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Abstract
Environmental Engel curves describe how households’
income relates to the pollution associated with the
services and goods consumed. This paper estimates
these curves with neural networks using the novel
dataset constructed in Levinson and O’Brien. We pro-
vide further statistical rigor to the empirical analysis by
constructing prediction intervals obtained from novel
neural network methods such as extra-neural nets and
MC dropout. The application of these techniques for five
different pollutants allow us to confirm statistically that
Environmental Engel curves are upward sloping, have
income elasticities smaller than one and shift down,
becoming more concave, over time. Importantly, for the
last year of the sample, we find an inverted U shape
that suggests the existence of a maximum in pollution
for medium-to-high levels of household income beyond
which pollution flattens or decreases for top income
earners.

K E Y W O R D S

environmental Engel curves, neural networks, prediction uncertainty

1 INTRODUCTION

Concerns about climate change and the effect of human intervention on global warming
have prompted interest in the relationship between household consumption and pollution in
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1544 MANCINI et al.

recent years. Much of the early work on environmental economics was aimed to study suitable
policies to tax pollution. For example, work by Metcalf (1999) combines the Consumer Expen-
diture Survey (CEX) with pollution data to study the incidence of a proposed pollution tax. In
a related study, Hassett et al. (2009) combine CEX data from several years with pollution data
from different industries to show that a carbon tax would be increasingly regressive. Grainger
and Kolstad (2010) and Burtraw et al. (2009) use CEX data to show that a carbon tax would
be regressive if not offset by lumpsum transfers or reductions in other regressive taxes. More
recently, Levinson and O’Brien (2019) explore the concept of Environmental Engel Curves (EEC)
and propose a structural approach to estimate the relationship between household income and
pollution. This idea extends the concept of Engel curves, see Engel (1895), which study the rela-
tionship between households’ consumption of particular goods (or services) and households’
income.

Environmental Engle curves (EECs) are related to Environmental Kuznets curves that mea-
sure the relationship between pollutants and national income, see Grossman and Krueger (1995).
However, EECs are structural, representing income expansion paths holding prices constant.
Movements along EECs reflect differences in preferences among richer and poorer house-
holds within the same social, economics, and regulatory paradigm, holding prices, technologies,
and regulation constant. In contrast, shifts in the EECs could be driven by changes in pref-
erences over time, towards a lower pollution content of consumption among US households.
Copeland and Taylor (2005) state that the relationship between economic growth and pollution
can be described by three separate components: (a) technique (capturing the technologies used
for the production and manufacture of goods and services), (b) composition (representing the
basket of goods produced by the economy), (c) and scale (quantifies the relation between eco-
nomic activity and pollution—an increase in economic growth leads to a proportional increase
in pollution).

Levinson and O’Brien (2019) compare pollution, income, and consumption for a represen-
tative sample of 95,512 US households with annual data over the period 1984 to 2012. These
authors construct EECs separately for indirect emissions from each of the five major air pollu-
tants: particulates smaller than 10 microns (PM10), volatile organic compounds (VOCs), nitrogen
oxides (NOx), sulphur dioxide (SO2) and carbon monoxide (CO), and estimate two versions of
each EEC: one based solely on income and one that controls for 18 household characteristics
correlated with income, such as education and age. To calculate the pollution emitted by pro-
ducing the goods and services associated with household expenditures, these authors pair the
CEX with emissions intensities calculated from the National Emissions Inventory (NEI).1 Levin-
son and O’Brien (2019) find that EECs display three key characteristics. First, these curves are
upward sloping, meaning that richer households are responsible for more overall pollution. Sec-
ond, EECs have income elasticities smaller than one, indicating that although pollution increases
with income, top income households’ consumption pollution intensity is smaller than for lower
income households. And third, EECs shift down and become more concave over time, meaning
that for any level of real household income, households in more recent years consume a less pol-
luting mix of goods, the pollution content of which increases with income at a decreasing rate
(pollution intensity decreases).

One of the main difficulties associated with the correct study of EECs is the absence of
a theoretical framework that describes such relationship. As a consequence, EECs should be

1These authors calculate the per dollar emissions intensity of each industry by aggregating industry-level emissions in
the 2002 NEI and dividing by the total sales from the 2002 economic and agricultural censuses.
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MANCINI et al. 1545

constructed with as few restrictions as possible. For this reason, Levinson and O’Brien (2019)
use linear and nonlinear specifications (e.g., cubic polynomials and logarithms) between
households’ pollution and household-specific information finding similar results across
specifications. These authors also consider nonparametric estimates of EECs in their analysis;
however, these non-parametric specifications are only considered for the simplest case given by
the relationship between household pollution and income. It is well known that non-parametric
regression models are not able to accommodate the presence of many covariates, by construction,
due to the curse of dimensionality, see Stone (1980).

The aim of the current paper is to investigate the relationship between households’ pollu-
tion and income using recent state-of-the-art techniques on machine learning (ML). We apply
multi-layer neural networks (NNs) to predict non-parametrically the pollution content of house-
hold consumption as a function of household income and a large set of covariates. Single
and multi-layer NNs are shown to have good theoretical and empirical properties (see, e.g.,
Cybenko, 1989; Hornik, 1991; Lu et al., 2017) that explain how a sufficiently wide shallow or deep
feedforward NN will be able to approximate, accurately, the underlying function, notwithstand-
ing the unknown functional form (Goodfellow et al., 2016). Therefore, we shall employ ReLU
feedforward NNs in this work.

Additionally, we propose methods developed in the recent literature on ML to measure the
uncertainty around predictions of NNs such as Monte Carlo (MC) dropout, proposed by Gal
and Ghahramani (2016), and extra-neural (EN) networks proposed in Mancini et al. (2021).
These methods are shown to outperform parametric models such as Hwang and Ding (1997)
and non-parametric bootstrap methods, see Tibshirani (1996). A recent contribution by Pom-
poni et al. (2021) show how the MC dropout reduces significantly the memory requirements
associated with ensemble methods. Yet, the predictive intervals obtained from this methodol-
ogy can be flawed due to the poor approximation provided by the Bayesian variational inference
method to the true predictive distribution in some settings.2 We apply EN networks as a second
ML technique to confirm the findings obtained from MC dropout. MC dropout, as shown by Gal
and Ghahramani (2016), performs T stochastic forward passes on the same trained NN where
the stochasticity is introduced by allowing for dropout not only during training but also predic-
tion phase. The EN nets approach implemented in this paper extends the extra-trees algorithm
introduced by Geurts et al. (2006) by estimating T different sub-networks with randomised archi-
tectures (each network will have different layer-specific widths) that are independently trained
on the same dataset.

