(K) denotes the i-th intrinsic volume of K. Many properties of the Wills
functional can be found in [46], [25], [35], or [2]. For our purposes, we emphasize
the following two:

(1) (Hadwiger, see [25, (1.3)]) For any convex body K C R™,
W(K) = / e_”d('”’K)zdx,

where d(x, K) denotes the Euclidean distance from z to K.
(2) (Hadwiger, see [25, (2.3)]) If E is a linear subspace of R", K1 C E and
KQ Q EL, then

W(Kl X Kz) = W(Kl)W(KQ)
In particular, if K = [—a,a] C R, we have that

W([—a,a]) = 2a + 2/ e @m0 gy = 2q 4 1
and if K = aB% C R™ then W(aBL) = (1 + 2a)™.
Let us point out that for any A > 0

W(OK) = zn: V(AK) =1+ zn: ANVi(K).
=0 1=1

Therefore, if two convex bodies K, L C R™ verify that W(AK) < W(AL) for every
A > 0, then one immediately obtains that V,,(K) < V,,(L) and V;(K) < Vi(L) or,
equivalently, |K| < |L| and w(K) < w(L).

Notice that, for any convex body K C R", the function given by d(z, K) for
every z € R™ is convex on R™ (see [42, Lemma 1.5.9]) and, as the square function
is convex on R, d(x, K)? is convex on R™. Therefore, the first property above
shows that, for any convex body K C R, its Wills functional is the integral of the
log-concave function fx : R™ — [0, 00) given by

fre(a) = eI,

Using a double polarity (both in the convex body and in the family of log-concave
functions), for any convex body K C R™ containing the origin in its interior, we
define the log-concave function f5... It was proved in [2, Lemma 3.1] that for every
zeR”

=03
(2.4) foo(z) = e am —llzlx,
The following lemma shows that if, for every A > 0, the integral of f(o)\K)o(x) is
bounded by the integral of f¢, . (), then |K| < |L].

Lemma 2.1. Let K, L C R" be two convex bodies containing the origin in their
interiors. Assume that there exist two numbers A and Ao > 0 such that, for any
A€ (Oa )‘0);

| S @iz <4 [ fye(a)dn
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Then |K| < A|L|.

Proof. Notice that for any convex body K C R"™ containing the origin in its interior
and any A > 0,

o =13 il =3 =l
f()\K)o(x)dx = e It e A dp = e Ir e » dx
RTL n n
22|13
= A" et e lBlx gy,

Therefore, we have that for every A € (0, \o),

22213 izl x 2223 “lellz
e 1t e dr< A e” 4T e dx
n R’TL

and, taking the limit as A tends to 0 we obtain that

nl|K| = / e lelege <A | e loledy = nlA|L|.
n RTL

O

2.7. Convex bodies in minimal surface area position. A convex body K C
R™ is said to be in minimal surface area position if it has minimal surface area
among all of its volume preserving affine images. That is, if

|OK| = min {|0T(K)| : T € SL(n)},

where SL(n) denotes the set of non-degenerate linear maps 7' € GL(n) with
|detT| = 1. The surface area measure of a convex body K is the measure on
the sphere defined by

ox(A):=v({xr € 0K : vk(z) € A}) VA Borel set in S"7,

where v denotes the Hausdorff measure on 0K and vk (z) is the outer normal vector
to K at x, which is defined v-almost everywhere.

The projection body IIK and its polar, the polar projection body IT*K, of a
convex body K are the centrally symmetric convex bodies defined by

1

i (w) = el = lellPos (K)| = 5 [ [(@.0)ldoc(0),

where, for any = # 0, |P,.(K)| denotes the (n — 1)-dimensional volume of the
projection of K onto the hyperplane orthogonal to z and the last equality is the
well-known Cauchy’s formula (see, for instance, [42, Equation (5.80)]).
It was proved by Petty [36] (see also [21]) that K is in minimal surface area
position if and only if ok is isotropic, i.e., if
n
" =K Jous

In [22] it was observed that the latter happens if and only if ITK is in minimal mean
width position, i.e.,

u ® udog (u).

w(IIK) = min{w(T(IIK)) : T € SL(n)}.

Notice that if K is a polytope with facets {F;}7"; with outer normal vectors
{u;}72,, then the surface area measure of K is

m
j=1
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where J; denotes the Dirac delta measure on ;. Moreover, K is in minimal surface
area position if and only if

In particular, if K is a polytope with facets {F}J2; and outer normal vectors
{u;}72, then for every x € R"

m

1
(2.5) hur (2) = [|olln-x = 5 > 1B ().
j=1
It was proved in [21] that, as a consequence of a lemma obtained from the Brascamp—
Lieb inequality (see [6]), if K is a convex body in minimal surface area position
then

n|B2\" 1 anpn 1
2.6 BY <|I'K| < —— .
(20 5 ({h) e <K < S
Moreover, if K is a convex body in minimal surface area position then
[OK|\" 1By '\"
2.7 — | < |IK|<|BY OK|".
(2.7 () << sy (521) o

This can be seen as a consequence of the Blaschke—Santalé inequality and its exact
reverse for zonoids (see [23] and [38]), or as a direct consequence of the reverse form
of Brascamp-Lieb inequality (see [22]).

3. GENERAL SETTING

In this section we introduce the notation for a setting that will be used in several
of our proofs. We distinguish the cases in which we are dealing with non-symmetric
convex bodies in John’s position, symmetric convex bodies in John’s position, or
polytopes in minimal surface area position.

3.1. Non-symmetric convex bodies in John’s position. Let K C R" be a
not necessarily symmetric) convex body in John’s position and let {u;} ; and
JJ5=1
¢;}" , be the contact points in 9K N S™~! and positive weights satisfying John’s
7J5=1
condition (2.1). We will denote by C C R™ the convex body

(3.1) C={zeR": (z,u;) <1, VI <j<m}.
It is easily verified that K C C'. We will denote, for every 1 < j < m,
o v = %H(—uj, ﬁ) € S™, and

. ntl ..
® §; = “=cj.
These vectors satisfy
m m

(32) Iy = Z(Sj?]j K vy, Z (Sj’Uj = (O, vn+ 1) and 25] =n+1.
J=1

Jj=1 Jj=1

Therefore, as seen in Section 2.1, §; € (0, 1] for every 1 < j < m. Let the cone
(3-3) L:={y=(z,r) eR"™ : (y,v5) >0, V1 <j<m}

The next lemma, which was proved in [6], relates L and C. We include its proof
here for the sake of completeness.
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Lemma 3.1. Let K CR" be a convex body in John’s position and let L be defined
as in equation (3.3). Then

L= {(x,r) eR"™ i r>0,x¢€ \;EC}

Proof. Let y = (z,7) € L. By the definition of v; we have that for each 1 < j <m

{y,v) = —\/Z@ﬂm .

Assume that r < 0. Then, since (y,v;) > 0 for every 1 < j < m, we have that

n r
] , >0 V1<j<m.

