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A B S T R A C T   

In the design of trigeneration plants for buildings, two fundamental issues must be addressed: the synthesis of the 
plant configuration (installed technologies and capacity, etc.) and the operational planning. Given the variety of 
technology options available and great diurnal and annual fluctuations in energy demands, finding the optimal 
supply system of energy services is a complex task. 

Cost allocation in multi-product systems requires special attention because the way in which allocation is 
made will affect the prices of the final products and, consequently, the consumers’ behaviour. When a poly-
generation plant is designed to serve different products, it is possible to achieve a lower total cost. However, if 
potential consumers are free to participate, the system’s management should ensure that every participant shares 
the benefit of joint production. In trigeneration systems this implies that all consumers should achieve, at least, a 
lower cost for their demanded energy services than operating separately. 

The present work proposes a Mixed Integer Linear Programming model to determine the optimal configuration 
of trigeneration systems that must cover the energy demands of electricity, heating and cooling of a residential 
complex located in Zaragoza, Spain. The model considers the possibility of using a set of proposed alternative 
technologies within a superstructure and considers the optimal operation throughout a typical meteorological 
year. The objective function to be minimized is the total annual cost. 

The results indicate that compared to consumers standing alone, the optimal trigeneration system can achieve 
10.6% cost saving. Ten different cost assessment methods to the three final energy products of the analyzed 
trigeneration system are rigorously compared. Cooperative game theory shows that all consumers benefit. Using 
the Shapley values as the distribution criterion, the savings for electricity, heating and cooling consumers are 
4.8%, 20.9% and 11.1%, respectively.   

1. Introduction 

The energy consumption in residential and commercial buildings in 
developed countries continues to grow. Thus, central plants providing 
energy services (utilities) for new and existing urban complexes and 
large buildings present a significant opportunity for polygeneration 
systems. The advantages include greater overall energy efficiency, 
improved quality of energy supply and, above all, lower cost for the 
building utility services. From a system performance perspective, there 
are three essential factors which favour installing integrated energy 
supply systems: (i) the correct combination of certain types of technol-
ogies reduces the primary energy input and the fuel bill between 30 and 
60%; (ii) natural gas utilization as fuel allows the introduction of new 
technologies such as gas engines, low temperature and condensing 

boilers, gas engine driven chillers and gas fired absorption chillers; and 
(iii) the installation of engine generators and energy efficient gas-fired 
refrigeration technologies reduce electrical demand during peak cool-
ing times. Next, from a market economic viewpoint, electrical deregu-
lation has in general contributed to an increase of electricity prices 
during the periods of higher electrical demand during seasons of the 
year requiring cooling. 

The commercial availability of a large variety of energy conversion 
technologies and the need to integrate them in the most energy efficient 
way makes the process of selecting the best combination of such tech-
nologies a difficult and tedious task [1]. In addition, for a given site, 
there are often several technically feasible combinations. In the indus-
trial sector, this problem has been dealt successfully [2] using Mixed 
Integer Linear Programming (MILP) techniques; with the advantage that 
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most industrial facilities show less variation in energy demand than their 
residential or commercial counterparts. The mathematical foundation of 
applied MILP can be found in Nemhauser and Wolsey [3]. Iyer and 
Grossmann [4], Yokoyama et al. [5], Lozano et al. [6–8], and Pina et al. 
[9] have applied such techniques to polygeneration systems design for 
(a) the selection of the number and size of equipment to be installed and 
(b) to find the optimal way of operating the equipment. 

The allocation of the cost in joint production process resulting in the 
output of several products is a complex task because of nonseparable 
(fixed and/or variable) costs. The need for allocation schemes arises in 
many applications and the potential benefits from a good cost allocation 
between products that are jointly produced have been the topic of a 
great variety of research works [10]. Cost allocation in multi-product 
systems requires special attention because the way in which allocation 
is made will affect the prices of the final products and, consequently, the 
consumers’ behaviour. So, when a polygeneration plant is designed to 
serve different products, it is possible to achieve a lower total cost; 
however, if potential consumers are free to participate, the system’s 
management should ensure that every participant shares the benefit of 
joint production. In trigeneration systems this implies that all consumers 
should achieve, at least, a lower cost for their demanded energy services 
than operating separately. Thermoeconomics has been used to explain 
the cost formation process of internal and final products in complex 
energy systems [11–13]. 