By constructing prediction intervals, we are able to attach statistical measures of uncer-
tainty to the pointwise predictions of the model and, hence, add statistical rigor to the empirical
findings of Levinson and O’Brien (2019) on the relationship between pollution and income.
We construct intervals for the predictions of household pollution along the EEC curve for
the reduced model that only considers household income and also for the extended model
that incorporates eighteen households’ characteristics. As in Levinson and O’Brien (2019),
we entertain five different pollutants that capture different dimensions of environmental pol-
lution. The multi-layer NN models that we fit exhibit low mean square prediction errors
(MSPE) and, very importantly, accurate coverage probabilities for the associated prediction
intervals.

2We are grateful to an anonymous referee for raising this issue. Hayashi (2020) derives a lower bound for the difference
between the posterior distribution of the model hyperparameters and the approximation provided by the variational
Bayesian algorithm and shows that this lower bound can be strictly positive.
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1546 MANCINI et al.

Our results replicate to a large extent the empirical findings in Levinson and O’Brien (2019),
which is reassuring; however, we obtain two findings that contrast with this seminal study and
help to highlight the importance of considering ML techniques in this context. First, we find an
increase in the concavity of the EEC when we increase the number of covariates with respect to
the model that only contains household income (and income squared). In contrast, the concavity
of the EEC decreases in Levinson and O’Brien (2019) as we increase the number of covariates.
Related to this is our second insight; for 2012, we find that the pollution intensity of US households
reaches a peak at medium-to-high income levels, and then decreases for top income earners. This
interesting finding is only observed in Levinson and O’Brien (2019) for the simple parametric
model with income and income squared, but we find robust evidence of this phenomenon when
also considering the model with eighteen household covariates, for the five pollutants studied in
Levinson and O’Brien (2019).

The rest of the paper is organised as follows: Section 2 reports the definitions and notations
used in the paper. Section 3 introduces the EN net approach recently developed in Mancini
et al. (2021) and the popular MC dropout approach (see Gal and Ghahramani, 2016). Section 4
reports and discusses the empirical results. Section 5 concludes. Figures are reported at the end
of the document.

2 NN BASICS

The present section provides the notation and definitions used in the remainder of the paper. It
will first define Rectified Linear Unit (ReLU) activation functions and multi-layer (sequential)
feedforward NNs with emphasis on univariate regression tasks and the definition of dropout.

2.1 Definition and notations

Let yi ∈ R for i = 1, … ,n denote the outcome variable and xi = (x1i, … , xdi) a set of input vari-
ables (covariates) used to predict yi. A general specification to describe the relationship between
both sets of variables is

yi = f (xi) + 𝜖i, (1)

with f (x) a real-valued function, and 𝜖 an error term that satisfies E[𝜖i|xi] = 0. In standard regres-
sion settings the question of interest is to approximate the unknown function f (x). It is well known
that if the function f (x) is linear on x, under standard regularity conditions on the error term, ordi-
nary least square (OLS) regression methods provide unbiassed, consistent and efficient estimators
of the model coefficients. However, many empirical problems are characterised by non-linear
relationships between the variables of interest. The presence of a large number of covariates also
compromises the good theoretical properties of OLS methods in many regression settings. In this
particular case, Levinson and O’Brien (2019) explain how there is no theory that defines the form
of the income-pollution relationship and thus, the construction and analysis of the EECs should
be conducted with as few restrictions as possible. Non-parametric kernel regression models are
a possible solution for the simplified model that only considers the relationship between house-
hold income and pollution, but it is not a feasible option when we also consider the presence of
additional covariates capturing households characteristics.

Recent advances in ML have shown that NN methods provide accurate predictions without
requiring specific knowledge of the underlying data generating process and thus, they are not
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MANCINI et al. 1547

affected by parametric model misspecification. In this setting, single and multi-layer NNs provide
a powerful tool for the construction of EECs and thus, the present paper considers f (x) to be in
the class of fully connected feedforward neural networks (or multi-layer perceptrons, MLP) with
ReLU activation functions.3

A ReLU activation function can be defined as follows. Let 𝜽(x) ∶ Rd → Rd, with

𝜽(x) = (max{0, x1},max{0, x2}, … ,max{0, xd}), (2)

where d denotes the number of covariates (input dimension). Alternatively, the ReLU activation
function can be expressed as 𝜽(x) = I(x > 0) ⋅ x, with I(x > 0) the indicator function.

Having defined the ReLU activation function, it is now possible to provide a definition of a
multi-layer ReLU NN. For any two natural numbers d, n1 ∈ N, which are called input and output
dimension, respectively, a Rd → Rn1 ReLU neural network is given by specifying a natural number
N ∈ N, a sequence of N natural numbers Z1,Z2, … ,ZN , and a set of N + 1 affine transformations
T1 ∶ Rd → RZ1

,Ti ∶ RZi−1 → RZi , for i = 2, … ,N, and TN+1 ∶ RZN → Rn1 . Such NN is called a
(N + 1)-layer ReLU NN, and is said to have N hidden layers. The function f ∶ Rd → Rn1 is the
output of this ReLU NN that is constructed as

f (x;𝝎) = TN+1 ◦ 𝜽 ◦ TN◦ · · · ◦T2 ◦ 𝜽 ◦ T1, (3)

with Tn = Wnhn−1 + bn, where—for N = 1 −Wn ∈ RZ1×d; h0 ≡ x, with x ∈ Rd×1 the input layer,
and bn ∈ RZ1 is an intercept or bias vector. For N ≠ 1, Wn ∈ RZn×Zn−1 is a matrix with the deter-
ministic weights determining the transmission of information across layers; hn−1 ∈ RZn−1 is a
vector defined as hn−1 = 𝜽(Tn−1), and bn ∈ RZn . The function 𝜽 is a ReLU activation function
defined as 𝜽(Tn−1) = max{0,Tn−1} and 𝝎 = {Wn

,bn}N
n=1 collects the set of estimable features of

the model. The depth of a ReLU NN is defined as N + 1. The width of the nth hidden layer is
Zn, and the width of a ReLU NN is max{Z1, … ,ZN}. The size of the ReLU NN is Ztot = Z1 +
Z2 + · · · + ZN , that corresponds to the total number of nodes in the NN architecture. The num-
ber of active weights (different from zero) in the nth hidden layer is wn = (Zn × Zn−1) + Zn. The
number of active weights in a fully connected ReLU NN is w1 + w2 + · · · + wN . The same definition
applies to single-layered networks by imposing N = n = 1.