Then, (z,u;) < 0 for every 1 < j < m. As a consequence, since {c;}2; C (0, 00),

]ﬁ

Z ¢z, u;) <0,
j=1

m
which contradicts the fact that ZCjUj = 0. Therefore, if y = (z,r) € L then
j=1
r > 0.
For any r > 0 and every 1 < j < m we have (y,v;) > 0if and only if (z, u;) <

T
ﬁ.
The latter condition is true for every 1 < j < m if and only if z € ﬁC.

Conversely, assume that y = (x,r) verifies that » > 0 and = € ﬁC’, which

r_

happens if and only if (x, u;) < NG for every 1 < j < m. Then, forevery 1 < j < m,

W,0)) = =\ [ g lww) + == >0
AR L Vi e Y s

Thus, y € L. ([

Given any k-dimensional affine subspace F}, in R™ at distance h from the origin,
we will consider the linear (k + 1)-dimensional subspace in R™*?

(3.4) H = span{ (x, \/ﬁ) cx € Fp}t € Gyt

Notice that if Fy € Gy, is a linear subspace then H equals the cartesian product
H = Fy xR ={(z,7) € R""! : 2 € Fy, r € R}. Furthermore, assume that F}, is
at distance h from the origin and f: LN H — [0,00) is an integrable function. By
Lemma 3.1, and taking into account that R™ x {0} and Py ({0} x R) provide an
orthogonal decomposition of H, we have that

oo h2
(3.5) / fz,r)drdz = / / flx,r)dx nt dr.
LNH 0 Z=(CNFy) x{r} n

Set J ={1<j<m : Pgvj # 0} and, for every j € J, we define
PH’U]’

HPIIJUsz’

;|| Proll3 = 65| Prros 3.

n

.wj:

./{j:
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Then, we have that

(3.6) IH:Z/ijwj(@wj and an:kJrl,
jeJ jeJ
where Iy denotes the identity in the linear subspace H. Furthermore, denoting by
s; = m for every j € J, one has that for every y = (x,7) € H C R**!
jll2
m m

(3.7) > kisily,ws) =6y, Pavy) =Y 6;(y, Prvy) =Y 8;(y, ;)

jeJ jeJ j=1 J=1

=rvn+1.

The following lemma shows that, whenever Fj is a linear subspace, we have a
strictly positive lower bound for the Euclidean norm of Prv; for every 1 < j < m.
Consequently, if Fy € Gy, 1, the set J defined above equals J = {1,...,m}.

Lemma 3.2. Let {u;}72, € S™', {¢;}J, be such that (2.1) holds, Fy € Gy,
H = Fy xR € Gpy1,k+1, and {v;}72; C S™ be defined as in (3.2). Then, for every

1 <5 <m, we have
1

n+1

< |1Prosll3 < 1.

Proof. Let ¢ = (0, \/%4-1) € H and notice that for every 1 < j7<m

1 1
<PH(Uj*C)’C>:<Uj*0,C>:n+1*n+1 =

Since ¢ € H, we have that Pyc = ¢ and then Pyv; = ¢+ Py(v; — ¢). Thus,
1

1Prv; |13 = lle + (Pr(v; — )3 = llell3 + 1P (v; = c)lI3 > [lell3 = o

Thus, for every 1 < j < m, we have that
1
n+1

< [|Prvjf3 < 1.
O

3.2. Symmetric convex bodies in John’s position. Let X C R"” be a centrally
symmetric convex body in John’s position and, like in the not necessarily symmetric

case, let {u;}7, and {c;}7-, be the contact points of K and S™~! and positive

weights satisfying (2.1). We will also denote by Cy the symmetric convex body
(3.8) Co={zeR": [{z,u;)] <1,V1<j<m}
Clearly, K is a subset of Cy. If Fy € Gy, 1 is a linear subspace, we set Jy = {1 <
Jj <m : Pgu; # 0} and for every j € Jy, we define
0 _ _Pryuy n—1

° ’Uj = HPFOOUg‘Hz cs ﬂFQ,

o 69 = ¢jl| Pryuj3-
Then, we have that
(3.9) Ip, = Z 5?1)]0- ® U? and Z 5? =k,

j€Jo Jj€Jo

where I, denotes the identity operator in Fj, and also

KNk CCyNEky = {m€F0\<x,uj>|<1,V1<]<m}
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= {xeFy: |{(z,Pru;)| <1,VlI<j<m}
= {z€Fy: [(z, Ppu;)| < 1, Vj e Jo}
= {xGFO : |<x,v?>|<tj,Vj€Jo},

Ci

1/2
where t; m = (é) for every j € Jy. Furthermore,

(K N Fy)° (CoN Fy)° = Pp,(Cy) = Pr, (conv{£u; : 1 <j<m})
conv{xPru; : 1 <j<m}

= conv{xPru; : j € Jo}.

I,

Thus,

(3.10) KmFogcomFO:{xeFo : |<xv>| t],VJEJo}
and

(3.11) (KN Fy)° 2 (CoNnFy)°® =conv{+Pryu; : j € Jo}.

3.3. Polytopes in minimal surface area position. Let K be a (not necessarily
centrally symmetric) polytope in minimal surface area position with facets { £},
and outer normal vectors {u;}7.,, and let Fy € G, be a k-dimensional linear
subspace. Then,

K={2eR" : (z,uj) < hg(u;), V1< j<m}

and
(312) In = Z |8I(]'| Uj ® Uj = chuj ® Uj,

j=1 j=1
where ¢; = %fg“ for every 1 < j < m. Besides (see, for instance, [24, Theorem
18.2))

m n m

> cju; = WZ|Fj‘uj =0

j=1 j=1
and

- n|F| _ n*|K]
(3.13) chhK(uj Z 8K‘ j |8K| .
— =

Note also that if K is a centrally symmetric polytope in minimal surface area
position, with facets {F}}72; and outer normal vectors {u;}7",, and if Fy € Gy
is a k-dimensional linear subspace then

J=0

K={zeR" : [(z,u;)| < hx(u;), V1 <j<m}.

As in the case where the decomposition of the identity comes from a centrally
symmetric convex body in John’s position, we set Jo = {1 < j < m : Pru; # 0}
and, for every j € Jy, we define

0_ _Pryuj
¢y = [ Pryusll2’

F; ||| Pryu;l|3
o 87 = | Pryuy 3 = LR,



16 D.ALONSO AND S. BRAZITIKOS

‘We have that

m
(314) IFD = ZCjPFouj X PFOU:j = Z (S?U? (24 U?.

