
Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Desarrollo de un 'sniffer' para la
generación de listas blancas para Snort

Arturo Ruiz Mañas
OSNA Cyber Security Research Group www.osna-solutions.com

Director: Dr. Michael Schukat
Ponente: Dr. José Luis Salazar Riaño

email: arruma2160@gmail.com
Zaragoza, Agosto de 2013

UNIVERSIDAD DE ZARAGOZA
--

ESCUELA DE INGENIERÍA Y ARQUITECTURA

http://www.osna-solutions.com/
mailto:arruma2160@gmail.com

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Resumen

A lo largo de esta memoria, voy a tratar sobre el complejo pero importante problema de la
seguridad en redes de Control Industrial y sistemas SCADA (Supervisory Control And Data
Acquisition). Para esto, previo a este trabajo, se me ha presentado abundante información sobre
Hacking y técnicas de Intrusión ICS (Internet Connection Sharing). En el presente texto
profundizaremos en una solución ante situaciones de “black-hat hacking”1para dichos entornos.

Lograr un nivel alto de seguridad en nuestros sistemas de información y señales de control es el
objetivo de todo empleado en seguridad informática. Durante este texto presentaré el software que he
creado durante mi estancia en el grupo OSNA en Irlanda, que busca precisamente ayudar a conseguir
ese nivel alto de seguridad. Para ello me baso en la idea de “Deep Packet Inspection”[30]: se toma cada
paquete que la interfaz de red detecta y se examinan campos concretos del paquete. De este modo el
programa realizará un estudio de los valores que dichos campos toman, originando una representación
lo más precisa posible de la información que recorre nuestro segmento de red a estudiar, en forma de
reglas para Snort.

 Además, otro objetivo añadido a mi diseño, es el combinar dos de los métodos tradicionales de
seguridad informática: listas-blancas y listas-negras. Por un lado, nuestro enfoque mediante “Deep
Packet Inspection”, comentado en el párrafo anterior, aporta el enfoque de “listado-blanco”, basado en
listas-blancas, y por otro, el componente de listas-negras vendrá dado por la multitud de ficheros de
reglas-Snort colgadas en la red, creadas por especialistas en temas de seguridad informática[Snus00], y
que como “software libre” que es, podemos perfectamente descargar y utilizar a nuestro antojo. La
integración en un sólo diseño de ambas filosofías, es por lo tanto, un punto interesante a tener en
cuenta.

Sintetizando con pocas palabras, diré que, utilizando mi programa, cuyo fin será el de elaborar
una descripción lo más exacta posible del tráfico de red (listas blancas), y pasando dicha representación
a Snort, programa para la “Detección de Intrusiones”, junto con ficheros de listas-negras y
preprocesadores para Snort ya presentes en la Web, estamos generando una herramienta que, sin duda
alguna, va a ser muy útil en las tareas de seguridad de redes y que representa a mi parecer, un recurso
muy interesante a tener entre el software de todo encargado de la seguridad en sistemas de
comunicaciones informáticas.

i

1.Hacking se puede dividir en tres categorías diferentes: hacking de sombrero negro, hacking de sombrero blanco, y hacking de sombrero gris. Los nombres resultan muy
representativos sobre sus significados. Los de sombrero negro son los “malos”, los de sombrero blanco son los “buenos”, y los de sombrero gris son lo que están entre medio.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

 Agradecimientos:

En especial a mi familia, por
todo el apoyo recibido por su
parte a lo largo de estos años.

 Agradecimientos al grupo OSNA
y en especial a Michael Schukat.

Debo también agradecer a José Luis su
ayuda en la composición de este escrito.

ii

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Tabla de Contenidos

Resumen ….. i

Agradecimientos …... ii

Tabla de Contenidos.. iii

Tabla de Figuras ….. v

Lista de Tablas ….. vi

1. Introducción y Exposición de Objetivos ... 1

1.1 Introducción a la Seguridad en Redes ... 1

1.2 Ciberseguridad y Amenazas a CCI .. 1

1.3 Seguridad en Sistemas SCADA ... 2

1.3.1 ¿Qué significa SCADA? .. 2

1.3.2 Nivel de Seguridad en los Sistemas SCADA 3

1.4 Exposición de Objetivos .. 3

2. Requisitos de Usuario .. 4

2.1 Redes de Comunicación en el Entorno Industrial .. 4

2.1.1 Modbus .. 5

2.2 IDS / IPS (Intrusion Detection System / Intrusion Prevention System) 6

2.2.1 Snort ... 6

2.3 Requisitos para la Creación del Software ... 7

3. Análisis y Diseño ….. 8

3.1 Entorno de Trabajo …... 8

3.2 Librería PCAP ….. 8

iii

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

3.3 ¿Cómo nuestro programa trabaja con Snort?.. 9

3.4 Árbol de Listas Anidadas …... 9

4. Implementación …... 12

4.1 Código …... 12

4.2 Diagrama de Flujo del Código ….. 12

4.3 Diagrama de Flujo del Funcionamiento del Programa.................................... 18

5. Testeo …... 20

5.1 Eficacia que No Eficiencia …... 20

5.2 Testeo del Software... 21

5.2.1 Testeo del Sniffer Base y Recogida de Datos IP-TCP y Modbus …. 21

5.2.2 Testeo mediante “Sniffing” en un Entorno Controlado..................... 24

5.2.3 Testeo del Funcionamiento de los Scripts.. 24

6. Conclusiones ….. 24

Anexo A: Código completo. ….. 26
Anexo B: English report ….. 50

Revisión de la Bibliografía …...168

iv

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Tabla de figuras

 Fig.1 Representación de mi software + Snort en una red conformada por nodos de interconexión (hubs / switches) … 4

 Fig.2 Ejemplo de set-up de una red Modbus ….. 5

 Fig.3 Modbus TCP – ADU …... 6

 Fig.4 Cabecera en Modbus TCP ….. 6

 Fig.5 Flujo de los paquetes a través de los módulos de Snort …... 6

 Fig.6 Ejemplo de regla Snort …... 7

 Fig.7 Nodo en una lista anidada …... 10

 Fig.8 Ejemplo de lista anidada …... 10

 Fig.9 Representación “reducida” de un “Árbol de listas anidadas” …... 11

 Fig.10 Nodo del Árbol de Listas Anidadas ….. 11

 Fig.11 Visión global …... 12

 Fig.12 Pcap_loop …... 13

 Fig.13 Carga en Árboles ….. 14

 Fig.14 ip_func.c & Modbus_func.c …... 15

 Fig.15 Funciones para los Árboles ….. 16

 Fig.16 Visión del resultado final ….. 17

 Fig.17 Ejecución scripts iniciales ….. 18

 Fig.18 Banners de inicio ….. 18

 Fig.19 Comprobación existencia de carpetas ….. 19

 Fig.20 Distintas pantallas en el funcionamiento del programa …... 19

 Fig.21 Output de nuestro programa ….. 20

 Fig.22 Estadísticas Wireshark …... 22

 Fig.23 Fichero de estadísticas de nuestro sniffer ….. 22

 Fig.24 Wireshark estadísticas “endpoints” …... 23

 Fig.25 Fichero de información IP-TCP ….…... 23

 Fig.26 Fichero de reglas IP-TCP ….. 23

v

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Lista de tablas

 Tabla 1 ….. 5

vi

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

1. Introducción y Exposición de Objetivos

1.1 Introducción a la Seguridad en Redes

A día de hoy nos vemos envueltos en un mundo sin igual, en el que las comunicaciones y
asuntos diarios pasan a través de una “nube” formada por multitud de máquinas y dispositivos
electrónicos. Nuestros emails alcanzan su destinatario, no sin antes haber atravesado la maraña de
routers que conforman Internet; ahora ya podemos sobrevivir sin poner pie en un supermercado, ya que
con tan sólo un ordenador, una conexión a Internet y un pequeño número de clicks podemos realizar
nuestra compra semanal; transacciones bancarias, últimos libros, ropa, redes sociales... Todo puede ser
realizado, y así lo es, desde el despacho en el trabajo, o desde el confort de tu sofá en casa.

Pero, ¿qué sucede en el ámbito de las empresas privadas? Datos personales, información y
señales de control en entornos industriales, documentos de importancia... todo sale/llega desde/a un
computador, viaja a lo largo del cable en una intranet, estando esta intranet muy probablemente
conectada a la red de redes: Internet está más presente que nunca y todo el mundo debería entender el
importante papel que juega la Seguridad en Redes en todo esto. Guste o no, nos encontramos inmersos
de lleno en una era digital, en la cual todo es traducido a unos y ceros.

Dicho esto, diría que un buen punto de partida para este documento podría consistir en definir
con pocas palabras lo que es la “Seguridad en Redes”. Así pues, ¿qué es la Seguridad en Redes?

• Según la Wikipedia [1]:
La seguridad en redes consiste en las medidas y políticas adoptadas por un administrador de red

para prevenir y monitorizar accesos no autorizados, malos usos, modificaciones o restricciones a una
red de computadores o recursos de red accesibles a través de la misma.

• La Webopedia dice [2]:
Un campo especializado dentro del “computer networking” que involucra la seguridad de una

infraestructura de la red. La seguridad en redes es normalmente manejada por un administrador de red
o administrador del sistema que implementa las políticas de seguridad, el software y el hardware
necesitados para proteger una red y los recursos accedidos a través de la misma de accesos no
autorizados.

• Una definición más simple la tenemos en la revista digital “ Magazine Encyclopedia”[3]:
Protección de sistemas de computadores en red de intrusiones no deseadas.
En definitiva, podemos concluir que la Seguridad en Redes previene de ataques y posibles

amenazas, protegiendo los sistemas de computadores que posibilitan el desarrollo de nuestras
actividades diarias. Pero también podríamos plantear esto desde otra perspectiva, considerando las
implicaciones de la Seguridad de Redes, una vez las medidas de seguridad han sido vulneradas, y
afirmar que se ocupa de controlar y monitorizar lo que dentro de la red sucede, de modo que se pueda
verificar que todo está dentro de un orden, y en caso contrario poner medidas al respecto.

1.2 Ciberseguridad y Amenazas a CCI

Para explicar correctamente el contexto de este trabajo, me gustaría hablar sobre qué representa
el término Ciberseguridad y qué son los Ataques a CCI (Conexión Compartida a Internet) para
posteriormente realizar la exposición de objetivos.

En el mundo actual, ataques contra IC (Infraestructuras Críticas) de energía, gas, petróleo,
agua... están creciendo, y no es extraño conocer que detrás de dichos ataques se encuentran
organizaciones respaldadas económicamente tanto por empresas competidoras como incluso por

1

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

gobiernos de países[32].
Basta tan sólo para dar un marco real a este punto, con consultar en Internet artículos de

periódicos, que en los meses que llevamos de año 2013, hacen referencia a ataques a la seguridad
informática:

• HuffingtonPost [31] → Posted: 05/16/2013 :
“Syria faced an Internet blackout for eight hours on Wednesday, its second one in the past week and the sixth one

of the two-year uprising against President Bashar al-Assad, a U.S. web trafficking firm reported. Phone lines into
Damascus were also down.”

• Informe Semanal [33] - Espionaje masivo → 15 jun 2013
“Edward Snowden era, hasta hace unos días, uno más de los miles de empleados anónimos que analizan la

información para las agencias de inteligencia del Gobierno de Estados Unidos. Huido a Hong Kong y después en paradero
desconocido, se ha convertido en uno de los hombres más buscados por el FBI. ”

• esmateria.com [39]→ “La ciberguerra es inevitable” 04/06/2013
“Los expertos advierten de que las infraestructuras críticas dependen de sistemas vulnerables”

• BBC News Technology [40]→ 19 May 2013 Last updated at 23:52 GMT
“How to hack a nation's infrastructure”

La lista de noticias que hablan sobre hechos relacionados con ciberseguridad/ciberataques es
larga, podemos sin duda encontrar una buena colección de páginas web que dan cuenta de estos hechos.
Dedicar sólo unos instantes a leer alguna de estas noticias, nos ayuda a comprender por qué es tan
importante invertir esfuerzos en asegurar y proteger las redes de datos y entornos como el que tratamos
en este texto.

1.3 Seguridad en Sistemas SCADA

1.3.1 ¿Qué significa SCADA?

El acrónimo SCADA hace referencia a Supervisory Control And Data Acquisition. Los sistemas
SCADA son un tipo de CCI, en concreto son sistemas controlados por computador cuya tarea es
monitorizar y controlar sistemas industriales. Han estado presentes en nuestras vidas desde principios
de los años 70, permitiéndonos controlar remotamente dispositivos distribuidos a lo largo de grandes
extensiones.

Ejemplos de sistemas SCADA son los sistemas que permiten a operadores establecer y
modificar condiciones que hacen saltar alarmas que controlan la temperatura en sistemas de control de
temperatura por enfriamiento de agua en ciertos procesos industriales; o los sistemas que monitorizan
los niveles alto y bajo en tanques de agua, y alertan cuando el nivel de agua ha alcanzado un cierto
límite... Existen muchos ejemplos de sistemas SCADA que desarrollan importantes funciones en
procesos que intervienen directamente en nuestro bienestar social y calidad de vida.

El diseño de los sistemas SCADA ha evolucionado mucho a lo largo de los años. Su
arquitectura consiste en un sistema de computadores centrales que se comunican con otras máquinas
usando una o más tecnologías de comunicación. Durante la última década, Internet también se ha
incluido en el diseño de estos sistemas, de este modo, por un lado, se les está dotando de una mayor
flexibilidad y funcionalidades extra, pero a su vez, por contra, resultan en sistemas mucho más
vulnerables a ataques, siendo esta la motivación de este trabajo.

2

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

1.3.2 Nivel de Seguridad en los Sistemas SCADA

A día de hoy, la preocupación sobre como proteger estos sistemas está en aumento; ya que, a
pesar del importante papel que desarrollan en nuestra vida (responsables del control y motorización de
sistemas tales como los de distribución de agua, de tuberías de petróleo y gas, de red eléctrica), estos
dispositivos aún poseen muchas vulnerabilidades [41] [42].

Muchos ciber-ataques en la actualidad, se centran en lograr el control de estos sistemas SCADA
y otros sistemas CCI. Debemos tener en mente que si uno de estos ataques llega a buen puerto, puede
desencadenar terribles consecuencias en términos de salud humana e incluso llegar a representar un
riesgo para la vida. Ejemplos de estos ataques son: DoS (Denial of Service), mediante el cual dejamos
la máquina fuera de servicio; robo de contraseñas, que otorgan privilegios al atacante en la máquina
atacada; impersonalización, como una posible consecuencia del robo de contraseñas; falsificación de
archivos o borrado de los mismos... Existen multitud de formas de ataque.

Algo que resultará muy útil a todo administrador de red encargado de poner medidas de
protección ante estos ataques expuestos, será conocer su red. El conocimiento del funcionamiento de
los dispositivos que existen en ella, junto con el conocimiento de “qué es normal” y que “anormal”, va
a ser información muy importante de cara a reaccionar con velocidad ante un ataque que está
ocurriendo. Es por este aspecto que la herramienta que en este documento se presenta resulta tan
atractiva, ya que ayudará a detectar ataques lo antes posible, pudiendo establecer soluciones al respecto
antes de que sea demasiado tarde.

1.4 Exposición de Objetivos

¿Qué medidas se pueden tomar para mejorar el nivel de seguridad contra ataques a CCI?
Actualmente existen muchas herramientas en manos de los encargados de la seguridad informática:
cortafuegos , antivirus... Aun así, con el creciente número de ataques y su diversificación, no se debe
nunca bajar la guardia. Lo que un día fue un sistema seguro, hoy puede no serlo. La tecnología avanza
pero los ataques se vuelven más sofisticados a su vez.

Desde el grupo OSNA, se propone combinar dos de las filosofías tradicionales de protección de
sistemas informáticos: “black-listing” y “white-listing”.

• Black-listing o lista-negra
Consiste en un método cuya aproximación a la seguridad está basado en la comparación del

tráfico observado con patrones que describen conductas que no deben ser permitidas, consintiendo
sólo aquellas conexiones cuyos comportamientos no estén explícitamente descritos en una lista negra.
El problema de este método es que sólo previene de comportamientos que han sido analizados y
estudiados previamente, dejando un agujero de seguridad durante una cierta ventana de tiempo: desde
el momento en el que surge una nueva forma de ataque, hasta cuando se dispone de un patrón que
describa el comportamiento de tal amenaza.

Además, los atacantes estudian formas para burlar estas medidas de seguridad, inclusive
estudian las listas negras. Sus métodos pasan desde dividir la carga del ataque entre diversos paquetes,
de modo que las medidas de seguridad que buscan el ataque completamente contenido en un paquete,
sean incapaces de saltar alarmas; hasta la representación de la información en el mismo paquete de un
modo que no sea fácilmente reconocible; llegando a eludir este método de Black-listing.

• White-listing o lista-blanca
En la otra cara de la moneda tenemos la perspectiva contraria: white-listing. Esta filosofía hará

saltar alarmas cada vez que se observe un comportamiento fuera de lo esperado. Dicho comportamiento

3

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

“correcto” estará completamente descrito dentro de las llamadas listas-blancas.
Aunque de nuevo, este método tampoco resulta 100% seguro. Su fortaleza, pero a la vez su

debilidad, estriban en cómo de bien descrito esté el comportamiento “aceptable” dentro de sus listas de
reglas blancas. Si no somos capaces de afinar bien una regla dentro de dichas listas, estaremos
permitiendo comportamientos que aún estando dentro de lo aceptado, constituyen una amenaza para el
sistema.

Existe a su vez, un tercer método de detección de ataques a redes de datos llamado Detección
de Anomalías. Este método es una de las últimas aproximaciones a la Seguridad de Redes y se basa en
el estudio de N-gramas[Anexo B], creados a partir de la información contenida en los paquetes.
Realizando un estudio estadístico, la idea es sacar patrones del contenido que se observa en los
paquetes, alertando cuando dicho contenido sea muy distinto del observado durante una fase de estudio
del tráfico de red. Si esta aproximación no se ha añadido a nuestro diseño, es debido a que necesita de
un gran trabajo para luego no lograr resultados demasiado positivos: a veces un patrón puede ocurrir en
un campo concreto del paquete pero no en otros...

En definitiva, el objetivo del estudio que aquí desarrollo es el de presentar una herramienta que
sea capaz de fundir las filosofías de protección de redes previamente expuestas. Por un lado, usando la
idea de DPI (Deep Packet Inspection)[30], mi software será capaz de, durante una fase preliminar de
estudio del tráfico de red, realizar un análisis estadístico sobre el tráfico en el segmento de red a
controlar, creando listas con los comportamientos que se suponen normales (listas blancas). Por otro
lado, haciendo uso de “listas negras” ya creadas por especialistas en el tema[9] y añadiéndolas a
nuestro diseño, busco presentar, lo que sin duda alguna, da lugar a una herramienta muy completa.

Fig.1 Representación de mi software + Snort en una red conformada por nodos de interconexión (hubs / switches)

2. Requisitos de Usuario

Con el fin de presentar de un modo lógico la problemática, iré desde lo más general a lo más
particular, exponiendo al final los requisitos parciales de usuario que me he planteado y que me han
ayudado a tener una guía de acción

2.1 Redes de Comunicación en el Entorno Industrial.

Un primer requisito de usuario, y muy importante a tener en cuenta, es el entorno de trabajo de
las máquinas que vamos a monitorizar. Entornos sometidos a condiciones de trabajo más exigentes, ya
que se ven sometidos a condiciones extremas, ya sea de temperatura, humedad, vibración... lo que
conllevará modificaciones en los protocolos que ya conocemos, e incluso, el uso de nuevos estándares.

1. Una interfaz en modo promiscuo es capaz de recibir no sólo los paquetes destinados a su propia interfaz sino cualquier paquete que fluya en el segmento
de red al que se conecta.

4

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Ejemplos de estos entornos los podemos observar en cualquier central eléctrica (nucleares,
eólicas, hidráulicas...). Para cualquiera que haya visitado alguna en su vida, le será fácil comprender
que, los componentes que trabajan en estos, soportan condiciones que pueden llegar a exceder los
rangos usuales de temperatura, vibración, presión... de los equipos IT. Para lidiar con estos problemas,
se utilizan los llamados Protocolos de Red de Sistemas de Control Industrial[29]. Ejemplos de estos
protocolos son: Ethernet Industrial[22], Modbus[23], ZigBee, EtherCAT... la lista es extensa y busca
dar solución a problemáticas particulares derivadas del entorno de trabajo.

2.1.1 Modbus

Profundizando en los Protocolos de Red de Sistemas de Control Industrial, presento el
protocolo con el que se me pidió que mi software debiera trabajar: Modbus. Se trata de un protocolo
simple y robusto usado para comunicaciones en serie, publicado originalmente por Modicon
(www.modicon.com) para su uso con PLCs (Programmable Logic Controller), que se ha consolidado
como un importante protocolo de comunicaciones y un modo de conexión entre dispositivos
electrónicos[ezTCP].

Modbus posibilita la comunicación de entre aproximadamente hasta 240 máquinas conectadas a
la misma red. Se utiliza para conectar un computador supervisor con una unidad remota RTU (Remote
Terminal Unit) en sistemas de control y adquisición de datos SCADA[23][24][25].

Fig.2 Ejemplo de set-up de una red Modbus

Existe software a disposición en Internet para simular el funcionamiento de redes Modbus.
Algunos de los dispositivos en dicha red serán Master (Maestro) y otros serán Slave (Esclavo).
También ha sido desarrollada una API Modbus que simplifica el proceso de creación de software más
específico en la creación de un escenario virtual Modbus.

Existen varios tipos de Modbus: Modbus RTU, Modbus ASCII y Modbus TCP; mi software
tiene como requisito de diseño trabajar con Modbus TCP. El hecho de trabajar en un software para un
protocolo encapsulado sobre TCP, abre la posibilidad a futuras extensiones a otros protocolos de
similar encapsulado.

Tabla 1 Pila de protocolos en Modbus TCP

5

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig.3 Modbus TCP – ADU

Fig.4 Cabecera en Modbus TCP

2.2 IDS / IPS (Intrusion Detection System / Intrusion Prevención System)

Este proyecto se enmarca dentro del campo de la Detección y Prevención de Intrusiones. El
acrónimo IDS/IPS hace alusión a una aplicación software que es capaz de contrastar los paquetes que
transitan en nuestro segmento de red con unos patrones predefinidos (listas blancas / listas negras). Más
en concreto, como requisito de usuario, se me presentó con la herramienta IDS llamada Snort,
herramienta de software libre con la que mi software debe de trabajar y que delimita mis opciones de
diseño, como más adelante veremos.

2.2.1 Snort

Así pues, teniendo en mente el Detector de Intrusiones Snort, se me pidió idear un método que
fuera capaz de crear un “mapa” informativo de/con las conexiones de nuestro segmento de red y
“dárselo de comer a Snort”, de modo que se pueda automatizar el proceso de detección de dicho IDS.
Pero, ¿qué es Snort en definitiva?

Snort es un programa de software libre desarrollado por Sourcefire[Snus00]. Se usa para
detectar accesos no autorizados a ordenadores y redes de comunicación. Puede ponerse a funcionar de
tres modos distintos: sniffer, logger, NIDS (Network Intrusion Detection System), siendo este tercer
modo el que nos interesa debido a su carácter IDS.

Su funcionamiento se basa en módulos, los cuales trabajan sobre los paquetes que el sensor
capta en su segmento de red. La siguiente imagen describe visualmente la relación entre los distintos
módulos que conforman Snort.

Fig.5 Flujo de los paquetes a través de los módulos de Snort

Vayamos paso por paso utilizando como apoyo la imagen anterior:
Primeramente, los paquetes, transmitiéndose por la red, son captados por nuestro sensor Snort,

a través de su NIC (Network Interface Card). Acto seguido son decodificados (primer módulo),

6

 En este punto es donde conecta mi sniffer con
 snort. Las listas blancas creadas con mi software
 se colocan en el módulo de detección de snort.

alert udp any any -> 192.168.1.0/24 6838 (msg:"DoS"; content: "server"; classtype:DoS; priority:1)

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

permitiendo conocer qué protocolos utilizan las comunicaciones entre máquinas.
Tras ello, y con Snort trabajando como NIDS (Network Intrusion Detection System), los

paquetes serán enviados a los diversos preprocesadores según haya sido establecido en el fichero de
configuración de Snort. Los preprocesadores son plug-ins que Snort usará para realizar ciertas
transformaciones sobre el paquete, de modo que no se nos escapen ataques más elaborados. Estos
preprocesadores son usados en la escritura de las reglas.

Fig.6 Ejemplo de regla Snort

Tercer módulo, “Detection Engine”, es donde están contenidas las reglas y se produce la acción
propiamente de contraste entre paquetes y reglas. El resultado de este módulo será pasado a los
componentes de alerta y “loggeo”, que generarán las alertas necesarias en caso de haber detectado
algún comportamiento fuera de la norma. Una alerta generará una entrada en un fichero de logging de
modo que pueda ser consultada en un posible futuro estudio del ataque.

Los módulos de Output establecen el modo en el que el administrador podrá ser “alertado”:
desde un e-mail a su cuenta personal de correo, un mensaje a su móvil, un busca conectado al sensor
Snort... las posibilidades son múltiples y variadas.