Cooperative game theory is concerned primarily with players who 
coordinate their actions and pool their winnings [14–16]. Fiestras et al. 
[16] provide general view of applications of cooperative games to cost 
allocation problems in three specific areas: transportation, natural re-
sources and power industry. Young [15] presents four interesting ex-
amples of the application of game theory to the sharing of common costs 
in engineering projects. The first of these has to do with the creation in 
the 1930s of the Tennessee Valley Authority where the water reservoirs 
to be built would serve various purposes: navigation, flood control and 
electricity production. Lozano et al. [17] applies a cooperative game 
theory approach to allocating benefits of horizontal cooperation iden-
tifying and exploiting win-win situations among companies at the same 
level of the supply chain. Numerous applications can be found in elec-
trical power production and distribution systems. For example, Song-
huai et al. [18] propose how to apply cooperative game theory to 
distribute power losses in an electricity supply network. Erli et al. [19] 
address the problem of how to expand transmission capacity and charge 
users with costs in the face of a congested electricity grid. Sauhats et al. 
[20] show how the collaboration of two small hydroelectric plants with 
a manager that facilitates the sale of their electricity generated to the 
grid, at market prices instead of a fixed rate, changes the optimal load 
curve of the plants in their daily operation and benefits the three 
participating agents. Neimane et al. [21] address the problem of cost 
sharing between the two products (heat and work) of a cogeneration 
plant. Wu et al. [22] propose a MILP model for the synthesis of a 
cogeneration system capable of meeting the demand of three buildings 
and analyze different cost sharing criteria based on cooperative game 
theory. Another application of interest is to establish acceptable rules for 
an operator to be in charge of commanding a community of prosumers 
that have their energy production systems (photovoltaic panels, 
micro-cogeneration plants, etc.) seeking to obtain a benefit for all of 
them thanks to a favourable exchange between prosumers and the 
electricity grid [23,24]. 

This paper proposes an optimization model for the synthesis of en-
ergy supply systems in buildings, based on the comparison of the eco-
nomic annual balances for all feasible plant configurations contained in 
a superstructure. The model was applied to the design of a trigeneration 
system for a residential complex in Zaragoza, Spain. The effects of 
financial market conditions in the optimal structure of the system are 
analyzed. The results indicate that compared to consumers standing 
alone, the optimal trigeneration system can achieve 10.6% cost saving. 
Ten different cost assessment methods to the three final energy products 

of the analyzed trigeneration system are rigorously compared. Cooper-
ative game theory shows that all consumers benefit. Using the Shapley 
values as the distribution criterion, the savings for electricity, heating 
and cooling consumers are respectively 4.8%, 20.9% and 11.1%, 
respectively. 

2. Trigeneration system 

The basis for this research is the superstructure shown in Fig. 1 and 
the fundamental mathematical model implicit in Table 1. More infor-
mation about the model presented in this section can be consulted in 
Lozano and Ramos [8]. 

The technology behind trigeneration is fundamentally based on the 
coupling of a cogeneration module with an absorption chiller. The 
cogeneration module includes a thermal motor (a gas turbine or recip-
rocating engine, for example) that converts the fuel’s energy into me-
chanical energy, an alternator that converts the mechanical energy into 
electrical energy, and a set of heat exchangers to recover useful heat. The 
absorption chiller can produce cooling by means of using recovered 
heat. There are different types of trigeneration systems, which are 
distinguished by the incorporation of additional equipment. Usually, the 
trigeneration system is complemented by hot water boilers and vapor 
compression chillers. Both technologies are used to guarantee supply 
and to avoid oversizing the cogeneration module and the associated 
absorption chiller. The key in operating trigeneration systems is to 
satisfy the demand with a minimal economic cost. The idea is that the 
cogeneration module, jointly with the absorption chiller, satisfies the 
average thermal demand for the different services (heating and cooling), 
while the conventional units (boilers and compression chiller) are uti-
lized in an auxiliary way to make up for the peak demands. Therefore, 
supply is guaranteed, and the installation is reliable, since the existence 
of conventional equipment assures the satisfaction of the thermal de-
mand. The residual heat flows that are not used must be evacuated to the 
environment through the use of cooling towers or other devices, which 
are therefore important elements of trigeneration plants. 

To solve the fundamental issue of synthesizing the plant’s configu-
ration, a reducible structure (known as superstructure) was created to 
embed all feasible process options and interconnections that are candi-
dates for the optimal design structure [4–9]. Redundant features were 
built into the superstructure to ensure that all features that could be part 
of an optimal solution were included. This approach has several ad-
vantages: (a) many different design options can be considered at the 
same time, (b) the complex multiple trade-offs usually encountered in 
energy supply systems design can be handled, and (c) the entire design 
procedure can be automated and is capable of producing designs quickly 
and efficiently. 

The advantage is that with a single calculation model and limiting 
with binary variables the technologies present, the demands to be met or 
the optimization criteria to be used, the desired results can be obtained. 
This allows not only to reach the global optimum but also to compare the 
results corresponding to various system configurations as we will see in 
this paper. 

Fig. 1 depicts the superstructure of the energy supply system 
considered in this study, showing the proposed technologies that can be 
selected, the available energy utilities that can be present, and the in-
teractions between technologies and utilities. The utilities are natural 
gas NG, electrical energy EE, high-temperature water HTW (90 ◦C), 
domestic hot water DHW (60 ◦C) for sanitary and heating services, 
cooling tower water CTW (T0 + 5 ◦C), atmospheric air-cooling AA (T0), 
and chilled water CW (5 ◦C) for air conditioning. The candidate tech-
nologies in the superstructure can satisfy the energy demands (D) of the 
consumer centre by consuming (C) natural gas and electricity purchased 
from the market. We also consider other energy utilities that may be 
needed to produce the previously defined demanded utilities, such as the 
HTW. In addition, the CTW and AA utilities are used to dissipate (L) 
heat to the environment. The possibility that a fraction of cogenerated 

M.A. Lozano et al.                                                                                                                                                                                                                              



Energy 261 (2022) 125299

3

electricity could be sold (V) to the grid exists. 
All technology and equipment considered in the optimization were 

commercially available. Although only one unit was drawn for each type 
of technology in Fig. 1, there could be several pieces. The mathematical 
models that represent the operation of the equipment assume that the 
energy utilities consumption and production are directly proportional to 
one another. In this case, the proportionality constant is known as the 
technical coefficient of production (TCP), whose value was calculated 
from information available in the literature, equipment catalogues, and 

consultations with manufacturers. The detailed assessment of the TCP 
values for each technology can be found in Ramos [24]. 