In practice, there is an approximation error due to replacing f (x) by f (x;𝝎) in model (1), where
f (x;𝝎) denotes a feasible version of the multi-layer NN model that can be estimated from the
data.4 The model that we consider in practice is

yi = f (xi;𝝎) + ui, (4)

where ui = 𝜀i + f (xi) − f (xi;𝝎) is the sum of the idiosyncratic error 𝜀i and an approximation error
f (xi) − f (xi;𝝎) that is negligible for suitable architectures of the NN and sufficiently large sample
sizes.

The construction of prediction intervals around the pointwise predictions of NN models
has most recently been object of important research in ML applications. The possibility of

3Other prominent examples in the ML literature include support vector machines (SVMs), boosting algorithms (e.g.,
Adaboost), decision trees (and their generalisation to random forests and extremely randomised trees), and
non-parametric regressions in the spirit of nearest neighbors and local kernel smoothing.
4The feasible NN is defined by a truncation of the true ReLU multi-layer NN that approximates arbitrarily well the
unknown function f (x).
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1548 MANCINI et al.

constructing prediction intervals allows us to measure the uncertainty around the model
predictions. The concept of MC dropout is central to this novel literature on prediction
intervals for NN models, see Srivastava et al. (2014). Before discussing the construction of
prediction intervals, we elaborate on the concept of dropout in NN models.

Training with dropout (dropout training) implies that for each iteration of the learning
algorithm different random sub-networks (or thinned networks) are trained. Let hzn denote
the elements of the vector hn for a given node z = 1, … ,Zn in layer n = 1, … ,N. Srivastava
et al. (2014) develop a dropout methodology that is applied to each function hzn to obtain a trans-
formed variable hzn. This variable is obtained by pre-multiplying hzn by a random variable rzn
with distribution function F(rzn), such that hzn = rzn ⋅ hzn, for all (z,n), prior to being fed for-
ward to the activation function in the next layer, hzn+1, for all z = 1, … ,Zn+1. For any layer n,
rn = [r1n, … , rZnn] ∈ RZn denotes a vector of independent random variables. In the empirical
application, we consider only the Bernoulli probability distribution F(rzn), where each rzn has
probability p of being 1 (and q = 1 − p of being 0). The vector rn is then sampled and multiplied
element-wise with the outputs of that layer, hzn, to create the thinned outputs, hzn, which are then
used as input to the next layer, hzn+1. When this process is applied at each layer n = 1, … ,N, this
amounts to sampling a sub-network from a larger network at each forward pass (or gradient step).
At test time, the weights are scaled down as W

n
= pWn, n = 1, … ,N, returning a determinis-

tic output5. We then identify r⋆ = [r1, … , rN] as the collection of independent random variables
applied to a feedforward NN of depth N + 1.

3 PREDICTION INTERVALS FOR MULTI-LAYER NNS

The construction of prediction intervals around the pointwise predictions of multi-layer NNs
has most recently been object of important research in ML applications. The possibility of
constructing prediction intervals allows us to measure the uncertainty around the model pre-
dictions. Prediction intervals for both single and multi-layer neural networks are derived from
the predictive distribution of the model output. Hwang and Ding (1997) are the first authors to
propose an asymptotic prediction interval for single-layer NNs. Despite the theoretical appeal
of this approach its implementation in large dimensions—and under the absence of a paramet-
ric setting—has important limitations associated with the correct computation of the Jacobian
matrix of the model specification, see, for example, Tibshirani (1996) and Devieaux et al. (1998).

Recent work on NN models introduces uncertainty through bootstrap resampling techniques
and MC simulation methods enabling the construction of prediction intervals for the outputs
of multi-layer NNs. When focusing on the first sub-group, pairs and residual bootstrapping can
be regarded as the methodologies most adopted by practitioners (see Dipu Kabir et al., 2018;
Tibshirani, 1996; and Heskes, 1997 for reviews on the topic). Despite its importance in recent
empirical work, the relevant literature identifies several limitations associated with bootstrapping
methods: (i) Lee et al. (2015) show how re-sampling with replacement reduces the number of
unique observations used to train the model by 37%; (ii) Lee et al. (2015) and Lakshminarayanan
et al. (2017) show, empirically, how data re-sampling in ensembles of NNs deteriorates not only
the prediction accuracy but also the definition of the predictive uncertainty of the ensemble itself;

5In practice, an inverted dropout methodology is applied when implementing this methodology in Keras for RStudio.
In this case, instead of scaling-down the weights at test time, the weights are scaled-up during train time as
W

n
= (1∕p)Wn

,n = 1, … ,N. At test time, a single deterministic forward pass on the unscaled weights Wn is performed.
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MANCINI et al. 1549

(iii) El Karoui and Purdom (2018) show that both pairs and residual bootstrapping suffer from
several problems when applied in high-dimensional linear regression problems. In particular, the
residual bootstrapping tends to give under-conservative estimates of the uncertainty, while the
pairs bootstrapping provides over-conservative estimates.

Gal and Ghahramani (2016) propose an alternative approach for the approximation of the pre-
dictive distribution of NNs called MC dropout. The concept of MC dropout is central to this novel
literature on prediction intervals for NN models, see Srivastava et al. (2014). An alternative to con-
struct prediction intervals in a NN framework, recently proposed in Mancini et al. (2021), explores
the results for randomised trees and derives valid confidence intervals of the model predictions
in finite samples. In this work, we focus on the latter two methodologies that are reviewed in the
following subsections. We start with the EN network approach as it may be less known than MC
dropout.

3.1 EN network

The EN network approach can be interpreted as an ensemble predictor for NN models. This
methodology, formally introduced in Mancini et al. (2021), is based on the extremely randomised
trees approach proposed by Geurts et al. (2006) for random forests.

For notation purposes, we will identify the fixed Bernoulli mask as r⋆ as opposed to r⋆ usu-
ally employed for dropout training. In this setting, T sets of vectors {r⋆(t)}T

t=1 are sampled from a
Bernoulli distribution prior to training and are kept constant during both train and test phases.
This approach reduces to train and independently fit T random sub-networks on the same dataset.
In this setting, generating the predictive distribution is similar, in spirit, to an ensemble approach
that trains different sub-neural networks on the same dataset. We consider T fitted sub-networks
defined as ft(xi; �̂�(t)), with t = 1, … ,T. We use ft to note that each prediction belongs to a poten-
tially different NN model. Given the following ensemble, let f EN(xi)denote the ensemble predictor
obtained from the EN network approach that is constructed as

f EN(xi) =
1
T

T∑

t=1
ft(xi; �̂�(t)), for i = 1, … ,n. (5)

where �̂�(t) denotes the parameter estimates obtained from fitting each sub-network indepen-
dently. Mancini et al. (2021) show that the MSPE of the above ensemble predictor can be
expressed as

MSPE(f EN(xi)) = 𝜇

2
i +

1
T
𝜎

2
�̂�
(xi) +

T − 1
T

ci. (6)

This expression extends Zhou (2012) by showing that the MSPE of the ensembler (5) depends
on the variance of the individual predictor models, their covariance, ci, and the approximation
bias 𝜇i. The smaller the covariance, the smaller the generalisation error of the ensemble. In con-
trast, if the different predictors are perfectly correlated (as for the MC dropout) we know that
ci = 𝜎

2
�̂�
(xi) and thus MSPE (f EN(xi)) = 𝜎

2
�̂�
(xi) - effectively reducing to zero the effect of ensembling.