2.3 Requisitos para la Creación del Software

Ahora que tenemos una visión general de la situación puedo empezar a plantear una solución a
la problemática expuesta. Voy a crear un software que analice tráfico Modbus y cree listas blancas para
Snort basándose en la idea de DPI, aprovechando las alternativas que Snort nos brinda ya de por sí.

A fin de lograr una herramienta más completa se requiere, además, añadir al diseño un enfoque
de black-listing, a través de listas negras ya publicadas en Internet (ej. www.Snort.org) con las que mi
software trabajará a fin de juntar ambos enfoques en el mismo diseño.

Personalmente, he procurado descomponer el problema de diseño del software en varias etapas,
de modo que pudiera ir aproximándome paso a paso al resultado final. Estas etapas las considero
requisitos parciales de usuario y son las siguientes:

1. Creación de un “sniffer”: programa que recoge los paquetes que fluyen por el segmento de red al cual se ha
conectado la máquina sensor y lo descompone en sus campos.

2. Cuando ya tenemos un programa sniffer, debemos ser capaces de trabajar con los campos de interés. En un
primer momento pensamos únicamente en los protocolos IP y TCP, almacenando en nuestra estructura de árbol
dinámico, estructura explicada más adelante, los campos de interés: Ip fuente, Ip destino, puerto fuente, puerto
destino.

3. Teniendo un algoritmo que ya es capaz de recoger esos campos y guardarlos como nos interesa, es momento de
extender nuestro algoritmo de modo que también sea capaz de recoger información Modbus. Los campos Modbus
que queremos almacenar, extendiendo aún más la idea de árbol dinámico, son tres: longitud del fragmento
Modbus, identidad y código de función Modbus.

4. Ahora que ya tenemos la información guardada, deberemos representarla en ficheros para poder estudiar que
recoge la información correctamente. Logrado esto podemos pasar a representar esta información en un modo
que Snort pueda comprender y utilizar.

5. Ya tenemos los ficheros de reglas, pero Snort deberá saber donde están contenidos. Nuestro software moverá estos
ficheros de reglas a las carpetas destinadas para tal efecto dentro del sistema de archivos de Snort y modificará el
fichero de configuración de éste para que Snort sepa que debe tenerlos en cuenta.

7

Preprocesadores

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Tras estos 5 puntos, ya sólo queda poner a funcionar Snort en modo NIDS (Network Intrusion
Detection System) y estar tranquilos sabiendo que ahora Snort, protegerá nuestro sistema de todo lo
que no se adecue al “mapa de conexiones” que nuestro software a generado.

3. Análisis y Diseño

3.1 Entorno de Trabajo

La primera decisión a tomar ha sido sobre el sistema operativo, ¿comercial o software libre?
Personalmente, la idea de software libre me gusta mucho, pero lo que más ha pesado en mi decisión es
el hecho de que Snort sea en sí mismo software libre. Ya sólo por esto, mi decisión ha sido rápida:
software libre; lo que me lleva a pensar en Linux[LinSP00].

Pero, ¿qué distribución Linux? Mandriva, Debian, CentOS, Fedora... existen tantas que resulta
complicado extraer motivos por los cuales tomar una y descartar otra. Pensando en que lo importante
será que nuestro sistema dedique, en su mayoría, recursos a lo que realmente interesa, que son las
tareas de sensor y no pierda el tiempo en temas de entorno gráfico u otras florituras como muchos
sistemas operativos actuales hacen, me han convencido dos versiones de la distribución Debian[48][49]
que cumplen con esto: Xubuntu y Openbox. Openbox [46][47], con el entorno gráfico más ligero de
todos los Linux, centrando su funcionamiento especialmente en su shell. Por otro lado Xubuntu[52],
versión de Ubuntu, dedica muy pocos recursos a temas gráficos y que, personalmente, es la elección
para mi ordenador personal. Será entonces, por motivos de reducción de la curva de aprendizaje y que
cumple con los requisitos que le pido al sistema operativo, lo que me lleva a elegir Debian Xubuntu.

¿Qué lenguaje vamos a utilizar en la programación? Puedo elegir entre los lenguajes Java, C y
C++; pero tenemos por otro lado un sistema operativo escrito enteramente en C y un programa IDS/IPS
que a su vez, también está escrito enteramente en C: resulta una elección fácil por armonizar todo,
elegir como lenguaje de programación el lenguaje C.

Además, uno de los placeres de trabajar en Linux es la programación de scripts shell [NeSt00];
facilitan las tareas de administración del sistema y pueden ser incluidos en cualquier código C a través
de la llamada al sistema “system”. Ahora bien, ¿qué shell debo elegir? Existen varias versiones de
shell: sh Bourne, csh, zsh, ksh, bash... La versión “bash” shell es la más común en sistemas Linux, esto
hace que sea más probable que un administrador de sistema este familiarizado con esta versión,
logrando que éste trabaje más cómodo desde un principio y podamos ahorrar en tiempo de aprendizaje
sobre otros shells, ya que por otro lado, no aportan ventajas unos sobre otros. Así pues, elegir el “bash”
shell parece la opción más acertada.

3.2 Librería PCAP

Pensando en la creación de un sniffer de modo que podamos ir cumpliendo con el punto 1 de
los requisitos parciales de usuario y teniendo en cuenta que trabajamos en un entorno Linux y
programamos en C, no disponemos de muchas alternativas de diseño, sólo nos queda la posibilidad de
buscar una API para C. Una API (Application Program Interface) [4][5][6] define la interfaz a través de
la cual componentes software se comunican entre sí a nivel código. Provee de un nivel de abstracción a
través de un conjunto de interfaces, normalmente funciones, que un código puede invocar [LinSP00].
Resulta una importante ayuda para los desarrolladores de software de cara a poder olvidarse de las
particularidades del hardware con el que trabajan y centrarse en su tarea de programación.

Las APIs contendrán rutinas, estructuras de datos, constantes, variables... que pueden ser usadas

8

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

en tus programas. El modo en el que se usan siempre es el mismo: comienzas usando una función
“open”, que abre un flujo de datos sobre el cual puedes leer y/o escribir como si fuera un archivo
normal. La idea de las API concuerda con la filosofía Linux (y previamente UNIX) de “hacerlo todo
'un archivo' ” (el sistema operativo “mapea” cualquier hardware conectado al PC como si fuera un
archivo) resultando en un nivel de “abstracción” que facilita el trabajo.

PCAP (Packet CAPture) es precisamente una implementación de API que se usa para capturar
tráfico de red. Es la base hoy en día para cualquier programa sniffer o cualquier Sistema de Detección
de Intrusiones como Snort o sniffers tales como Wireshark. Conocidos paquetes software como
“Aircrack-ng suite” [Hck01] también basan sus funcionalidades en PCAP. Los sistemas operativos tipo
UNIX implementan PCAP en su librería libpcap,y podrá ser utilizada en tareas de programación C tras
su inclusión mediante la sentencia #include <pcap/pcap.h>, donde pcap.h es el fichero de cabecera.

3.3 ¿Cómo nuestro programa trabaja con Snort?

Snort trabaja contrastando las reglas que describen comportamientos permitidos y no
permitidos y que están contenidas en sus ficheros de reglas, con el tráfico que observa en su NIC
(Network Interface Card). Esta NIC, por su parte, deberá estar en modo promiscuo, lo que significa que
deberá de ser capaz de captar cualquier paquete que vea circulando en su segmento de red [Hck01] .

El aporte de una filosofía de “listas blancas” implementando la idea de “Deep Packet
Inspection” (DPI) [30] va a ser nuestro aporte principal al campo de la Detección de Intrusiones; pero,
¿cómo podemos crear estas listas que describen el comportamiento permitido en nuestra red, sin
necesidad de hacerlo a mano y afinar al máximo en la descripción de dicho comportamiento?

Snort posee un modo propio de descripción de los comportamientos que se emplea en la
elaboración de reglas, que consiste en una estructuración concreta y forma de escritura particular de sus
reglas, al cual, los archivos resultado de nuestro software, se deben adaptar, de modo que podamos
entendernos con Snort.

Poniendo a correr mi software, durante una fase de estudio inicial del tráfico de red en el
segmento a controlar, el sniffer que he elaborado, será capaz de generar reglas Snort que describan el
comportamiento a nivel IP-TCP (referente a direcciones y puertos) y a nivel Modbus (recogiendo los
campos de funciones, números de identidad, longitud paquete Modbus), automatizando el proceso de
creación de reglas blancas y cumpliendo con los puntos 2 y 3 de los requisitos parciales de usuario.

Posteriormente, y una vez finalizado este proceso de estudio, también será capaz de interactuar
con el sistema de archivos y ficheros de Snort, colocando estos ficheros de reglas (además de las reglas
negras que se decidan incluir al diseño) dentro de las carpetas que Snort utiliza para almacenar los
ficheros de este tipo y modificará el fichero de configuración de Snort mediante sentencias “include”,
permitiendo al sensor conocer la existencia de nuestros nuevos ficheros de reglas.

En definitiva el proceso resulta muy automático y alivia en gran medida las tareas de cualquier
administrador de red, facilitando el proceso de “ajuste” de un sensor IDS/IPS Snort.

3.4 Árbol de Listas Anidadas

Todo programa que se precie de realizar una función útil, deberá contener estructuras de datos
donde almacenar el valor de sus variables. Mi programa necesita almacenar los datos con los que
realizar estadísticas, la estructura que utilizaré la he llamado “Árbol de listas anidadas”.

De modo que podamos entender qué son y cómo he llegado a ello, muestro a continuación el
pensamiento evolutivo que me ha llevado hasta dar con la idea del “Árbol de Listas Anidadas”:

9

 _ _ struct linked list node

{
 ; void data

 _ _ * ; struct linked list node ptr

}

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

1. Primera idea: arrays; el principal problema que presenta un array es la delimitación del mismo: declarar el
número de variables que lo componen. Por el tipo de problema al que nos enfrentamos, no podemos determinar a
priori cuántas variables vamos a necesitar; si lo hiciéramos, estaríamos haciendo un uso ineficiente de memoria.

2. Necesitamos algo que pueda ser determinado a tiempo real. Las listas anidadas nos dan la facilidad de reservar
espacio de memoria dentro del “heap” de un programa, y sólo, cuando sea necesario. Por contra, esta segunda
opción no termina de cubrir nuestras necesidades, de algún modo perdemos una dimensión, no somos capaces de
establecer una clasificación por niveles (direcciones IP, puertos, función, longitud, identidad). Esto hace que esta
segunda idea no termine de encajar.

3. Pero, ¿qué tal si extendemos la idea de listas anidadas buscando obtener una dimensionalidad extra? Utilizando
listas anidadas, pero añadiendo un segundo puntero (un puntero para los datos de un mismo nivel y otro puntero
para los datos del nivel/tipo inmediatamente inferior) guardaríamos datos, siempre y cuando, fuera necesario
mediante la asignación dinámica que caracteriza a las listas anidadas, utilizando de manera eficiente la memoria;
pero además tendríamos la información almacenada por niveles obteniendo tal dimensionalidad buscada.

Basándonos en un diseño de listas anidadas simple y unidimensional, lo primero que se me
ocurre es presentar el “struct” que se usa para almacenar datos en este método de almacenamiento:

Fig.7 Nodo en una lista anidada

Ejemplificándolo, pudieran existir los 5 nodos siguientes en una lista anidada:

Fig.8 Ejemplo de lista anidada

Cada nodo estará representado por un “struct” como el anterior: cada ai representa el dato
dentro de la estructura y el número contenido en el segundo recuadro (800, 712, 992, 692, 0) es la
dirección de la siguiente estructura dentro de la lista anidada. Los números bajo los recuadros internos
son la dirección de la estructura de datos dibujada sobre ellos.

Las estructuras serán emplazadas en memoria mediante asignación dinámica[AlWe0], siendo
esto la ventaja frente a la utilización de arrays: mediante asignación dinámica somos capaces de usar
únicamente la memoria necesaria, sin desperdiciar, o hacer corto de la misma.

Volviendo a la idea de “Árbol” y uniendo diseño y requisitos de usuario: en el punto dos, se
habla sobre la recogida de información de campos del paquete IP (direcciones IP) y segmento TCP
(puertos); en el punto tres, incluimos Modbus al diseño, en cuyo caso, nuestro “Árbol de Listas
Anidadas” se deberá extender varios niveles “hacia abajo” con el fin de dar cabida a tres campos extra
(función, identidad y longitud). Así, vemos un cierto numero de niveles que se corresponden con el tipo
de datos que la variable en sí contiene. Ya de aquí, extendiendo la idea de listas anidadas mediante la
añadidura de un puntero más, obtenemos la idea de “Árbol de Listas Anidadas”, que es capaz de cubrir
a la perfección nuestras necesidades de almacenamiento.

10

 Dato dentro de la estructura.

 Dirección al nodo siguiente en la
 lista anidada.

 _ _ struct ip node t

{
 * ;void ptrdata

 _ _ * _ ; struct ip node t ptr r

 _ _ * _ ; struct ip node t ptr b

}

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

La siguiente figura muestra una posible realización de un “Árbol” que acumula datos IP-TCP:

Fig.9 Representación “reducida” de un “Árbol de listas anidadas”

La idea es que cada vez que el programa encuentre en un paquete una nueva combinación de
los campos dirección Ip fuente, dirección Ip destino, número de puerto fuente y número de puerto
destino, respecto a combinaciones anteriormente vistas, deberá incluir nuevos nodos en el árbol.

Explicando la figura anterior en la que se mostraba un pequeño Árbol:

• Llega un primer paquete con direcciones Ip fuente 207.144.24.5, dirección Ip destino
110.87.25.74, número de puerto fuente 450 y número de puerto destino 80. Como la lista estaba
vacía, esta combinación de datos no están aun almacenados, así que los guarda. Reservando
para ello espacio y completando los campos de nuestra estructura de datos.

• Llega un segundo paquete con direcciones Ip fuente 207.144.24.5, dirección Ip destino
78.207.124.25, número de puerto fuente 1240, número de puerto destino 21. Como la dirección
Ip fuente ya la tenía y el primer campo nuevo en aparecer es la dirección Ip destino; a partir de
este nodo, se plantea una nueva conexión desde este nodo hacia una posición de memoria que
almacene la nueva dirección Ip destino y, a partir de ésta, el resto de campos de información
(número de puerto fuente y número de puerto destino).

• Siguiente paquete: Ip fuente 207.144.24.5, dirección Ip destino 78.207.124.25, número de
puerto fuente 80 y número de puerto destino 1562. Los nuevos campos son los números de
puerto. Desde el nodo que contiene la información de dirección Ip destino 78.207.124.25 se
añade un nuevo nexo a otro nodo que contenga la información del nuevo número de puerto
fuente y de este, un nexo a otro nodo con la información de número de puerto destino.
Y así, este proceso continuaría, comparando la información ya presente con la información que

llega en el nuevo paquete. El árbol, puede ser tan extenso como nueva información vaya llegando.
¿Cuánta información debe ser almacenada? Eso dependerá del diverso número de máquinas y del
número de conexiones diferentes que se establezcan entre ellas.

La estructura de datos que utiliza cada nodo del “Árbol” presentado es la siguiente:

Fig.10 Nodo del Árbol de Listas Anidadas

11

207.144.24.5

110.87.25.74

450

80

78.207.124.25

1240

21

80

1562

10.10.0.5

98.200.128.14

23

5051

1025

1110

 Dirección de memoria del dato.

 Dirección de memoria del siguiente
 nodo que contiene información del
 mismo tipo.

 Dirección de memoria de la “hoja” que

 contiene información del siguiente nivel.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

4. Implementación

4.1 Código

Los archivos que componen el software creado durante estos meses para el proyecto:

.
├── 0.compiling.sh ├── DOC_README.odt
├── 1.remove.sh ├── DOC_README.pdf
├── conf_Snort_files ├── ip.c
│ ├── classification.config ├── ip_func.c
│ ├── important_considerations ├── ip.h
│ ├── input ├── ip_node.h
│ ├── output ├── merge_ip.c
│ ├── reference.config ├── Modbus_func.c
│ └── Snort.conf ├── Modbus_node.h
├── demos ├── moving_conf_files.sh
│ ├── demo1 ├── moving_rule_files.sh
│ ├── demo2-less read traffic ├── opt_Snort_etc.sh
│ ├── demo3-UnsolicitedPacketsfrom05 ├── opt_Snort_rules.sh
│ ├── demo3-UnsolicitedPacketsfrom06 ├── var_log_Snort.sh
│ ├── FC1-permit.pcap ├── rules
│ ├── http.cap │ ├── backdoor.rules
│ ├── Modbus_FC_1_Coil.pcap │ ├── community-virus.rules
│ └── Modbus.pcap │ ├── dos.rules

│ ├── ftp.rules
└ └── icmp.rules

4.2 Diagrama de Flujo del Código

¿Cómo conectan los archivos previamente expuestos?

Fig.11 Visión global

12

 Scripts de compilación y eliminación de
 ficheros de realizaciones anteriores.

 Configuración de Snort

 Ficheros .pcap usados para testeo

 Ficheros principales de código

 Scripts de gestión de archivos de reglas y
 carpetas de configuración dentro de las
 jerarquías de carpetas de Snort.

 CARPETA “rules”:
 Aquí añadiremos los ficheros de reglas
 negras que queremos para nuestro diseño.
 Mi sniffer añadirá estos ficheros dentro de
 la carpeta de reglas de Snort e incluirá una
 sentencia “include” dentro del fichero de
 configuración para que Snort las tenga en
 cuenta. Estos “.rules” son una elección
 mia, pero se podrán añadir todos aquellos
 que un administrador de red decida añadir.

 ip.c

 Archivos de funciones:
 - ip_func.c
 - modbus_func.c
 - merge.c

 moving_conf_files.sh
 moving_rule_files.sh
 opt_snort_etc.sh
 opt_snort_rules.sh
 var_log_snort.sh

 Archivos de cabecera:
 - ip.h
 - ip_node.h
 - modbus_node.h

NIC

 Paquetes que la NIC detecta

 Uso llamada “system”

 Retorno del Script

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig.12 Pcap_loop

En este punto tenemos la estructura general del programa. Primeramente se comprueban los
switches con los que se invoca al programa: -n, -i, -f. Con los switches -f, y -i se indica desde dónde va
a “leer” el sniffer (desde fichero .pcap o desde interfaz de red); en el caso de leer desde .pcap, éste se
“toma” como si fuera la misma interfaz de red (NIC), pero resulta interesante entender la distinción.
Para la fase de testeo este switch -f es de especial importancia.

Usando las funciones de librería “pcap_open_” se ha abierto un descriptor de flujo que nos sirve
para trabajar con el “interfaz” como si trabajásemos con un fichero cualquiera; es aquí donde
comenzamos a hacer uso de la abstracción que la API PCAP nos brinda.

El switch -n indica el número de paquetes que conformarán la fase de estudio del segmento de
red, el software deberá trabajar hasta que se hayan registrado/estudiado dicho número de paquetes. Una
vez llegado a dicho número, se termina dicha fase de estudio y se comienza la organización de ficheros
estadísticos y de reglas como se ha indicado en el recuadro inferior más a la derecha.

13

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Profundizamos en la ejecución del programa:
• Volcado a estructuras de datos, uso ip_func.c y Modbus_func.c para generación de Árboles y

obtención de primeras estadísticas (statistics.txt) y datos de “sniffing” (sniff_data.txt) :

Fig.13 Carga en Árboles

14

 ip_func.c

modbus_func.c

Statistics.txt

sniff_data.txt

ICMP UDP OthersTCP

 pcap_open_ *NIC

 pcap_loop configurada con
 nuestra función recurrente

Tipo de paquete:
- ARP
- RARP
- IP
- otros

Volcado
Ethernet

Volcado
IP

Volcado
TCP

¿IP?

 Sí

 No Return

¿Tipo paquete
IP ?

 Esperar que la
 NIC detecte otro
 paquete

Test
Modbus

Modbus

No
Modbus

 Debo añadir aquí un apunte, y

 es que aunque no se ha
 comentado en los requisitos de

 usuario, este programa esta

 pensado para trabajar en redes

 cuya base sea Ethernet.

“Árbol de listas
 dinámicas IP”

“Árbol de listas
dinámicas Modbus”

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• Uso de funciones en ip_func.c: “Árbol de listas dinámicas IP”.

Fig.14 ip_func.c & Modbus_func.c

15

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• Dentro de ip_func.c y Modbus_func.c:

16

insertBranch m_insertBranch

 Árbol Ip Árbol Modbus

 ¿Tenemos dirección Ip fuente?

 ¿Tenemos dirección Ip destino?

 ¿Tenemos puerto fuente?

 ¿Tenemos puerto destino?

Sí No

Sí

Sí

Sí

No

No

No

 Insertamos Ip fuente, Ip destino,
 puerto fuente y puerto destino

 Insertamos Ip destino, puerto fuente
 y puerto destino

 Insertamos puerto fuente
 y puerto destino

 Insertamos puerto destino

 ¿ Árbol vacio ?

 ¿Tenemos dirección Ip fuente?

 ¿ Árbol vacio ?

 ¿Tenemos dirección Ip destino?

 ¿Tenemos puerto fuente?

 ¿Tenemos puerto destino?

 ¿Tenemos info sobre longitud?

 ¿Tenemos info sobre identidad?

 ¿Tenemos info sobre función?

Campos propios
Modbus

 Return función recurrente

Sí

Sí

Sí

Sí

Sí

Sí

No

No

No

No

No

No

NoSí

 Insertamos Ip fuente, Ip destino, puerto fuente,
 puerto destino, longitud Modbus, identidad Modbus,
 función Modbus.

 Insertamos Ip destino, puerto fuente, puerto
 destino, longitud Modbus, identidad Modbus,
 función Modbus.

 Insertamos puerto fuente, puerto destino,
 longitud Modbus, identidad Modbus,
 función Modbus.

 Insertamos puerto destino, longitud Modbus,
 identidad Modbus, función Modbus.

 Insertamos longitud Modbus, identidad
 Modbus, función Modbus.

 Insertamos identidad modbus, función
 Modbus.

 Insertamos función Modbus.

 Return función recurrente

 Cuando se dice en esta imagen
 “insertamos”, quiere decir que
 añadiremos nueva información
 al Árbol correspondiente a partir
 de dónde se ha descubierto que
 el paquete con el que se trabaja
 contiene información nueva.

Fig.15 Funciones para los Árboles

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• Funcionamiento general:
Entendidas las anteriores partes podemos conectarlas y tener una visión completa del

funcionamiento.

Fig.16 Visión del resultado final

17

SNORT

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

4.3 Diagrama de Flujo del Funcionamiento del Programa.

Haremos uso de los scripts creados para borrar y compilar. Primeramente, realizamos un
borrado de ficheros, resultado de alguna ejecución previa (1.remove.sh), tras lo cual ejecutaremos el
script 0.compiling, que compila y enlaza ficheros “objeto” para crear el ejecutable: sniffer.out.

De este modo:

Fig.17 Ejecución scripts iniciales

Tras el proceso de compilación, vemos una pequeña información sobre cómo usar el programa.
Como en puntos anteriores se hizo mención, el programa puede funcionar leyendo desde la interfaz de
red o desde un fichero “pcap” que contenga información recogida en una captura anterior con
programas del tipo wireshark o tcpdump.

Los switches son bastante autodescriptivos:
• “-i” : switch utilizado para indicar qué interfaz de red es la que se estudiará.
• “-n” : número de paquetes que implica el estudio. Una vez “sniffados” y estudiados “n”

paquetes, el programa concluirá y comenzará la etapa de creación de ficheros de información y
de reglas.

• “-f” : se usa para indicar la ruta del fichero “pcap” a estudiar.

Diagrama de flujo para “sniffer” en modo interfaz de red:
./sniffer -i wlan0 -n 1000

En una primera fase del programa se nos presentan banners informativos (sobre instalación de
Snort e inputs y outputs del sniffer).

Fig.18 Banners de inicio

18

 Estudiaremos el tráfico relacionado con la interfaz wlan0, en concreto
 1000 paquetes de información.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Comprobación de la existencia
de carpetas importantes dentro del
sistema de carpetas de Snort y que
será donde almacenemos los outputs
de nuestro sniffer.

Fig.19 Comprobación existencia de carpetas

Comienza el proceso de “sniffado”: al concluir éste, se nos informa sobre cuánto tiempo ha
necesitado para detectar y estudiar los “1000” paquetes que le hemos solicitado. Es ahora, cuando
comienza el proceso de organización: movimiento de ficheros de reglas resultado del sniffing,
movimiento de ficheros de configuración, modificación del fichero de configuración de Snort...

Fig.20 Distintas pantallas en el funcionamiento del programa

19

 En este momento el programa se detiene
 para darnos la oportunidad de incluir
 ficheros de reglas con comportamientos
 que deseemos vetar. Estos ficheros han
 sido ya previamente creados por una
 comunidad de expertos en seguridad y
 están disponibles en Internet para su libre
 utilización. Es en este punto donde
 incluimos el enfoque de “black-list” en
 nuestro programa.

 Trabaja desde Wlan0 (interfaz de red)

 Ha tardado 26 segundos en detectar y
 estudiar los 100 paquetes solicitados
 por linea de comandos.