Jj=1 Jj€Jo

e\ /2 .
Besides, if we denote t; = m ( 50) for every j € Jy, then
(315) KﬂF0:{1’€F0 : |<1’,’Uj>| <tth(uj),Vj€J0}
and
(KNEy)° = conv{ ((uj)) : 1<j<m}
U
(3.16) = conv{ Pry (1) 1 je JO}.
e (ug)

4. VOLUME OF SECTIONS OF CONVEX BODIES IN JOHN’S POSITION
In this section we will give the proof of Theorem 1.1.
Proof of Theorem 1.1. Let us start with the symmetric case. Assume that K is
a centrally symmetric convex body in John’s position and Fy € Gy, is a linear

k-dimensional subspace. We follow the notation in Section 3.2. By (3.10), we have
that

KNFRyCConFy={z€F: |<xv>| tj, Vi€ Jo},

.\ 1/2
where t; = m = (;—%) for all j € Jy. Therefore, by (3.9) and the
] i
Brascamp—Lieb inequality (Theorem 2.1),

IKNEFy| < |ConFy|l= / HX[ t5t5] dx—/ HX[ twt] >)dx

Jj€Jo Jj€Jo
59
J

II (/RX[—tj,tj](t))&? =11 (2t;)% = 2* 11 (gﬂ)z

j€Jo j€Jo j€Jo J

N

By the arithmetic-geometric mean inequality and (2.1), we get

50

: 1 1
0(3) <Z¥i-igocisoi

j€Jo J j€Jo

|K0FPM<L/ Vhw|ﬂk

Assume now that K C R™ is a (not necessarily symmetric) convex body in John’s
position and Fy € G, i a k-dimensional linear subspace. We follow the notation
introduced in Section 3.1. Applying Lemma 3.1, one gets

;JCQ%&'

Hence,

LOH{(CE,T)EFOXR:T>O,$€
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Denote s; = m as in (3.7). Using the Brascamp-Lieb inequality (Theorem

2.1) we get

_ L W e P Wi Kj
/ o S s (v, _7>dy:/ H(X[Om)(@?vme o J>) dy
LNH H

L1 (X000 (g, Prreg)e )™ dy

(X[o oy w)e> ) dy < T (/0 6S”dt> ]

j=1

<.
I
—

1
'::]3 = T
s T

<
Il
—

||5 HPH”JH2

| Prrv;

On the other hand, taking into account (3.7), we see that

/ —ZJ 1 ki85 (y, w7>dyf / / fr\/n+1dzdr
LNH (CﬁFo

rk k!
:/ —|CﬁF0\e R S Tod Y 2
0 nz(n+1)"=2
ki (k+1)T [CN R
ns(n+1) % Sl

8511 P13

Let us maximize [[72, || Py’ under the constraints

n+1 < || Puvjll3 <1V1I<j<m,
Zj:l 3; | Prrvsl|3 = & + 1,

ZT:l 5]' =n-+ 1,

0<4; <1

Equivalently, let us maximize F(x,d) = % Z;nzl djz;logz; under the constraints
,%st, <1VI<j<m,

an 5 —n4+ 1

0 < (5 < 1.

First notice that the function F(z,d) is continuous on a compact domain M in
R?™, which is given by the constraints. Therefore, it attains its maximum. For
every x = (x1,...,&,) with +1 <zj <1lforall<yj<m,let Fy(6) be the
function

1 m
=3 Z 0jz;logx;.
j=1

Notice that F, is a convex function. Since the set

A={SeR™ Y gy =k+1, > 6 =n+1,0<5 <1V <j<mf
j=1 j=1
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is a compact convex set, F, attains its maximum on some extreme point of A.
These are the points of intersection of the 2-dimensional faces of the cube

(0eR™:0<6;<1VI<j<m}

with the (m — 2)-dimensional affine subspace

{serm: iajxj —k+1, zmjéj —n+1}.
j=1 j=1

Therefore, a maximizer of the function F, has to be a point of the form

6= (1,1,...,1,A,1=A,0,...,0)
—— ——
n m—n—2

for some 1 < A < 1 (or a permutation of it), such that Z;nzl djxz; = k+11is

satisfied. For every &, with % < A <1 we will find the maximizer of the function

Fs, (x 25 xjlogx;

on the compact convex set

1

B)\—{$€Rm Z&Jx]fk-kl +1

j=1

<z; <1 VI<)< m}

If 6% is the decreasing rearrangement of 6, we can assume without loss of generality
that dy = d3. Let

k+1
D= +
n+1
and
1 1
i=|11,...,1,D,—— ...,
—_—— n+1 n+1
—_———
F m—k—1
‘We check that T-H <D <1and
m
k
Z:(S)\j.rj Jrl:k—l—l.
For every x = (x1,...,2m) € B, we have Z > (x1,...,%m), since the first k + 1
coordinates of Z are as large as they can. Here, the notation & > (z1,...,Zm)

means that

L] ZSAJ@- = Z(A,jxj =k+ ].,
j=1

j=1
l l
° Z(SAJ&?]‘ 2 Z(Sk,jzj V1 g l < m
j=1 j=1

Therefore, by the weighted Karamata’s inequality (see [20]), we have that for every
T € By

F, < Fs, () < F
5>\('T) 5A(x) (JIB?GXAI (6 J?)
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Since
max F(6,z) < ma, Fs (z),
(o) eM (.2) relb e By (@)
we see that
ax F(6,z) ax Fy, (%) a {lDl D4k ( 1 )}
max ,T) = max T) = max o} o}
(5,2)EM elbay ™ relba) | 2 & 2(n+1) B\nt1

1 n—~k
= iDlogD— e log(n +1).

Thus,
m k41
ok PIGES
||PH’U‘||ngPHUjH§ < e%DlogD—% log(n+1) _ (k/’ + 1) ( )
| I j x - ntl "
j=1 (n 4 1)20F0

Since |K N Fy| < |C' N Fyl, it follows that

1 n(n+1)

KnFVk < =
KOS ey R

|Sk|1/k.

Finally, assume now that K C R™ is a (not necessarily symmetric) convex body in
John’s position and F}, is a k-dimensional affine subspace at distance h from 0. We
continue to follow the notation introduced in Section 3.1. Given the k-dimensional
affine subspace Fj,, we take the linear subspace H = span{(z,\/n) : © € Fy} €
Gn+1,k+1 as in (3.4). By Lemma 3.1, we see that

_ ntl .o o
LNH {(m,r)E]R .T/O,xe\/ﬁ(CﬂFh)}.

Recall that J = {1 < j < m : Pyv; # 0} and s; = m for all j € J. Using
(3.6) and the Brascamp Lleb inequality (Theorem 2.1), we have that

/ e’zfﬂ“"sj(y’“’”dy:/ I1 (X[o,oo)(@,vj>)€_s”'<y’wf>) Cdy
LNH H
JjeJ
ey \
/H X0.00) (4, Prrvg))e ”) dy

jedJ
/ H X[0,00) (¥, w;) e SJ'(y’w”) " dy
Jjed
o0 R . 12
< H (/ esjtdt) _ H ||PHUj||gJHPHUJH2 <1.
jeg O jeJ

Taking into account (3.5) and (3.7), we obtain

2
/ e~ 2jes RSl gy = / / e~ TVFL Jo /Mdr
LNH (CNFy) n

"+h2)% /i
0

k+1
n
n—|—h2)2k'
= ﬁlmm

nz (n+1)=
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Since |K N Fy| < |C N Fy|, we get

k k41
nz(n+1)2 n
KnNF <
| hl < k! \V o+ 2
or, equivalently,

1+41 2k
KN FyVE < nn T ) 7E (o || F.
(k+ DM \n

5. VOLUME OF PROJECTIONS OF CONVEX BODIES IN LOWNER’S POSITION

In this section we will give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let us start with the symmetric case. Assume that K is a
centrally symmetric convex body in John’s position and Fy € G, 1 a k-dimensional
linear subspace. We follow the notation in Section 3.2. By (3.11), we get that
K N Fy C CyNn Fy. This implies that

(KN Fy)°® 2 (CoNFy)°® =conv{+Pryu; : j € Jo}.
It follows that for every = € Fj

hKﬂFo(‘T) < hCoﬂFo($> = ||$H(COOF0)° = inf Z |aj| C T = Z o Pr,u;

Jj€Jo Jj€Jo
_; 1w ‘ Tow? L 0
= inf Z laj]| 1 x = Z ;|| Pryujll2vj ¢ = inf Z Tx = Z Bjv;
j€Jo j€Jo j€Jdo H Fousz j€Jdo
=infq > 6%0,[t; cx =" 870,00 ¢,
Jj€Jo Jj€Jdo

Nl

where ¢; = m = (é) for all j € Jy. For every j € Jy, we set
fit)=e Mt teR.