Similarly, the MSPE is minimised when the errors are perfectly uncorrelated and thus when
ci = 0. This result has important implications when analysing the epistemic uncertainty of an EN
network. Given the zero correlation between the predictions of the sub-networks (see Mancini
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1550 MANCINI et al.

et al., 2021 for additional experimental results), then as T →∞, the MSPE(f EN(xi)) converges
to zero, assuming that the approximation bias is negligible. Therefore, a suitable prediction
interval is

f EN(xi) ± z1−𝛼∕2

(
𝜎

2
�̂�
(xi)
T

+ 𝜎

2
𝜖

)1∕2

, (7)

with 𝜎

2
�̂�
(xi) = 1

T

∑T
t=1(ft(xi; �̂�(t)) − f EN(xi))2 and 𝜎

2
𝜖

= 1
n

∑n
i=1

(

yi − f EN(xi)
)2

, where n is the size of
the test sample.6

As explained in Zhou (2012), the covariance term in Equation (6) captures the diversity
existing among the T different sub-networks identifying the EN network. The aim of the EN net-
work approach is to construct individual predictors that are mutually independent such that the
prediction interval (7) is valid.

In order to generate {ft(x; �̂�(t))}T
t=1, we sample T vectors {r⋆(t)}T

t=1 prior to training. Each
fixed Bernoulli mask is applied independently to the original network returning T independent
sub-networks of size Z(t)extra net ≤ Ztot, where Ztot denotes the total number of nodes in the NN.
Each sub-network is then trained independently on x⌞, and T deterministic forward passes are
performed at test phase. The procedure reported in Algorithm 1 shows that an EN network is an
ensemble of T NNs with randomised weights and structures and no data re-sampling. By ran-
domising not only the weights of the T sub-networks but also their structure, and by fitting the
networks on the entire training set {yi; xi}M

i=1, this method outperforms the bootstrap approach
in terms of both out-of-sample prediction accuracy (Lee et al., 2015) and uncertainty quantifica-
tion (Lakshminarayanan et al., 2017). See also the comparison study in Mancini et al. (2021) with
respect to the bootstrapping ensemble approach and MC dropout methods.

The algorithm to implement this approach is as follows:

3.2 MC dropout

MC dropout was originally developed for Bayesian NNs (Denker & LeCun, 1991) and subse-
quently extended beyond the Bayesian framework by Cortes-Cirano and Bender (2019), among
other authors. This approach introduces randomness into the NN prediction by implementing
dropout not only during training but also during testing.

Gal and Ghahramani (2016) propose a new theoretical framework which uses dropout in NNs
as approximate Bayesian inference for deep Gaussian processes. In this sub-section we adopt this
methodology outside Bayesian NNs and illustrate how to construct prediction intervals for the
output yi. The literature focusing on Bayesian deep NNs concentrates on correctly approximating
the posterior probability distribution of the output of the NNs, which is often intractable. More
specifically, let p(̂y |x,X,Y) denote the distribution of the predictive output ŷ conditional on the
set of observations X = {x1, … , xn} and Y = {y1, … , yn}. The predictive probability distribution
of the NN model is

p(̂y |x,X,Y) =
∫𝛀

p(̂y |x,𝝎)p(𝝎 | X,Y)d𝝎, (11)

6Note that for obtaining a consistent estimator of 𝜎2
𝜖

we have imposed homoscedasticity of the error terms 𝜖i over the test
sample.
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MANCINI et al. 1551

Algorithm 1. EN networks

INPUT: Training Data {x⌞i ≡ (xi, yi)}M
i=1

OUTPUT: Prediction Interval ̂f (x;𝝎).
1: procedure T learners
2:

3: Define depth and width of original NN.

4: while (t < T) do
5: Generate a Bernoulli mask r̄⋆ prior to training.
6: Apply Bernoulli mask r̄⋆ to the original NN.
7: Train random thinned network on x⌞ with random initialisation of {Wn

0}
N
n=1

8: Trained thinned network → Deterministic forward pass on test data.
9: Store ft(xi; �̂�(t)).

10: end while

11: Compute the ensemble estimate:

̄fEN(xi) =
1
T

T∑

t=1
ft(xi; �̂�(t)). (8)

12: Compute the epistemic and aleatoric variance:
{

𝜎

2
�̂�
(xi) = 1

T

∑T
t=1[ft(xi; �̂�(t)) − ̄fEN(xi)]2

𝜎

2
𝜖

= 1
n

∑n
i=1

(
yi − ̄fEN(xi)

)2 . (9)

13: Define Prediction interval:
̄fEN(xi) ± z1−𝛼∕2𝜎e, (10)

with 𝜎e =
(

𝜎

2
�̂�
(xi)
T

+ 𝜎

2
𝜖

)1∕2
.

return Prediction interval (10)

14: end procedure

with p(̂y |x,𝝎) the likelihood function of the observations, and 𝝎 ∈ 𝛀 where 𝛀 denotes the
parameter space. The posterior probability distribution p(𝝎 | X,Y) is intractable.

Gal and Ghahramani (2016) propose NN dropout to approximate this distribution. More for-
mally, under model dropout, we consider a distribution function q(𝝎) that follows a Bernoulli
distribution, Ber(p). The above predictive distribution in this Bayesian NN setting can be approx-
imated by

p(̂y |x,X,Y) =
∫Ω

p(̂y |x,𝝎)q(𝝎)d𝝎. (12)

In practice this predictive distribution can be approximated using MC methods. Thus, by
sampling T sets of vectors from the Bernoulli distribution {r⋆(t)}T

t=1, one can approximate the
above predictive distribution from the random sample ŷ(xi; �̂�(t)), for i = 1, … ,n, where �̂�(t) =
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1552 MANCINI et al.

{̂W
1(t)

, … ,
̂W

N(t)
,
̂b(t)1 , … ,

̂b(t)N } denotes the sequence of weights associated to the different nodes
and layers of the NN and the associated bias parameters for a given pass t for t = 1, … ,T.

