000119795 001__ 119795 000119795 005__ 20230111103845.0 000119795 0247_ $$2doi$$a10.3390/foundations2040059 000119795 0248_ $$2sideral$$a130707 000119795 037__ $$aART-2022-130707 000119795 041__ $$aeng 000119795 100__ $$0(orcid)0000-0003-4189-0268$$aMahillo, Alejandro$$uUniversidad de Zaragoza 000119795 245__ $$aCaputo fractional evolution equations in discrete sequences spaces 000119795 260__ $$c2022 000119795 5060_ $$aAccess copy available to the general public$$fUnrestricted 000119795 5203_ $$aIn this paper, we treat some fractional differential equations on the sequence Lebesgue spaces ℓp(N0) with p≥1. The Caputo fractional calculus extends the usual derivation. The operator, associated to the Cauchy problem, is defined by a convolution with a sequence of compact support and belongs to the Banach algebra ℓ1(Z). We treat in detail some of these compact support sequences. We use techniques from Banach algebras and a Functional Analysis to explicity check the solution of the problem. 000119795 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000119795 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000119795 700__ $$0(orcid)0000-0001-9430-343X$$aMiana, Pedro J.$$uUniversidad de Zaragoza 000119795 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático 000119795 773__ $$g2, 4 (2022), 872-884$$pFoundations$$tFoundations$$x2673-9321 000119795 8564_ $$s347663$$uhttps://zaguan.unizar.es/record/119795/files/texto_completo.pdf$$yVersión publicada 000119795 8564_ $$s2212276$$uhttps://zaguan.unizar.es/record/119795/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000119795 909CO $$ooai:zaguan.unizar.es:119795$$particulos$$pdriver 000119795 951__ $$a2023-01-11-10:11:12 000119795 980__ $$aARTICLE