Then, if z = Z (509Jv for some {0;};cs, € R, we have
Jj€Jo

0
H f5 ]eJ05 10t < efthFU(m)
J€Jo

Using the reverse Brascamp-Lieb inequality (Theorem 2.1), one obtains

5;
KK N Fp)°| = / e tron @z > I </ et|tjdt)
F s MR
ok ok

[Tic, t; N\
A | P (%)
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As we have seen in the proof of Theorem 1.1

; 1 1«
(3) <sts-ixeei$n-
j€Jo J j€Jo J ]GJO =

Taking into account that |(BE))°| = |Bf| = 27, we obtain

(K N Fo)°'V* > \/7I(B§o)°|1/’“~
n

Assume now that K C R™ is a (not necessarily symmetric) convex body in John’s
position and Fy € G, 1 is a k-dimensional linear subspace. We follow the notation
introduced in Section 3.1. For H = Fy X R € G,41 4+1 as in (3.4), we have that

(CNFy)° = P, (C°) = P, (conv{u; : 1 <j<m})

= conv{Ppyu; : 1 <j<m}
For any y = (x,r) € H = Fy x R, we write

= inf >0,y= KiQw; 3,
Z\/nuPFoujuz g g T

where the latter infimum is understood as oo if there do not exist {6;}7

L, with
0; > 0 such that y = 377" | #;0,w;. Notice that for any {6;}7; C R,

- K 9 P, U4 -
2 : F
Yy = njﬂjwj = (LE, 7“) = | - E —J oL J R
jedJ =114/ ||PFOUJ||2 7n j=1V nH] Pouj||2 +1

K 9 PF u
& (v,r)=|—-rvn E J ) E
1TV n”l Fou]”Q \/nH} FouJHQ

Then there exist {6;}7, C R with ¢; > 0 for every 1 <

j < m such that the latter
equality holds if and only if

(z,r) €Ly ={(z,r) e FuxR:r>0:z€—-ryn(CNF)°},
and for all such y = (x,r) € L1, we have that N(y) = r. Therefore, for every y € H
y=>_7 Ri0w5 2

m _ 9j i
sup H(X[o,oo)(ﬂ%)e V"PFU“”%“> = NW),

Thus, by (3.6) and the reverse Brascamp-Lieb inequality (Theorem 2.1)

m 0o — t Rj
/ e*N(y)dy > H / e nll Pryui 1341 g4
H ;=1 \Jo

On the one hand,

/ e NW gy = / e " |-rvn(C N Fy)°|dr = Elnk/2|(C N Fy)°|.
H 0

On the other hand, for every 1 < j < m

o —-—t
| e VPRI b = \fallPrl + 1= Vo T P
0



22 D.ALONSO AND S. BRAZITIKOS

Since (K N Fp)° 2 (C' N Fy)°, we obtain

. . n2
(n+ 1) TT7, 1Py 71712
kink/2

k11 k/2 m

n+1 2 k 0 || Prv; 2 o

- (1) (5) TDeweis"™ s,
j=1

For the convex function f(z) = zlogx we apply Jensen’s inequality to get

zm: 9; 9511 Prrvj13 :f(k+1>.
="

(KNFR)°| >

|| Prrv; ||* log || Pro; |13 >
1P |*log || Prrvs 5 > £ g o ]
Thus,

k+1

m

. 12 ntl s~m 9 2 12 k+1\ 2
H | Pro; | 170 le = =57 Eit sl Pros | log 1 Prros I3 > (
Jj=1

“\n+1
ol k o
(K N Fo)°[* >/~ ISRI*

6. MEAN WIDTH OF SECTIONS OF CONVEX BODIES IN JOHN’S POSITION

Therefore,

In this section we will prove Theorem 1.3.

Proof of Theorem 1.3. Let us start with the symmetric case. Assume that K is
a centrally symmetric convex body in John’s position and Fy € Gy is a k-
dimensional linear subspace. We follow the notation in Section 3.2. By (3.11),
we have that K N Fy C Cy N Fy and

(Kﬂ F‘())o D) (C() n Fo)o = COHV{:EPFO’LLJ' 1 j € JU}
It follows that for every = € Fj

hiknr, () < heynr, (z) = inf Z laj| = = Z a; Pp,u;

J€Jo j€Jo
= inf Z laj| « = Z ;|| Pryujf2v) p = inf Z |Blt; « x = Z Bv) 5,
Jj€Jo Jj€Jo Jj€Jo J€Jo
where ¢; = m for all j € Jy. For every x € Fy, we write z = Z 6?(x,v?>v?,
Jj€Jo
therefore
(6.1) hicnm, () < Y 09 |(x,09)].
Jj€Jo

If G is a standard Gaussian random vector in Fj; and G4 is a standard Gaussian
random vector on R¥, using (6.1), we get

Ehinm(Gr) < ) SJGENGLv)| = E[(Ga,e1)] Y 81

Jj€Jo j€Jo
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1 1
= ZElG:ll > a0t = - > 8% Ehp (Ga).

Jj€Jo Jj€Jo
By Hoélder’s inequality and (3.9),
3 3
1 1 1
% > oo = Z > ¢l Pryujlla < Z > > ¢l Pryu;li3
j€Jo j€Jo j€Jo j€Jo
1 1
1 [ & - nk n
< % ch ZCjHPFOU’ng =% \VE
j=1 j=1

Hence,

In
EhKﬁFg (Gl) < EEtho (GQ)
Equivalently, by (2.2),

w(K N Fy) < \/Zw(Bfo).