 Se ha pulsado la “c” y ahora el programa acude a la
 carpeta creada para el propósito expuesto. Mediante un
 script recoge todos y cada uno de los ficheros
 contenidos en dicha carpeta y los traslada a la carpeta
 de reglas dentro de la jerarquía de ficheros de Snort.
 Además, añade dentro del fichero de configuracion de
 Snort (“snort.conf”) una sentencia “include” de modo
 que Snort no sólo contenga los ficheros de reglas
 dentro de su sistema de carpetas, sino que los
 reconozca y pueda trabajar con ellos.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Volviendo sobre ficheros resultado de nuestro programa:

Fig.21 Output de nuestro programa

• ip_tree.txt: fichero que contiene la información rescatada en el árbol dinámico para IP-TCP.
• ip_tree.rules: contiene la misma información que el fichero anterior “.txt” pero expresada de la forma en que Snort será capaz de entender. Es

este fichero, uno de los varios ficheros que copiaremos (a través de los scripts que conforman nuestro sniffer) dentro de la estructura de carpetas
de Snort, que se empleará en el enfoque “white-listing”.

• Modbus_tree.txt: equivalente fichero a ip_tree.txt pero con la información relativa al árbol dinámico para Modbus.
• Modbus_tree.rules: fichero de reglas para Modbus que el programa copiará dentro de los directorios Snort y que servirán para contribuir al

enfoque de listas blancas.
• sniff_data.txt: para no llenar la pantalla de números y letras que ni siquiera vamos a ser capaces de leer, la visualización de los campos de

interés de los paquetes, se envían a un fichero que se podrá visualizar en cualquier momento deseado.
• statistics.txt: en este fichero se incluyen estadísticas temporales. Contribuye a añadir información y completar el “dibujo” de la red. Podría

resultar de bastante interés en el desarrollo de aplicaciones futuras dentro de este mismo programa.

5. Testeo

5.1 Eficacia que No Eficiencia

¿Cómo comprobar los límites de velocidad de un software, cuando estos están sujetos a la
capacidad de un hardware? La respuesta a esta pregunta pasa por un estudio estadístico sobre el número
de paquetes perdidos una vez instalado nuestro sniffer en distintos hardwares. Aún así, dicho estudio
estadístico está sujeto a tantas variables (tarjeta de red, RAM, velocidad del procesador, …) que a mi
parecer resultaría una pérdida de tiempo y no obtendríamos un resultado útil.

Las necesidades hardware son indudablemente un aspecto importante a tener en cuenta, pero no
existe una guía que te diga cuántos gigahercios, gigabytes, megabits.. debe tener el computador donde
instalamos el software [BeJS01]. Las dimensiones del hardware que éste debe tener, dependerán en
gran medida de cuánto tráfico querremos controlar, o dicho de otro modo, cómo de “bulliciosa” va a ser
nuestra red.

No debemos perder de vista que nos interesa “comprobar” el mayor, si no el total, número de
paquetes que fluyen por nuestra red. Aquí es donde entra la idea de “eficiencia”. Si el administrador de
la red decide instalar el software en un hardware que no es capaz de estar a la altura del nivel de trabajo
de la red que se propone controlar, perderá muchos paquetes y por lo tanto el nivel de seguridad
ofrecido se reduce considerablemente. Las capacidades del hardware en definitiva, estarán sujetas al
tráfico a monitorizar y vendrán determinadas mejor o peor, por lo mejor o peor que ese administrador

20

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

de red sea. Importante entonces será cuán bien el administrador conoce su red.
Como recomendación, no se debería instalar, ya sea nuestro software, como Snort, en un

hardware antiguo; en su lugar, es una práctica muy común adquirir un computador de altas prestaciones
e instalar el paquete software-sensor en él. Una vez que dicho computador no cubre las expectativas de
“monitorización”, se puede colocar a realizar otras funciones más generales dentro de la empresa.

5.2 Testeo del Software

Al principio de este texto, hemos expuesto unos requisitos parciales de usuario (“Requisitos
para la Creación del Software”), etapas que yo mismo me he marcado; de modo que, dividiendo el
problema grande en problemas más pequeños, podamos llegar a una solución final satisfactoria. A la
hora de testear pues, debemos ir testeando a la finalización de cada una de dichas etapas, para
comprobar que el resultado logrado es el esperado y que vamos en la dirección correcta.

5.2.1 Testeo del Sniffer Base y Recogida de Datos IP-TCP y Modbus

- Dos aspectos importantes a testear respecto al primer requisito parcial de usuario serán:
• Comprobamos que el programa conecta correctamente con la interfaz establecida en linea de

comandos y que capta los datos correctamente. Esto se realizará a tiempo real a través del
switch “-i <NIC>”.

• a través de un fichero “.cap” usando el switch “-f”: comprobación de un “sniffing” correcto.
Para esto utilizaremos ficheros “.cap” que pueden ser a la vez abiertos con otros programas
como Wireshark, de este modo comprobaremos que los resultados obtenidos por nuestro sniffer
son correctos.

- Entrando ya en los requisitos parciales segundo y tercero:
Fue por motivos de testeo que añadí la alternativa de funcionamiento para mi “sniffer” desde

ficheros pcap “./sniffer -f <nombre_fichero>”. Y es que existen ya de por sí multitud de ficheros pcap
creados para propósito en la red [7][8].

Primero quiero comprobar si mi software es capaz de discernir entre paquetes IP-TCP Modbus
y no Modbus. Para esto descargamos un fichero pcap que contenga un cierto número de paquetes de
todo tipo y lo abrimos con el Wireshark. Wireshark, como herramienta ya consolidada[], nos da la
seguridad de realizar análisis completos y correctos sobre un tráfico.

Acudimos al menú “statistics” y dentro de él a la opción “Protocol Hierarchy Statistics”: una
ventana que nos informa de los protocolos que se ven en el tráfico junto con el número tanto de bytes
como de paquetes de cada tipo. A nosotros nos interesa comparar el número de paquetes de cada tipo,
con el número de paquetes que nuestro sniffer registra.

Ejemplo de prueba: 1. Invocamos wireshark con un fichero cualquiera previamente descargado,
para este ejemplo “Modbus_FC_1_Coil.pcap”. Se trata de un fichero pcap muy sencillo que
simplemente me ayude a mostrar el método de testeo seguido para la comprobación del correcto
funcionamiento del software.

21

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig.22 Estadísticas Wireshark

Invocamos nuestro programa de modo que lea el mismo fichero pcap (./sniffer -f
Modbus_FC_1_Coil.pcap) y dejamos que el programa realice su función. Una vez finalizado, acudimos a la
carpeta donde se recogen los resultados y abrimos el fichero de texto “statistics.txt”.

Fig.23 Fichero de estadísticas de nuestro sniffer

Ahora bien, deberemos repetir esta prueba un cierto número de veces, con el fin de detectar
errores si los hubiera. ¿Cuántas veces? No existe un método que te de la seguridad de que realizando
esta prueba “x” veces, te aseguras un 100% el correcto funcionamiento del software. Yo
particularmente, he probado el software con 20 ficheros pcap diferentes. He procurado eso sí, que los
ficheros pcap, contengan una cantidad suficiente de variaciones, representando diversos escenarios,
verificando que el programa detecta todas ellas. De este modo, puedo estar tranquilo, sobre el correcto
funcionamiento del programa. A lo largo del tiempo de vida de un programa pueden detectarse nuevos
fallos conocidos como “bugs” y que van siendo corregidos en nuevas versiones del software. Por ahora,
me siento muy satisfecho con las pruebas realizadas y puedo afirmar que el software funciona.

Continuando con el testeo a través de ficheros pcap, lo siguiente será comprobar que tenemos
registradas las direcciones y puertos correctamente. De nuevo, Wireshark ofrece una opción para

22

 - invocamos wireshark con la opción de lectura desde fichero.

 Estadísticas Pantalla principal de wireshark.

 Coinciden los 58 paquetes TCP.

 Observar que también coinciden los paquetes ARP. Aunque los
 ARP no son por ahora objeto de estudio.

 Y los 37 paquetes Modbus.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

rescatar que direcciones IP y puertos se ven sobre el tráfico: Menú “statistics” y opción “Endpoints”.
Acudimos a la pestaña “TCP” donde veremos la dirección y el puerto.

Fig.24 Wireshark estadísticas “endpoints”

Para verificar sobre este punto nuestro sniffer, abrimos el fichero “ip_tree.txt” generado con mi
sniffer:

Fig.25 Fichero de información IP-TCP

De nuevo podemos ver el mismo resultado en ambos programas.
En el requisito parcial de usuario cuarto, entramos en la elaboración de reglas Snort,

comprobaremos que los datos obtenidos en “ip_tree.txt” y que han sido verificados como correctos, son
traducidos a “reglas Snort”:

Fig.26 Fichero de reglas IP-TCP

La comprobación de la correcta recogida de información relativa a Modbus es más compleja y
wireshark parece no ofrecer estudios estadísticos al respecto sobre campos concretos de Modbus. Para
resolver este problema, se ha ideado un entorno controlado que simule una red real de máquinas

23

 Una única regla que recoge ambas direcciones ip con los dos puertos. Esta
 regla permitirá el tráfico que nuestro sniffer ha registrado como “normal”
 durante su etapa de “entrenamiento”.

 Mientras que el resto del tráfico que
 no ha encajado con la regla “pass”
 debera ser alertado: “alert”.

 Direcciones IP.

 Puertos

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

funcionando bajo el protocolo Modbus-TCP.

5.2.2 Testeo mediante “Sniffing” en un Entorno Controlado

Para esta fase de testeo del proyecto, se ha recreado un pequeño entorno SCADA que simula el
funcionamiento de una linea de manufacturación. Dicho entorno, está controlado por un PLC
(Programmable Logic Controller) y un conjunto de módulos Modbus TCP.

La linea de manufacturación consiste en una cinta transportadora que transfiere ladrillos desde
un cubo hasta un punto de recolección. En el punto de recolección un brazo robótico articulado recoge
los ladrillos y los coloca en otra cinta transportadora que coloca los ladrillos en otro cubo de
almacenamiento. En total tenemos 4 motores (dos para el brazo articulado y otros dos, uno por cinta
transportadora) cuyo funcionamiento está controlado por switches que activan y desactivan relés.

En definitiva se trata de un diseño simple pero que utiliza el protocolo Modbus y que posibilita
el testeo del “sniffer” tanto de modo interactivo como a través de ficheros pcap extraídos de su
funcionamiento. Esta alternativa de creación de ficheros pcap que recogen el funcionamiento de una
realización del entorno es algo muy positivo, ya que permite rescatar la información contenida en los
campos de los paquetes para un estudio más exhaustivo de las conexiones entre máquinas.

Mediante este entorno, somos capaces de generar un gran número de variaciones en el
funcionamiento de los dispositivos Modbus y comprobar que el software funciona en todos los casos.
El sensor Snort junto con el programa sniffer, se instala en un computador a parte, con sistema
operativo Linux, que se conecta por medio de una interfaz de red a dicho entorno. Se ponen a funcionar
las máquinas, se generan una serie de variaciones y se comprueba que los datos recopilados por el
programa son los que debieran ser.

5.2.3 Testeo del Funcionamiento de los Scripts

Ya por último, deberemos confirmar que los scripts realizan su cometido. Existen ciertas
carpetas dentro de la jerarquía de carpetas de Snort, donde se deben guardar los ficheros de
configuración y los archivos de reglas. Esta última comprobación consiste en tan sólo acceder a dichas
carpetas y comprobar que contienen los archivos que deben contener.

En concreto, el archivo “Snort.conf” modificado por el software, deberá estar contenido en
/opt/Snort/etc y por otro lado los archivos de reglas deberán estar en /opt/Snort/rules. Además, los
“logs” generados por Snort, se almacenarán en /var/log/Snort, carpeta que deberá estar creada si no de
instalación Snort, sí por mi programa.

En definitiva, se trata de un último paso de testeo pero que garantiza el completo y correcto
funcionamiento del software en su totalidad.

6. Conclusiones

El motivo del presente proyecto nos ha llevado a diseñar un método para la realización
automatizada de listas blancas para Snort basado en la idea de DPI (Deep Packet Inspection).

A su vez, y buscando diseñar una herramienta más completa, se busca añadir al método un
enfoque de “listado-negro”, representado a través de listas negras ya publicadas en Internet, y que al ser
de libre distribución, puedo usar a mi antojo.

Así pues, este método está “instanciado” a través del software que durante el desarrollo de este
texto he presentado y que he probado de manera exitosa. Éste, se ha ido desarrollando siguiendo una

24

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

sucesión de etapas marcadas por los requisitos parciales de usuario y que culminan en un programa que
es capaz de satisfacer la motivación del proyecto.

De cara a un futuro, se plantea realizar mejoras al software:
• Uso de un mayor número de preprocesadores en las reglas Snort que permitan una mejor

definición del tráfico permitido.
• Generalización del software a otros protocolos de Entorno Industrial.
• Posibilidad de incluir en el diseño el desarrollo de reglas para otros IDS.
• Tratamiento y estudio del “payload” del paquete Modbus.

Respecto a la inclusión al diseño de técnicas para la Detección de Anomalías, se estudió la
posibilidad de inclusión de estudio estadístico del paquete a través de N-gramas, alternativa que se
descartó debido al gran trabajo que ésto necesitaría y lo imperfecto del método. El problema del estudio
estadístico a través de N-gramas se basa en su incapacidad para distinguir entre tráfico “bueno” y
“malo”, creando demasiados falsos positivos, ya que no tiene en cuenta la estructura del paquete y los
diferentes campos de la cabecera del mismo. En su lugar, lo que mi diseño hace es un “Deep Packet
Inspection”, comprobando las características de diversos campos del paquete, lo que además constituye
una diferencia importante entre mi enfoque y otros enfoques.

Snort es una herramienta de software libre, cuyo código está abierto a posibles modificaciones:
una de las alternativas de las que se dispone es, precisamente, la implementación de plug-ins que
funcionen con Snort, pero realizando tareas concretas, para las cuales, dicho IDS software, aún no tiene
herramientas específicas. Futuras inclusiones al diseño presentado durante este trabajo, pasarían
entonces por programar preprocesadores que permitan realizar estudios más detallados del paquete,
siendo usados directamente en las reglas, permitiendo unas reglas más concretas.

El campo de la Detección y Prevención de Intrusiones es un campo dentro de la Seguridad de
Redes abierto a nuevas ideas y con un amplio horizonte de desarrollo para los jóvenes ingenieros. Es
un campo complejo con continuas mejoras, pero un campo en el cual cada día surgen nuevos
problemas. Un campo, que constituye un aspecto muy importante dentro de las Telecomunicaciones y
que, a día de hoy, cobra una especial relevancia por lo presente que las redes de comunicaciones están
en nuestras vidas, ya sea a través de nuestros ordenadores y móviles conectados a la Red, o a través de
Sistemas Industriales y sistemas SCADA que buscan facilitar y mejorar nuestra calidad de vida.

25

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

ANEXO A: Código completo

#! /bin/sh
1.remove.sh

rm *.o 2> /dev/null
rm *~ 2> /dev/null
rm sniffer 2> /dev/null
rm -r ./info_docs 2> /dev/null
rm ./rules/Snort.conf 2> /dev/null
rm ./rules/ip_tree.rules 2> /dev/null
rm ./rules/Modbus_tree.rules 2> /dev/null
rm ./conf_Snort_files/*~ 2> /dev/null
echo "...remove.sh done"

#! /bin/sh
0.compiling.sh

gcc ip.c -c
gcc ip_func.c -c
gcc Modbus_func.c -c
gcc merge_ip.c -c
gcc ip.o ip_func.o Modbus_func.o merge_ip.o -o sniffer -lpcap
echo "...compilation process done"
echo "...usage:\t ./sniffer -i <interface> -n <number of packets>"
echo "...usage:\t ./sniffer -f <file_name>"

//ip.h

#ifndef _IP_H_
#define _IP_H_

#include <time.h>
#include <sys/types.h>
#include <pcap/pcap.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#define BUFSIZE 2048
#define APP_NAME "ip.out"
#define SIZE_ETHERNET 14
#define ETHER_ADDR_LEN 6

enum eth_type {
ARP=0,
RARP=1,
IP=2,
UNKNOWN=3,
INV_IP_HEADER=4

};

enum upper_eth_type {
TCP_NO_Modbus=0,
TCP_Modbus=1,
ICMP=2,
UDP=3,
UP_UNKNOWN=4,

};

/* data structures for IP */

26

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

#define ETHER_ADDR_LEN 6

/* Ethernet header */
struct sniff_ethernet {

u_char ether_dhost[ETHER_ADDR_LEN]; /* Destination host address */
u_char ether_shost[ETHER_ADDR_LEN]; /* Source host address */
u_short ether_type; /* IP? ARP? RARP? etc */

};

/* IP header */
struct sniff_ip {

u_char ip_vhl; /* version , header length */
u_char ip_tos; /* type of service */
u_short ip_len; /* total length */
u_short ip_id; /* identification */
u_short ip_off; /* fragment offset field */
u_char ip_ttl; /* time to live */
u_char ip_p; /* protocol */
u_short ip_sum; /* checksum */
struct in_addr ip_src; /* source ip address */
struct in_addr ip_dst; /* dest ip address */

};

#define IP_HL(ip) (((ip)->ip_vhl) & 0x0f)
#define IP_V(ip) (((ip)->ip_vhl) >> 4)

/* TCP header */
typedef uint32_t tcp_seq;

struct sniff_tcp {
 u_short th_sport; /* source port */
 u_short th_dport; /* destination port */
 tcp_seq th_seq; /* sequence number */
 tcp_seq th_ack; /* acknowledgement number */
 u_char th_offx2; /* data offset, rsvd */

#define TH_OFF(th) (((th)->th_offx2 & 0xf0) >> 4)
 u_char th_flags; /* flags */
 u_short th_win; /* window */
 u_short th_sum; /* checksum */
 u_short th_urp; /* urgent pointer */

};

/* Modbus-TCP header */
struct sniff_Modbus_tcp {

u_short mtcp_trans_id; /* synchronization */
u_short mtcp_prot; /* protocol identifier */
u_short mtcp_len; /* remaining! bytes in this frame */
u_char mtcp_iden; /* identifier */
u_char mtcp_func; /* function code */

};

/* protypes */

void our_callback(u_char *,const struct pcap_pkthdr* ,const u_char*);
void print_app_banner(char *,int);
void create_Statistics (struct tm *,struct tm *,double,int,int) ;
void tail_banner(void);
void pantallazo(int);
void merge_ip(char *);

#endif

// ip.c

#include "ip.h"

27

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

#include "ip_node.h"
#include "Modbus_node.h"

/*global variables for statistics */

int packet_type[5]={0,0,0,0,0}; /* statistics of ethernet frame type in our network */
int info_type[5]={0,0,0,0,0}; /* statistics of info type inside the IP payload */
FILE *statistics;
FILE *ip_tree;
FILE *sniff_data;
FILE *ip_tree_rules;
FILE *Modbus_tree;
FILE *Modbus_tree_rules;
struct ip_node_t *s;
struct Modbus_node_t *r;

/*
 * MAIN
 *
 */

int
main (int argc, char **argv)
{

/* vars */
int n_packets; /* number limit of packets we sniff */
char char_aux_i=0,char_aux_n=0; /* checking flags from the terminal process */

char errbuf[PCAP_ERRBUF_SIZE]; /* holds the error string message in pcap functions */
pcap_t *handler; /* pcap handler */

time_t timer_init,timer_end; /* for time-stamps */
struct tm *st_timer_start,*st_timer_end; /* for time-stamps */
double time_diff; /* holds the difference of time the program has used */

int i; /* for loops */

//getting options for the program
int flag_n=0, flag_i=0, flag_f=0;
int c;
char *nvalue = NULL;
char *ivalue = NULL;
char *fvalue = NULL;

opterr = 0;

while ((c = getopt (argc, argv, "n:i:f:")) != -1)
{

switch(c)
{

case 'n':
flag_n = 1;
nvalue = optarg;
n_packets = atoi(nvalue);
break;

case 'i':
flag_i = 1;
ivalue = optarg;
break;

case 'f':
flag_f = 1;
fvalue = optarg;
break;

case '?':
fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./ip.out -f <file_name>\n");
exit(1);

28

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

default:
fprintf (stderr,"Unknown option character `\\x%x'.\n",optopt);
fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./ip.out -f <file_name>\n");
exit(1);

}
}

// checking for a correct combination of switches
if(!((flag_f && !flag_i && !flag_n) || (!flag_f && flag_i && flag_n)))
{

fprintf(stderr,"misuse of the program switches\n");
fprintf(stderr,"usage: ./sniffer.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./sniffer.out -f <file_name>\n");
exit(1);

}else {
if(!flag_f) print_app_banner(ivalue,n_packets);
else print_app_banner(fvalue,0);

}

// initialize linked list
s = (struct ip_node_t *)createList();
r = (struct Modbus_node_t *)m_createList();

// opening sniff_data to hold the sniffer's output
sniff_data = fopen("sniff_data.txt","w");
ip_tree_rules = fopen("ip_tree.rules","w");
Modbus_tree_rules = fopen("Modbus_tree.rules","w");

// stablishing handler for sniffing:
if(!flag_f)
{

if((handler = pcap_open_live(ivalue,BUFSIZ,1,10000,errbuf)) == NULL)
{

printf("\n%s %s: %s\n","Couldn't open device",ivalue,errbuf);
fprintf(stderr,"\n%s\n","exiting......");
exit(1);

}

} else if((handler = pcap_open_offline(fvalue, errbuf)) == NULL)

{
printf("\n%s %s: %s\n","Couldn't open device",ivalue,errbuf);
fprintf(stderr,"\n%s\n","exiting......");
exit(1);

}

// printing time stamp of beginning
timer_init=time(NULL);
st_timer_start=localtime(&timer_init);
printf("\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n","Beginning test on",

st_timer_start->tm_mday,st_timer_start->tm_mon,st_timer_start->tm_year,
st_timer_start->tm_hour,st_timer_start->tm_min,st_timer_start->tm_sec
);

// opening files for the linked trees
ip_tree = fopen("ip_tree.txt","w");
Modbus_tree = fopen("Modbus_tree.txt","w");

29

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

// entering in the loop
if((pcap_loop(handler,n_packets,our_callback,NULL))==-1)
{

fprintf(stderr,"\n%s\n","error ocurred while in loop, exiting now...");
exit(1);

}

// exiting,printing statistics and closing files
timer_end = time(NULL);
st_timer_end = localtime(&timer_end);
printf("\n%s %2.2lf %s\n"," -== Time test process :",time_diff = difftime(timer_end,timer_init),"segs. ==-");

//creating and closing statistics file
pcap_close(handler);
statistics = fopen("statistics.txt","w");
for(i=0,n_packets=0;i<5;i++) n_packets += packet_type[i];
create_Statistics(st_timer_start,st_timer_end,time_diff,n_packets,flag_f);

fclose(statistics);
fclose(sniff_data);

//reading from the tree and free-ing the allocated space
readTree_ip(s);
m_readTree_Modbus(r);

fclose(ip_tree);
fclose(Modbus_tree);

freeTree_ip(s);
m_freeTree_Modbus(r);

printf("\n%s\n\n"," ----statistic control finished, please, wait----");

fprintf(ip_tree_rules,"alert ip any any -> any any (msg:\"communication out of our ip-white-list\";)");
fclose(ip_tree_rules);
fprintf(Modbus_tree_rules,"alert ip any any -> any any (msg:\"communication out of our Modbus-white-list\";)");
fclose(Modbus_tree_rules);

// merging together the rules in order to get more compact rule files
merge_ip("ip_tree.rules");

// creating folder info_docs and moving files into it
tail_banner();
exit(0);

}

30

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

/*
 * our functions
 */

void
our_callback(u_char *args,const struct pcap_pkthdr* pkthdr,const u_char* packet)
{

static int count = 1; /* packet counter */
u_short eth_type; /* ethernet type in host byte order for switch use */
int Modbus_flag = 0; /* Modbus_flag = 1 when it detects a Modbus protocol packet */
char mybuff[50]; /* inet_ functions use statically allocated memory */

/*aux variables to help in the use of tree_linked_list */
u_short sportaux,dportaux;
u_short m_lenaux;
u_char m_idenaux,m_funcaux;

/* declare pointers to packet headers */
const struct sniff_ethernet *ethernet; /* The ethernet header [1] */
const struct sniff_ip *ip; /* The IP header */
const struct sniff_tcp *tcp;
const struct sniff_Modbus_tcp *Modbus_tcp; /* The Modbus TCP header */

/* sizes of ip frame and tcp segment */
int size_header_ip;
int size_header_tcp;
char test_Modbus = 0;

fprintf(sniff_data,"\nPacket number %d:\n", count);
fprintf(sniff_data,"--------------------- \n", count);
count++;

/* define ethernet header torrent*/
ethernet = (struct sniff_ethernet*)(packet);

eth_type=ntohs(ethernet->ether_type);

switch (eth_type) {

case(0x0806):

fprintf(sniff_data,"\tARP packet\n");
packet_type[ARP]++;
return;

case(0x8035):
fprintf(sniff_data,"\tRARP packet\n");
packet_type[RARP]++;
return;

case(0x0800):
fprintf(sniff_data,"\tIP packet\n");
packet_type[IP]++;
break;

default:
fprintf(sniff_data,"\tnot an ARP/RARP/IP packet\n");
packet_type[UNKNOWN]++;
break;

}

/* define/compute ip header offset */
size_header_ip = IP_HL(ip = (struct sniff_ip*)(packet + SIZE_ETHERNET))*4;
if (size_header_ip < 20)