The algebraic model in Table 1 is expressed in terms of the TCPs, 
which are defined as follows. The rows indicate potential energy con-
version technologies and the columns primary and demanded energy 
utilities. The highlighted TCP (boldface 1) shows the flow that defines 
the capacity of the technology. A positive technical coefficient indicates 
a produced utility and a negative one a consumed utility. For instance, 
using a MGWC technology (see technology definitions at the bottom of 

Fig. 1. Superstructure of the energy supply system.  

Table 1 
Technical coefficients of production (TCP) and technology data matrix (TDM).  

Technology Utility Cost data 

NG HTW DHW CTW AA CW EE CY 
103 $ 

cx 
$/kW 

co 
$/kWh 

MGWC − 2.6 +1.1 +0.1 +0.1 – – +1 600 1800 0 
MGWT − 2.6 – +1.2 +0.1 – – +1 600 1800 0 
CGWC − 1.2 +1 – – – – – 90 120 0 
CGWT − 1.1 – +1 – – – – 60 90 0 
FMWR – – – +1.17 – +1 − 0.17 90 240 0 
FAWC – − 1.6 – +2.6 – +1 − 0.01 120 360 0 
ICWC – − 1 +1 – – – – 15 15 0 
ICWT – – − 1 +1 – – – 15 15 0 
ICWR – – – − 1 +1 – − 0.02 30 60 0.003 

Nomenclature: MGWC: Gas Engine + Heat recovery for HTW and DHW 
MGWT: Gas Engine + Heat recovery for DHW 
CGWC: HTW boiler 
CGWT: DHW boiler 
FMWR: Electrically driven chiller with water cooled condenser 
FAWC: Hot temperature water heated single-effect absorption chiller 
ICWC: Heat exchanger, HTW → DHW 
ICWT: Heat exchanger, DHW → CTW 
ICWR: Cooling tower to reject heat 

M.A. Lozano et al.                                                                                                                                                                                                                              



Energy 261 (2022) 125299

4

Table 1) we have electrical energy (EE) as its main output, since its TCP 
is þ1. Next, to produce x MW of electricity (EE), MGWC needs to 
consume 2.6x MW of natural gas (NG), it recovers 1.1x MW of high 
temperature hot water (HTW) and 0.1x MW of domestic hot water 
(DHW), and rejects 0.1x MW of heat to the environment through the 
cooling tower water (CTW). It was considered that the production co-
efficients were constant and independent of the operation load, so that 
the production P ≤ Π installed (see Section 2.2) of the equipment at any 
given moment. 

2.1. Demand and economic data 

The proposed optimization model was applied to a trigeneration 
system that supplies electricity, heating, and cooling to a residential 
complex building in Zaragoza (Spain). The annual demand data are 
characterized by using the energy consumption of a typical day for each 
of the 12 months of the year. Each day is divided into 12 2-h periods. 
This results in a total of 144 periods, each with a set of different heating, 
cooling and power demands. More information about the energy de-
mands data can be consulted in Ramos [24]. Table 2 shows the demands 
for the residential building complex for three significant months: 
December (high heating consumption), April (no heating and no cool-
ing) and August (high cooling consumption). 

The investment cost for technologies is given in Table 1 expressed as 
a linear function of capacity installed. Non-energy operating costs are 
only considered for cooling towers. The price of natural gas is ccNG =
0.045 $/kWh. The prices for purchased and sold electricity during flat- 
demand hours are ccEE = 0.150 $/kWh and cvEE = 0.135 $/kWh, 
respectively. Such prices are multiplied by 1.50 during peak-demand 
hours (Oct–Mar: 18:00–22:00, Apr–Sep: 10:00–14:00); and by 0.75 
during low-demand hours (Jan–Dec: 00:00–08:00). Note that flat- 
demand hours are all those which are not peak or low demand hours. 
These data are only approximate. 