Using this MC dropout technique, Gal and Ghahramani (2016) propose the first moment from
the MC predicted outputs as the model prediction:

f MC(xi) =
1
T

T∑

t=1
ŷ(xi; �̂�(t)), for i = 1, … ,n. (13)

These authors show that, in practice, this is equivalent to performing T stochastic forward passes
through the network and averaging the results. This result has been presented in the literature
before as model averaging. Srivastava et al. (2014) have reasoned empirically that MC dropout can
be approximated by averaging the weights of the network (multiplying each weight Wn by p at
test time, and referred to as standard dropout).

Importantly, the model parameters 𝝎 are fixed across random samples implying that the
cross-correlation between the predictions ŷ(xi; �̂�(t)) and ŷ(xi; �̂�(t

′)) for t, t′ = 1, … ,T is perfect.
Then, the predictive variance is defined as

𝜎

2
MC = 𝜎

2
𝜖
+ 1

T2

T∑

t=1

T∑

t′=1
E
[(

ŷ(xi; �̂�(t)) − E[̂y(xi; �̂�(t))]
)(

ŷ(xi; �̂�(t
′)) − E[̂y(xi; �̂�(t

′))]
)]

, (14)

The first component on the right-hand side expression of (14) captures the aleatoric uncertainty
whereas the second term captures the epistemic uncertainty associated to parameter estima-
tion. The second term includes the estimation of the variance and covariance terms between the
different random samples obtained from using dropout. Thus, under the assumption that the
approximation error is negligible, the above predictive variance can be estimated as

𝜎

2
MC = 𝜎

2
𝜖
+ 1

T

T∑

t=1

(

ŷ(xi; �̂�(t)) − f MC(xi)
)2

, (15)

with 𝜎

2
𝜖

= 1
n

∑n
i=1

(

yi − f MC(xi)
)2

a consistent estimator of 𝜎2
𝜖

under homoscedasticity of the error
term, see also Gal and Ghahramani (2016) and Kendall and Gal (2017). A suitable prediction
interval for yi under the assumption that p(̂y |x,𝝎) is normally distributed is

f MC(xi) ± z1−𝛼∕2𝜎MC. (16)

To further understand the concept of stochastic forward passes, we consider the following
definition of a generic multi-layer NN:

f (xi;𝝎) = WN𝜽(· · ·𝜽(W2𝜽(W1xi + b1) + b2) + · · · ) + bN . (17)

Given the trained NN in (17), the predictions (test time) are obtained by the following matrix
multiplication:

ŷi = ̂WN̂𝜽(· · · ̂𝜽(̂W2̂𝜽(̂W1xi + ̂b1) + ̂b2) + · · · ) + ̂bN . (18)

Performing T stochastic forward passes is equivalent to performing T stochastic matrix multipli-
cations where the stochasticity is introduced by the T Bernoulli masks applied to the network
weights at test time. This implies that by using the Bernoulli masks also at test time, the
predictions obtained from MC dropout can be formulated as follows:
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MANCINI et al. 1553

ŷ(xi; �̂�(t)) = ̂W
(t)
N ̂𝜽(· · · ̂𝜽(̂W

(t)
2 ̂𝜽(̂W

(t)
1 xi + ̂b

(t)
1 ) + ̂b

(t)
2 ) + · · · ) + ̂b

(t)
N . (19)

In other words, by implementing MC dropout, the deterministic prediction defined in
Equation (18), is replaced by a stochastic operation (defined in Equation 19) where the level of
stochasticity is dictated by the sets of Bernoulli mask {r⋆(t)}T

t=1 randomly sampled.
Additionally, Equation (18) allows understanding also the difference between the MC dropout

and the extra NN approach conveyed by Equations (7) and (13). More precisely, by ŷ(xi;𝝎(t)) we
indicate the predictions obtained from the same predictive model f (xi;𝝎) when the t random
subsets of weights 𝝎(t)—identified via the random Bernoulli mask r⋆(t)—are adopted; by ft(xi;𝝎)
we indicate the t predictive models. Thus, the computational and memory requirements needed
for the implementation of the MC dropout are sensibly lower than the ones required from the
extra NN algorithm7 (Algorithm 2).

Algorithm 2. MC Dropout

INPUT: Training Data {x⌞i ≡ (xi, yi)}M
i=1

OUTPUT: Prediction Interval ̂f (x;𝝎).
1: procedure T stochastic forward passes
2:

3: Define depth and width of original NN.
4: Train NN with dropout on x⌞ without scaling up the weights.
5: while (t < T) do
6: Stochastic forward pass from the trained NN on test data.
7: Store ŷ(xi; �̂�(t))
8: end while

9: Compute the ensemble estimate:

̄fMC(xi) =
1
T

T∑

t=1
ŷ(xi; �̂�(t)), for i = 1,… ,n. (20)

10: Compute the epistemic and aleatoric variance:

⎧
⎪
⎨
⎪
⎩

𝜎

2
MC =

1
T

∑T
t=1

(

ŷ(xi; �̂�(t)) − ̄fMC(xi)
)2

𝜎

2
𝜖

= 1
n

∑n
i=1

(
yi − ̄fMC(xi)

)2
. (21)

11: Define Prediction Interval:
̄fMC(xi) ± z1−𝛼∕2𝜎MC. (22)

with 𝜎e =
(
𝜎

2
MC + 𝜎

2
𝜖

)1∕2.

return Prediction interval (22)

12: end procedure

7Nonetheless, the memory requirements associated with the extra neural network algorithm are lower than a normal
ensemble of T NNs as also shown in Pomponi et al. (2021).
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1554 MANCINI et al.

4 EMPIRICAL RESULTS

Levinson and O’Brien (2019) find that EECs display three key characteristics: EECs are upward
sloping, have income elasticities smaller than one, shifting down and becoming more concave
over time. These features of the relationship between the variables can be quantified and assessed
through the construction of prediction intervals for a given coverage probability. Thus the hypoth-
esis that the relationship is increasing could be tested by assessing if the first derivative of the
predicted function modelling the relationship between pollution and household income is strictly
positive. Similarly, the concavity of the relationship could be tested by assessing if the second
derivative of the predicted functional form is negative. Once the concavity of the function is not
rejected, the third hypothesis given by an income elasticity smaller than one can be tested by
assessing if the slope of the functional form relating household pollution and income is less than
one uniformly over the relevant domain.8

Following Levinson and O’Brien (2019) we report results for the years 1984 and 2012 and
consider five different pollutants: particulates smaller than 10 microns (PM10), VOCs, NOx,
SO2, and CO.9 Table 1 in Levinson and O’Brien (2019) presents the relevant summary statistics
for the different variables observed for the year 1984 and 2012. The table reports the average val-
ues and the standard errors (when possible) of the variables comprising the dataset. The number
of observations adopted for the study is 3184 for the year 1984 and 3538 for the year 2012. These
authors construct two types of EECs: one using income and squared income as only covariates and
an extended version of the model in which the set of covariates is expanded to incorporate other
available households’ characteristics. In the latter case, these authors consider d = 18 regressors
to predict the pollution content of consumption. Table 2 in Levinson and O’Brien (2019) lists the
full set of socio-economic, demographic and spatial covariates used.