31

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

{
packet_type[INV_IP_HEADER]++;
packet_type[IP]--;
fprintf(sniff_data,"\t Invalid IP header length: %u bytes\n", size_header_ip);
return;

}

/* print source and destination IP addresses */
strcpy(mybuff,inet_ntoa(ip->ip_src));
fprintf(sniff_data,"\tFrom: %s To: %s\n", mybuff, inet_ntoa(ip->ip_dst));

/* determine protocol */
switch(ip->ip_p)
{

case IPPROTO_TCP:
fprintf(sniff_data,"\t-TCP protocol\n");
info_type[TCP_NO_Modbus]++;
break;

case IPPROTO_UDP:
fprintf(sniff_data,"\t-UDP protocol\n");
info_type[UDP]++;
return;

case IPPROTO_ICMP:
fprintf(sniff_data,"\t-ICMP protocol\n");
info_type[ICMP]++;
return;

default:
fprintf(sniff_data,"\t-Not a TCP/UDP/ICMP protocol\n");
info_type[UP_UNKNOWN]++;
return;

}

/* define/compute tcp header offset */
tcp = (struct sniff_tcp*)(packet + SIZE_ETHERNET + size_header_ip);
size_header_tcp = TH_OFF(tcp)*4;
if (size_header_tcp < 20)
{

fprintf(sniff_data,"\t-invalid TCP header\n");
return;

}

fprintf(sniff_data,"\t Src port: %d to Dst port: %d\n", ntohs(tcp->th_sport),ntohs(tcp->th_dport));

/* define/print Modbus header fields */
/* is it an IP packet carrying Modbus data ? */

if ((ntohs(ip->ip_len) - size_header_ip) == size_header_tcp) test_Modbus = 0;
else test_Modbus = 1;

Modbus_tcp = (struct sniff_Modbus_tcp*)(packet + SIZE_ETHERNET + size_header_ip + size_header_tcp);

test_Modbus = test_Modbus && (Modbus_tcp->mtcp_prot == 0)&&(Modbus_tcp->mtcp_iden != 0)&&(Modbus_tcp->mtcp_len != 0);
test_Modbus = test_Modbus && (Modbus_tcp->mtcp_iden < 256) && (Modbus_tcp->mtcp_func < 256);

if (test_Modbus)
{

info_type[TCP_Modbus]++;
fprintf(sniff_data," - Modbus: \n");
fprintf(sniff_data,"\t\t%s = %d \n","remaining bytes in this frame",ntohs(Modbus_tcp->mtcp_len));
fprintf(sniff_data,"\t\t%s = %d \n","identifier",Modbus_tcp->mtcp_iden);
fprintf(sniff_data,"\t\t%s = %d \n","function code",Modbus_tcp->mtcp_func);
Modbus_flag = 1;

} else {

32

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

fprintf(sniff_data,"\t\t%s \n"," (not a Modbus_tcp protocol / or misformed Modbus_tcp packet)");
Modbus_flag = 0;

}

/* sending info to the linked tree list */

if (!Modbus_flag)
{

if ((eth_type == 0x0800)&&(ip->ip_p == IPPROTO_TCP))
{

sportaux = ntohs(tcp->th_sport);
dportaux = ntohs(tcp->th_dport);
s = (struct ip_node_t *)insertBranch(s,(struct in_addr *)&ip->ip_src,(struct in_addr *)&ip->ip_dst,

(u_short *)&sportaux,(u_short *)&dportaux);
}

} else
{

sportaux = ntohs(tcp->th_sport);
dportaux = ntohs(tcp->th_dport);
m_lenaux = ntohs(Modbus_tcp->mtcp_len);
m_idenaux = Modbus_tcp->mtcp_iden;
m_funcaux = Modbus_tcp->mtcp_func;
r = (struct Modbus_node_t *)m_insertBranch(r,(struct in_addr *)&ip->ip_src,(struct in_addr *)&ip->ip_dst,

(u_short *)&sportaux,(u_short *)&dportaux,(u_short *)&m_lenaux,(u_char *)&m_idenaux,(u_char
*)&m_funcaux);

}

return;
}

void
print_app_banner(char *v,int n)
{

char c = '0' ;
int i ;
char *snt_scrp[] =
{

"\n Making sure you have /var/log/Snort...\n",
"./var_log_Snort.sh ",
"\n Making sure you have the /opt/Snort/etc directory. \n",
"./opt_Snort_etc.sh ",
"\n Making sure directory /opt/Snort/rules exists. \n",
"./opt_Snort_rules.sh ",
" \n",
"echo \"\n\"",
NULL

};
char *ord[] =
{

"more ./conf_Snort_files/important_considerations",
"more ./conf_Snort_files/input",
"more ./conf_Snort_files/output",
NULL

};

pantallazo(1);
printf("Info banner: \n");
for(i = 0 ; ord[i] ; i++)
{

system(ord[i]);
pantallazo(20);

}

printf("Checking the system...\n");
for(i = 0 ; snt_scrp[i] ;)

33

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

{
printf("%s",snt_scrp[i++]);
system(snt_scrp[i++]);
sleep(3);

}

pantallazo(4);
if (n == 0)
{

printf("STARTING SNIFFING......");
sleep(1);
printf(" %s\n"," -===============-");
printf(" -== %s ==- \n", APP_NAME);
printf(" -== %s = %s ==-\n","interface",v);
printf(" %s\n"," -===============-");
sleep(1);

}

else{
printf("STARTING SNIFFING......");
sleep(1);
printf(" %s\n"," -===============-");
printf(" -== %s ==- \n", APP_NAME);
printf(" -== %s = %s ==-\n","interface",v);
printf(" -== %s = %d ==-\n","number of packets to study ", n);
printf(" %s\n"," -===============-");
sleep(1);

}
return;

}

void
create_Statistics (struct tm *begin,struct tm *end,double td, int pkt,int f) {

enum eth_type et_aux; /* aux through for-loops*/
enum upper_eth_type uet_aux; /* aux through for-loops*/
char *et_uet;
int sum_et=0,sum_uet=0;
float assess=0;

fprintf(statistics,"\n -== %s %d/%d/%d at %d:%d:%d ==-\n","Beginning test on",
begin->tm_mday,begin->tm_mon,begin->tm_year,begin->tm_hour,
begin->tm_min,begin->tm_sec);

fprintf(statistics," -=== %s ===- \n"," STATISTICS OF OUR NETWORK TRAFFIC ");

fprintf(statistics,"\n\t%s \n\n"," -PROTOCOL SUPPORTED OVER ETHERNET- ");

for(et_aux=ARP; et_aux<=INV_IP_HEADER; et_aux++)
{

switch(et_aux)
{

case(ARP): et_uet="ARP";break;
case(RARP): et_uet="RARP";break;
case(IP): et_uet="IP";break;
case(UNKNOWN): et_uet="Unknown protocol";break;
case(INV_IP_HEADER):et_uet="Invalid IP header";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

};
assess=(float)(packet_type[et_aux])/pkt;
fprintf(statistics,"\t\t* %s = %d ---> %2.2f%c of our traffic\n",

et_uet,packet_type[et_aux],assess*100,'%');
}

fprintf(statistics,"\n\n");
fprintf(statistics,"\t%s \n\n"," -PROTOCOL SUPPORTED OVER IP- ");

for(uet_aux=TCP_NO_Modbus ;uet_aux<=UP_UNKNOWN ;uet_aux++)

34

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

 {
switch(uet_aux)
{

case(TCP_NO_Modbus): et_uet="TCP";break;
case(UDP): et_uet="UDP";break;
case(ICMP): et_uet="ICMP";break;
case(TCP_Modbus): et_uet="\t* of which TCP_Modbus";break;
case(UP_UNKNOWN): et_uet="Unknown protocol over IP";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

}
assess=(float)(info_type[uet_aux])/pkt;
fprintf(statistics,"\t\t* %s = %d ---> %2.2f%c of our traffic\n",

et_uet,info_type[uet_aux],assess*100,'%');
}

/* when data dumped from a file, there's no sense in time statistics, the file takes 0 secs for the program
to be examined, resulting in divisions by 0 in our next piece of code*/

if (f)
{

fprintf(statistics,"\n\n\t...when studying from a pcap file there's no TIME STATISTICS\n\n");
return;

}

fprintf(statistics,"\n%s %f %s\n\n"," -== TIME STATISTICS : the tests has taken ",td," segs. ==-");

fprintf(statistics,"\t%s \n"," -PROTOCOL SUPPORTED OVER ETHERNET- ");

for(et_aux=ARP; et_aux<=INV_IP_HEADER; et_aux++)
{

switch(et_aux)
{

case(ARP): et_uet="ARP";break;
case(RARP): et_uet="RARP";break;
case(IP): et_uet="IP";break;
case(UNKNOWN): et_uet="Unknown protocol";break;
case(INV_IP_HEADER):et_uet="Invalid IP header";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

}
fprintf(statistics,"\t\t* %s has %2.3lf packets/sec.\n",et_uet,(double)(packet_type[et_aux])/(int)td);

}

fprintf(statistics,"\n\n");
fprintf(statistics,"\t%s \n"," -PROTOCOL SUPPORTED OVER IP- ");

for(uet_aux=TCP_NO_Modbus ;uet_aux<=UP_UNKNOWN ;uet_aux++)
{

switch(uet_aux)
{

case(TCP_NO_Modbus): et_uet="TCP";break;
case(UDP): et_uet="UDP";break;
case(ICMP): et_uet="ICMP";break;
case(TCP_Modbus): et_uet="\t* of which TCP_Modbus";break;
case(UP_UNKNOWN): et_uet="Unknown protocol over IP";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

}
fprintf(statistics,"\t\t* %s has %2.3lf packets/sec.\n",et_uet,(double)(info_type[uet_aux])/(int)td);

}

fprintf(statistics,"\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n",

"Test start:",begin->tm_mday,begin->tm_mon,begin->tm_year, begin->tm_hour,begin->tm_min,
begin->tm_sec,"Test finish:",end->tm_mday,end->tm_mon,end->tm_year,end->tm_hour,end->tm_min,
end->tm_sec);

fprintf(statistics,"\t -=== %s ===- \n"," ------ END OF OUR STATISTICS FILE ------- ");

return;

35

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

}

void
tail_banner(void)
{

char c = '0';
int i ;
char *sentences[] =
{

"Files created: \n",
"\t - sniff_data.txt :\t holds the sniffer's output\n",
"\t - statistics.txt :\t holds statistical information\n",
"\t - ip_tree.txt :\t holds all the combinations of ip @ and ports observed into our network traffic\n",
"\t - Modbus_tree.txt :\t holds all the combinations of ip @, ports and Modbus fiels observed into our network traffic\n",
"\t - ip_tree.rules :\t holds the ip rules to whitesniff our network, placed in ' /opt/Snort/rules ' \n",
"\t - Modbus_tree.rules :\t holds the Modbus rules to whitesniff our network, placed in ' /opt/Snort/rules ' \n",
NULL

};
char *orders[] =
{

"mkdir info_docs","\nCreating folder info_docs...\n",
"mv ./ip_tree.txt ./info_docs/.","\t...Moving ip_tree.txt into folder info_docs\n",
"mv ./Modbus_tree.txt ./info_docs/.","\t...Moving Modbus_tree.txt into folder info_docs\n",
"mv ./statistics.txt ./info_docs/.","\t...Moving statistics.txt into folder info_docs\n",
"mv ./sniff_data.txt ./info_docs/.","\t...Moving sniff_data.txt into folder info_docs\n",
"mv ./ip_tree.rules ./info_docs/.","\t...Moving ip_tree.rules into info_docs\n",
"mv ./Modbus_tree.rules ./info_docs/.","\t...Moving Modbus_tree.rules into info_docs\n\n",
"./moving_conf_files.sh","... moving 'classification.config' and 'reference.config' into /opt/Snort/etc\n",
NULL

};
char *more_sentences[] =
{

"\n\n\nPay attention: in this same directory, there's a folder named 'rules',\n",
"you should load this directory with the black-listing rules you want for Snort. \n",
"This program will include automatically the names into Snort.conf, releasing you from this task.\n",
"Include now, if you need, some .rules files or PRESS LETTER c(lower case) + ENTER (case sensitive) to continue: ",
NULL

};
char *last_sentences[] =
{

"\n\nNow you can go to info_docs folder contained in this same directory, and consult the data gathered.\n",
"...The appropiate rule file has been created and located in /opt/Snort/rules as well.\n\n\n\n",
NULL

};

pantallazo(5);
system("rm -r ./info_docs 2> /dev/null");
for (i = 0 ; sentences[i] ; i++)
{

printf("%s",sentences[i]);
sleep(1);

}
for(i = 0; orders[i] ;)
{

if(system(orders[i++]) != -1) printf("%s",orders[i++]);
sleep(2);

}

for (i = 0; more_sentences[i] ; i++)
{

printf("%s",more_sentences[i]);
sleep(2);

}

fflush(stdin);
for (; c != 'c' ;)
{

scanf("%c",&c);
if(c != 'c') printf("\nPRESS LETTER C (case sensitive) + ENTER to continue: ");

36

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

fflush(stdin);
}

if(system("./moving_rule_files.sh") != -1)
{

printf("\n\t...Copying our whilelist compliant rules into /opt/Snort/rules\n");
sleep(1);
printf("\t...Moving black-list compliant rules from our folder 'rules'into /opt/Snort/rules\n");
printf("\t...Moving Snort.conf configuration file with our 'includes' into /opt/Snort/etc \n");

}
sleep(2);

for (i = 0; last_sentences[i] ; i++)
{

printf("%s",last_sentences[i]);
sleep(2);

}

return;
}

void
pantallazo (int j)
{

sleep (j);
system("clear");
return;

}

//ip_node.h

#ifndef IP_NODE_H_
#define IP_NODE_H_

struct ip_node_t
{

void *ptrdata;
struct ip_node_t *ptr_r;
struct ip_node_t *ptr_b;

};

enum field_t
{

ip_ip_from = 0,
ip_ip_to = 1,
ip_src_port = 2,
ip_dst_port = 3

};

/* prototypes */

struct ip_node_t *createList (void);
struct ip_node_t *createNode(void *);
struct ip_node_t *insertBranch (struct ip_node_t *s,void *,void *,void *,void *);
void freeTree_ip(struct ip_node_t *);
void readTree_ip(struct ip_node_t *);

#endif

//ip_func.c

#include "ip.h"
#include "ip_node.h"

extern FILE *ip_tree;
extern FILE *ip_tree_rules;

37

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

struct ip_node_t
*createList (void)
{

return NULL;
};

struct ip_node_t
*createNode(void *data)
{

struct ip_node_t *s;
s = malloc(sizeof(struct ip_node_t));

if (s != NULL)
{

s->ptrdata = data;
s->ptr_r = NULL;
s->ptr_b = NULL;

}
return s;

}

struct ip_node_t
*insertBranch (struct ip_node_t *s,void *ob1,void *ob2,void *ob3,void *ob4)
{

struct ip_node_t *aux,*aux1,*aux2,*aux3,*prev,*prev1,*prev2,*prev3;
struct ip_node_t *aux_loop;
void *ob;
enum field_t level = ip_ip_from;
int prev_int;

for (aux = s, prev = NULL ; aux != NULL ; prev = aux, aux = aux->ptr_r)
{

if(!memcmp(aux->ptrdata,ob1,sizeof(struct in_addr)))
{

level++;
for(aux1 = aux->ptr_b, prev1 = NULL ; aux1 != NULL ; prev1 = aux1, aux1 = aux1->ptr_r)
{

if(!memcmp(aux1->ptrdata,ob2,sizeof(struct in_addr)))
{

level++;
for(aux2 = aux1->ptr_b , prev2 = NULL ; aux2 != NULL ; prev2 = aux2, aux2 = aux2->ptr_r)
{

if(!memcmp(aux2->ptrdata,ob3,sizeof(u_short)))
{

level++;
for(aux3 = aux2->ptr_b , prev3 = NULL ; aux3 != NULL ; prev3 =aux3,

aux3 = aux3->ptr_r)
{

if(!memcmp(aux3->ptrdata,ob4,sizeof(u_short)))
{

return s;
}

}

}
}

}
}

}

}

if (prev == NULL) prev_int = 0; else prev_int = 1;

38

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

switch (prev_int) {

case(0):

ob = malloc(sizeof(struct in_addr)); //ip source
s = createNode(memcpy(ob,ob1,sizeof(struct in_addr)));

ob = malloc(sizeof(struct in_addr)); //ip destination
s->ptr_b = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = s->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));

return s;

default:

switch(level) {

case (ip_ip_from):

ob = malloc(sizeof(struct in_addr)); //ip source
prev->ptr_r = createNode(memcpy(ob,ob1,sizeof(struct in_addr)));
aux_loop = prev->ptr_r;

ob = malloc(sizeof(struct in_addr)); //ip destination
aux_loop->ptr_b = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_ip_to):

ob = malloc(sizeof(struct in_addr)); //ip destination
prev1->ptr_r = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = prev1->ptr_r;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_src_port):

ob = malloc(sizeof(u_short)); //src port
prev2->ptr_r = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = prev2->ptr_r;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_dst_port):

ob = malloc(sizeof(u_short)); //dst port

39

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

prev3->ptr_r = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

default:

printf("DEBUG NEEDED \n");
exit(1);

}
}

}

void
freeTree_ip(struct ip_node_t *s)
{

struct ip_node_t *aux_i,*aux_j,*aux_k,*aux_r;

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)

for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{

free(aux_r->ptrdata);
free(aux_r);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{

free(aux_k->ptrdata);
free(aux_k);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{

free(aux_j->ptrdata);
free(aux_j);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
{

free(aux_i->ptrdata);
free(aux_i);

}

return;
}

void
readTree_ip(struct ip_node_t *s)
{

struct ip_node_t *aux_i,*aux_j,*aux_k,*aux_r;
int aux1,aux2;
struct in_addr *in_addr_aux1, *in_addr_aux2;
int count=0;
char mybuff[50]; /* inet_ functions use statically allocated memory */

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
{

in_addr_aux1 = (struct in_addr *)aux_i->ptrdata;
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{

in_addr_aux2 = (struct in_addr *)aux_j->ptrdata;
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{

aux1 = *(u_short *)aux_k->ptrdata;

40

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{

aux2 = *(u_short *)aux_r->ptrdata;
fprintf(ip_tree,"%5d: ",count++);
fprintf(ip_tree,"Ip source: %15s, ",inet_ntoa(*in_addr_aux1));
fprintf(ip_tree,"Ip destination: %15s, ",inet_ntoa(*in_addr_aux2));
fprintf(ip_tree,"Port Source: %5d, ",aux1);
fprintf(ip_tree,"Port destination: %5d \n",aux2);
strcpy(mybuff,inet_ntoa(*in_addr_aux2));
fprintf(ip_tree_rules,"pass ip %s %d <> %s %d \n",

inet_ntoa(*in_addr_aux1),aux1,mybuff,aux2);

}
}

}
}
return;

}

//Modbus_node.h

#ifndef Modbus_NODE_H_
#define Modbus_NODE_H_

struct Modbus_node_t
{

void *ptrdata;
struct Modbus_node_t *ptr_r;
struct Modbus_node_t *ptr_b;

};

enum m_field_t
{

Modbus_ip_from = 0,
Modbus_ip_to = 1,
Modbus_src_port = 2,
Modbus_dst_port = 3,
Modbus_len = 4,
Modbus_iden = 5,
Modbus_func = 6

};

/* prototypes */

struct Modbus_node_t *m_createList (void);
struct Modbus_node_t *m_createNode(void *);
struct Modbus_node_t *m_insertBranch (struct Modbus_node_t *,void *,void *,void *,void *,void *,void *,void *);
void m_freeTree_Modbus(struct Modbus_node_t *);
void m_readTree_Modbus(struct Modbus_node_t *);

#endif

//Modbus_func.c

#include "ip.h"
#include "Modbus_node.h"

extern FILE *Modbus_tree;
extern FILE *Modbus_tree_rules;

struct Modbus_node_t
*m_createList (void)
{

return NULL;
};

41

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

struct Modbus_node_t
*m_createNode(void *data)
{

struct Modbus_node_t *s;
s = malloc(sizeof(struct Modbus_node_t));

if (s != NULL)
{

s->ptrdata = data;
s->ptr_r = NULL;
s->ptr_b = NULL;

}
return s;

}

struct Modbus_node_t
*m_insertBranch (struct Modbus_node_t *s,void *ob1,void *ob2,void *ob3,void *ob4,void *ob5,void *ob6,void *ob7)
{

struct Modbus_node_t *aux,*aux1,*aux2,*aux3,*aux4,*aux5,*aux6,*prev,*prev1,*prev2,*prev3,*prev4,*prev5,*prev6;
struct Modbus_node_t *aux_loop;
void *ob;
enum m_field_t level = Modbus_ip_from;
int m_prev_int;

for (aux = s, prev = NULL ; aux != NULL ; prev = aux, aux = aux->ptr_r)
{
if(!memcmp(aux->ptrdata,ob1,sizeof(struct in_addr)))

{
level++;
for(aux1 = aux->ptr_b, prev1 = NULL ; aux1 != NULL ; prev1 = aux1, aux1 = aux1->ptr_r)
{
if(!memcmp(aux1->ptrdata,ob2,sizeof(struct in_addr)))

{
level++;
for(aux2 = aux1->ptr_b , prev2 = NULL ; aux2 != NULL ; prev2 = aux2, aux2 = aux2->ptr_r)
{
if(!memcmp(aux2->ptrdata,ob3,sizeof(u_short)))

{
level++;
for(aux3 = aux2->ptr_b , prev3 = NULL ; aux3 != NULL ; prev3 =aux3, aux3 = aux3->ptr_r)
{
if(!memcmp(aux3->ptrdata,ob4,sizeof(u_short)))

{
level++;
for(aux4 = aux3->ptr_b , prev4 = NULL ; aux4 != NULL ; prev4 =aux4, aux4 = aux4->ptr_r)
{
if(!memcmp(aux4->ptrdata,ob5,sizeof(u_short)))

{
level++;
for(aux5 = aux4->ptr_b , prev5 = NULL ; aux5 != NULL ; prev5 =aux5, aux5 = aux5-

>ptr_r)
{
if(!memcmp(aux5->ptrdata,ob6,sizeof(u_char)))

{
level++;
for(aux6 = aux5->ptr_b , prev6 = NULL ; aux6 != NULL ; prev6 =aux6,

aux6 = aux6->ptr_r)
{
if(!memcmp(aux6->ptrdata,ob7,sizeof(u_char)))

{
return s;

}
}
}

}
}

}
}

42

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

}
}

}
}

}
}

}

if (prev == NULL) m_prev_int = 0; else m_prev_int = 1;

switch (m_prev_int) {

case(0):

ob = malloc(sizeof(struct in_addr)); //ip source
s = m_createNode(memcpy(ob,ob1,sizeof(struct in_addr)));

ob = malloc(sizeof(struct in_addr)); //ip destination
s->ptr_b = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = s->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));

return s;

default:

switch(level) {

case (Modbus_ip_from):

ob = malloc(sizeof(struct in_addr)); //ip source
prev->ptr_r = m_createNode(memcpy(ob,ob1,sizeof(struct in_addr)));
aux_loop = prev->ptr_r;

ob = malloc(sizeof(struct in_addr)); //ip destination
aux_loop->ptr_b = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

43

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

ob = malloc(sizeof(u_char)); //iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));

return s;

case (Modbus_ip_to):

ob = malloc(sizeof(struct in_addr)); //ip destination
prev1->ptr_r = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = prev1->ptr_r;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case (Modbus_src_port):

ob = malloc(sizeof(u_short)); //src port
prev2->ptr_r = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_r;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case (Modbus_dst_port):

ob = malloc(sizeof(u_short)); //dst port
prev3->ptr_r = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_r;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus

44

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case(Modbus_len):

ob = malloc(sizeof(u_short)); //len Modbus
prev4->ptr_r = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = prev4->ptr_r;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));

return s;

case(Modbus_iden):

ob = malloc(sizeof(u_char)); // iden Modbus
prev5->ptr_r = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = prev5->ptr_r;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case(Modbus_func):

ob = malloc(sizeof(u_char)); //func Modbus
prev6->ptr_r = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

default:

printf("DEBUG NEEDED \n");
exit(1);

}
}

}

void
m_freeTree_Modbus(struct Modbus_node_t *s)
{

struct Modbus_node_t *aux_i,*aux_j,*aux_k,*aux_r,*aux_s,*aux_t,*aux_u;

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
for (aux_t = aux_s->ptr_b ; aux_t != NULL ; aux_t = aux_t->ptr_r)

for (aux_u = aux_t->ptr_b ; aux_u != NULL ; aux_u = aux_u->ptr_r)
{
free(aux_u->ptrdata);
free(aux_u);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)

for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

45

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
for (aux_t = aux_s->ptr_b ; aux_t != NULL ; aux_t = aux_t->ptr_r)
{

free(aux_t->ptrdata);
free(aux_t);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
{

free(aux_s->ptrdata);
free(aux_s);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{

free(aux_r->ptrdata);
free(aux_r);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{

free(aux_k->ptrdata);
free(aux_k);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{

free(aux_j->ptrdata);
free(aux_j);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
{

free(aux_i->ptrdata);
free(aux_i);