Let us now assume that K is a not necessarily symmetric convex body in John’s
position and let Fyy € G,, .. We follow the notation introduced in Section 3.1. For
every = € Fj, we have

m m
hiknr, () < honr, (z) = inf Zaj tr = Z(IjPFOUj,aj 20
j=1 j=1

Let 0 € S"~' N Fy. By (2.1), we have chPpouj = 0, so we may write
j=1
=2 ¢ ((9, Pryuj;) — 1min <0,Ppouk>) Pr,u;.
=1

<k<m

j
Setting (like in the symmetric case before) Jy = {1 < j < m : Pru; # 0} and

Pruj .
U? = HP:,#JHQ for j € Jy, we get
w(KNEFy) <w(CnE)= / henr, (0)do(6)
Sn—lmFO
< /SWIQF ch' (<07PF0Uj> - 1£,1€iélm<0’PFouk>) do(9)
Oj:l

- 0, —Pp,uy)do(6) < 6, P do (0

n/SanO 1g}ixm< , —Pryug)do(0) n/snlmFO 1g}€a<xm|< , Pryug)| do(6)
s F 6, 04)| do(6) < 0, 0)| do(6).

n/snlmFo 1l<r}ixm|| FOUkHzgg}}éK ,Uk>| o(0) n/STLmFO Eg}g|< vk>| ()

It is a well-known fact (see, for instance, [3, Proposition 9.1.5 and Lemma 5.2.11])
that for any {6;}Y, C S"~!, one has that

/ max (0, 04)] do(0) ~ 1/ BN

1 1<kESN n
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Therefore, there exists an absolute constant C; such that

logm

/ max | (6, vk|d0 0) < Cy
s

n— 1ﬂFk€]0 k

Taking into account that m = O(n?) and that w(Sy) ~ /klogk, we obtain that
there exists an absolute constant Cy > 0 such that

n [logn
< —
w(K N Fo) < ng logk

w( k)~

O

7. MEAN WIDTH OF PROJECTIONS OF CONVEX BODIES IN LOWNER’S POSITION

In this section we will prove Theorem 1.4. We will make use of the following
lemma.

Lemma 7.1. Let K CR" be a (not necessarily symmetric) convex body and Fy, be
a k-dimensional affine subspace at distance h from the origin. Take some a € R
and B < 0. We identify F), with R* with the origin at the closest point in Fy, to 0
and let i be the k-dimensional Gaussian measure on Fy. Then,

n—i—h2 - (oD r
PVt [ —(C N Fy) ) dr <
[ W’“(ﬁ( h)) '

(r— adl)

g/o%ﬁrw (/r_i_Ak)

™

where C is defined as in (3.1), Ay denotes the regular k-dimensional simplex as
introduced in Section 2.8, dy = ﬁzg‘e} 3l Pavjll2, and H is defined as in
(3.4), §; and vj as in (3.2), and J as in (3.6).

Proof. Following the notation introduced in Section 3.1, let L be the cone defined
n (3.3). By Lemma 3.1 we have that

LﬂHz{(x,r) : r}O,mE%(CﬂFh)}.

For any a, 8 € R, let p, g be the measure on H whose density with respect to the
Lebesgue measure at a point y = (x,r) is

horo

Iyl

€

>~ )

dpia,p(y) = elatrvntiay,

+1

(2m) %
For any «, 8 € R, taking into account (3.5), we have that

o e_% r n + h?
apg(LNH) = earvntlghryntl ( CNF >\/ dr

_ ey

o241 T T n + h?
/ B +1’)/k <\/ﬁ(0th)> Td’l’
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Recall that J = {1 < j < m : Pyv; # 0}, s; = m for every j € J and
y = (z,7) € H. Using the definition of L, the identity (3.7), and the Brascamp—
Lieb inequality (Theorem 2.1), we have

w3

€ 2 aryn TV
Ma,ﬂ(LﬁH):/H(Qﬁ)(We et +1HX[0,00)(<yvvj>)dy
jeJ
w3
€ 2 ary/n+1_Bry/n+1
= /H(27r)(k+1)/26 Hefrvint HX[O,oo)(<y7wj>)dy

JjeJ
_ XjeJ rj(ywi)?
2

€ . Kjla Sj ,Wj
= /I{(Qw)(WeZ]EJ (at+B)25(y >HX[0,00)(<yawj>)dy

jeJ
s w]>2 i
= / H (a+6)sj<y,w1>x[0m)(<y’wj>) dy
JjeJ
o 2 Kj m (f asJ)2 Ry
e 2 o? EJeJ*‘ 3
< H </ easjteﬁsftdt> H / ePsitdt
jes \Jo V2 e 1/
2(n+1) L= 0‘51)2 v
a“(n+4+1
= ef / ePsit gt
jedJ v

Therefore, for any «, 5 € R,

(7 o n+)
n+ h? T S
s n _ F d
Yhis / w (=N ) ar

G “25])2 o
ﬁs]tdt
/ e

Notice that s; = m > 1 for every j € J, which implies that, for any 5 < 0
J

JEJ

one has f#s; < B for every j € J. Using this inequality in the second following
inequality and the Prékopa-Leindler inequality (see [37, Lemma 1.2]) in the third
following inequality, we have that for any 5 < 0

n+ h2 s GW)Z‘ =T T
\/ eVt <\/ﬁ(0 N Fh)) dr

t aa]) Kj
2
< / e’itdt
ici Rz
. k+1
0o - (tmaea)? " o (ETiesms)
e 2 e 5
< Atdt | < / Bt
! /o CVor =\ Vor

jeJ

k41 (t akdil)

e~ 2
= ePlidt
o T

i=1
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k+1 ||T||2
— B k+1<t,’uo>€5ad1 vV k+1dt
/[ le Oo)k+1 H / Y

NZES R

where vg = (\/ﬁ, ey \/kl?) Therefore, for any o € R and any 8 < 0

/n+ h? —{rmer D QW) T
/ \/ﬂ 5r\/n+lvk (\/ﬁ(cﬁ Fh)> dr

k+1 Hng
2
ﬂ\/ k?Jrl(t,’UQ)e,BOédl vV k)+1dt
/[ ad; ’Oo)kﬂ 21_11 o

VE+1

_ < e oBVEFIL Badi VEFT "
= +ad))VEk+ 1AL ) dt
/adl \% 27T <( 1) k)

(r—ady)?

_ el @ BVEF1r VE+L
= — e rvk+ 1A ) dr,
P  ( ‘)

where Ay denotes the regular k-dimensional simplex as introduced in Section 2.3.
O

N

Proof of Theorem 1.4. Let us start with the symmetric case. Assume that K is
a centrally symmetric convex body in John’s position and Fy € G, is a k-
dimensional linear subspace. We want to prove that

(K N F)®) > w ((\f Boo)) .

Equivalently, by (2.3), we want to prove that
E|Gillknr, = ElG: zpx »

where (1 is a standard Gaussian random vector on Fj and G5 is a standard Gauss-
ian random vector on R*. If L. C RF is a convex body containing the origin in its
interior and G is a standard Gaussian random vector then

(7.1) E|G] = / T RG> tdt = / (B 1Lyt

where 75 (A) denotes the Gaussian measure of the k-dimensional set A. Therefore,
the statement we want to prove is equivalent to

[ wtm e ma s [ (v 28 ) a

or, equivalently,

/000(1 — e (t(K N Fy))dt > /00c (1 — Yk (t\/ZBﬁ:o)) dt.

