000119797 001__ 119797
000119797 005__ 20240319081002.0
000119797 0247_ $$2doi$$a10.1016/j.catena.2022.106540
000119797 0248_ $$2sideral$$a130734
000119797 037__ $$aART-2022-130734
000119797 041__ $$aeng
000119797 100__ $$aMoret-Fernández, David
000119797 245__ $$aTesting of a commercial vector network analyzer as low-cost TDR device to measure soil moisture and electrical conductivity
000119797 260__ $$c2022
000119797 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119797 5203_ $$aTime Domain Reflectometry (TDR) is a non-destructive technique to determine the soil apparent dielectric constant, εa, the volumetric water content, θ, and bulk electrical conductivity, σ. However, the high cost of TDR devices may limit its use. This study evaluates two different low-cost Vector Network Analyzers (VNA) commercially available (NanoVNA), with 1.5 (VNA1.5) and 3.0 (VNA3.0) GHz maximum operating frequency. NanoVNA can be used for measurements of Frequency Domain Reflectometry (FDR) or, after suitable post-processing, for θ and σ TDR measures. Although FDR and TDR are dual procedures, TDR is easier to interpret for soil experiments. The TDR waveforms and εa measured with NanoVNA connected to 10 and 20 cm length three-rod probes immersed in air, distilled water, and a soil column with different θ were compared to those measured using a TDR100 (Campbell Sci.) instrument. The capacity of VNAs to measure σ was evaluated by immersing a 10 cm length three-rod probe in different NaCl-water solutions. Measurements obtained with the VNA and TDR100 were compared in a field test using two-rod 22 cm length TDR probes inserted in soil plots with increasing water content. A robust fit was observed between TDR waveforms registered with the two VNAs and the TDR100. Although VNA3.0 doubles the frequency range of VNA1.5, both devices allowed for good estimates of εa (εaVNA1.5, 3.0 = 1.001 εaTDR100 – 0.2125; R2 = 0.999). These results indicate that the low-cost VNA devices can measure soil water content with similar accuracy and precision as the TDR100. A good agreement (σVNA1.5, 3.0 = 0.999 σCM + 0.0023; R2 = 0.999) was also observed between the σ measured using a conductivity meter (CM) and that estimated with the VNAs. Finally, a good correlation was also observed between θ measured in the field experiment with TDR100 and the VNA1.5 and VNA3.0 devices.
000119797 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-094332-B-I00
000119797 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000119797 590__ $$a6.2$$b2022
000119797 592__ $$a1.472$$b2022
000119797 591__ $$aGEOSCIENCES, MULTIDISCIPLINARY$$b17 / 202 = 0.084$$c2022$$dQ1$$eT1
000119797 593__ $$aEarth-Surface Processes$$c2022$$dQ1
000119797 591__ $$aSOIL SCIENCE$$b7 / 37 = 0.189$$c2022$$dQ1$$eT1
000119797 591__ $$aWATER RESOURCES$$b12 / 103 = 0.117$$c2022$$dQ1$$eT1
000119797 594__ $$a9.8$$b2022
000119797 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119797 700__ $$0(orcid)0000-0002-1568-1481$$aLera, Francisco$$uUniversidad de Zaragoza
000119797 700__ $$aLatorre, Borja
000119797 700__ $$0(orcid)0000-0001-7037-4970$$aTormo, Jaume$$uUniversidad de Zaragoza
000119797 700__ $$aRevilla, Jesús
000119797 7102_ $$15011$$2220$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cÁrea Ecología
000119797 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000119797 773__ $$g218 (2022), 106540 [8 pp.]$$pCatena$$tCatena$$x0341-8162
000119797 8564_ $$s1308154$$uhttps://zaguan.unizar.es/record/119797/files/texto_completo.pdf$$yVersión publicada
000119797 8564_ $$s2522926$$uhttps://zaguan.unizar.es/record/119797/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119797 909CO $$ooai:zaguan.unizar.es:119797$$particulos$$pdriver
000119797 951__ $$a2024-03-18-14:15:30
000119797 980__ $$aARTICLE