}

return;
}

void
m_readTree_Modbus(struct Modbus_node_t *s)
{

struct Modbus_node_t *aux_i,*aux_j,*aux_k,*aux_r,*aux_s,*aux_t,*aux_u;
int aux1,aux2,aux3;
struct in_addr *in_addr_aux1, *in_addr_aux2;
char aux_char1,aux_char2;
int count=0;
char mybuff[50]; /* inet_ functions use statically allocated memory */

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
{
in_addr_aux1 = (struct in_addr *)aux_i->ptrdata;
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{

46

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

in_addr_aux2 = (struct in_addr *)aux_j->ptrdata;
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{

aux1 = *(u_short *)aux_k->ptrdata;
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{

aux2 = *(u_short *)aux_r->ptrdata;
for(aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
{

aux3 = *(u_short *)aux_s->ptrdata;
for(aux_t = aux_s->ptr_b ; aux_t != NULL ; aux_t = aux_t->ptr_r)
{

aux_char1 = *(u_char *)aux_t->ptrdata;
for(aux_u = aux_t->ptr_b ; aux_u != NULL ; aux_u = aux_u->ptr_r)
{
aux_char2 = *(u_char *)aux_u->ptrdata;

fprintf(Modbus_tree,"%5d: ",count++);
fprintf(Modbus_tree,"Ip src: %14s, ",inet_ntoa(*in_addr_aux1));
fprintf(Modbus_tree,"Ip dst: %14s, ",inet_ntoa(*in_addr_aux2));
fprintf(Modbus_tree,"Port src: %5d, ",aux1);
fprintf(Modbus_tree,"Port dst: %5d, ",aux2);
fprintf(Modbus_tree,"lenght_data: %5d, ",aux3);
fprintf(Modbus_tree,"ident: %5d, ",(u_char)aux_char1);
fprintf(Modbus_tree,"funct code: %5d \n",(u_char)aux_char2);
strcpy(mybuff,inet_ntoa(*in_addr_aux2));
fprintf(Modbus_tree_rules,"pass ip %s %d <> %s %d (Modbus_func: %d

;Modbus_unit: %d;)\n",
inet_ntoa(*in_addr_aux1),aux1,mybuff,aux2,(u_char)aux_char2,

(u_char)aux_char1);
}

}

}
}

}
}
}
return;

}

// merge_ip.c

#include "ip.h"

void
merge_ip(char *name_f)
{

FILE *origin_1;
FILE *origin_2;
FILE *copy_aux;
char buff_1[200];
char buff_2[100];
char aux[100];
char pass[10],ip[5],s_add[20],s_port[10],sym[5],d_add[20],d_port[10];
fpos_t pos;
char equal = 0;

//opening files
origin_1 = fopen(name_f,"r");
origin_2 = fopen(name_f,"r");
copy_aux = fopen("backup.txt","w");

while (!feof(origin_1))
{

fgets(buff_1,sizeof(buff_1),origin_1);

47

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

fgetpos(origin_1,&pos); //pos points to the next line
fscanf(origin_2,"%s %s %s %s %s %s %s",pass,ip,s_add,s_port,sym,d_add,d_port);
if(!strcmp(pass,"alert")) break;
fsetpos(origin_2,&pos); //origin_1 and origin_2 must point to the same position
sprintf(buff_2,"%s %s %s %s %s %s %s",pass,ip,d_add,d_port,sym,s_add,s_port);
while(strcmp(pass,"alert"))
{

fscanf(origin_1,"%s %s %s %s %s %s %s",pass,ip,s_add,s_port,sym,d_add,d_port);
if(!strcmp(pass,"alert")) break;
sprintf(aux,"%s %s %s %s %s %s %s",pass,ip,s_add,s_port,sym,d_add,d_port);
if(!strcmp(buff_2,aux))
{

equal = 1;
break;

}
}
if (!equal)
{

fprintf(copy_aux,"%s\n",buff_2);

}else equal = 0 ;
fsetpos(origin_1,&pos);

}
fprintf(copy_aux,"%s\n",buff_1);
//closing files
fclose(origin_1);
fclose(origin_2);
fclose(copy_aux);

rename("backup.txt",name_f);

}

#! /bin/sh
var_log_Snort.sh

if [-d /var/log/Snort]
then

echo "\t\t... /var/log/Snort exists"
else

echo "\t\t... /var/log/Snort doesn't exists..."
mkdir /var/log/Snort
echo "\t\t\t\t...creating /var/log/Snort"

fi

#! /bin/sh
moving_conf_files.sh

if [-d ./conf_Snort_files]
then

cp ./conf_Snort_files/classification.config /opt/Snort/etc/.
cp ./conf_Snort_files/reference.config /opt/Snort/etc/.
cp ./conf_Snort_files/Snort.conf ./rules/Snort.conf

else
echo " !! revise your sniffer folder, conf_Snort_files folder is missed !! "
exit 1

fi

#! /bin/sh
moving_rule_files.sh

if [-d ./info_docs]
then

cp ./info_docs/*.rules ./rules/.
cp ./conf_Snort_files/Snort.conf ./rules/Snort.conf
chown $SUDO_USER ./rules/Snort.conf
cd rules
echo "\n"

48

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

for file in $(ls *.rules)
do

cp ./$file /opt/Snort/rules/$file
echo "\t...$file moved into /opt/Snort/rules and included into Snort.conf"
sleep 1
echo "include \$RULE_PATH/$file" >> ./Snort.conf

done
cp ./Snort.conf /opt/Snort/etc/.
cd ..

else
echo "debug needed"
exit 1

fi

#! /bin/sh
#opt_Snort_rules.sh

if [-d /opt/Snort/rules]
then
echo "\t\t... /opt/Snort/rules exists"
else
echo "\t\t... /opt/Snort/rules doesn't exists ..."
mkdir /opt/Snort/rules
echo "\t\t\t...creating /opt/Snort/rules"
fi

#! /bin/sh
opt_Snort_etc.sh

if [-d /opt/Snort/etc]
then

echo "\t\t... /opt/Snort/etc exists"
else

echo "\t\t... /opt/Snort/etc doesn't exists..."
if [-d /opt]

then
cd /opt
if [-d /opt/Snort]

then
mkdir /opt/Snort/etc

else
mkdir /opt/Snort
mkdir /opt/Snort/etc

fi
else

mkdir /opt
mkdir /opt/Snort

mkdir /opt/Snort/etc

fi

echo "\t\t\t...creating /opt/Snort/etc"
fi

49

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

ANEXO B: English report

Whitelisting Sniffer and Statistical

Traffic Study for Snort (IDS)

Arturo Ruiz Mañas

Supervisors: Dr. Michael Schukat & Dr. Hugh Melvin
OSNA Cyber Security Research Group http://www.osna-solutions.com/

50

http://www.osna-solutions.com/

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Abstract

Along this thesis, I am going to address the complex and important problem of network security

in Industrial Control and SCADA (Supervisory Control And Data Acquisition) systems. For this,

previous to this work, I have gone through a lot of information about hacking and penetration ICS

(Internet Connection Sharing) techniques, and in the present text I will delve into a solution against

black-hat hacking1 in the said environments.

The different approaches taken around this issue, are never 100% effective working alone by

themselves, but a combination of some of them can bring a good level of protection. This is why,

employees in these fields, always use a combination of tools for their tasks, trying to cover as many

gaps as possible.

During this work, I introduce our design for a combination of a couple of methods traditionally

used in network security (whitelists and blacklists), and propose further steps into this research in order

to add (anomaly detection)2. Ploughing and ploughing, the idea is to get a powerful tool against

information system's threats.

Using a Network Intrusion Detection System known as Snort, a very famous open-source

program to any system administrator, and adding my program to it, we are sure of offering good safety

to networks.

Of course, not everything is done, and hackers nowadays are able to avert many and very good

security systems, but our tool, is able to come up with a very good representation of what it happens in

our network, in a sense that everything that is outside that behaviour, Snort using our results, will alert

about it, and further measures could be taken about what it could be a likely attack.

 i

1.Hacking can be divided into three different categories: black-hat hacking, white-hat hacking, and grey-hat hacking. Names are very representative of

their meaning.

2.Although this last of anomaly detection is a bit controversial since what we are achieving with our design is a mix between whitelisting and anomaly

detection, but all depends on the point of view we take.

51

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Acknowledgments

I would like to take this opportunity to thank my supervisors Dr. Michael Schukat and Dr. Hugh

Melvin. After this period in which I have been presented with many new tools, got to read many

interesting books and received great direction I believe I got to understand what the term “network

security” means. Your advice, suggestions, and continuous support have been of incredible help not

only for the present moment but very surely for my near future career.

I would like also to thank Jonathan Hanley, who I have had good advice from as well, thank you

Jonny. Stephanus Meiring and David Thornton, even though I have spent little time with you, you are

in my thoughts too.

Gracias además a mi ponente, Dr. José Luis Salazar Riaño, tuve ya una muy buena experiencia

en las asignaturas que él imparte de Comercio Electrónico y Seguridad y Criptografía.

A mi familia, por toda la ayuda recibida, especialmente en esos momentos en los que parecía

quedarme estancado. Sin vuestro incondicional apoyo no habría llegado a este punto.

Dorotka, thanks for these last two years, good friend, and better partner, I have always found

great support in you.

Y yayo, un recuerdo especial para ti. Gracias por todos los momentos vividos juntos, has sido y

seras siempre una gran referencia. Te echo de menos.

 ii

52

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Table of Contents

Abstract ….. i

Acknowledgments ….. ii

Table of Contents ….. iii

Table of Figures …... vi

List of Tables …... viii

1. Introduction ….. 59

1.1 Introduction to Networking Security …... 59

1.2 Networks in Industrial Environment ….. 60

2. Literature Review …... 61

2.1 Network Protocols ….. 61

2.1.1 IP …... 61

2.1.2 TCP …... 62

2.1.3 Other IP protocols …... 63

2.1.4 Modbus …... 64

2.1.5 ZigBee …... 66

2.2 Cybersecurity / Threats on ICS (Internet Connection Sharing) …..... 67

2.2.1 Security on SCADA Systems ….. 68

2.2.1.1 Attacks on SCADA Systems …............................ 68

2.2.1.2 Solutions …... 69

iii

53

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

2.3 IDS / IPS (Intrusion Detection System / Intrusion Prevention System) …..... 70

2.3.1 Snort …... 72

2.4 Aim of Thesis / Motivation of the Project …... 75

3. Design ….. 77

3.1 Working Environment ….. 77

3.2 PCAP Library …...77

 3.3 How our program works with Snort …... 78

3.4 Tree-Linked List …... 78

4. Implementation ….. 82

4.1 Tree-linked list IP …... 84

4.2 Implementation Modbus ….. 89

4.3 Scripts Shell …... 96

4.4 Putting it all together: Main Code and Callback Function ….......................... 98

5. Deployment and Test …... 110

5.1 Test ….. 112

6. Conclussions …... 117

6.1 Further Research …... 117

Annexe A: Snort …... 118

A.1 Introduction to Intrusion Detection and Snort …... 118

A.2 Setting up our Snort Sensor …... 123

A.3 Installation of Snort and Getting Started …... 126

A.4 Working with Snort Rules …... 131

iv

54

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

A.5 The Snort Configuration File …... 148

A.6 Plug-ins, Preprocessors and Output Modules ….. 153

A.7 Using Snort with MySQL ….. 158

A.8 Using ACID with Snort …... 159

Annexe B: Virtual Scenario for Modbus Software …... 160

Bibliography …... 165

 v

55

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Table of figures

Fig.1: IP frame structure …... 61

Fig.2: OSI model ….. 62

Fig.3: TCP header ….. 63

Fig.4: OSI Model / DARPA and TCP/IP Protocol Suite …................................. 63

Fig.5: Set up example of a Modbus Network …... 64

Fig.6: Modbus TCP/IP ADU ….. 65

Fig.7: Modbus TCP header …... 66

Fig.8: ZigBee specification's layers ….. 66

Fig.9: Snort's inner workings ….. 73

Fig.10: A single dimension linked list ….. 79

Fig.11: Part of a possible sample of a Tree-Linked List …................................. 80

Fig.12: Screen sample of our sniffer's output …... 83

Fig.13: Screen sample of an example of statistical study …............................... 84

Fig.14: Brief note about Snort's installation …... 112

Fig.15: Contents of the program's file system …..113

Fig.16: Files resulting from the execution of the sniffer …................................ 113

Fig.17: Checking / creating folders in Snort's file system ….............................. 114

Fig.18: Sniffing process (no results dumpled directly into screen) …................ 114

Fig.19: Results explained and further reconfiguration …................................... 115

Fig.20: Last screen ….. 115

Fig.21: Example of IP.rules & Modbus.rules file …....................................... 116

vi

56

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig.22: Snort's inner workings schema ….. 120

Fig.23: IDS behind the firewalls …... 123

Fig.24: Likely scenario for a Snort sensor ….. 124

Fig.25: Our company's system administrator …... 126

Fig.26: General structure of a rule ….. 132

Fig.27: General structure of a rule's header ….. 133

 vii

57

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

List of Tables

Table 1: Stack's layer in Modbus TCP ….. 65

Table 2: Snort's modules summarize …... 123

Table 3: Flag's keywords …... 140

Table 4: Type of ICMP packet ….. 141

Table 5: List of arguments ….. 145

Table 6: Tag's arguments …... 147

 viii

58

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

1. INTRODUCTION

1.1 Introduction to Network Security

Nowadays, we find ourselves absorbed in a world in which our communications and daily

affairs pass through a large number of computer systems. Our emails, reach its destination not without

previously go along the tangle of routers that conform Internet, at the moment you can “survive”

without stepping in a supermarket, with just a computer, an Internet connection and after a little

number of clicks you can order you weekly shopping; bank transactions, last books, clothes, social

networks. All can be done, and is done, from your desk at work or in the comfort of your sofa at home.

What about private companies? Personal details, industrial data or signal control, important

documents... everything gets off from a computer, goes a long a cable in an intranet, and this intranet is

very likely connected to the network of networks: Internet is here, and everybody should understand

the important role that Network Security plays in all of this.

Whether like it or not, we are already in the digital era in which everything is translated into 1's

and 0's. This is why it is so important to protect the information over this new platform. Thus, I believe

a good starting point for this thesis would be a definition of “network security”. What does network

security refers to?

According to wikipedia, network security consist on [1]:

“Network security consists of the provisions and policies adopted by a network administrator

to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network

and network-accessible resources.”

Webopedia says [2]:

“A specialised field in computer networking that involves securing a computer network

infrastructure. Network security is typically handled by a network administrator or system

administrator who implements the security policy, network software and hardware needed to protect a

network and the resources accessed through the network from unauthorized access and also ensure

that employees have adequate access to the network and resources to work.”

One simpler definition would be the one in the digital magazine “Magazine Encyclopedia” [3]:

“Protecting the computer systems in the network from unwanted intrusions.”

In short, network security prevents from attacts and possible threats, protecting, computer

systems that make possible the development of daily routines in Internet, from misuses. We could also

59

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

see it from the other side, and say as well that once we got hacked, network security controls and

monitorizes these misuses against private networks in companies, personal businesses or your home.

1.2 Networks in Industrial Environment

Let's try to make it familiar to us. Since we have never talked during our University years about

Industrial Networking Protocols, the best thing to start with this topic, will be speaking about Industrial

Ethernet; after all, everybody working in Telematics has come into touch with Ethernet.

Industrial Ethernet refers to the use of Ethernet into industrial environments (connectors...

switches...) for automation or process control. Components in these environments must work

sometimes in extreme conditions of temperature, humidity or vibration; conditions, that on the other

hand, exceed the ranges of usual information technology equipment [22].

This particular Ethernet reduces problems related to electrical noise and prevents from

equipment damage. Although essentially both Ethernets share a common basis, there are some

differences between them, for example: Industrial Ethernet uses deterministic delivery, whereas

Ethernet uses collition detection. But I repeat that, essentially, they both share a common basis.

Some other examples of Industrial Protocols are: Modbus and its variants, ZigBee, EtherCAT,

DeviceNet... it exists a large list.

To sum up, we should think of Industrial Protocols, as an adaptation of the Information

Protocols to harsh environments. They help machines in situations very different to the ones we users

have in our offices or homes, to develop their functionality.

60

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

2. LITERATURE REVIEW

2.1 Network Protocols

“A network protocol defines rules and conventions for communication between network

devices. Protocols for computer networking all generally use packet switching techniques to send and

receive messages in the form of packets.” [26].

The list of Network Protocols can be huge, here we are going to make a little reference to some

that we believe are important for this thesis:

2.1.1 IP

Internet Protocol (IP), about this protocol, we can find big amounts of information in Internet,

and with reason, since is the fundamental pillar on which Internet is sustained. Without this protocol we

could not have interconnections further than our local network, it is because of this that the IP protocol

represents such a fundamental intruduction into networking technologies, and resulted in the net of

networks we all know nowadays. It's been so important that it has given its name to a whole protocols

stack: TCP/IP.

IP supports unique addressing for computers on a network, IP addresses (IPv4 and IPv6). There

aren't two devices in this world, that could have the same IP address, we could compare it to the postal

address of our homes. Data on the other hand, is organized into packets and all of them include both a

header (with information about source and destination) and the payload with the info itself.

The protocol IP, works in the 3rd layer of the OSI model. It can therefor run on top of different

link layers interfaces: Ethernet, Wifi, Frame Relay, ATM …

Fig.1 IP frame structure

61

http://compnetworking.about.com/od/networkprotocols/f/packet-switch.htm

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

We could speak much further about this protocol [SteRi01], and although we could fill many

pages just talking about it, this is not the point of this thesis. Let's move on, and continue with another

important protocol: TCP.

2.1.2 TCP

Transmission Control Protocol (TCP) is one of the main protocols in the TCP/IP stack. TCP

functions are about reliability, packet ordering, error-checking delivery of a stream of bytes between

programs, that established a session between, running on computers connected to a network.

This protocol refers to the transport layer of OSI model.

Fig. 2 OSI model

Some important concepts on TCP are:

- TCP segment structure (TCP header)

- session: data transfer.

- connection diagrams: connection establishment and termination.

- maximum segment size

Many things could be said within TCP, and there is a lot of bibliography written about this

protocol [SteRi01] and about its “unreliable” protocol partner UDP [SteRi02]. It is important to

understand very well these two protocols if you want to work on networking and topics related to it.

62

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig.3 TCP header

2.1.3 Other IP Protocols

There are other protocols included into the IP-TCP protocols stack and not only the ones named

before and there are many other protocols that are gradually adapting their technology to be included

inside an IP frame or an TCP segment.

Just to see the IP-TCP protocols stack, we include the next figure. In it, we can differenciate

between levels: application level would be the one on the top, later downward transport layer, network

layer1 and link layer.

Fig.4 OSI model / DARPA and TCP/IP Protocol Suite

HTTP: HyperText Transfer Procotol used by the WWW (World Wide Web). Defines messages'

format and how this messages are transmitted. It also defines how Web-servers and browsers should

respond to commands.

1. The protocols ICMP and IGMP, although they are at the same high as UDP and TCP, they are not part of the transport level. They are encapsuled inside

IP and that's why in the image they are drawn near the latter protocols.

63

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

FTP: File Transfer Protocol, built on a client-server protocol architecture, it is used to exchange

files over the Internet.

SMTP: Simple Mail Transfer Protocol, used for sending e-mails between servers. E-mails can

be retrieved with an e-mail client.

ARP: Address Resolution Protocol, a network layer protocol used to translate IP network

addresses into link layer addresses (MAC addresses).

UDP: a connectionless protocol associated to the transport layer in the OSI model, running on

top of IP. Provides very few error recovery services, leaving this tasks normally for protocols that run

on top of him.

2.1.4 Modbus

As this is a completely new protocol for us in our Telecommunications Engineering education,

we will delve a bit deeper into it than with the previous protocols, and since in this work, we are to deal

with a solution for Industrial Control System Protocol networks (and more precisely with Modbus), a

brief but good intruction to Modbus is required.

Modbus is a simple and robust serial communications protocol originally published by Modicon

for its use with its programmable logic controllers(PLCs). It has become an important standard

communications protocol, and a commonly available way to connect electronic devices [ezTCP].

It renders possible communication between many devices, approximately 240, connected to the

same network, a common example would be a system that measures temperature and humidity and

communicates the results to a computer. Modbus is usally used to connect a supervisory computer with

a remote terminal unit (RTU) in supervisory control and data acquisition (SCADA) systems [23][24]

[25].

Fig.5 Setup example of a Modbus Network

64

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

There is software available in Internet in order to emulate set ups that work with Modbus

devices, some devices are master some others slave. It's been developed as well an API Modbus that

simplifies the process of creating more especific sofware and virtualization of a whole Modbus

scenario. As a matter of fact, for this project, it was created a virtual network, using Virtualbox for this

purpose.

In this network, it was configured three virtual machines: a virtual machine representing the

Modbus master and another machine for the Modbus slave, finally another machine plays the role of

NIDS (Network Intrusion Detector System) sensor. There is an annexe at the end of this text explaining

the process of virtualization and the Modbus software employed in it.

To make things clearer, let's make a little reference to the terminology “master” and “slave”.

Nowadays we know this as the server-client model. A master-device works as a client, who sends

requests for the slave (server) to process them and produce answers or replies. If you know how the

model server-client works, this master-slave terminology shouldn't be a problem [SteRi02].

There are several types of Modbus: Modbus RTU, Modbus ASCII, and Modbus TCP. Our

solution works on TCP-Modbus. Encapsulation of Modbus inside a segment TCP it's been a great

advantage to our design, since it makes easier to work with it in a much wider environment, and our

design can be comfortably extendable to other protocols that are included into the IP-TCP model as

application layer SDU, resulting very straightforward to add functionalities following the same

procedure seen in our program code.

 Table 1 Stack's layer in Modbus TCP

 Fig.6 Modbus TCP/IP ADU

65

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig. 7 Modbus-TCP header

2.1.5 ZigBee

Though it is not important for our thesis, learning a bit about ZigBee can help us to see clearer

the idea of Industrial Network Protocols:

ZigBee, is a specification for a suite of high level communication protocols using small, low-
power digital radios based on an IEEE 802 standard for personal area networks. Devices are often used
in mesh network form to transmit data over longer distances, passing data through intermediate devices
to reach more distant ones. This allows ZigBee networks to be formed ad-hoc, with no centralized
control or high-power transmitter/receiver able to reach all of the devices. Any ZigBee device can be
tasked with running the network.

The list of uses its quite extensive, but some examples to consider are:

- Home Entertainment and Control – Smart homes.
- Wireless sensor networks
- Industrial control
- Embedded sensing
- Medical data collection
- Smoke and intruder warning
- Building automation

Fig.8 ZigBee specificiation's layers

66

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

ZigBee builds upon the physical layer and medium access control defined in IEEE standard

802.15.4 . As we can see in the previous figure, ZigBee stack architecture consists of Physical and

Medium Access control layer, that gives support to the ZigBee network layer. For its part, the ZigBee

specification (network) layer, consists of the APS sub-layer, the ZDO (containing the ZDO

management plane), and the manufacturer-defined application objects.

2.2 Cybersecurity / Threats on ICS

To contextualise this work, let's talk a little about cybersecurity and threats on ICS (Internet

Connection Sharing). In the world we're living in, attacks against IC (Critical Infrastructure) of energy,

gas, oil and water are increasing, and it's not weird to know that these attacks are well-funded by

organizations, competitors or even governments.

Just to put this into the right context, let's take some examples of attacks in the recent year.

Although we shouldn't believe everything we read in the Internet, we can get a good smattering of what

it is possible nowadays with just a computer and an Internet connection and how vulnerable are all the

systems we base our daily routines (electricity, water, heating) on:

• HuffingtonPost → Posted: 05/16/2013 11:17 am EDT | Updated: 05/16/2013 11:23 am EDT

[31]:

“Syria faced an Internet blackout for eight hours on Wednesday, its second one in the past week

and the sixth one of the two-year uprising against President Bashar al-Assad, a U.S. web

trafficking firm reported. Phone lines into Damascus were also down.”

• BBC → Posted: 20 May 2013 Last updated at 10:13 GMT [32]:

“State-sponsored hackers have renewed attacks on the US after a three-month hiatus, the New

York Times reports.”

• Infosecurity-magazine.com → Posted: 12 April 2013 [33]:

“The latest issue of the ICS-CERT Monitor has described two similar hacks that happened last

year where attackers used a weak credentials vulnerability to gain access to buildings’ energy

management system (EMS), Tridium Niagara.”

The list of reported attacks during 2013 would be large, and it's just been four months since the

beginning of the year. So “security”, such an important thing, but a thing on the other hand, that we

usually don't put too much effort in.

67

http://www.huffingtonpost.com/2013/05/15/syria-internet-access-down_n_3277387.html?utm_hp_ref=technology
http://www.huffingtonpost.com/2013/05/15/syria-internet-access-down_n_3277387.html?utm_hp_ref=technology
http://www.bbc.co.uk/news/world-middle-east-22447247

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

2.2.1 Security on SCADA Systems

SCADA stands for Supervisory Control And Data Acquisition. But what is a SCADA system

and what is it used for? The term SCADA refers to a type of Industrial Control Systems (ICS). These

ICS are computer controlled systems whose task is to monitor and control industrial processes.

Examples of SCADA systems could be those systems that allow operators to change and enable alarm

conditions related to temperature in systems designed to control the flow of cooling water in some

industrial processes or those systems that monitor high and low levels in water tanks and alarm when a

certain level is reached. There are plenty of examples and they develop important functions in many

processes that influence in our welfare.