Due to differences in dimensionality across problems (using income only or adding household
covariates), in the first case, a set of candidate single-layer NNs with Ztot = [5, 10, 20] is considered.
In the second case, we consider a multi-layer NN with architecture (width and depth) obtained
using the constrained optimisation approach in Calvo-Pardo et al. (2021), that maximises the
minimum number (lower bound) of linear regions approximated by a ReLU NN (the interested
reader is referred to Montufar et al., 2014). As a result, an optimal allocation of hidden nodes
obtains, both within (width) and across (depth) hidden layers, for fully connected feedforward
NNs. The NN size considered at the onset depends on the complexity of the functional form to be
approximated. The novel procedure reduces the computational requirements associated with the
identification of the neural network structure, since it only requires cross-validating the size of
the optimised NN structure—instead of cross-validating both size and hidden nodes allocation.

This procedure is adopted to identify the structure of the original NN, from which either T
random sub-networks are obtained (EN network approach), or which is trained with dropout
(MC dropout approach)—not only at train but also during validation. Thus, NNs with different
number of total nodes Ztot = [76, 90, 150, 200, 250, 392, 446, 500] are tuned and optimised to obtain
optimal architectures.10

8The reader should note that this definition of elasticity is different from the general definition of the elasticity of Y with
respect to X that is given by EY

X =
% change in Y
% change in X

, which reduces to EY
X =

dY
dX

X
Y

for infinitesimal changes and differentiable
variables.
9Results for the years 1985–2011 are available from the authors upon request.
10The choice of the total number of nodes is the result of a numerical optimisation exercise. For each exercise, we
consider an interval [min,max] with realistic values for the total number of nodes, and construct a grid of values
spanning the interval. Our procedure retains the value that minimises the MSPE of the NN out of sample.
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MANCINI et al. 1555

The hyper-space defined by the different optimisation algorithms, weights initialisers, learn-
ing rates, number of epochs, and drop-out rates are defined with no distinction between single
and multi-layer NNs. In particular, the learning rates 0.001, 0.003, 0.00, and 0.01 for the Adam
optimiser (𝛽1 = 0.9; 𝛽2 = 0.999), and for the RMSProp optimiser with 𝜌 = 0.9 are tuned. When
the Adam and RMSProp optimiser are analysed, the He normal initialiser and the Xavier uniform
(default in Keras) initialiser are implemented. The former draws samples from a truncated nor-
mal distribution with 𝜇 = 0 and 𝜎 =

√
2∕Indim where ‘Indim’ is the number of input units in the

weight tensor; the latter draws samples from a uniform distribution within [−bound,+bound],
where bound =

√
(6∕(Indim + Outdim)), with ‘Indim’ and ‘Outdim’ indicating the dimensions

of the hidden layer and of the following hidden layer, respectively. Additionally, the stochastic
gradient descent optimisation algorithm with learning rate 0.0001 is also considered. The num-
ber of epochs (with early stopping) analysed are 100 (for the shallow network) and 600 (for the
multi-layer NNs). We also consider the following dropout rates (q): 0.01, 0.05, and 0.1.

From Table 1, it is possible to observe that if both methodologies are able to correctly quantify
the uncertainty around the predictions of the single and multi-layer NNs across the five pollutants,
it is, however, not possible to identify a methodology that consistently outperforms another in
terms of out-of-sample predictive accuracy. Additionally, as also shown in Figures 1–7, the two
methodologies allow drawing similar conclusions regarding the behaviour of the five pollutants
through time.11

Table 2 in Levinson and O’Brien (2019) shows that the EECs are constructed considering both
numerical and categorical variables (e.g. control variables for age, household size, marital status
and indicators for race, education and regional location). To guarantee a proper training of the
ReLU neural network, a feature-wise normalisation for the numerical variables—consisting on
transforming the observations into zero-mean and unit SD random variables–is performed. For
the categorical variables, Levinson and O’Brien (2019) define a separate indicator for each cate-
gory; being this approach equivalent to the one-hot-encoding procedure (see James et al., 2013),
we have applied the same transformation in treating the categorical variables for the correct fitting
of the NN. Finally, 85% of the data are used for training the network and the remaining 15% as test
set. We focus on the years 1984 and 2012 to assess the evolution of the EECs over time. The optimal
combination of structure and hyper-parameters of both single and multi-layer neural networks
used for the year 1984 and 2012 are reported in Table 1 with the relative out-of-sample accuracy
measures defined by MAE, MSE and the empirical coverage probabilities, Cov95, obtained at a
95% confidence level. Additionally, the Adam optimiser with He normal initialiser was selected
as the best optimiser across all pollutants and years considered. The out-of-sample empirical cov-
erage reported in the table is close to the nominal level at which the prediction intervals are
constructed, implying the suitability of the intervals out of sample. The results in Table 1 thus con-
vey that the data-based uncovered relationship between the pollution content of US household
consumption and income obtained using NNs is statistically robust.

We now turn to examine whether the increasing and concave relationship uncovered by Levin-
son and O’Brien (2019) is also obtained when estimated nonparametrically using NNs. Figures 1,
2, 3, 4, 5 report the EECs constructed with both MC dropout and EN networks with d = 2 and 18
for the five major air pollutants. The panels in each figure are constructed as follows: the observed
income is divided into 100 groups of the same size. We compute the mean of the predicted

11Given the lower memory (Pomponi et al., 2021) and computational requirements associated with MC dropout, these
results would suggest that in case of restrictions in computational power, MC dropout should be preferred over the EN
network approach when constructing EEC.
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1556 MANCINI et al.