2.2. MILP model for technology selection 

The MILP model minimizes the total annual cost CA of the system 
(expressed in $/y): 

CA= fa⋅
∑

i
CIi +

∑

k
NHk⋅CHk (1)  

Where 

fa capital amortization factor [y− 1] 
CIi cost of investment or first cost of technology i [$] 
NHk number of hours in period k [h/y] 
CHk plant operation cost in each period k [$/h] 

The objective function is subject to the following restrictions: 

The power Π (kW) installed for technology i: 

Pmin
i ⋅ yi ≤ Πi ≤ Pmax

i ⋅yi (2)  

Where 

Pmin
i and Pmax

i minimum and maximum installable capacities, 
respectively [kW] 
yi ∈ {0,1} binary variable related to the existence of technology i 

The investment cost for technology i: 

CIi = CYi⋅yi + cxi⋅Πi (3)  

Where 

CYi fixed cost related to the investment of technology i [$] 
cxi variable cost related to the investment of technology i [$/kW] 

For each period k, several restrictions apply as explained below. 
Production limit for technology i: 

Pi,k ≤ Πi (4)  

Where Pi,k is the production in kW of the technology i in the period k. 
Operating cost for technology i: 

COi,k = coi⋅Pi,k (5)  

Where coi is the unit operation cost of the technology i expressed in 
$/kWh. 

Flow-product relationship for each utility j: 

Fi,j,k = TCPi,j⋅Pi,k (6)  

Where TCPi,j is the technical coefficient of production given in Table 1. 
Energy balance for each utility j: 

Cj,k +
∑

i
Fi,j,k − Dj,k − Lj,k − Vj,k = 0 (7)  

Where C represents purchases (NG, EE), D demand (DHW, CW, EE), L 
losses to the surroundings (AA) and V sales (EE). 

Finally, the plant hourly operation cost is defined by: 

CHk =
∑

j
ccj⋅Cj,k − clj⋅Lj,k − cvj⋅Vj,k +

∑

j
COi,k (8)  

Where ccj, clj and cvj are the unit costs in $/kWh attributed to the pur-
chase, loss and sale of the utility j, respectively. 

There is an additional condition when gas engines are installed: the 
annual equivalent electrical efficiency of cogeneration modules must be 
larger than 55%. 

To solve the MILP model, we have used the mathematical 

Table 2 
Energy demands for three significant months of the year. Adapted from Ref. [24].  

Period December April August 

Heating kW Cooling kW Electricity kW Heating kW Cooling kW Electricity kW Heating kW Cooling kW Electricity kW 

0–2 60 0 120 20 0 140 20 100 100 
2–4 640 0 100 0 0 100 0 80 80 
4–6 1220 0 100 100 0 100 80 60 60 
6–8 1380 0 120 220 0 120 180 100 100 
8–10 2440 0 180 180 0 180 140 140 140 
10–12 1320 0 260 180 0 260 140 180 180 
12–14 800 0 240 300 0 260 240 180 180 
14–16 700 0 180 260 0 200 200 140 140 
16–18 620 0 220 100 0 220 80 160 160 
18–20 1040 0 240 160 0 260 140 180 180 
20–22 1700 0 240 320 0 260 260 180 180 
22–24 140 0 180 6 0 180 60 140 140  
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programming software LINGO [25]. 

2.3. Optimal results 

One of the most remarkable findings of this research is the de-
pendency between the optimal plant configuration and the capital re-
covery factor fa. Logically, a lower cost of capital favors more efficient 
technologies which tend to have higher installed costs. We obtained the 
optimal solutions shown in Table 3 with the MILP model described 
above. fu is the utilization factor: quotient of dividing the energy that a 
technology has produced or consumed in the year by what it would have 
produced or consumed if it had operated at nominal power all the year. 

With fa ¼ 0.20 y¡1 the optimal solution corresponds to install gas 
fired hot water boilers (ΠCGWT = 2780 kW) and mechanical chillers 
(ΠFMWR = 2320 kW). 
With fa ¼ 0.15 y¡1 we must add gas fired engines with DHW heat 
recovery (ΠMGWT = 550 kW, ΠCGWT = 2120 kW, and ΠFMWR = 2320 
kW). 
With fa ¼ 0.10 y¡1 gas engines with cogenerated hot water HTW are 
installed, and hot-water heated absorption chillers become feasible 
(ΠMGWC = 1283 kW, ΠCGWT = 1240 kW, ΠFMWR = 1445 kW, and 
ΠFAWC = 875 kW. 

In what follows we will consider the case with an amortization factor 
fa ¼ 0.10 y¡1. Fig. 2 shows the installed power of the technologies 
present in the optimal solution as well as the annual magnitude of the 
different energy flows. A greater detail of the hour-by-hour operation 
and the optimal operation strategies throughout the year can be found in 
Ramos [24]. 

Table 4 shows the optimal solution corresponding to the systems that 
would meet separately the demands for heat {H}, cold {C} and elec-
tricity {E}; as well as the combined demands of two of the services: heat 
and cold {H, C}, heat and electricity {H, E}, and cold and electricity {C, 
E}; and finally, all the demands together {H, C, E}. As can be seen, the 
collaboration between C and E does not bring benefits compared to 
separate production, the collaboration between H and E leads to savings 
of 24.14⋅103 $/y, and the collaboration between H and C entails a saving 
of 34.83⋅103 $/y. When all the services are produced with the same 
installation, the maximum annual saving of 58.97⋅103 $/y is achieved. 
As can be seen, the facilities for {H, C} and {H, C, E} have the same 
equipment. The difference is that in {H, C} it is not allowed to sell 
electricity, and in {H, C, E} it is allowed. 