2.2.1.1 Attacks on SCADA Systems

In these days, worries about how to protect SCADA systems are increasing. With the ever-

growing threat of “cyber terrorism” (specially after the 11S of New York) [35], specialists in

information security issues are becaming more concerned about vulnerabilities in SCADA systems

since as I explained before, these systems are responsible for controlling and monitoring our water

distribution systems, oil and gas pipelines or electrical grid...

The design of such systems has evolved during the years, providing them with extra flexibility

and functionalities, but turning them more vulnerable as well. SCADA systems have been present since

earlies 1970, allowing us to monitor and remotely control devices distributed along wide extensions.

The architecture of these systems, consists of a central computer system that communicate with other

machines using one or more telecommunication technologies. During the last decade, Internet and

other Internet-based techonologies have been included into the SCADA systems' design.

Attackers nowadays are determined to get control over SCADA and other ICS devices, for this

they use different techniques. We must see these systems as real-time control system on which a

successful attack could bring very serious and terrible consequences (in terms of human health or even

life), and attacks against them doesn't seem to be very different from attacks to devices inside a

common information network.

Good examples of attacks are: DoS (Denial of Service), passwords stealing, impersonalization,

forgery of documents or deletion of them, not properly an attack but the prelude to one could be

68

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

scanning of ports of our machines... there is a wide range of threats to our systems and it is a good

practice for any administrator to be aware about all of them.

Just to illustrate a little bit more this, threats such DoS (Denial of Services) against SCADA

systems (or other informatic systems), consists on attacks in which attackers generate a high number of

requests to our machines in such a level that they stop being able to give service and collapse [37].

Another example of attack to SCADA systems could be different types of malware that take

advantage over vulnerabilities in the software of these devices. A known one is “a new type of malware

that uses the .lnk vulnerability in Microsoft Windows and Siemens SCADA systems” [34].

There are many ways in which our system could be compromised, and a constant revision of

our network devices is highly recommendable. On this respect, any tool that could automatise the

process will be always a great help.

2.2.1.2 Solutions

What can we do to alleviate this? There are many tools and ideas out there to help security

employees to deal with these threats. Of course, we should never lower the guard, and have always an

eye on new threats. Today we have a safe system, but maybe tomorrow we are in troubles...

One idea, although not a solution in itself, is the use of honeypots [36]. A honeypot is a very

smart way to get to know if there are people interested in your network and who they are. It consists of

a “dummy” device that accurately expose the same characteristics as any of those devices controlling

our network and that results in an easy target for attackers. Leaving there this device “unattended”, and

monitoring attacks against it, can offer to system administrators with a very good source of information

about those who intend to break into our system.

Any other form of security against for example DoS attacks in normal informatic systems,

could do the job as well in SCADA systems. For example firewalls, such us Iptables or some other

commercial ones, or other tools to control the connections flow would work just fine.

There are tools and solutions for many threats nowadays, the problem is how to use them in the

most accurately manner as possible and for this, if you are in charge of these security aspects, you need

to know your network.

Here is where it comes our idea. The solucion we propose to secure these systems; systems

based on protocols as Modbus, is using Deep Packet Inspection [30]. Being able to come with a good

69

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

description of our network's behavings is a big advantage for any administrator, and it is on this aspect

that our research in OSNA and in particular the research for this thesis is focused in.

2.3 IDS / IPS (Intrusion Detection System / Intrusion Prevention System)

The term Intrusion Detection System/Intrusion Prevention System (IDS/IPS) refers to a

software application that is able to contrast the packets that flow in our network with some predefined

patterns. Sometimes this patterns refer to allowed traffic, and some others to traffic that should be

disallowed. Thus, we come across with two very important concepts which we will be speaking about

along this text: blacklisting versus whitelisting.

Actually, to be more precise, there are three main traditional detection methods for network

based attacks:

- blacklisting,

- whitelisting,

- and anomaly detection.

Let's explain them:

• Blacklisting

Blacklisting is a method whose approach to security is signature-based. It allows through all

elements except those explicitly mentioned. But... this method, can only prevent from previously

analyzed threads and is easy for attackers to dupe these protections. For example, by doing

modifications in the packet's payloads; this modifications can range from fragmenting and spreading

the payload of a single packet into different smaller packets, to the representation of the info contained

inside the packet's payload in a manner that can completely avert the packet's inspection procedures of

any Intrusion Detection System or an antivirus program.

Many other techniques can be used to avoid being detected... Furthermore, it may happen that

every time a new threat is discovered, till a new signature is developed and distributed to all of our

systems, it could pass weeks or even months before a complete updating against them, leaving us

completely exposed to these new attacks.

70

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• Whitelisting

On the other side of the coin, we have whitelisting, this would be the very opposite approach to

the previous one. Instead of having the program checking for “bad-known” behaviours and alert about

them, with a whitelisting approach, what we have is an approach to security that just allows “good-

known” behaviours in the network traffic: all packets that don't match with what is listed into our

whitelist, will be alerted about and taken apart for further study as a posible threat.

But... once again, this approach turns out not to be perfect, since we should be able to fine-tune

as best as we can our detection system in order not to allow possible attacks, or possibly even allow

actions that had previously been disallowed by a blacklist.

Additionally to this, hackers can study our whitelist, and construct packets that, though they are

conformed according to what is considered to be “good”, they disguise what is the last virus or trojan,

and our whitelisting measures would be useless.

• Anomaly detection

The last method, known as well as qualitative anomaly detection, is one of the last approaches

to network security, and offer protection by analising one by one the packets, and rising an alert

everytime the content of a packet is “too different” from “the norm”. For this approach to be possible,

we should be able to seize network traffic's intrinsic characteristics. They would use N-gram analysis.

N-grams are sequences of N-consecutive bytes extracted from the payload of the packets, for later

compare these N-grams to the N-gram allowed models.

The problem we find in N-gram statistical study is that it does not allow to distinguish between

good and bad traffic or creates too many false positives since N-gram does not take into account packet

structure and different header fields. Instead, what the design here explained does is Deep Packet

Inspection, looking into the characteristics of network fields, constituing with it an important difference

between other approaches and ours. With my program, during an initial training phase, we could build

statistics about N-grams present in normal network traffic and according to them we conform traffic

models. The packets later sniffed from the network will be compared to these models to rise alerts in

case of a certain deviation from this normal behaviour.

In this thesis, we will be presenting our desing and code for a new program. The program began

being a simple sniffer to which we have added new features in order to implement a whitelisting

71

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

approach. Although we have focused specially in whitelisting, blacklisting features are included as

well, in such a way that we could have the best of both worlds.

However, in OSNA, we believe that the combination of the three policies, and not only the first

two, is what is desirable, and a possible modification to this thesis for future developments would pass

through including a more thorough statistical study of traffic characteristics. This would complete what

we are sure to be a very powerful tool for system administrators.

To discover unauthorized access to a computer network, IDS analyze traffic on the network for

signs of malicious activity. They base their functionality in comparing well-established packet patterns

to the ones it sees in the network. This packet patterns are known as “signatures”. Normaly, this

“signatures” are part of this schema of blacklisting, although you can find as well some “pass-rules”

that would exemplify the whitelisting approach. As we commented in our abstract, there exists a period

of time then, in which from the moment of the creation and expansion of a new threat, till the moment

in which we have its pattern registered and updated in all of our devices, we are completely unprotected

from this malware. And this is why the combination of both policies offers a better proctection, on one

side blacklisting protect from already known attackts, from other a well fine-tuned whitelist can avoid

most recent attacks during those periods of unprotection.

2.3.1 Snort

Our program will transmit useful information to Snorts, an open source Network Intrusion

Prevention and Detection System (IDS/IPS) developed by Sourcefire. It combines the benefits of

signature, protocol, and anomaly-based inspection. It is used to detect non-authorised accesses to

computers or networks. This non-authorized accesses vary from skilful attacks from nimble hackers to

the well-known script kiddies used by teenagers to gain access to social network accounts of their

partners in highschool.

To have a better grasp of what is intended here, we should do a little description of how Snort

works. After it, the idea we are chasing and what we are seeking with it will be much clearer.

Snort can work in three different manners: as a packet sniffer itself, as a packet logger, or it can

work as a Packet Intrusion Detection System tool. Its functionality is based in several modules that

manage the information a single packet at a time, and after all the needed transformations carried out

by these modules, the result is handed to an “alerting and logging component” which, if it's the case, it

72

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

will fire off an alert and log the packet.

Let's go step by step: to illustrate the path followed by a packet, once it arrives to the computer's

network interface, I'm including the next figure.

Fig.9 Snort's inner workings

As we see in this image, Snort uses a very well defined set of behaviors and for its purposes it

uses several modules .

Let's describe the inner workings of Snort:

First, the packets arrive to the device's NIC and are decoded off the wire by the packet decoder,

which will determine what protocol is in use for a given packet. Then, when using Snort as a NIDS,

after the incoming packets are parsed by the packet decoders, data is sent through any preprocessor you

may have enabled in your Snort.conf file. It continues through the detection engine which matches it

against the rules in any ruleset enabled in your Snort.conf file. “Snort.conf”, being a configuration file,

is a very important file to bear in mind then, as it is where we can configure Snort's behaviours.

Afterwards, matches are sent to the alerting and logging components, to be passed through

whatever plug-ins you have selected, alerting and logging the data as it has been configured to do.

Some of this modules would need some further explanation as we do next:

• The packet decoders

Note: here alerts can be generated based on malformed protocol headers:

- overly long packets

- unusual or incorrect TCP options

73

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

- and other such behavior.

• Preprocessors

Plug-ins to Snort that allow you to parse incoming data in different ways useful for the alerting

modules. Without preprocessors you will only look at each individual packet as it comes in over the

wire, missing some modern attacks:

- overwriting data in overlapping fragments.

- deliberated IDS evasion techniques like putting part of a milicious application request in one

packet and the rest in another packet.

- and other similar practices.

After the data is returned from the preprocessors, it is passed to the detection engine.

• The detection engine

It's the component of Snort that takes data from the packet decoder and preprocessors (if any

enabled) and compares it against the rules in your Snort.conf.

First, the detection engine will try to determine what rulesets it ought to be matching against for

a given piece of data. It classifies this first by protocol: TCP, UDP, ICMP, or IP.

For TCP or UDP this is source and destination port number.

For ICMP: it's the ICMP type.

For plain old IP packets ...

• Rules and matching

IMPORTANT: in general, “alert” rules will fire before “pass” rules. However, if you would

rather have this behavior reversed, you can specify the -o option to Snort on the command line, making

the order “pass”, “alert”, “log” instead. Since we intend to provide a whilisting feature to this detection

tool, we must be careful what's the order in which Snort execute its actions otherwise we could be

alerting that is intended to be allower. So, this is a very importan note to have in mind.

Eventually, we can understand that the whole idea about Snort goes around files that describe

network correct or wrong behavings. All Snort's modules described in this section carry out their

functions having a common direction: work on the packets Snort picks from the net, and transform

them in a way that alert and logging modules (next explained module) can perfectly alert and log about

possible threats. If we could run a program that is able to come up with what is suppose to be

acceptable, or with what is suppose to be allowable, we can automatize this powerful IDS tool and

make system administrators' duties much easier.

74

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• Alerting and Logging components

After the rules have been matched against the data, we have the alerting and logging

components.

- The logging mechanism in Snort will archive the packets that triggered Snort rules.

- While the alerting mechanism is used to notify the analyst that a rule has fired.

– Pass rules will allow some behaviours, seen as acceptable-behaviours, if we have

established correctly the order to be checked in the previous module.

2.4 Aim of Thesis / Motivation of the Project

As we were speaking before, both security approaches, whitelisting and blacklisting, have their

pros and cons separatelly, and this is why we intend to build up a solution in order to merge them into a

single program and get the best from both perspectives. Hence, we propose a solution that we believe

will be a very powerful tool in any system administrator's resources.

During a study phase in which the user runs our program, the idea is to come up with all the

possible sessions established among devices in a network, collecting its IP addresses and ports and

collecting as well information about functions, identificators and lengths in Modbus packets. With this

information, the application will generate file rules, being this file rules the basis for a whilelisting

approach.

Normally, networks in private companies, can consist in hundreds of devices, exchanging in

just little time thousands of packets among them. For any system administrator, trying to register all

these exchanges would represent a daunting task. In OSNA, we want to make this task much simpler

for that workers, and come up with a complete study of these connections. What in a beginning can

seem a very complex network, our program is designed to summarize in a file, all those sessions

stablished between machines.

For this, we have modified the “idea” of sniffer program, including on it some new features. A

sniffer or packet analyzer is a computer program that can intercept and log traffic passing over a digital

network. Ours, is able to create different files, some of them containing pass-rules, according to the

network traffic it sees in the segment of the network it is connected to, for afterwards transmitting them

to the Snort file system.

Snort will use its own features to alert on any behaviour out of its blacklist rules file that has

been set in its configuration file, and on the other hand, it will use the “pass rules” created by our

75

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

sniffer, allowing what is consider to be a “good-known” behavior. Merging then both security methods:

black and white -listing.

To understand the whole schema, we should get at least some smattering of Snort, and once

then, we will see our design's idea a bit clearer. Since it is not our intention to speak too deeply about

Snort in this thesis, an annexe talking about it has been included at the end of this text. But to get a

general concept of it, we will continue into the next point with a little review on Snort.

76

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

3. DESIGN

3.1 Working Environment

During this project I have been working in a Linux environment, using a Debian Linux

distribution in its Xubuntu version. The programming language used is C and shell programming. The

shell program used is the Bash Unix shell of the GNU project and the compiler it's been gcc - GNU

project C and C++ compiler-.

Steps in our work till the final result:

The development of our sniffer has gone through several steps. From a simple sniffer able to

sniff the packets in promiscuous mode and dump the information contained in the packet's header, to

the final product in which it is able to implement all the functionality we had in mind, leaving it open to

further plug-ins.

Let's describe the different steps taken in our development process of our program.

3.2 PCAP Library

An important concept to understand, and that I came to understand when faced this project is

“what is an API?”

API stands for Application Program Interface, is a protocol created to be used as an interface by

software components in order to communicate among them. It's an important help for software

developers allowing them to forget about particularities of the hardward they are working with.

The bottom line is that once you use an API, everything can be used according to the Linux

philosophy of “all is a file in Linux”. Is a library that have routines, data structures, object classes and

variables that you can use into your programs. One example of it would be the PCAP (Packet CAPture)

library [4] [5] [6].

Pcap (packet capture) consists of an API used for capturing network traffic, is the basis of any

sniffer nowadays or Intrusion Detection Systems such as Snort. Unix-like systems implement pcap, in

the libpcap library. During the section dedicated to our design's code, it is seen the statement #include

<pcap/pcap.h> which “pcap.h” is the header file that allows us to use the functions, constants, macros...

available in libpcap, inside our program.

77

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

3.3 How our program works with Snort

The program has been designed to bring some help to Snort tasks. What firstable was a hard

task for any system administrator, our program is thought to make things easier for our employees

working in securiting our information systems.

The idea is to take advantage from the workings of Snort, which is able to contrast the packets

that arrive to the NIC (Network Interface Card) with some predefined patterns. If we could be able to

come up with a representation of our segment network's behaviours and express it into a file, after

moving this file into Snort's file system, we could count with a very powerful tool.

Well then, the program designed during this period is able to create that file (among some other

more files) with what is called “whitelist”, then takes responsibilities in checking if some important

folders are within Snort's file system, and if they don't exist, our program creates them, for later on,

moving the whitelists into this folders.

It handles as well, some of the configuration issues within Snort. Snort bases its configuration

on a configuration file called “Snort.conf”. In this files, you can find variables, defines and some other

statements related to configuration of our Snort sensor.

The sniffer here proposed, includes the defines statements into this file, for later moving this

file into Snort folders, substituing the previous configuration file for this new one. A new one on the

other hand, that is already fixed in order to indicate Snort where the rules' files are.1

3.4 Tree Linked List

The Tree-Linked list is the meat and potatoes of our sniffer's intentions. At this point of the

project we're not taking in to consideration if it's a Modbus packet or any other TCP packet, what we

are going to focus on, is to rescue IP addresses source, IP addresses destination, TCP source ports and

TCP destination ports of the packets sniffed. This point give us the starting point for further ploughing.

The whole point of it, is to save all this relevant information about IPs and ports, to later

elaborate (the program will) the rules that will be transmitted into Snort's file system. We should bear in

mind, that it is very important to restrict the amount of data we are taking from the network. We don't

1. Rules must be contained in /opt/Snort/rules. The program creates this folder and places the blacklisting rule files and whitelisting rule files in here.

78

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

want to put unnecessary extra rules, or rules that refers to previous rules' especifications, because it will

make Snort much slower. Thus, we are here dealing with a trade-off: max security versus accuracy and

amount of rules.

To take just the necessary info then, we will design functions that will load a modified linked

lists with the combinations of IP addresses and ports of queries and replies, with repeating any. The

reason to use linked lists and not arrays is because if we used arrays, we would not know how much

space we should allocate for it, and since we are picking packets as they flow in the wire, we can't

dynamically establish the length of an array, some times could be 1000 elements others 10000 should

be necessary...

We will introduce my Tree- Linked list here: We will start simple. What is a linked list? A

linked list is a nested list of structs linked by addresses.

The struct used is as follow:

struct linked_list_node

{

void ptr_data;

struct linked_list_node *ptr;

}

An accurate visual representation would be:

 Fig.10 A single dimension linked list

where 1000, 800, 712, 992 and 692 are the memory addresses of these structures containing the

data and a pointer to the next structure. a1, a2, a3, a4 and a5 are the data itself. The type void allows to

store any kind of data in it.

These structures will be dynamically allocated, allowing users to keep big amounts of data,

allowing the user to forget about stablishing sizes in arrays.

But the linked list shower before is not what we have in mind, a one-dimensional linked list

doesn't help us to cope with our intentions. We will develop a Tree-Linked list. At the moment, I repeat,

79

 Space for data.

 Next node in the list.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

we are dealing just with IP header information, we haven't got yet to the point of dealing with Modbus

protocol, and the “linked list of linked lists” is consisting just of information related to IP-TCP.

The structure I'll be using for our purposes is this:

struct ip_node_t

{

void *ptrdata;

struct ip_node_t *ptr_r;

struct ip_node_t *ptr_b;

}

What better way to see the idea than through an ilustration of our tree? The next figure will

clarify the idea, and later we explain the fields in my structure:

Fig.11 Part of a possible sample of a Tree-Linked list

The data structure then is composed by:

• void *ptrdata → is a pointer to data allocated dynamically by my code.

• struct ip_node_t *ptr_r → pointer to the next node in the same level (horizontal arrows

in the graph).

• struct ip_node_t *ptr_b; → pointer to the node in the lower level (arrows pointing

downwards).

Let's explain the previous image:

It could happen that the sniffer has picked up a packet with:

IP source address: 207.102.1.5

IP destination address: 10.10.1.37

Port source address: 345

Port destination address: 80

80

 Address to node's data.

 Next node in the same level's list.

 Next node into the downwards' list.

207.144.24.5

110.87.25.74

450

80

78.207.124.25

1240

21

80

1562

10.10.0.5

98.200.128.14

23

5051

1025

1110

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Later, in any moment, it picks up another one:

IP source address: 207.102.1.5

IP destination address: 10.10.1.115

Port source address: 3295

Port destination address: 80

Another packet any time later:

IP source address: 154.245.0.7

IP destination address: 10.10.1.37

Port source address: 1245

Port destination address: 21

Maybe after...

IP source address: 207.102.1.5

IP destination address: 10.10.1.115

Port source address: 80

Port destination address: 3987

And this would continue till the moment it reaches the number of packets we have tell the

sniffer to sniff in the command line of our terminal.

81

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

4. IMPLEMENTATION

At this point we build the basis for the project, it consists just of a normal sniffer that picks the

packets from the network in promiscuous mode. Promiscuous mode means that our NIC is able to pick

not only the packets addressed to itself but packets addressed to any machine connected to that segment

of the network. For this, the computer's NIC should be configurated, but normally Snort does it

himself. To configure oneself the NIC in promiscuous mode we can do it through Linux terminal.

arturo@arturo-laptop:~$ sudo su

root@arturo-laptop:/home/arturo# ifconfig wlan0 down

root@arturo-laptop:/home/arturo# iwconfig wlan0 mode monitor

root@arturo-laptop:/home/arturo# iwconfig wlan0

wlan0 IEEE 802.11bgn Mode:Monitor Tx-Power=15 dBm

 Retry long limit:7 RTS thr:off Fragment thr:off

 Power Management:off

To put back your NIC in managed mode (otherwise you'll not be able to use your browser):

arturo@arturo-laptop:~$ sudo su

root@arturo-laptop:/home/arturo# ifconfig wlan0 down

root@arturo-laptop:/home/arturo# iwconfig wlan0 mode managed

root@arturo-laptop:/home/arturo# ifconfig wlan0 up

root@arturo-laptop:/home/arturo# iwconfig wlan0

wlan0 IEEE 802.11bgn ESSID:"UPC943203"

 Mode:Managed Frequency:2.437 GHz Access Point: 70:71:BC:00:83:01

 Bit Rate=54 Mb/s Tx-Power=15 dBm

 Retry long limit:7 RTS thr:off Fragment thr:off

 Power Management:off

 Link Quality=50/70 Signal level=-60 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:298 Missed beacon:0

Functionality: the packets' header information of any packet sniffed in our network segment, are

dumped to the screen. Is it an IP packet? TCP over IP? Modbus over TCP-IP? Malformed IP packet?

ARP? To illustrate this, next we have included a sample of the sniffed data during one of our tests:

82

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig.12 Screen sample of our sniffer's output

Another interesting feature to speak a bit about, is that, at this stage, we have started to

implement the statistical study. Just a simple one: how many packets of one type has seen, what

percentage represents from the total... from here we could develop future plug-ins to this sniffer as N-

Gram study, but at the moment this is just an idea.

Since there are two ways our sniffer can work (sniffing from a pcap file or from a NIC), it can

happen that when it picks packets from a pcap file, the time stadistics are useless, since the processing

time of the pcap file usually is “0.00”, and then statistical time study leads to divisions by “0”, making

the program to show this result as “-nan” or any other type of error.

A more thorough statistical study could be a great asset for our program as commented before,

and could represent a next step to take in its design. It could be used for whitelisting information inside

the payload, resulting in a very powerful tool for securing networks.

83

 IP add. source

 IP add. destination

 Modbus info.

 Ports' info.

 Not a modbus packet.
 A simple Tcp packet.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

This next screen capture shows the output of a statistical study from a pcap file:

Fig.13 Screen sample of an example of statistical study

4.1 Tree-Linked List for IP

We create a code file called ip_func.c with its header ip_node.h. Let's explain this files:

ip_node.h → header file for ip linked list functions:

#ifndef IP_NODE_H_
#define IP_NODE_H_

struct ip_node_t
{

void *ptrdata;
struct ip_node_t *ptr_r;
struct ip_node_t *ptr_b;

};

enum field_t
{

ip_ip_from = 0,
ip_ip_to = 1,
ip_src_port = 2,
ip_dst_port = 3

};

/* prototypes */

struct ip_node_t *createList (void);
struct ip_node_t *createNode(void *);
struct ip_node_t *insertBranch (struct ip_node_t *s,void *,void *,void *,void *);
void freeTree_ip(struct ip_node_t *);

84

 Our node for the
 Tree – linked list.

 Enumeration type that we will use
 to reference in which level of the
 Tree – linked list the program is.
 It can be understood by looking into the
 “insertBranch” function.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

void readTree_ip(struct ip_node_t *);
#endif

Ip_func.c → file with the functions to use for the linked ip list.

#include "ip.h"
#include "ip_node.h"

extern FILE *ip_tree;
extern FILE *ip_tree_rules;

struct ip_node_t
*createList (void)
{

return NULL;
};

struct ip_node_t
*createNode(void *data)
{

struct ip_node_t *s;
s = malloc(sizeof(struct ip_node_t));

if (s != NULL)
{

s->ptrdata = data;
s->ptr_r = NULL;
s->ptr_b = NULL;

}
return s;

}

struct ip_node_t
*insertBranch (struct ip_node_t *s,void *ob1,void *ob2,void *ob3,void *ob4)
{

struct ip_node_t *aux,*aux1,*aux2,*aux3,*prev,*prev1,*prev2,*prev3;
struct ip_node_t *aux_loop;
void *ob;
enum field_t level = ip_ip_from;
int prev_int;

for (aux = s, prev = NULL ; aux != NULL ; prev = aux, aux = aux->ptr_r)

{
if(!memcmp(aux->ptrdata,ob1,sizeof(struct in_addr)))
{

level++;
for(aux1 = aux->ptr_b, prev1 = NULL ; aux1 != NULL ; prev1 = aux1, aux1 = aux1->ptr_r)
{

if(!memcmp(aux1->ptrdata,ob2,sizeof(struct in_addr)))
{

level++;
for(aux2 = aux1->ptr_b , prev2 = NULL ; aux2 != NULL ; prev2 = aux2,

85

 This function it's not totally
 necessary but it makes the code
 more readable.

 This function will create a
 node and will be used in the
 next function in order to
 create nodes.
 It also starts up the fields in
 the structure.