T A B L E 1 The optimal neural networks’ parameters with relative out-of-sample accuracy measures defined
by MSE, MAE and Cov95 (empirical coverage probabilities at 95% confidence level)

Learning rate Structure q T MAE MSE Cov95

PM10

Year 1984 (d = 18)

MC Dropout 0.003 [78, 36, 36] 0.05 70 2.8594 18.3263 0.95

Extra-network 0.003 [78, 36, 36] 0.05 70 2.9897 19.6456 0.96

Year 1984 (d = 2)

MC Dropout 0.003 [5] 0.05 70 3.6276 27.3797 0.96

Extra-network 0.003 [5] 0.05 70 3.6723 27.5817 0.96

Year 2012 (d = 18)

MC Dropout 0.003 [54, 36] 0.05 70 2.5912 13.2871 0.96

Extra-network 0.003 [54, 36] 0.05 70 2.6437 13.8489 0.96

Year 2012 (d = 2)

MC Dropout 0.003 [5] 0.05 70 2.9997 16.6166 0.96

Extra-network 0.003 [5] 0.05 70 3.0418 17.1902 0.96

CO

Year 1984 (d = 18)

MC Dropout 0.005 [40, 36] 0.05 70 12.4441 388.4378 0.95

Extra-network 0.005 [40, 36] 0.05 70 12.3746 411.5797 0.95

Year 1984 (d = 2)

MC Dropout 0.005 [5] 0.05 70 14.4730 479.8068 0.94

Extra-network 0.005 [5] 0.05 70 14.4079 494.3869 0.94

Year 2012 (d = 18)

MC Dropout 0.005 [78, 36, 36] 0.05 70 9.0952 236.0679 0.96

Extra-network 0.005 [78, 36, 36] 0.05 70 9.2170 234.8622 0.97

Year 2012 (d = 2)

MC Dropout 0.005 [5] 0.05 70 9.8253 260.4555 0.96

Extra-network 0.005 [5] 0.05 70 9.5545 281.7539 0.96

SO2

Year 1984 (d = 18)

MC Dropout 0.005 [54, 36] 0.01 70 30.6778 1844.7867 0.96

Extra-network 0.005 [54, 36] 0.01 70 32.0010 2042.0742 0.95

Year 1984 (d = 2)

MC Dropout 0.005 [5] 0.05 70 37.2184 2810.3498 0.96

Extra-network 0.005 [5] 0.05 70 38.1013 2901.2416 0.95

(Continues)
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MANCINI et al. 1557

T A B L E 1 (Continued)

Learning rate Structure q T MAE MSE Cov 95

Year 2012 (d = 18)

MC Dropout 0.005 [40, 36] 0.05 70 32.3183 1931.8550 0.96

Extra-network 0.005 [40, 36] 0.05 70 32.5744 1945.6825 0.95

Year 2012 (d = 2)

MC Dropout 0.005 [5] 0.05 70 35.7883 2291.4632 0.97

Extra-network 0.005 [5] 0.05 70 35.8810 2318.8336 0.97

NOx

Year 1984 (d = 18)

MC Dropout 0.005 [54, 36] 0.05 70 18.8255 643.9020 0.95

Extra-network 0.005 [54, 36] 0.05 70 19.2223 707.9086 0.94

Year 1984 (d = 2)

MC Dropout 0.003 [5] 0.01 70 23.0578 985.8477 0.96

Extra-network 0.003 [5] 0.01 70 23.1836 1029.5816 0.95

Year 2012 (d = 18)

MC Dropout 0.005 [54, 36] 0.1 70 17.5517 541.5600 0.97

Extra-network 0.005 [54, 36] 0.1 70 17.7210 581.2127 0.96

Year 2012 (d = 2)

MC Dropout 0.005 [5] 0.05 70 19.7508 695.7539 0.96

Extra-network 0.005 [5] 0.05 70 19.9146 699.3635 0.96

VOC

Year 1984 (d = 18)

MC Dropout 0.003 [78, 36, 36] 0.05 70 5.4403 76.1747 0.96

Extra-network 0.003 [78, 36, 36] 0.05 70 5.2475 76.1247 0.95

Year 1984 (d = 2)

MC Dropout 0.005 [5] 0.05 70 6.5387 96.0701 0.95

Extra-network 0.005 [5] 0.05 70 6.4422 97.8181 0.95

Year 2012 (d = 18)

MC Dropout 0.003 [78, 36, 36] 0.05 70 3.5214 33.7558 0.95

Extra-network 0.003 [78, 36, 36] 0.05 70 3.7183 33.5824 0.96

Year 2012 (d = 2)

MC Dropout 0.005 [5] 0.05 70 4.0099 40.1979 0.96

Extra-network 0.005 [5] 0.05 70 4.0851 41.0851 0.96
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F I G U R E 1 Point estimates and 0.95 prediction intervals of particulates smaller than 10 microns [Colour
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 2 Point estimates and 0.95 prediction intervals of nitrogen oxides [Colour figure can be viewed at
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F I G U R E 3 Point estimates and 0.95 prediction intervals of volatile organic compounds [Colour figure can
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F I G U R E 4 Point estimates and 0.95 prediction intervals of sulphur dioxide [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 5 Point estimates and 0.95 prediction intervals of carbon monoxide [Colour figure can be viewed
at wileyonlinelibrary.com]
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F I G U R E 6 Point estimates for the five pollutants obtained from the extra neural network approach
[Colour figure can be viewed at wileyonlinelibrary.com]

pollution and the upper and lower bounds of the prediction intervals for each group and pollutant.
The mean values are then plotted. Our estimates of the EECs constructed with both MC dropout
and the EN net approach provide further empirical support to the results reported in figure 3 of
Levinson and O’Brien (2019) for the PM10. In particular, the shape of the predicted curves and
the associated intervals suggest an increasing and concave relationship between the variables
under study. This relationship is uniform across values of household income. More formally, the
upper bound of the 95% prediction interval can be used as cut-off value of a statistical test to
determine whether the slope of the curve is greater than one and whether its second derivative is
negative. The analysis of the prediction intervals obtained from the EN network approach shows
that income elasticity is smaller than one across all values of household income. This is partic-
ularly the case for the year 2012 and holds across the five pollutants. Although the prediction
intervals obtained by MC dropout are not as conclusive as those from the EN nets methodology,
overall, there is clear empirical evidence in support of a concave relationship between the pollu-
tion content in consumption and household income for the different pollutants considered. These
results show that—without imposing any functional form between pollution and household
income—richer households pollute more, the pollution content of consumption increases at a
lower rate than income, and that the pollution content of consumption grows at a decreasing rate.
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F I G U R E 7 Point estimates for the five pollutants obtained from the Monte Carlo Dropout [Colour figure
can be viewed at wileyonlinelibrary.com]