Conclusion: designing an installation capable of producing the three 
energy services demanded and operating it allowing the sale of elec-
tricity to the grid entails maximum economic savings for the applicants. 

But how should they distribute said savings among them? 

3. Cooperative game theory 

3.1. Cost accounting 

If an energy supply system covers three services, they form a coop-
erative game G = (J, c) where the participants set is recorded as J = {H, 
C, E}. Each alliance between participants is represented as S, where S⫅J 
and the characteristic function c(S) represents the annual cost under 
alliance S. The vector x = (xH, xC, xE) denotes the game results: the 
portion of the total annual cost assigned to each participant. 

The basic assumption of the cooperative game is that participants are 
free to collaborate with each other. Thus, three participants can form 7 
alliances S: {H}, {C}, {E}, {H, C}, {H, E}, {C, E}, and {H, C, E}. 

Given an allocation scheme x, if the sum of the costs assigned to some 
participants in an alliance S is greater than the cost forming another 
alliance, these participants will break the current alliance and proceed to 
be part of another. 

3.2. Classic methods 

Some classic methods used for allocating total cost c(J) = CT{H, C, 
E} are the following: 

M1: Equal repartition of the total gain: 

xi = c(i) −
1
3

[
∑3

j=1
c(j) − c(J)

]

(9)   

M2: Proportional repartition of the total gain: 

xi =
c(i)

∑3
j=1c(j)

c(J) (10) 

The method M2, also known as the Moriarity method [26], has been 
applied by the authors as a rational proposal for the allocation of joint 
production costs in Thermoeconomics [13]. 

M3: Equal repartition of the non-marginal cost: 

xi = cm(i) +
1
3

[

c(J) −
∑3

j=1
cm(j)

]

(11) 

The marginal cost, cm(i) = c(J) − c(J\{i}) is the additional cost when 
participant i joins to form the grand coalition J. In Table 4 the marginal 
costs corresponding to the energy services have been noted. 

M4: Proportional repartition to marginal cost: 

xi =
cm(i)

∑3
j=1cm(j)

c(J) (12)   

M5: Proportional repartition of the non-marginal costs: 

xi = cm(i) +
c(i) − cm(i)

∑3
j=1c(j) − cm(j)

[

c(J) −
∑3

j=1
cm(j)

]

(13) 

The five classic methods recommend different allocations as can be 
seen in Table 5. 

Method M2 does not meet property b as electricity consumers pay a 
price 229.28⋅103 $/y less than its marginal cost 231.86⋅103 $/y (see 
Table 4). Therefore, they will be subsidized by the heat and cold con-
sumers, who will not accept it. Method M4 does not meet property a 
because electricity consumers pay a higher price 262.45⋅103 $/y than 
the market price 256.00⋅103 $/y (see Table 4) and therefore subsidize 

Table 3 
Optimal energy system configuration based on financial conditions.   

fa = 0.20 y− 1 fa = 0.15 y− 1 fa = 0.10 y− 1  

Π 
[kW] 

fu 
[%] 

Π 
[kW] 

fu 
[%] 

Π 
[kW] 

fu 
[%] 

MGWC – – – – 1283 61.6 
MGWT – – 550 74.9 – – 
CGWC – – – – – – 
CGWT 2780 15.8 2120 7.0 1240 2.4 
FMWR 2320 10.6 2320 10.6 1445 7.3 
FAWC – – – – 875 16.2 
ICWC – – – – 1412 45.5 
ICWT – – 520 39.4 1380 23.1 
ICWR 2714 10.6 2769 19.3 4094 21.6 

Capital cost [103 

$/y] 
229.97 406.07 430.09 

Operation cost [103 

$/y] 
521.79 272.16 75.85 

CT Total cost [103 

$/y] 
751.76 678.23 505.96  
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heat and cold consumers. 

3.3. Cooperative game theory methods 

The core of the game is the set of imputations such that 
∑

i∈S
xi ≤ c(S),∀

S⫅J. Conditions a and b also define the core of the game in the 3-player 
case. The core of a game may be void. In that case, there is at least a 
subset of participants S who have interest to separate from the rest of J. 

Fortunately, in most of the applications in polygeneration systems, 
economies of scale and/or scope are so large that a non-empty core 
exists. In our case the application of the conditions a and b allow us to 
affirm that the cost distributions of the optimal energy supply system 
belonging to the core of the game are given by: 17.8% < xH < 29.5%, 
24.7% < xC < 31.6%, and 45.8% < xE < 50.6%. Fig. 3 shows the core of 

the game in a triangular diagram. It can be verified again in Table 5 that 
the distributions of the classic methods M1, M3, and M5, belong to the 
core of the game. 

Although the stability of cost allocation is a necessary condition for 
the existence of a cooperative game, it is also necessary to compare the 
fairness of the different distributions belonging to the core of the game 
and find the one that convinces the players not only of the interest of 
participating in it but also in the justice of the distribution [27]. More-
over, since the core does not always exist, and there are infinite solutions 
even if it exists, it is necessary to find a method to select the distribution 
recognized as fair by all participants. 