 This is the function that we will use
 in the main program function. It go
 across the linked tree list and
 compares the info in the nodes. If
 the info is already in the tree, it
 returns, if not, it stores it in the last
 position of the level it corresponds
 to.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

aux2 = aux2->ptr_r)
{

if(!memcmp(aux2->ptrdata,ob3,sizeof(u_short)))
{

level++;
for(aux3 = aux2->ptr_b , prev3 = NULL ; aux3 != NULL ;

prev3 =aux3, aux3 = aux3->ptr_r)
{

if(!memcmp(aux3->ptrdata,ob4,sizeof(u_short)))
{

return s;
}}}}}}}

}

if (prev == NULL) prev_int = 0; else prev_int = 1;

switch (prev_int) {

case(0):

ob = malloc(sizeof(struct in_addr)); //ip source
s = createNode(memcpy(ob,ob1,sizeof(struct in_addr)));

ob = malloc(sizeof(struct in_addr)); //ip destination
s->ptr_b = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = s->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));

return s;

default:

switch(level) {

case (ip_ip_from):

ob = malloc(sizeof(struct in_addr)); //ip source
prev->ptr_r = createNode(memcpy(ob,ob1,sizeof(struct in_addr)));
aux_loop = prev->ptr_r;

ob = malloc(sizeof(struct in_addr)); //ip destination
aux_loop->ptr_b = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_ip_to):

ob = malloc(sizeof(struct in_addr)); //ip destination
prev1->ptr_r = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = prev1->ptr_r;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));

86

 The name of the function
 “insertBranch” is very
 reprensentative of what it
 does:
 whenever it finds some
 new data, and therefore,
 non-stored data, it adds a
 whole “branch” to the
 Tree. A branch larger or
 smaller depending on
 What's the new item
 found. If the new item is
 an IP source... it will add
 IP source and destination
 and source and destiny
 ports.

 Here we see the enumerated type
 data. In this case is an Ip source.

 Now the new item found is an Ip destination. So it
 adds the whole branch of information: Ip destination
 and ports. For this the enumeration type is useful.

 During this big and nested
 for loop, the program runs
 along the Tree-list (if
 already created) and checks
 if the information is already
 contained in the it.

 At this point
 there's at
 least one
 node in our
 tree.

 If the Tree has not been
 created yet, this case(0) will
 add the first “branch”.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_src_port):

ob = malloc(sizeof(u_short)); //src port
prev2->ptr_r = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = prev2->ptr_r;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_dst_port):

ob = malloc(sizeof(u_short)); //dst port
prev3->ptr_r = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

default:

printf("DEBUG NEEDED \n");
exit(1);

}
}

}

void
freeTree_ip(struct ip_node_t *s)
{

struct ip_node_t *aux_i,*aux_j,*aux_k,*aux_r;

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)

for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{

free(aux_r->ptrdata);
free(aux_r);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{

free(aux_k->ptrdata);
free(aux_k);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{

free(aux_j->ptrdata);
free(aux_j);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
{

87

 The allocated memory, must be deallocated.
 This is the function for that purpose.

 Freeing both data
 and linked list node.

 Malloc is the function used
 to get heap memory space.
 We allocate memory both
 for the data itself and for the
 node in the Tree-Linke list.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

free(aux_i->ptrdata);
free(aux_i);

}

return;
}

void
readTree_ip(struct ip_node_t *s)
{

struct ip_node_t *aux_i,*aux_j,*aux_k,*aux_r;
int aux1,aux2;
struct in_addr *in_addr_aux1, *in_addr_aux2;
int count=0;
char mybuff[50]; /* inet_ functions use statically allocated memory */

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
{

in_addr_aux1 = (struct in_addr *)aux_i->ptrdata;
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{

in_addr_aux2 = (struct in_addr *)aux_j->ptrdata;
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{

aux1 = *(u_short *)aux_k->ptrdata;
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{

aux2 = *(u_short *)aux_r->ptrdata;
fprintf(ip_tree,"%5d: ",count++);
fprintf(ip_tree,"Ip source: %15s, ",inet_ntoa(*in_addr_aux1));
fprintf(ip_tree,"Ip destination: %15s, ",inet_ntoa(*in_addr_aux2));
fprintf(ip_tree,"Port Source: %5d, ",aux1);
fprintf(ip_tree,"Port destination: %5d \n",aux2);
strcpy(mybuff,inet_ntoa(*in_addr_aux2));
fprintf(ip_tree_rules,"pass ip %s %d <> %s %d \n",

inet_ntoa(*in_addr_aux1),aux1,mybuff,aux2);

}
}

}
}
return;

}

In reference to files “ip_tree.txt” and “ip_tree.rules”:

Ip_tree.txt is the file in which our program will write in a readable format all the information
previously stored into our Tree-linked list. An example of a line in this file:

1: Ip source: 192.168.2.25, Ip destination: 192.168.2.100, Port Source: 502, Port
destination: 1111

Ip_tree.rules is the file in which the rules are written so that Snort can use them to compare it
with the traffic in our network. This file will be stored, moved, later through some shell-scripts that we
plug into the program's structure. An example of a line in this file:

pass ip 192.168.2.100 1111 <> 192.168.2.25 502

88

 This function will
 write down both files:

- ip_tree.txt
- ip_tree.rules

 Will be used in the main process of
 the program after the Tree has been
 completely loaded.

 Writing into files.

 A little note about “inet_ntoa”:
 the string that is returned, is returned in a
 statically allocated buffer, which subsequent
 calls will overwrite.

 Moving along the Tree

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

4.2 Implementation in Modbus

Right now we have a good understanding of how we can collect the info, keep it in dynamically
allocated memory, and create files to store in a readable format both the info and the rules. It is time
then to jump into the Modbus part.

For this we have again two files: Modbus_node.h and Modbus_node.c.

Modbus_node.h → header file for our Modbus linked list functions.

#ifndef Modbus_NODE_H_
#define Modbus_NODE_H_

struct Modbus_node_t
{

void *ptrdata;
struct Modbus_node_t *ptr_r;
struct Modbus_node_t *ptr_b;

}

enum m_field_t
{

Modbus_ip_from = 0,
Modbus_ip_to = 1,
Modbus_src_port = 2,
Modbus_dst_port = 3,
Modbus_len = 4,
Modbus_iden = 5,
Modbus_func = 6

}

/* prototypes */

struct Modbus_node_t *m_createList (void);
struct Modbus_node_t *m_createNode(void *);
struct Modbus_node_t *m_insertBranch (struct Modbus_node_t *,void *,void *,void *,void *,void *,void *,void *);
void m_freeTree_Modbus(struct Modbus_node_t *);
void m_readTree_Modbus(struct Modbus_node_t *);

#endif

And the Modbus_func.c → with all the functions we will use for the Modbus Tree-linked list:

#include "ip.h"
#include "Modbus_node.h"

extern FILE *Modbus_tree;
extern FILE *Modbus_tree_rules;

struct Modbus_node_t
*m_createList (void)
{

return NULL;
};

89

 We have here a similar structure
 for the Tree-linked list node, but
 in this time it will reference
 modbus information.

 Now we have included three new types
 to the enumerated types: representing
 length of the data packet + 2,
 identification and function.

 Function to create the list's
 first node's address for modbus

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

struct Modbus_node_t
*m_createNode(void *data)
{

struct Modbus_node_t *s;
s = malloc(sizeof(struct Modbus_node_t));

if (s != NULL)
{

s->ptrdata = data;
s->ptr_r = NULL;
s->ptr_b = NULL;

}
return s;

}

struct Modbus_node_t
*m_insertBranch (struct Modbus_node_t *s,void *ob1,void *ob2,void *ob3,void *ob4,void *ob5,void *ob6,void *ob7)
{

struct Modbus_node_t *aux,*aux1,*aux2,*aux3,*aux4,*aux5;
struct Modbus_node_t *aux6,*prev,*prev1,*prev2,*prev3,*prev4,*prev5,*prev6;
struct Modbus_node_t *aux_loop;
void *ob;
enum m_field_t level = Modbus_ip_from;
int m_prev_int;

 for (aux = s, prev = NULL ; aux != NULL ; prev = aux, aux = aux->ptr_r)
{
if(!memcmp(aux->ptrdata,ob1,sizeof(struct in_addr)))

{
level++;
for(aux1 = aux->ptr_b, prev1 = NULL ; aux1 != NULL ; prev1 = aux1, aux1 = aux1->ptr_r)
{
if(!memcmp(aux1->ptrdata,ob2,sizeof(struct in_addr)))

{
level++;
for(aux2 = aux1->ptr_b , prev2 = NULL ; aux2 != NULL ; prev2 = aux2, aux2 = aux2->ptr_r)
{
if(!memcmp(aux2->ptrdata,ob3,sizeof(u_short)))

{
level++;
for(aux3 = aux2->ptr_b , prev3 = NULL ; aux3 != NULL ; prev3 =aux3, aux3 =
aux3->ptr_r)
{
if(!memcmp(aux3->ptrdata,ob4,sizeof(u_short)))

{
level++;
for(aux4 = aux3->ptr_b , prev4 = NULL ; aux4 != NULL ; prev4 =aux4,

aux4= aux4->ptr_r)
{
if(!memcmp(aux4->ptrdata,ob5,sizeof(u_short)))

{
level++;
for(aux5 = aux4->ptr_b , prev5 = NULL ; aux5 != NULL ;

prev5 =aux5, aux5 = aux5->ptr_r)
{
if(!memcmp(aux5->ptrdata,ob6,sizeof(u_char)))

{
level++;
for(aux6 = aux5->ptr_b , prev6 = NULL ; aux6 != NULL ;

prev6 =aux6, aux6 = aux6->ptr_r)
{
if(!memcmp(aux6->ptrdata,ob7,sizeof(u_char)))

90

 Function to create list's
 modbus nodes

 Same function as “insertBranch” in
 the ip parallel function. Here three
 more steps are included in order to
 take into account the three new info
 data fields: id, func, len.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

{
return s;

}
}
}

}
}

}
}

}
}

}
}

}
}

}

if (prev == NULL) m_prev_int = 0; else m_prev_int = 1;

switch (m_prev_int) {

case(0):

ob = malloc(sizeof(struct in_addr)); //ip source
s = m_createNode(memcpy(ob,ob1,sizeof(struct in_addr)));

ob = malloc(sizeof(struct in_addr)); //ip destination
s->ptr_b = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = s->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));

return s;

default:

switch(level) {

case (Modbus_ip_from):

ob = malloc(sizeof(struct in_addr)); //ip source
prev->ptr_r = m_createNode(memcpy(ob,ob1,sizeof(struct in_addr)));
aux_loop = prev->ptr_r;

ob = malloc(sizeof(struct in_addr)); //ip destination
aux_loop->ptr_b = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //src port

91

 Here we
 include the
 three new
 fields for
 Modbus

 New enumerated type.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));

return s;

case (Modbus_ip_to):

ob = malloc(sizeof(struct in_addr)); //ip destination
prev1->ptr_r = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = prev1->ptr_r;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case (Modbus_src_port):

ob = malloc(sizeof(u_short)); //src port
prev2->ptr_r = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_r;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

92

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

case (Modbus_dst_port):

ob = malloc(sizeof(u_short)); //dst port
prev3->ptr_r = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_r;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case(Modbus_len):

ob = malloc(sizeof(u_short)); //len Modbus
prev4->ptr_r = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = prev4->ptr_r;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));

return s;

case(Modbus_iden):

ob = malloc(sizeof(u_char)); // iden Modbus
prev5->ptr_r = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = prev5->ptr_r;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case(Modbus_func):

ob = malloc(sizeof(u_char)); //func Modbus
prev6->ptr_r = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

default:

printf("DEBUG NEEDED \n");
exit(1);

}
}

}

void
m_freeTree_Modbus(struct Modbus_node_t *s)
{

struct Modbus_node_t *aux_i,*aux_j,*aux_k,*aux_r,*aux_s,*aux_t,*aux_u;

93

 Three new
 steps into
 this
 version of
 The
 function

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
for (aux_t = aux_s->ptr_b ; aux_t != NULL ; aux_t = aux_t->ptr_r)

for (aux_u = aux_t->ptr_b ; aux_u != NULL ;
aux_u = aux_u->ptr_r)

{
free(aux_u->ptrdata);
free(aux_u);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)

for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)

for (aux_t = aux_s->ptr_b ; aux_t != NULL ; aux_t = aux_t->ptr_r)
{

free(aux_t->ptrdata);
free(aux_t);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
{

free(aux_s->ptrdata);
free(aux_s);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{

free(aux_r->ptrdata);
free(aux_r);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{

free(aux_k->ptrdata);
free(aux_k);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{

free(aux_j->ptrdata);
free(aux_j);

}

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
{

free(aux_i->ptrdata);
free(aux_i);

}

94

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

return;
}

void
m_readTree_Modbus(struct Modbus_node_t *s)
{

struct Modbus_node_t *aux_i,*aux_j,*aux_k,*aux_r,*aux_s,*aux_t,*aux_u;
int aux1,aux2,aux3;
struct in_addr *in_addr_aux1, *in_addr_aux2;
char aux_char1,aux_char2;
int count=0;
char mybuff[50]; /* inet_ functions use statically allocated memory */

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r) {
in_addr_aux1 = (struct in_addr *)aux_i->ptrdata;
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r) {

in_addr_aux2 = (struct in_addr *)aux_j->ptrdata;
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{

aux1 = *(u_short *)aux_k->ptrdata;
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{

aux2 = *(u_short *)aux_r->ptrdata;
for(aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
{

aux3 = *(u_short *)aux_s->ptrdata;
for(aux_t = aux_s->ptr_b ; aux_t != NULL ; aux_t = aux_t->ptr_r)
{

aux_char1 = *(u_char *)aux_t->ptrdata;
for(aux_u = aux_t->ptr_b ; aux_u != NULL ; aux_u = aux_u->ptr_r)
{
aux_char2 = *(u_char *)aux_u->ptrdata;

fprintf(Modbus_tree,"%5d: ",count++);
fprintf(Modbus_tree,"Ip src: %14s, ",inet_ntoa(*in_addr_aux1));
fprintf(Modbus_tree,"Ip dst: %14s, ",inet_ntoa(*in_addr_aux2));
fprintf(Modbus_tree,"Port src: %5d, ",aux1);

fprintf(Modbus_tree,"Port dst: %5d, ",aux2);
fprintf(Modbus_tree,"lenght_data: %5d, ",aux3);
fprintf(Modbus_tree,"ident: %5d, ",(u_char)aux_char1);
fprintf(Modbus_tree,"funct code: %5d \n",(u_char)aux_char2);
strcpy(mybuff,inet_ntoa(*in_addr_aux2));
fprintf(Modbus_tree_rules,"pass ip %s %d <> %s %d
(Modbus_func: %d ;Modbus_unit: %d;)\n",

inet_ntoa(*in_addr_aux1),aux1,mybuff,aux2,
(u_char)aux_char2,(u_char)aux_char1);
}

}

}
}

}
}
}
return;

}

Walking through this part of the code, we can see the similarities between the functions for IP
and for Modbus, actually Modbus' functions are just an extension including the three more fields to
study in this protocol, but the algorithm in whiche they are based is exactly the same.

95

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

4.3 Scripts shell

The operative system we have been working in during this project as stated before is Linux, to
be more precise it is a Debian in its Xubuntu version. Including shell scripts and using them in the
code of our sniffer it's been relatively easy thanks to the system call “system()”. The shell program is
one of the possitive aspects of working in Linux and it has brought useful and good results.

System() 's man page : “man system” in our shell program.

NAME
 system - execute a shell command

SYNOPSIS
 #include <stdlib.h>

 int system(const char *command);

DESCRIPTION
 system() executes the command specified in command by calling “ /bin/sh -c command ”, and returns after

the command has been completed. During execution of the command, SIGCHLD will be blocked, and SIGINT and
SIGQUIT will be ignored.

We wanted to make automatic the inclusion of the rule files created by our program into Snort's

file system, and add the possibility for our users to include, through our program as well, other
blacklisting rule files into Snort's workings. For this, and considering that Snort has been installed
through a process of “configure && install” from a source code, our sniffer will detect if the proper
folders exists in Snort's file system and will copy the rules files inside. At the same time, it will add
automatically the corresponding “include” states in Snort configuration file allowing the system
administrator to forget about his issues.

This scripts are:

#! /bin/sh

if [-d ./conf_Snort_files]
then

cp ./conf_Snort_files/classification.config /opt/Snort/etc/.
cp ./conf_Snort_files/reference.config /opt/Snort/etc/.
cp ./conf_Snort_files/Snort.conf ./rules/Snort.conf

else
echo " !! revise your sniffer folder, conf_Snort_files folder is missed !! "
exit 1

fi

#! /bin/sh

if [-d ./info_docs]
then

cp ./info_docs/*.rules ./rules/.

96

 Folder “conf_snort_files” inside our program's structure.
 It contains configuration files for Snort and some other
 files related to information about how to use our sniffer.

 If this info_docs exists then it carries out the commands listed
 here, if not, there's some missed stuff and you should revise the
 contents of your programm

 Once the program has finished, folder
 “info_docs” should have been created,
 containing info texts and rules files created by it.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

cp ./conf_Snort_files/Snort.conf ./rules/Snort.conf
chown $SUDO_USER ./rules/Snort.conf
cd rules
echo "\n"
for file in $(ls *.rules)

do
cp ./$file /opt/Snort/rules/$file
echo "\t...$file moved into /opt/Snort/rules and included into Snort.conf"
sleep 1
echo "include \$RULE_PATH/$file" >> ./Snort.conf

done
cp ./Snort.conf /opt/Snort/etc/.
cd ..

else
echo "debug needed"
exit 1

fi

#! /bin/sh

if [-d /opt/Snort/etc]
then

echo "\t\t... /opt/Snort/etc exists"
else

echo "\t\t... /opt/Snort/etc doesn't exists..."
if [-d /opt]

then
cd /opt
if [-d /opt/Snort]

then
mkdir /opt/Snort/etc

else
mkdir /opt/Snort
mkdir /opt/Snort/etc

fi
else

mkdir /opt
mkdir /opt/Snort

mkdir /opt/Snort/etc

fi

echo "\t\t\t...creating /opt/Snort/etc"
fi

#! /bin/sh

if [-d /opt/Snort/rules]
then
echo "\t\t... /opt/Snort/rules exists"
else
echo "\t\t... /opt/Snort/rules doesn't exists ..."
mkdir /opt/Snort/rules
echo "\t\t\t...creating /opt/Snort/rules"
fi

#! /bin/sh

97

 Folder “rules” is a folder created to keep the
 rules generated by our sniffer and some other
 blacklisting rules add by the user.

 This for-loop is an interesting feature:
 It goes along all the files in “rules” folder copying
 them into the right place into Snort file system and
 including an “include” statement into snort.conf
 configuration file.

 The next three scripts are run at the
 beginning of the main code of our sniffer,
 they will check for the existence of:

- /opt/snort/etc
- /opt/snort/rules
- /var/log/snort

 This are important folders into Snort's file
 system, and they will house the files related
 to configuration, rules and logs. This is why
 is so important to check if they exists and if
 they don't, this scripts will create them.
 Actually, the previous scripts
 copy their files into these
 folders.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

if [-d /var/log/Snort]
then

echo "\t\t... /var/log/Snort exists"
else

echo "\t\t... /var/log/Snort doesn't exists..."
mkdir /var/log/Snort
echo "\t\t\t\t...creating /var/log/Snort"

fi

4.4 Putting it all together: Main Code and Callback Function

First we show the header file: ip.h

#ifndef _IP_H_
#define _IP_H_

#include <time.h>
#include <sys/types.h>
#include <pcap/pcap.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#define BUFSIZE 2048
#define APP_NAME "ip.out"
#define SIZE_ETHERNET 14
#define ETHER_ADDR_LEN 6

enum eth_type
{

ARP=0,
RARP=1,
IP=2,
UNKNOWN=3,
INV_IP_HEADER=4

};

enum upper_eth_type
{

TCP_NO_Modbus=0,
TCP_Modbus=1,
ICMP=2,
UDP=3,
UP_UNKNOWN=4,

};

/* data structures for IP */

#define ETHER_ADDR_LEN 6

/* Ethernet header */
struct sniff_ethernet {

u_char ether_dhost[ETHER_ADDR_LEN]; /* Destination host address */
u_char ether_shost[ETHER_ADDR_LEN]; /* Source host address */
u_short ether_type; /* IP? ARP? RARP? etc */

};

98

 Includes with all header files needed.

 Constants.

 Enumeration data type for protocols
 over the link layer.

 Enumeration data type for protocols
 over IP.

 Data structure for Ethernet, this
 sniffer is designed to work over
 Ethernet.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

/* IP header */
struct sniff_ip {

u_char ip_vhl; /* version , header length */
u_char ip_tos; /* type of service */
u_short ip_len; /* total length */
u_short ip_id; /* identification */
u_short ip_off; /* fragment offset field */
u_char ip_ttl; /* time to live */
u_char ip_p; /* protocol */
u_short ip_sum; /* checksum */
struct in_addr ip_src; /* source ip address */
struct in_addr ip_dst; /* dest ip address */

};

#define IP_HL(ip) (((ip)->ip_vhl) & 0x0f)
#define IP_V(ip) (((ip)->ip_vhl) >> 4)

/* TCP header */
typedef uint32_t tcp_seq;

struct sniff_tcp {
 u_short th_sport; /* source port */
 u_short th_dport; /* destination port */
 tcp_seq th_seq; /* sequence number */
 tcp_seq th_ack; /* acknowledgement number */
 u_char th_offx2; /* data offset, rsvd */

#define TH_OFF(th) (((th)->th_offx2 & 0xf0) >> 4)
 u_char th_flags; /* flags */
 u_short th_win; /* window */
 u_short th_sum; /* checksum */
 u_short th_urp; /* urgent pointer */

};

/* Modbus-TCP header */
struct sniff_Modbus_tcp {

u_short mtcp_trans_id; /* synchronization */
u_short mtcp_prot; /* protocol identifier */
u_short mtcp_len;/* remaining! bytes in this frame */
u_char mtcp_iden; /* identifier */
u_char mtcp_func; /* function code */

};

/* protypes */

void our_callback(u_char *,const struct pcap_pkthdr* ,const u_char*);
void print_app_banner(char *,int);
void create_Statistics (struct tm *,struct tm *,double,int,int) ;
void tail_banner(void);
void pantallazo(int);
void merge_ip(char *);

#endif

And now the main code with the call back function and some other secundary functions such as the
statistical study: ip.c

#include "ip.h"
#include "ip_node.h"
#include "Modbus_node.h"

99

 Data Ip structure: it will house
 the different fields an Ip
 packet must have.

 Macros: the first field in the Ip
 Structure is double, I mean, it
contains the fields for “version”
 and “header length”. Header
 length will be useful along
 the program.

 Data for TCP structure
 containing the different fields in
 a TCP segment.

 TCP – Modbus data
 structure. These fields
 were previously
 commented when the
 introduction to Modbus.

 It's in the main code and the call-back function
 that we use the functions previously explained,
 for this we need to include their header files:
 ip_node.h and modbus_node.h along with ip.h

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

/*global variables for statistics */

int packet_type[5]={0,0,0,0,0}; /* statistics of ethernet frame type in our network */
int info_type[5]={0,0,0,0,0}; /* statistics of info type inside the IP payload */
FILE *statistics;
FILE *ip_tree;
FILE *sniff_data;
FILE *ip_tree_rules;
FILE *Modbus_tree;
FILE *Modbus_tree_rules;
struct ip_node_t *s;
struct Modbus_node_t *r;

/*
 * MAIN
 *
 */

int
main (int argc, char **argv)
{

/* vars */

int n_packets; /* number limit of packets we sniff */
char char_aux_i=0,char_aux_n=0; /* checking flags from the terminal process */

char errbuf[PCAP_ERRBUF_SIZE]; /* holds the error string message in pcap functions */
pcap_t *handler; /* pcap handler */

time_t timer_init,timer_end; /* for time-stamps */
struct tm *st_timer_start,*st_timer_end; /* for time-stamps */
double time_diff; /* holds the difference of time the program has used */

int i; /* for loops */

//getting options for the program
int flag_n=0, flag_i=0, flag_f=0;
int c;
char *nvalue = NULL;
char *ivalue = NULL;
char *fvalue = NULL;

opterr = 0;

while ((c = getopt (argc, argv, "n:i:f:")) != -1)
{

switch(c)
{

case 'n':
flag_n = 1;
nvalue = optarg;
n_packets = atoi(nvalue);
break;

case 'i':
flag_i = 1;
ivalue = optarg;
break;

case 'f':
flag_f = 1;
fvalue = optarg;
break;

case '?':
fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./ip.out -f <file_name>\n");
exit(1);

default:

100

 Global variables

 Getopt is used to break up (parse) options
 in command lines for easy parsing by shell
 procedures, and to check for legal options.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

fprintf (stderr,"Unknown option character `\\x%x'.\n",optopt);
fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./ip.out -f <file_name>\n");
exit(1);

}
}

// checking for a correct combination of switches

if(!((flag_f && !flag_i && !flag_n) || (!flag_f && flag_i && flag_n)))
{

fprintf(stderr,"missuse of the program switches\n");
fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./ip.out -f <file_name>\n");
exit(1);

}else {
if(!flag_f) print_app_banner(ivalue,n_packets);
else print_app_banner(fvalue,0);

}

// initialize linked list

s = (struct ip_node_t *)createList();
r = (struct Modbus_node_t *)m_createList();

// opening sniff_data to hold the sniffer's output

sniff_data = fopen("sniff_data.txt","w");
ip_tree_rules = fopen("ip_tree.rules","w");
Modbus_tree_rules = fopen("Modbus_tree.rules","w");

// stablishing handler for sniffing:

if(!flag_f)
{

if((handler = pcap_open_live(ivalue,BUFSIZ,1,10000,errbuf)) == NULL)
{

printf("\n%s %s: %s\n","Couldn't open device",ivalue,errbuf);
fprintf(stderr,"\n%s\n","exiting......");
exit(1);

}

} else if((handler = pcap_open_offline(fvalue, errbuf)) == NULL)

{
printf("\n%s %s: %s\n","Couldn't open device",ivalue,errbuf);
fprintf(stderr,"\n%s\n","exiting......");
exit(1);

}

// printing time stamp of beginning

timer_init=time(NULL);
st_timer_start=localtime(&timer_init);
printf("\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n","Beginning test on",

101

 Are we sniffing from
 a pcap file or from the
 network interface?