We are going to prove that for any ¢ > 0

ot F) <o (1284 )

which implies the latter inequality.
We follow the notation in Section 3.2. By (3.10) we have that

KNFy CConFy={z e Fy: [(x,0))| <t;,Vj€ o},
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1

where t; = 55—
37 TProuslla —

1\ 1/2
(E—é) for all j € Jy. Therefore for every ¢ > 0,

HEKNF) Ct(ConFy) ={x e Fy : [(z,0))| <ttj, VjeJo}.
By (3.9) and the Brascamp-Lieb inequality (Theorem 2.1),

_ =i
€ 2
(K NFy)) < (t(Con Fy)) = / H Xi—tt;.1t,] ({2, 07)) IEYri
Fo \jes (27)
_ Tjesq 8 @o?
= [ T et | e
Fo jedo ( ﬂ—)
(m,v?)z 5?
o6 2
= / H X[—ttj,tt»](@»vﬂ)i dx
Fo jeq ’ Zu
2 50 k
(/. ) - (1 )
< —dt = ’71 tt —€1,€1 &
jedo \J—tt; V2T i€Jo
Since vy, is log-concave, we obtain
k
t;0) 69\ .
YK NEF)) < | |t Z o [—erel | = | [¢ Z T B
j€Jo j€Jo
By Holder’s inequality and (3.9), we have that
. 50 1/2 1/2
tj5j CJ 7 ]_ 0
P DD Pl |29
Jj€Jo Jj€Jo Jj€Jo Jj€Jo
1/2 1/2
1 [ & 0 n
< ilze) (Ze] =k
Jj=1 Jj€Jo

Thus, for every ¢t > 0,

Wt 1 Fy)) < ( [Bg) .

Assume now that K C R™ is a (not necessarily symmetric) convex body in John’s
position and Fy € Gy, 1 is a linear subspace. Following the notation introduced in
Section 3.1, we denote by H € Gj41 k+1 the (k + 1)-dimensional linear subspace
H =span{(z,y/n) : x € F} = F) x R, as in (3.4). By Lemma 3.1, we have that

r
LmH:{(m,r)GEﬁd&:r}O,xe\/ﬁ(CﬂFo)}.

Using Lemma 7.1 for f = 0, the linear subspace Fy € G, ; and an arbitrary
a € R, we get

_(rmavaFl)” )? _(roedy)?

[ (e ) i< [T (VT
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where d; = ﬁ > e 0illPrvjlla, 65 and v; are defined as in (3.2), and J as in
(3.6). Applying the latter inequality to —c«, we also get
_ ,+QW) (7+m11>

A ”’“(I(C“F())C” [ (VEETa ar

or, equwalently,
_(rmavnF1)® e/ (= ad1>

/ Var %(W“Fo) / 7 (rVEF AL dn

Therefore, for any o € R,
_ (r—avaFI)? am _(rmady)?

/ v (%(CQFO > / T —"% (\ |mﬁk)

Hence,
_ (rmavnFT)? ovnE _ = adn

/ T (FO\<<\|;|€(C’DF )) / o (R*\ (r VR TA0) dr:

Integrating in a € R, we obtain

et [ (1 () o [ e

Equivalently,

\/%/Ooo’yk <Fo\ (;E(CQFOO) dr > dllfooo% (Rk \ (T\/mAk)) dr

or

nj— T /0 Vi (Fo \ (r(C N Ey)))dr > 031\/% /O Vi (Rk \ (rAk)) dr

Using (7.1), (2.3) and the fact that K C C, we obtain

i n+1

If S; denotes the k-dimensional regular simplex in John’s position, then

VE(k+1)A; = S.

Therefore, for any k-dimensional linear subspace Fy, we have

w((K NFp)°) > w((Ak)°)-

kn+1) 1
n
By Hélder’s inequality and (3.6), we have that

w((K N Fy)°) > a w((Sk)°)-

D=

dVE+FT=> &|Pavila < [ D 6 | | Do gllPavil3] =+ 1Dk+1).
j=1 j=1

jeJ
Thus,
o k [e]
w((K N Fp)*) =4/ ~w(Sg)-
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8. THE WILLS FUNCTIONAL OF SECTIONS OF CONVEX BODIES IN JOHN’S
POSITION
In this section we will give the proof of Theorem 1.5.

Proof of Theorem 1.5. Let K be a centrally symmetric convex body in John’s po-
sition and Fy € G a k-dimensional linear subspace. We follow the notation in
Section 3.2. By (3.10), we have that for every A > 0

)\(KmFo) - /\(Co mFo) = {.13 € Fy |<$,U§)>| < /\tj, Vj S Jo},

\1/2
where t; —_— = (C—]) for all j € Jy. For every j € Jy, we define

I 7 TPryuslla 89

fj : R —[0,00) to be the function

—md(tv?, A(CoNE; 2
fit)=e (05 Pogy MCNFOD™ gy e g

where ( ) denotes the 1-dimensional subspace spanned by vo Then,

—md(tv}, 2
/f] Bt = / d(tv) <v0>()\(CoﬂFo))) dt — W(P<v9>(A(CQ NF)))

and
Proy(MCo N Fy)) € [=At;, Atj] v,
It follows that for every j € Jy,

/ fj dt ([7)\15]‘, )\tj] ’l)j) = (]. + 2)\%) .

Therefore, by (3.9) and the Brascamp-Lieb mequahty (Theorem 2.1),

/ TFEJEJO j (<I7U )7 ?7 (v (A COOFO)) / H f dr
Fo 0 j€Jo
(/ £t dt) < [T (t+2xt)%

J€70 Jj€Jo

By the arithmetic-geometric mean inequality, (2.1), and (3.9), we have

L 69 22
[T a+2x)* < Z?J(1+2Atj)<1+?chuppoujuz
Jj€Jdo Jj€Jo Jj€Jo
} }
2\ )
< 1 ] | 2 alPrwls
j€Jo j€Jdo
)\ m 2 2
2
< 1+ > g > ¢l Pryu;ll3
j=1 Jj€Jo
mn
= 1+2\/—.
+ k

It follows that

[T @+ 237 < <1+2A\/Z)k—W<A\/%B’;O>.

J€Jo
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On the other hand, let zg € A(Co N Fp). Then, for every x € Fy and every j € Jy
2 2
@ ({0000, Pogy (A(Co N Fy))) < d (@, 08)0), (w0, o)) = (& — o, 0;)%,
Thus, for every xg € A(Co N Fy) and every x € Fp,

Z 6;)d (<xaU?>U?7P<v;’)()‘(CO N FO > Z 6 — Zo, ]> - |IL‘ — Zo 2

J€Jo j€Jo

Hence, for every x € Fy,

S 804 (o008 Prasy (A(Co N ) < dlar, A(Co 1 Fy)).