The Shapley value method [28] of the cooperative game theory may 
solve these problems on the basis of each participant’s marginal 
contribution to the different subsets S of J in which it participates. The 

Fig. 2. Superstructure of the optimal energy supply system (fa ¼ 0.10 y¡1) with annual energy flows in MWh.  

Table 4 
Optimal solutions for the different combinations of energy services served (fa ¼ 0.10 y¡1).   

{H} {C} {E} {H, C} {H, E} {C, E} {H, C, E} 

MGWC: Π [kW] – – – 1283 – – 1283 
MGWT: Π [kW] 983 – – – 983 – – 
CGWC: Π [kW] – – – – – – – 
CGWT: Π [kW] 1600 – – 1240 1600 – 1240 
FMWR: Π [kW] – 2320 – 1445 – 2320 1445 
FAWC: Π [kW] – – – 875 – – 875 
ICWC: Π [kW] – – – 1412 – – 1412 
ICWT: Π [kW] 1040 – – 1380 1040 – 1380 
ICWR: Π [kW] 1138 2714 – 4094 1138 2714 4094 

Capital cost [103 $/y] 270.29 83.97 – 430.09 270.29 83.97 430.09 
Operation cost [103 $/y] − 121.22 75.89 256.00 − 155.99 110.64 331.90 75.87 
CT: Total cost [103 $/y] 149.07 159.86 256.00 274.10 380.93 415.86 505.96 

cm: Marginal cost [103 $/y] 90.10 125.03 231.86 – – – – 

CA: Cost avoidance [103 $/y] – – – 34.83 24.14 0.00 58.97  
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only cost allocation that satisfies the axioms of symmetry, inessential 
players, and additivity, formulated by Shapley is 

xi =
1
n!
∑

S⫅J
(s − 1)!⋅(n − s)![c(S\{i})+ c(i) − c(S)] (14)  

where n is the total number of participants in the game and s the number 
of participants in the coalition S in which participant i is present. An 
interpretation of the Shapley value is the mathematical expectation of 
the admission cost when all orders of formation of the grand coalition 
are equiprobable. 

The nucleolus measures the “happiness degree” of each coalition S 
with a proposed cost by the difference between the cost it can secure and 
the proposed cost. Define the excess e(x,S) = c(S) - 

∑

i∈S
xi. If the excess is 

negative for one or more coalitions, the proposed allocation is outside of 
the core and unacceptable. If it is positive for all coalitions, the alloca-
tion is acceptable but all of them will want to achieve the highest degree 

of happiness. The nucleolus is the allocation that maximizes lexico-
graphically the minimal excess [29]. To calculate the nucleolus of the 
game, the following linear program is solved [15]: 

Max d subject to e(x,S)≥ d,∀S ⫅ J and
∑n

i=1
xi = c(J) (15) 

The proportional nucleolus [30] is obtained when the measures the 
“happiness degree” of each coalition S is defined by the relative excess 
ep(x,S) = 1 - 

∑

i∈S
xi/c(S). The linear program to be solved is 

Max dp subject to ep(x, S)≥ dp, ∀S ⫅ J and
∑n

i=1
xi = c(J) (16) 

The three previous methods, which are among the most recom-
mended by specialists in cooperative game theory, provide the distri-
butions of total cost shown in Table 5. It can be verified that the three 
distributions are within the core of the game. 

Table 5 
Distribution of costs according to the different methods (fa ¼ 0.10 y¡1).  

Method Heating (H) Cooling (C) Electricity (E) 

x 
103 $/y 

% cu 
$/kWh 

x 
103 $/y 

% cu 
$/kWh 

x 
103 $/y 

% cu 
$/kWh 

M1 129.42 25.6 0.0337 140.20 27.7 0.0649 236.34 46.7 0.1470 
M2 133.51 26.4 0.0348 143.17 28.3 0.0663 229.28 45.3 0.1426 
M3 109.75 21.7 0.0286 144.69 28.6 0.0670 251.52 49.7 0.1565 
M4 101.99 20.1 0.0266 141.52 28.0 0.0655 262.45 51.9 0.1633 
M5 119.58 23.6 0.0312 142.45 28.2 0.0660 243.93 48.2 0.1518 

Shapley 119.58 23.6 0.0312 142.45 28.2 0.0660 243.93 48.2 0.1518 
Nucleolus 114.24 22.6 0.0298 147.79 29.2 0.0684 243.34 48.2 0.1518 
Proportional nucleolus 119.24 23.6 0.0311 142.38 28.1 0.0659 244.34 48.3 0.1520 

To check the stability of these or other allocations we must verify that they meet the following two conditions. 
a. Individual rationality: xi ≤ c(i). For a participant to be willing to collaborate, it is necessary to receive a cost reduction. 
b. Collective rationality: xi ≥ cm(i). No participant will be allowed to collaborate with a cost lower than its marginal cost.  

Fig. 3. Triangular diagram showing possible distributions of total cost CT and the core.  
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4. Discussion 

We agree that there is no single solution to the problem of cost 
allocation. In fact, according to the principles of management cost ac-
counting, the method chosen for cost allocation should consider above 
all the objective pursued by the allocation. Our stated objective is that 
once it has been demonstrated that consumers of energy services 
(heating, cooling, and electricity) are interested in the joint production in 
an energy integrated system, it must be verified that the established cost 
allocation meets the conditions of individual rationality and collective 
rationality, i.e. that consumers of the three services find it economically 
profitable to join forces with the other consumers, thus obtaining ben-
efits from the coalition for all of them. 