One salient feature of the estimated EECs obtained under the multi-layer NN corresponds to
the year 2012. Compared to 1984, the estimated 2012 EECs display a lower pollution intensity of
consumption for US top household earners than for middle-to-high ones. This empirical finding
holds for the five pollutants and is more apparent when the multi-layer neural network model and
corresponding prediction intervals are obtained using the EN net approach. The effect is weaker
if the model is estimated using MC dropout methods but is still apparent in some cases. For
some pollutants such as NOx and CO, we observe a decrease in the level of pollution compared to
medium-high income earners suggesting that top earners pollute less than households in the mid-
dle to upper range of the household income distribution. Levinson and O’Brien (2019) find some
evidence of this phenomenon for 2012 using the simple model with income and income squared
but not in the model with multiple covariates. In their model, the quadratic nature of the paramet-
ric regression determines to a large extent the overall shape of the relationship between income
and pollution, therefore, it is not surprising that the quadratic model captures these effects. There
is also the possibility of omitted variable bias in their model although this is ruled out by the
authors. In contrast, we find this quadratic effect in the full multi-layer NN with 18s covariates as
well as in the simple model. In this nonparametric setting, the model does not impose any struc-
ture on the relationship between the variables but, nevertheless, we uncover an inverted U-shape
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T A B L E 2 The test statistic and the p-value of a DM test (on the out-of-sample squared residuals) of a NN
model fitted using either Monte Carlo (MC) dropout or the Extra-nets algorithm against the quadratic model
considered by Levinson and O’Brien (2019)

Year = 1984

PM10 CO VOC NOx SO2

DM test statistic (EN) 2.8477 2.7741 4.4864 1.9978 2.0995

p-value (0.0023) (0.0029) (<.0001) (0.0231) (0.0181)

DM test statistic (MC) 3.1781 2.1401 3.2961 1.4769 2.8909

p-value (0.0008) (0.0163) (0.0005) (0.0702) (0.0020)

Year = 2012

PM10 CO VOC NOx SO2

DM test statistic (EN) 3.5784 2.2643 −1.1156 0.7841 2.8625

p-value (0.0002) (0.01198) (0.8674) (0.2167) (0.0022)

DM test statistic (MC) 2.0600 0.0122 3.6497 2.4588 3.5089

p-value (0.01994) (0.4951) (0.0001) (0.0071) (0.0002)

for the EEC at top income levels that contrasts with standard Engel curves relating consumption
and income, holding prices constant.

As Levinson and O’Brien (2019) point out, movements along EECs depend on underlying pref-
erences of richer households relative to poorer households, all else equal. They are independent of
any particular environmental policy intervention. In this sense, movements along an EEC reflect
a shift in preferences of top earners towards low-polluting goods. A possible explanation of the
drop in household pollution for top earners observed in 2012, but not in 1984 and beyond, is due
to recent concerns on global warming and climate change. Income is positively correlated with
pollution through an increase in household’s consumption, however, our NN models uncover
a threshold level beyond which the increase in income is not corresponded by an increase in
pollution, which suggests that the consumption pattern of top earners is cleaner.12

Although non-parametric methods do not allow us to be conclusive about whether this
novel result is due to their additional flexibility along a specific dimension (i.e. ‘non-linearities’
in household income) or between different dimensions (i.e. capturing interactions between
household income and additional covariates), we can restrict ourselves to the specific case for
which Levinson and O’Brien (2019) find some evidence of this phenomenon in 2012, and compare
statistically the predictive performance of our ML models against their quadratic specification.
Implementing a Diebold and Mariano (1995) test that evaluates the predictive accuracy of each
model using income as single regressor, we test the following hypothesis:

H0 ∶ MSPEnn ≥ MSPEquad, (23)

with MSPEnn denoting the MSPE of NN models and MSPEquad the analogous measure for the
quadratic econometric specification in Levinson and O’Brien (2019). The rejection of the null

12An illustrative example offered by casual evidence would be the use by top earners of cleaner sources of energy
consumption for heating and power generation or the use of electric cars. The access to these sources of energy and
mobility is more expensive than standard methods based on fossil fuels but result in less-polluting consumption patterns.

 14679876, 2022, 5, D
ow

nloaded from
 https://rss.onlinelibrary.w

iley.com
/doi/10.1111/rssc.12588 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [21/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1566 MANCINI et al.

hypothesis H0 implies that the predictions of the NN model are superior in terms of MSPE. The
results, reported in Table 2, clearly highlight the outperformance in terms of out-of-sample MSPEs
of NN-based predictions over the parametric model proposed by Levinson and O’Brien (2019) in
both 1984 and 2012. Absent other covariates, we interpret these results as providing support to
the ‘additional flexibility’ hypothesis along the income dimension that NN methods allow. Yet,
we cannot rule out that ‘interactions between household income and other covariates’ are also
responsible.13

Finally, Figures 6 and 7 present a comparison of the EECs across years (1984 vs. 2012) for the
five pollutants using both NN models. The results provide further support to the empirical insights
of Levinson and O’Brien (2019). EECs shift downwards and become more concave over time indi-
cating an overall improvement on the pollution content of households’ consumption and also
sizeable differences in the intensity of pollution across income levels, which could be explained,
at least in part, by shifts in households’ preferences towards goods with a lower pollution content.

5 CONCLUSIONS

Empirical researchers have shown that, despite the economic growth that has characterised
the United States in the past 30 years, US households’ pollution content of consumption has
steadily decreased. Levinson and O’Brien (2019)—by estimating EECs—are able to analyse
this relationship. These authors show how the overall pollution in the United States has not
increased proportionally with economic growth partially due to changes in the composition of
US households’ consumption baskets towards less-polluting goods and services.

The present paper further validates the aforementioned empirical findings by adopting NNs to
estimate the EECs and associated prediction intervals. The different EECs are constructed using
the EN network algorithm recently proposed in Mancini et al. (2021). When only income-related
information is considered, a single-layer NN with five hidden nodes is fitted; conversely, when the
wider household-specific information set is taken into account, multi-layer NN models are more
suitable and provide better fit. Furthermore, recent advances in neural network models allow us
to make statistical inference about the pointwise predictions defining the EECs through the con-
struction of prediction intervals. These intervals confirm the empirical findings in Levinson and
O’Brien (2019) suggesting that the relationship between after-tax household income and pollu-
tion is increasing and concave, that the elasticity of income is lower than one, and that there exists
a downward shift in the relationship between the variables when comparing the years 1984 and
2012 .

Importantly, deploying single and multi-layer NNs allows us to uncover an interesting phe-
nomenon for top income earners. For the year 2012, the EEC peaks and then decreases as income
reaches the upper range of the household income distribution. This phenomenon is observed for
the five pollutants under investigation but is more pronounced for NOx and CO. In these cases
we observe a reduction in the pollution content of consumption compared with medium-to-high
income earners, suggesting that top earners pollute less than households right beneath them in
the household income distribution. These findings contrast sharply with the strictly increasing

13We have also performed an additional Diebold–Mariano test comparing the predictive ability of the NN models with
income only and the NN models with 18 covariates. Unsurprisingly, the model with 18 covariates overwhelmingly
outperforms the reduced model in terms of predictive ability. Results are not reported for space considerations but are
available from the authors upon request.
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relationship commonly found for the standard Engel curve between expenditures on normal
goods and household income, while providing additional support to the deployment of flexible
estimation methods to uncover EECs.
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