Jj€Jo
Consequently,

W ) = [ et X@nm
F

2
—T T ’UQ 'UQ
</ e Z;eJu J << 5) J1P<U?>(A(COQF0))> dz < W <)\\/ZB(]§O> )
F

Since K N Fy C Cy N Fy and by the monotonicity of the Wills functional, we get

WK N EFy)) < WA (CoN Fy)) <W (A[B&) .
0

The following result gives a similar upper bound for a quantity defined via a
double polarity, both on the convex body and on the log-concave function. For any
k dimensional affine subspace Fj, and any convex body K C Fj,, we will consider

fx(x) = e @Ky e Fy,
as defined in Section 2.6.
Theorem 8.1. Let K C R” be a convex body in John’s position and let F}, be a

k-dimensional affine subspace at distance h from 0. Assume that the closest point
to the origin in Fy, belongs to the relative interior to KN F},. Then, for every A > 0,

n+1
° )de < —— | —— dzx,
Lh f()x(KﬁFh,)) T < k+1 TL+h2 /]Rk 11:8::11)) ) (CE) x

where the polarity is taken with respect to the closest pomt to the origin in Fy,.
Furthermore, if K is centrally symmetric and Fy € G, is a k-dimensional
linear subspace then, for every A > 0,

[ oy @< [ 57, sy @

Proof. Let K C R"” be a centrally symmetric convex body in John’s position and let
Fy € G, 1 be a k-dimensional linear subspace. From the definition of f(o/\( KA Fy))°
and (2.4), we have that, for every A\ > 0,

=13 =13 [
e A e Rl AR
Fo Fo Fo |zl x(rnFy)
> I3
/ e_f’/ e~ ir dtdx
0 tA(KNFo)
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HTHQ

27r/ / —

(27r)/0 e fyk<ﬁ(KmFo)> dt.

dxdt

Similarly, for every A > 0,

/Rk oy @de = (2”)k/0006 Vi (\? 2k > dt.

As we have seen in the proof of Theorem 1.4, for every ¢ > 0 and every A > 0,

(o) e ()

Therefore, for every A > 0,

[ iy @i < [ 17, e @

Assume now that K C R™ is a (not necessarily symmetric) convex body in John’s
position, Fj, is a k-dimensional affine subspace at distance h from the origin, and
the closest point to the origin in F}, belongs to the relative interior to K N F}. We
will identify Fj, with R* and the closest point in F}, to the origin in R™ with the
origin in F}, (identified with R¥). As before, we have that, for every A > 0,

/ FOknEy)e (¥)dz = (2m)* /0°° e vk (\;%(K N Fh)) dt.

We will follow the notation in Section 3.1. By Lemma 7.1, we have that for any
a € R and any 8 <0,

(r [e% n+
/ h? )
n—+ / ,5’7\/n-|-1,y]C (\;‘H(CQF}J) dr <

(r— ad1)2

/0 e~ 22 BrVEFL (\/ﬁAk)

Ver

where d = ﬁ > jes il Prvjll2. Integrating with respect to o € R, we see that
for any 5 <0

1/%/:06&@% (\F(COFh)> dr < —/ A (\/WAO

Equivalently, changing variables u = /5-7, for any 8 < 0

n+h2/ Bu 71(71+1 ( U > 1 X gy < u >
——(CNF) |du < ——— eVvar ——Ay | du
Vst | 7 C N ) it T\

For any A\ > 0, take 8 = —%

2 .
Wil) to obtain

\/m ooeqi’yk( - (CﬂFh)> du < / A‘/"_(1:"7“)’}% <uAk> du
L ), NoT \/ﬁ ANZL
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or, equivalently, changing variables « = Av in the integral on the left-hand side and
u = Ay/n(n + 1)v in the integral on the right-hand side and renaming v as wu,

2 1) 1
In+h ( (CﬂFh)>d Vo +1) / uly/n(n + )Ak i
n+1 disvVk+1 V2T
Since v/k(k + 1)A = Sk, we see that for every A > 0,

© o (ur e anyE e
/0 ‘ ”’“(m(cmm)d S O kD ) Jo (W (k+1)5>d'

Consequently, for any A > 0, taking polars with respect to the closest point in Fj,
to the origin which we assumed to belong to the relative interior of K N Fy,

/ fovknm,y)e (@ / fovenm)e (@)de
vn(n+1) fo
i/ + D)(n+12) Jee ™ (3 /EED )
for every j € J, denote k; as in (3.6) and s; as in (3.7). Then, by (3.6), we have

that
d1vk+1:anSj>Zﬁj:Z=k+1.

JjeJ jeJ j=1

o(z)dz.

Thus, for every A > 0,

n—|—1 /
g o d .
/Fh f()\(KﬁFh)) k+1 n+h2 /]Rk :EZI;; ) (x) X

9. THE WILLS FUNCTIONAL OF PROJECTIONS OF CONVEX BODIES IN LOWNER’S
POSITION

]

In this section we will give the proof of Theorem 1.6.

Proof of Theorem 1.6. Let K be a centrally symmetric convex body in John’s posi-
tion and let Fy € G, be a k-dimensional linear subspace. We follow the notation
in Section 3.2. By (3.11), we have that

(KN Fy)° 2 (ConN Fy)° = conv{£Pp,uj, j € Jo} = conv{x| Pp,uj||2v;, j € Jo}
Since the function d(, (CO N Fp)°)? is convex, for any = € Fy and any {0;},cj, CR
such that x = Z 50

Jj€Jo

0; j, we have that

§0
d(z, (KN Fy)°)? < d(z,(ConFy)°)?=d ka@jl}?,(coﬁl;b)o

Jj€Jo
< 7250 (K0;02, (Co N Fy)°)*
JGJU
2
< 260 (k0;02, [ )| Pryuj 202, || Pryusl|209])

JEJO
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_ Z(sqd (\/EQ'UQ [_PFouj2UQ PFoujQUQ})Z.
= J MAOR vk AN J

For every j € Jy, we set

2
_IPryujll2 o IIPFyujll2 0])

—7d \/Etv(-), vy, vy
fit)y=e ( J[ Ve R V) vteR.

Moreover, for any « € Fy and any {0;};cs, € R such that = Z 6?@11?, we have
Jj€Jo

TT 7% 6;) < o metenm?,
j€Jo

Therefore, by (3.9) and the reverse Brascamp-Lieb inequality (Theorem 2.1),

. g
W(KNFR)*) = /F R | < /R fj(t)dt)

j€Jo
u u 60
_ H 1/6—7"d<t1}?7[— ”PF\O/EJHZ'“?v”PF\O/E]HZU?]>2dt J
i vk Jr
0
1 1Pryusllz o |1Proujlle o]\
_ - W(|: 07 vY, 07 Y
kk/? jl;o \/E J \/% J
0
1 2| Pryuyla\ 7 1
- - 1 0 2 .
Lk/2 jgo( + NG kk/2

10. SECTIONS OF CONVEX BODIES IN MINIMAL SURFACE AREA POSITION

In this section we are going to prove Theorem 1.7. Let us start assuming that K
is a centrally symmetric polytope in minimal surface area position and Fy € G, .
By an approximation argument, the inequalities we obtain will also be true for any
centrally symmetric convex body in minimal surface area position. We will follow
the notation introduced in Section 3.3.