We have compared the results of five classical methods proposed by 
cost accounting theory and three methods based on the theory of 
cooperative games that directly seek the satisfaction of the stated 
objective (that cost sharing belongs to the core of the game, see Fig. 3). 
We have been able to verify (Table 5) that three of the classical methods 
(M1, M3, and M5) and the three methods based on cooperative game 
theory (Shapley, nucleolus, and proportional nucleolus) result in satis-
factory cost shares. The advantage of the latter is that their application 
requires the confirmation of a set of conditions (stability, belonging to 
the core of the game, fairness). Lemaire [14] and Young [15] analyze in 
detail some properties (collective rationality, monotonicity in costs, 
additivity, consistency or stability, and staying in the core) presenting 
theoretical arguments to elucidate the merits of these and other methods 
of the cooperative game theory. An advantage of the Shapley method is 
that it always provides a cost allocation even when the core is empty. On 
the contrary, it has the disadvantage that the proposed cost allocation 
can be outside the core when it is not empty. In particular, Lemaire [14] 
ends up recommending the proportional nucleolus method. Young [15] 
in his study of the methods and principles concludes: “In sum, there is no 
all-embracing solution to the cost allocation problem. Which method 
suits best depends on the context, the computational resources, and the 
amount of cost and benefit information available”. 

In conclusion, it is important to emphasize that, more than a ne-
cessity, the application of cooperative game theory to the cost allocation 
of multi-product energy systems is about proposing alternative ap-
proaches to achieving equitable and cost-and-benefit apportionment of 
the joint production costs. This is done with the intent of promoting 
widespread deployment of polygeneration systems in buildings appli-
cations, which can only be achieved by getting the buy-in from end- 
consumers and by providing companies with better investment oppor-
tunities. On the one hand, end-consumers are the ones who will ulti-
mately select which suppliers will provide them with the energy services 
they require, so they must be offered cheaper energy services prices 
relative to other alternatives available in the market. On the other hand, 
energy services companies, which will install and operate the plants, 
will aim at increasing their market share while maintaining cost 
competitiveness. 

Previous cost allocation results could be compared with those sug-
gested by the methods based on energy and exergy analysis. 

The case of energy analysis leads to establishing that the total cost 
should be imputed to the energy services in proportion to the energy 
flows produced by the trigeneration system; that is, the unit energy cost 
should be equal for heating, cooling, and electricity, as shown in Table 6. 

As can be seen, a cost sharing for the optimal trigeneration system 
that intends to apply the same unit cost per unit of energy to the three 
energy services would be drastically rejected by the heat consumers 
because if they were to collaborate, they would end up slightly subsi-
dizing the cold consumers and exaggeratedly subsidizing the electricity 
consumers. 

It should be taken into consideration that the exergy analysis re-
quires the application of an ambient temperature for the calculation of 
the exergy of the flows and a specific temperature for the heat and cold 
flows produced. The relationship between exergy B and energy E is given 

by the Carnot factor: 

B
E
= 1 −

T0

Tb
(17)  

where T0 and Tb are the ambient temperature and the average thermo-
dynamic temperature of the energy flow, respectively, both expressed in 
Kelvin. 

The heat flow produced consists of water that is supplied at T2 =

70 ◦C and returns at T1 = 50 ◦C. Therefore, 

Tb(Q)=
T2(Q) − T1(Q)

ln T2(Q)

T1(Q)

=
20

ln 273.15+70
273.15+50

= 333.05 K (18) 

We considered as ambient temperature T0 = 9.3 ◦C, the average for 
Zaragoza of the daily average temperatures during the heating season 
(from November to April), resulting in 

B(Q)

E(Q)
= 1 −

T0(Q)

Tb(Q)
= 1 −

273.15 + 9.3
333.05

= 0.1519 (19) 

The cold flow produced consists of water which is supplied at T2 =

7 ◦C and returns at T1 = 12 ◦C. Therefore, 

Tb(R)=
T2(R) − T1(R)

ln T2(R)
T1(R)

=
− 5

ln 273.15+7
273.15+12

= 282.64 K (20) 

We considered as ambient temperature T0 = 29.2 ◦C, the average for 
Zaragoza of the maximum daily temperatures during the heating season 
(from June to September), resulting in 

B(R)
E(R)

= 1 −
T0

Tb
= 1 −

273.15 + 29.2
282.64

= − 0.0697 (21) 

The case of the exergy analysis leads to establishing that the total cost 
should be charged to the energy services in proportion to the exergy 
flows produced by the trigeneration system, i.e., the unit exergy cost 
should be equal for heating, cooling, and electricity. The obtained values 
are shown in Table 7. 

As can be seen, a cost sharing for the optimal trigeneration system 
that intends to apply the same unit cost per unit of exergy to the three 
energy services would be drastically rejected by the electricity con-
sumers because if they were to collaborate, they would end up slightly 
subsidizing the heat consumers and exaggeratedly subsidizing the cold 
consumers. 