Let Jy and, for every j € Jy, ¢;, 5?, and v? be as in (3.14). Let for every j € Jy,
fj : R — [0,00) be the function

fit)=e
where (vf) denotes the 1-dimensional subspace spanned by v9. Notice that, for
every j € Jy,

77rd(tu?,P<v§)>(KﬁF0))2 V¢ e R

- vf-), 2
/ £t = / . d(tv;.P,0) (KNF)) dt = W(p@?)([( NEFy)).
R R

For every j € Jy, we have that
Py (K N Fo) C [=tihi (ug), tihx (ug)] vf,

where t; is defined as in (3.15). Then, for every j € J,

/]Rfj(t)dt SW ([=tjh (ug), tihi (ui)] v;) = (1 + 2tk (uy)) -
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Therefore, by (3.14) and the Brascamp-Lieb inequality (Theorem 2.1),

2
- NV, P, o (ConF 0
/F ZJEJO J <<x UJ)UJ <?>( 0 0)> - /F H f;'s](@v“%)dx
0 0

()

By the arithmetic-geometric mean inequality and (3.13), we have

0 0
i

TT (4 2 < 3 % (1 2ty (ay)

J€Jo j€Jo

N
=
_|_
=
>
jaR
£
=

JEJ(J

=1 = J 0™J J < 1
T2 0K k:|6K|

Z IF |hK u])

Jj€Jo j€Jo

- n’|K|
<1+ Filh =142 .
k|8K|Z| Ihic(uy) = 1+ 255

Thus,

0 n?| K]\ n?|K|
1+ 2thg(u;) < (1+2 =W B ).
IT @+ 2tghcto® < (125570 ) =w (i)
J€Jo
Let zg € K N Fy. For every x € Fy and every j € Jy we have

) 2077

2
d ((x v; )v Py oy (K N Fo)) <d((z 110)1)?, <x0,uQ>vQ)2 = (v — z9,v;)%
Thus, for every x¢ € Cy N Fy and every x € Fp,

Z 6?d ((x,v?)v?, (ot oy (K M Fp) ) Z 5 — 2,V ] = |z — 20/

Jj€Jo j€Jo

Hence, for every z € Fy,

2
3 6% ( P(Uo>(KﬂFO)> <d(z, K N Fy)2.
Jj€Jo
Consequently,
—7d KNF, 2 WZJEJ _7 ((m,v?)v?’P(U%(KﬂFU))Z
W(EKNF) = /e”(w’ o) da:é/e 0 i dx
F, Fo

(K]
< B |,
W(klam °°>

which proves (i).
Notice that for every A > 0 we have that AK is in minimal surface area position.
Therefore we can use (i) to get that for every A > 0

W(A(KﬂFo))<W< - ||;2|B )

As explained in Section 2.6, the last one implies that V; (KNFy) < V3 ( \gf(ll Bgo)

and V,((KNFy) <V, (A’L ‘gj(llBk ) which are equivalent to (ii) and (iii), respec-

tively.
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Now, using (3.16), we observe that for every = € F,

hxnr,(z) = inf Z|aj|: Zh Ppouj

j€Jo j€Jo
= inf Z|,6j|th;<u] :x—ZB]j ,
Jj€Jo j€Jo

Nl=

where ¢; = m = (5—5) for all j € Jy. For every j € Jy, we define
o“ill2 j

fi(t) = e~ Mtthr (i) ¢ e R,

Then, if z = Z 609]1) for some {0;};cs, C R, we have

j€Jo

0
H f6 > jea 931051t b (uy) < e~ hrnr ()
Jj€Jo

Therefore, by (3.14) and the reverse Brascamp-Lieb inequality (Theorem 2.1),

5
/ e—hxnr (@) g, > H (/ e—tltjhx(uj)dt> ’
Fo 5 R

JjeJ
2k

[Lics, (tihu(uy)%

By the arithmetic-geometric mean inequality and (3.13),

1 59 1| Fj| || Pry s |2 (u;
[T i)™ < 3 Ltshucluy) = 3 L1l Z|a£|2 k(1)

Jj€Jo j€Jo j€Jo

KU (K N Fy)°|

n’|K|

< h
k|8K| Z' Bilhec(us) = 3551
Taking into account that |(B%)°| = |BF| = %, we obtain

k|OK|
o|1/k > 1/k)
‘(KHFO) | = 7’L2|K|‘( ) |

which gives us (iv).
Finally, from (3.15) observe that for every ¢ > 0

HKNFy)={zeFy: |(x,v?>| < ttihi(ug), Vi€ Jo}
y (3.14) and the Brascamp-Lieb inequality (Theorem 2.1), we have that

5?(1:,11]0-)2
e ZjGJO T2
Yk (t(K N Fp)) / g X[—ttjhx (uy),tt; hK('ng)](< >) (27T)k/2 dx
J

50

H ( tt; hK(“J) i > H 89
< / 1 (=t hc (), e (y)]) S
j€Jo —ttjh}( u,) \/

Jj€Jo
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Since the 1-dimensional Gaussian measure is log-concave, we obtain that

k
0 80ttihg (uj)
T 7 (=ttiha (uy) ttshac () < Z% [—e1, e1]
j€Jo j€Jo
8% h (u;
Jj€Jo
Therefore, by (3.13),
3 0jtshrc (us) o U Ej[[| Proujll2h (u)) o n|Fjlhi (uj)
: k _ k|OK| S k|OK]|
j€Jo j€Jo j€Jo
o Sorlflhitw) _n? K]
= ~ koK k |0OK]|
Thus, for any ¢t > 0,
LY
t(KNFp)) < t——D8 .
(ot 0 Fo) <o (o1 L

Therefore,

win ) > (0L pL) ) = KK se)

and we obtain (v).

Let us now assume that K is a (not necessarily symmetric) polytope in minimal
surface area position and Fy € Gy, . Again, by approximation, the inequalities we
obtain will be true for any convex body. By (2.5), we have that for any = € Fp,

1 — 1
52 FillG,udl = 5 D7 1Fjl1Pryullz | (. 0f)]
=1

Jj€Jo

0K]0%%,
= > T )

J€Jo

where the vectors u; are defined as in (3.12) and, for every j € Jo, (59 and v? are
defined as in (3.14) and ¢; is defined as in (3.15). Therefore, by (3.14) and the
Brascamp—Lieb inequality (Theorem 2.1),

10K |69¢;
k!|H*K N FO‘ = / ei‘lx”H*KﬂFodm = / ei ZjEJ() 2n]tJ |<:D,’U(7J>|d$
Fo Fy

10Kt o\ %7
- H<62n|<x,vj>|> s
Fo

Jj€Jo

_‘Ofm tar ? . 4n 630
H(/ ' )‘H(wmtj)

Jj€Jo

- <|E§*I’”‘{|)kﬂ<||PFouj||> (é}g)k

Jj€Jo

N
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To prove the remaining inequality, we start observing that Pp, IIK = (II* K N Fp)°.
Then, for every z € Fp,

04 ..
||| pp. irc = Inf  max |7;] : z = E IaK|ﬂvo
Fo jedo J J

. 2n
Jj€Jo
Any decomposition of x of the form z = 3., 6760;09 with |0;] < |8§L|tj gives a
decomposition of x of the form
0K |69t;7; onb;
T = ——1 =2 with 1, = =—L-.
D PR )= oK
J€Jo
Since max;ej, |7j] < 1, we get that the functions h; = x[_\amj \amtj], j € Jo,
2n ’ 2n

and the function h = x Py TIK have the property that

59
h{ D 0%009 ) = [ hy 6)),

j€Jo Jj€Jo

for every {6;};c5, € R. Hence, by (3.14) and the reverse Brascamp-Lieb inequality

(Theorem 2.1),
/FO h(z)dz > [ (/th(t)dt>6? 1 (anm)g?

|PF0HK| =
j€Jo Jj€Jo
0
- () )= ()
n ) e NP/~ X\ om )
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