The cost allocation consisting in valuing equally the exergy of the 
products, although it seems consistent with thermodynamic principles, 
collides, as we have seen, with the additional difficulty of assigning the 
values of T0 and Tb. A detailed thermoeconomic analysis that considers 
the operation hour by hour throughout the year would certainly provide 
more acceptable results. 

Table 6 
Annual costs of final energy products assigned in energy basis and average unit 
vs reference costs.  

Energy 
service 

Energy 
(MWh/y) 

Annual cost ($/y) Unit cost 
($/MWh) 

Reference costa 

($/MWh) 

Heating 3836 (3836/7603) ⋅ 
505960 =
255,280 

66.5 38.9 

Cooling 2160 (2160/7603) ⋅ 
505960 =
143,740 

66.5 74.0 

Electricity 1607 (1607/7603) ⋅ 
505960 =
106,940 

66.5 159.3 

TOTAL 7603 505,960    

a Reference cost: refers to the optimal separate production of the energy 
service. 
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5. Conclusions 

In the case with an amortization factor fa ¼ 0.10 y¡1 Fig. 2 shows 
the installed power of the technologies present in the optimal solution as 
well as the annual magnitude of the different energy flows. The three 
energy services are produced with the trigeneration system and an 
annual saving of 58.97⋅103 $/y is achieved. So, this trigeneration system 
that is capable of producing the three energy services demanded and 
operate by selling electricity to the grid if it is economically convenient, 
entails maximum economic savings for the applicants. But how should 
they distribute said savings among them? 

In the example discussed here, we see that 6 of the 8 methods provide 
a cost sharing that is at the core of the game. Also, there are no major 
differences in the costs assigned to the three energy services. For 
example, the unit costs proposed by the Shapley and proportional 
nucleolus methods are practically identical. The results indicate that 
compared to consumers standing alone, the optimal trigeneration sys-
tem can achieve 10.6% cost saving. Cooperative game theory shows that 
all consumers benefit. Using the Shapley values as the distribution cri-
terion, the savings for electricity, heating and cooling consumers are 
respectively 4.8%, 20.9% and 11.1%, respectively. 

Additionally, the costs obtained for the final energy products 
applying classical thermoeconomics methods, based on cost assessment 
proportional to energy and proportional to exergy, have also been 
calculated. The interesting result obtained is that thermoeconomic cost 
assessment proportional to energy and proportional to exergy do not 
provide cost values aligned with the objective pursued of economically 
benefitting all consumers. Thermoeconomic cost assessment methods 
are mainly based on thermodynamics and their allocation methods do 
not implicitly encompass achieving equitable and cost-and-benefit 
apportionment of the joint production costs. 

The application of the cost allocation methodology presented in this 
document is independent of the optimal design method used. The 
starting point is to have the results corresponding to the optimal poly-
generation system capable of meeting all the energy services demanded 
(heating, cooling and electricity in our example) and also to have as a 
reference the total cost of the optimal systems capable of meeting some 
of these services (as shown in Table 4 in our example). Fulfilling this 
condition, the methodology is easy to apply and allows to obtain an 
acceptable distribution of the total projected costs among the consumers 
of the energy services. Logically, a model for design optimization will 
provide more accurate results to the extent that it takes into account the 
following factors: (i) the size of the equipment (e.g. economies of scale, 
technical parameters, energy prices as a function of the amount of en-
ergy resources consumed); (ii) the location of the system (e. g. policies, 
subsidies, power exchange regulations); and (iii) the duration of the 

analysis, including the temporal resolution of the model (e.g. daily, 
hourly or minute basis) and the time span (e.g. years, seasons, months, 
days). Those factors fall outside the scope of this paper because they are 
not strictly necessary to demonstrate the application of the cooperative 
game theory methodology. Regarding the uncertainties of the optimi-
zation model used, these will be transmitted to the selected cost allo-
cation method and therefore to its results. 

A question of interest to continue with the work presented in this 
paper is the following: assuming the proposed design and that the 
Shapley cost allocation method is adopted, for example, this only gives 
us an indication of the total annual cost to be charged to consumers for 
the three energy services, but the question remains as to what unit costs 
will be applied at different times of the year. That is, with the proposed 
methodology we have arrived at an indicative value of the total annual 
cost to be charged, but once the designed plant is commissioned it will 
operate under time-varying conditions (demand for services, price of 
commercial energy consumed, weather conditions, etc.) and it will be 
necessary to establish the unit costs of the three energy services hour by 
hour throughout the year. This problem is independent of the cost 
allocation methodology used and has been generally ignored so far in 
the literature on thermoeconomic analysis. In any case, real-time cost 
allocation will require a more detailed plant operating model than the 
one used for the design and the application of cost allocation rules that, 
while complying with the annual cost orientation already calculated, 
consider the operating state and the hour-by-hour formation process of 
the products. The authors have worked in this line of cost allocation with 
thermoeconomic analysis [12,13] and are not aware of similar works 
based on cooperative game theory. 
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