 Starting our Tree-Linked lists:
 - one for ip alone.
 - another for Modbus.
 - following their algorithm we could
 perfectly add new Tree-Linked list and
 create a whole information data base about
 our network.

 Are we sniffing from our
 NIC? In that case we will
 use “pcap_open_life”.

 Are we sniffing from a file?
 In this case we will use
 “pcap_open_offline”.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

st_timer_start->tm_mday,st_timer_start->tm_mon,st_timer_start->tm_year,
st_timer_start->tm_hour,st_timer_start->tm_min,st_timer_start->tm_sec);

// opening files for the linked trees

ip_tree = fopen("ip_tree.txt","w");
Modbus_tree = fopen("Modbus_tree.txt","w");

// entering in the loop

if((pcap_loop(handler,n_packets,our_callback,NULL))==-1)
{

fprintf(stderr,"\n%s\n","error ocurred while in loop, exiting now...");
exit(1);

}

// exiting,printing statistics and closing files

timer_end = time(NULL);
st_timer_end = localtime(&timer_end);
printf("\n%s %2.2lf %s\n"," -== Time test process :",time_diff = difftime(timer_end,timer_init),"segs. ==-");

//creating and closing statistics file

pcap_close(handler);
statistics = fopen("statistics.txt","w");
for(i=0,n_packets=0;i<5;i++) n_packets += packet_type[i];
create_Statistics(st_timer_start,st_timer_end,time_diff,n_packets,flag_f);

fclose(statistics);
fclose(sniff_data);

//reading from the tree and free-ing the allocated space

readTree_ip(s);
m_readTree_Modbus(r);

fclose(ip_tree);
fclose(Modbus_tree);

freeTree_ip(s);
m_freeTree_Modbus(r);

printf("\n%s\n\n"," ----statistic control finished, please, wait----");

fprintf(ip_tree_rules,"alert ip any any -> any any (msg:\"communication out of our ip-white-list\";)");
fclose(ip_tree_rules);
fprintf(Modbus_tree_rules,"alert ip any any -> any any (msg:\"communication out of our Modbus-white-list\";)");
fclose(Modbus_tree_rules);

// merging together the rules in order to get more compact rule files
merge_ip("ip_tree.rules");

// creating folder info_docs and moving files into it
tail_banner();
exit(0);

}

102

 Establish call-back function for
 everytime a packet hits our NIC
 or a new packet is detected in a
 pcap file.

 Creating file for statistics in packet
 types and time.

 Handler is our call-back function, inside
 of it, we use the Tree-linked list functions.

 At this point we have all the data
 saved into our Trees and it's time for
 our program to read it and create the
 corresponding files: .txt and .rules

 The allocated space in the heap
 must be freed.

 Added feature: most of the information is
 double. There are “queries” and “replies”.
 They both are going to give us the same
 information, and if we don't remove one
 of the copies, we have a doble extension
 in our ip.rules file.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

/*
 * our functions
 */

void
our_callback(u_char *args,const struct pcap_pkthdr* pkthdr,const u_char* packet)
{

static int count = 1; /* packet counter */
u_short eth_type; /* ethernet type in host byte order for switch use */
int Modbus_flag = 0; /* Modbus_flag = 1 when it detects a Modbus protocol packet */
char mybuff[50]; /* inet_ functions use statically allocated memory */

/*aux variables to help in the use of tree_linked_list */
u_short sportaux,dportaux;
u_short m_lenaux;
u_char m_idenaux,m_funcaux;

/* declare pointers to packet headers */
const struct sniff_ethernet *ethernet; /* The ethernet header [1] */
const struct sniff_ip *ip; /* The IP header */
const struct sniff_tcp *tcp;
const struct sniff_Modbus_tcp *Modbus_tcp; /* The Modbus TCP header */

/* sizes of ip frame and tcp segment */
int size_header_ip;
int size_header_tcp;
char test_Modbus = 0;
fprintf(sniff_data,"\nPacket number %d:\n", count);
fprintf(sniff_data,"--------------------- \n", count);
count++;

/* define ethernet header torrent*/
ethernet = (struct sniff_ethernet*)(packet);

eth_type=ntohs(ethernet->ether_type);

switch (eth_type) {

case(0x0806):

fprintf(sniff_data,"\tARP packet\n");
packet_type[ARP]++;
return;

case(0x8035):
fprintf(sniff_data,"\tRARP packet\n");
packet_type[RARP]++;
return;

case(0x0800):
fprintf(sniff_data,"\tIP packet\n");
packet_type[IP]++;
break;

default:
fprintf(sniff_data,"\tnot an ARP/RARP/IP packet\n");
packet_type[UNKNOWN]++;

}

 /* define/compute ip header offset */
size_header_ip = IP_HL(ip = (struct sniff_ip*)(packet + SIZE_ETHERNET))*4;
if (size_header_ip < 20)
{

packet_type[INV_IP_HEADER]++;
fprintf(sniff_data,"\t Invalid IP header length: %u bytes\n", size_header_ip);
return;

}

103

 CALL-BACK FUNCTION:
 everytime a new packet
 arrives to the NIC or in a pcap
 file a new packet is read, this
 functions is called.

 Initial byte of a new packet.
 Establishing-filling in the
 structures.

 What is it?
 - ARP

- RARP
- IP
- UNKOWN

 - maybe an invaled IP
 packet

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

/* print source and destination IP addresses */

strcpy(mybuff,inet_ntoa(ip->ip_src));
fprintf(sniff_data,"\tFrom: %s To: %s\n", mybuff, inet_ntoa(ip->ip_dst));

/* determine protocol */
switch(ip->ip_p)
{

case IPPROTO_TCP:
fprintf(sniff_data,"\t-TCP protocol\n");
info_type[TCP_NO_Modbus]++;
break;

case IPPROTO_UDP:
fprintf(sniff_data,"\t-UDP protocol\n");
info_type[UDP]++;
return;

case IPPROTO_ICMP:
fprintf(sniff_data,"\t-ICMP protocol\n");
info_type[ICMP]++;
return;

default:
fprintf(sniff_data,"\t-Not a TCP/UDP/ICMP protocol\n");
info_type[UP_UNKNOWN]++;
return;

}
 /* define/compute tcp header offset */
tcp = (struct sniff_tcp*)(packet + SIZE_ETHERNET + size_header_ip);
size_header_tcp = TH_OFF(tcp)*4;
if (size_header_tcp < 20)
{

packet_type[INV_IP_HEADER]++;
return;

}

fprintf(sniff_data,"\t Src port: %d to Dst port: %d\n", ntohs(tcp->th_sport),ntohs(tcp->th_dport));

 /* define/print Modbus header fields */
/* is it an IP packet carrying Modbus data ? */

if ((ntohs(ip->ip_len) - size_header_ip) == size_header_tcp) test_Modbus = 0;
else test_Modbus = 1;

Modbus_tcp = (struct sniff_Modbus_tcp*)(packet + SIZE_ETHERNET + size_header_ip + size_header_tcp);

test_Modbus = test_Modbus && (Modbus_tcp->mtcp_prot == 0);
test_Modbus = test_Modbus &&(Modbus_tcp->mtcp_iden != 0)&&(Modbus_tcp->mtcp_len != 0);
test_Modbus = test_Modbus && (Modbus_tcp->mtcp_iden < 256) && (Modbus_tcp->mtcp_func < 256);

if (test_Modbus)
{

info_type[TCP_Modbus]++;
fprintf(sniff_data," - Modbus: \n");
fprintf(sniff_data,"\t\t%s = %d \n","remaining bytes in this

frame",ntohs(Modbus_tcp->mtcp_len));
fprintf(sniff_data,"\t\t%s = %d \n","identifier",Modbus_tcp->mtcp_iden);
fprintf(sniff_data,"\t\t%s = %d \n","function code",Modbus_tcp->mtcp_func);
Modbus_flag = 1;

} else {
fprintf(sniff_data,"\t\t%s \n"," (not a Modbus_tcp protocol / or misformed Modbus_tcp
packet)");
Modbus_flag = 0;

}

104

 What is the IP packet keeping?

 How do we know that it is Modbus what is inside
 the TCP packet...??? there are several tests to carry
 on...

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

 /* sending info to the linked tree list */

if (!Modbus_flag)
{

if ((eth_type == 0x0800)&&(ip->ip_p == IPPROTO_TCP))
{

sportaux = ntohs(tcp->th_sport);
dportaux = ntohs(tcp->th_dport);
s = (struct ip_node_t *)insertBranch(s,(struct in_addr *)&ip->ip_src,

(struct in_addr *)&ip->ip_dst, (u_short *)&sportaux,(u_short *)&dportaux);
}

} else
{

sportaux = ntohs(tcp->th_sport);
dportaux = ntohs(tcp->th_dport);
m_lenaux = ntohs(Modbus_tcp->mtcp_len);
m_idenaux = Modbus_tcp->mtcp_iden;
m_funcaux = Modbus_tcp->mtcp_func;
r = (struct Modbus_node_t *)m_insertBranch(r,(struct in_addr *)&ip->ip_src,

(struct in_addr *)&ip->ip_dst, (u_short *)&sportaux,(u_short *)&dportaux,
(u_short *)&m_lenaux,(u_char *)&m_idenaux,(u_char *)&m_funcaux);

}
return;

}

void
print_app_banner(char *v,int n)
{

char c = '0' ;
int i ;
char *snt_scrp[] =
{

"\n Making sure you have /var/log/Snort...\n",
"./var_log_Snort.sh ",
"\n Making sure you have the /opt/Snort/etc directory. \n",
"./opt_Snort_etc.sh ",
"\n Making sure directory /opt/Snort/rules exists. \n",
"./opt_Snort_rules.sh ",
" \n",
"echo \"\n\"",
NULL

};
char *ord[] =
{

"more ./conf_Snort_files/important_considerations",
"more ./conf_Snort_files/input",
"more ./conf_Snort_files/output",
NULL

};

pantallazo(1);
printf("Info banner: \n");
for(i = 0 ; ord[i] ; i++)
{

system(ord[i]);
pantallazo(20);

}

printf("Checking the system...\n");
for(i = 0 ; snt_scrp[i] ;)
{

printf("%s",snt_scrp[i++]);
system(snt_scrp[i++]);
sleep(3);

}

105

 In case of Modbus, we call
 the modbus Tree-linked list
 functions.

 At this point we have an IP packet
 carrying a simple TCP protocol
 that doesn't wrap inside any
 Modbus data.

 Secondary function that is used to
 display a banner at the beginning of
 our program when run.

 Use of “system” system call.

 Using the scripts shell.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

pantallazo(4);
if (n == 0)
{

printf("STARTING SNIFFING......");
sleep(1);
printf(" %s\n"," -===============-");
printf(" -== %s ==- \n", APP_NAME);
printf(" -== %s = %s ==-\n","interface",v);
printf(" %s\n"," -===============-");
sleep(1);

}

else{
printf("STARTING SNIFFING......");
sleep(1);
printf(" %s\n"," -===============-");
printf(" -== %s ==- \n", APP_NAME);
printf(" -== %s = %s ==-\n","interface",v);
printf(" -== %s = %d ==-\n","number of packets to study ", n);
printf(" %s\n"," -===============-");
sleep(1);

}
return;

}

void
create_Statistics (struct tm *begin,struct tm *end,double td, int pkt,int f) {

enum eth_type et_aux; /* aux through for-loops*/
enum upper_eth_type uet_aux; /* aux through for-loops*/
char *et_uet;
int sum_et=0,sum_uet=0;
float assess=0;

fprintf(statistics,"\n -== %s %d/%d/%d at %d:%d:%d ==-\n","Beginning test on",
begin->tm_mday,begin->tm_mon,begin->tm_year,begin->tm_hour,
begin->tm_min,begin->tm_sec);

fprintf(statistics," -=== %s ===- \n"," STATISTICS OF OUR NETWORK TRAFFIC ");

fprintf(statistics,"\n\t%s \n\n"," -PROTOCOL SUPPORTED OVER ETHERNET- ");

for(et_aux=ARP; et_aux<=INV_IP_HEADER; et_aux++)
{

switch(et_aux)
{

case(ARP): et_uet="ARP";break;
case(RARP): et_uet="RARP";break;
case(IP): et_uet="IP";break;
case(UNKNOWN): et_uet="Unknown protocol";break;
case(INV_IP_HEADER):et_uet="Invalid IP header";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

};
assess=(float)(packet_type[et_aux])/pkt;
fprintf(statistics,"\t\t* %s = %d ---> %2.2f%c of our traffic\n",

et_uet,packet_type[et_aux],assess*100,'%');
}

fprintf(statistics,"\n\n");
fprintf(statistics,"\t%s \n\n"," -PROTOCOL SUPPORTED OVER IP- ");

for(uet_aux=TCP_NO_Modbus ;uet_aux<=UP_UNKNOWN ;uet_aux++)
 {

switch(uet_aux)
{

case(TCP_NO_Modbus): et_uet="TCP";break;

106

 This function creates:
 - Time statistics.
 - Packet number
 statistics.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

case(UDP): et_uet="UDP";break;
case(ICMP): et_uet="ICMP";break;
case(TCP_Modbus): et_uet="\t* of which TCP_Modbus";break;
case(UP_UNKNOWN): et_uet="Unknown protocol over IP";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

}
assess=(float)(info_type[uet_aux])/pkt;
fprintf(statistics,"\t\t* %s = %d ---> %2.2f%c of our traffic\n",

et_uet,info_type[uet_aux],assess*100,'%');
}

/* when data dumped from a file, there's no sense in time statistics, the file takes 0 secs for the program
to be examined, resulting in divisions by 0 in our next piece of code*/

if (f)
{

fprintf(statistics,"\n\n\t...when studying from a pcap file there's no TIME STATISTICS\n\n");
return;

}

fprintf(statistics,"\n%s %f %s\n\n"," -== TIME STATISTICS : the tests has taken ",td," segs. ==-");

fprintf(statistics,"\t%s \n"," -PROTOCOL SUPPORTED OVER ETHERNET- ");

for(et_aux=ARP; et_aux<=INV_IP_HEADER; et_aux++)
{

switch(et_aux)
{

case(ARP): et_uet="ARP";break;
case(RARP): et_uet="RARP";break;
case(IP): et_uet="IP";break;
case(UNKNOWN): et_uet="Unknown protocol";break;
case(INV_IP_HEADER):et_uet="Invalid IP header";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

}
fprintf(statistics,"\t\t* %s has %2.3lf packets/sec.\n",et_uet,(double)(packet_type[et_aux])/(int)td);

}

fprintf(statistics,"\n\n");
fprintf(statistics,"\t%s \n"," -PROTOCOL SUPPORTED OVER IP- ");

for(uet_aux=TCP_NO_Modbus ;uet_aux<=UP_UNKNOWN ;uet_aux++)
{

switch(uet_aux)
{

case(TCP_NO_Modbus): et_uet="TCP";break;
case(UDP): et_uet="UDP";break;
case(ICMP): et_uet="ICMP";break;
case(TCP_Modbus): et_uet="\t* of which TCP_Modbus";break;
case(UP_UNKNOWN): et_uet="Unknown protocol over IP";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

}
fprintf(statistics,"\t\t* %s has %2.3lf packets/sec.\n",et_uet,(double)(info_type[uet_aux])/(int)td);

}

fprintf(statistics,"\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n\n -== %s %02d/%02d/%d at %02d:%02d:

%02d ==-\n",
"Test start:",begin->tm_mday,begin->tm_mon,begin->tm_year, begin->tm_hour,begin->tm_min,
begin->tm_sec,"Test finish:",end->tm_mday,end->tm_mon,end->tm_year,end->tm_hour,end->tm_min,
end->tm_sec);

fprintf(statistics,"\t -=== %s ===- \n"," ------ END OF OUR STATISTICS FILE ------- ");

return;

}

107

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

void
tail_banner(void)
{

char c = '0';
int i ;
char *sentences[] =
{

"Files created: \n",
"\t - sniff_data.txt :\t holds the sniffer's output\n",
"\t - statistics.txt :\t holds statistical information\n",
"\t - ip_tree.txt :\t holds all the combinations of ip @ and ports observed into our network traffic\n",
"\t - Modbus_tree.txt :\t holds all the combinations of ip @, ports and Modbus fiels observed into our
network traffic\n",
"\t - ip_tree.rules :\t holds the ip rules to whitesniff our network, placed in ' /opt/Snort/rules ' \n",
"\t - Modbus_tree.rules :\t holds the Modbus rules to whitesniff our network, placed in ' /opt/Snort/rules
' \n",
NULL

};
char *orders[] =
{

"mkdir info_docs","\nCreating folder info_docs...\n",
"mv ./ip_tree.txt ./info_docs/.","\t...Moving ip_tree.txt into folder info_docs\n",
"mv ./Modbus_tree.txt ./info_docs/.","\t...Moving Modbus_tree.txt into folder info_docs\n",
"mv ./statistics.txt ./info_docs/.","\t...Moving statistics.txt into folder info_docs\n",
"mv ./sniff_data.txt ./info_docs/.","\t...Moving sniff_data.txt into folder info_docs\n",
"mv ./ip_tree.rules ./info_docs/.","\t...Moving ip_tree.rules into info_docs\n",
"mv ./Modbus_tree.rules ./info_docs/.","\t...Moving Modbus_tree.rules into info_docs\n\n",
"./moving_conf_files.sh","... moving 'classification.config' and 'reference.config' into /opt/Snort/etc\n",
NULL

};
char *more_sentences[] =
{

"\n\n\nPay attention: in this same directory, there's a folder named 'rules',\n",
"you should load this directory with the black-listing rules you want for Snort. \n",
"This program will include automatically the names into Snort.conf, releasing you from this task.\n",
"Include now, if you need, some .rules files or PRESS LETTER c(lower case) + ENTER (case sensitive) to
continue: ",
NULL

};
char *last_sentences[] =
{

"\n\nNow you can go to info_docs folder contained in this same directory, and consult the data
gathered.\n",
"...The appropiate rule file has been created and located in /opt/Snort/rules as well.\n\n\n\n",
NULL

};

pantallazo(5);
system("rm -r ./info_docs 2> /dev/null");
for (i = 0 ; sentences[i] ; i++)
{

printf("%s",sentences[i]);
sleep(1);

}
for(i = 0; orders[i] ;)
{

if(system(orders[i++]) != -1) printf("%s",orders[i++]);
sleep(2);

}

for (i = 0; more_sentences[i] ; i++)
{

printf("%s",more_sentences[i]);
sleep(2);

}

108

 When the program has kept all the important information
 into the Tree lists, now it's moment to sort out all the
 different files into the program's file system and specially in
 Snort's file system.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

fflush(stdin);
for (; c != 'c' ;)
{

scanf("%c",&c);
if(c != 'c') printf("\nPRESS LETTER C (case sensitive) + ENTER to continue: ");
fflush(stdin);

}

if(system("./moving_rule_files.sh") != -1)
{

printf("\n\t...Copying our whilelist compliant rules into /opt/Snort/rules\n");
sleep(1);
printf("\t...Moving black-list compliant rules from our folder 'rules'into /opt/Snort/rules\n");
printf("\t...Moving Snort.conf configuration file with our 'includes' into /opt/Snort/etc \n");

}
sleep(2);

for (i = 0; last_sentences[i] ; i++)
{

printf("%s",last_sentences[i]);
sleep(2);

}

return;
}

void
pantallazo (int j)
{

sleep (j);
system("clear");
return;

}

109

 Clears the screen to keep
 writing information to
 the user.

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

5. DEPLOYMENT AND TEST

Our program's file system is composed by 2 directories and 31 files . From this 31 files, 4 are
pcap files that are useful to test the functionality of the whitelisting-sniffer.

.
├── 0.compiling.sh
├── 1.remove.sh
├── conf_Snort_files
│ ├── classification.config
│ ├── important_considerations
│ ├── input
│ ├── output
│ ├── reference.config
│ └── Snort.conf
├── DOC_README.odt
├── DOC_README.pdf
├── FC1-permit.pcap
├── Modbus_FC_1_Coil.pcap
├── http.cap
├── Modbus.pcap
├── ip.c
├── ip_func.c
├── ip.h
├── ip_node.h
├── merge_ip.c
├── Modbus_func.c
├── Modbus_node.h
├── rules
│ ├── backdoor.rules
│ ├── community-virus.rules
│ ├── dos.rules
│ ├── ftp.rules
│ └── icmp.rules
├── moving_conf_files.sh
├── moving_rule_files.sh
├── opt_Snort_etc.sh
├── opt_Snort_rules.sh
└── var_log_Snort.sh

Explanation of the different files:

• 0.compiling.sh : script shell to compile the program. The program must be compiled
previous use.

• 1.remove.sh : script shell that remove not needed files in the program's file system. It's
positive to use it before to compile the program but not after it. It would erase the

110

 Folder conf_snort_files

 Folder: rules

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

executable files and you would have to compile back.
• Folder “conf_Snort_files ” : it contains important configuration program files. The most

important among them is “Snort.conf”. Over this file, our sniffer with write the
“include” statements, and after that, it will move this file into Snort's file system,
overwriting the previous existing Snort.conf in there.

• DOC_README.odt && DOC_README.pdf : contain information about the
whitelisting-sniffer.

• Next “.pcap” files: FC1-permit.pcap , Modbus_FC_1_Coil.pcap, http.cap,
Modbus.pcap are files downloaded from Internet in order to test the correct function of
the program.

• ip.c , ip_func.c, ip.h, ip_node.h, merge_ip.c, Modbus_func.c, Modbus_node.h have
already been explained along this text in previous points.

• Folder “rules” : it conforms an important feature to our whitelisting program. During its
execution, at the end of it, there's a moment in which the program informs you that rule
files created are going to be moved into Snort's file system, advicing you and giving
time to include inside this folder some other blacklisting file rules that the user could
consider to be useful for Snort to use.

• moving_conf_files.sh , moving_rule_files.sh, opt_Snort_etc.sh , opt_Snort_rules.sh,
var_log_Snort.sh have also already been explained. They interact with Snort's file
system contributing to a more automatic use of this program with Snort.

Let's go through an example of execution:

1. Let's lists the contents of our folder:

arturo@arturo-laptop:~/....../pcap/9. sniffer_ip_Modbus$ ls -l
total 272
-rwxr--r-x 1 arturo arturo 289 May 6 13:39 0.compiling.sh
-rwxr--r-x 1 arturo arturo 284 May 3 16:03 1.remove.sh
drwxrwxr-x 2 arturo arturo 4096 May 6 13:10 conf_Snort_files
-rw-rw-r-- 1 arturo arturo 20850 May 6 13:28 DOC_README.odt
-rw-rw-r-- 1 arturo arturo 29415 May 6 13:29 DOC_README.pdf
-rw-rw-r-- 1 arturo arturo 3138 May 2 18:48 FC1-permit.pcap
-rw-r--r-- 1 arturo arturo 25803 May 2 13:37 http.cap
-rw-r--r-- 1 arturo arturo 17864 May 6 13:15 ip.c
-rw-r--r-- 1 arturo arturo 5846 May 11 16:28 ip_func.c
-rw-rw-r-- 1 arturo arturo 4204 May 14 20:25 ip_func.o
-rw-r--r-- 1 arturo arturo 2561 May 6 13:02 ip.h
-rw-r--r-- 1 arturo arturo 481 May 1 19:11 ip_node.h
-rw-rw-r-- 1 arturo arturo 17572 May 14 20:25 ip.o
-rw-r--r-- 1 arturo arturo 1340 May 3 15:33 merge_ip.c
-rw-rw-r-- 1 arturo arturo 2464 May 14 20:25 merge_ip.o
-rw-rw-r-- 1 arturo arturo 4670 May 2 18:08 Modbus_FC_1_Coil.pcap
-rw-r--r-- 1 arturo arturo 11957 May 11 16:35 Modbus_func.c
-rw-rw-r-- 1 arturo arturo 6976 May 14 20:25 Modbus_func.o
-rw-r--r-- 1 arturo arturo 633 Apr 30 15:11 Modbus_node.h
-rw-rw-r-- 1 arturo arturo 8337 May 2 16:24 Modbus.pcap
-rwxr--r-x 1 arturo arturo 322 Apr 30 18:28 moving_conf_files.sh
-rwxr--r-x 1 arturo arturo 501 May 3 15:47 moving_rule_files.sh
-rwxr--r-x 1 arturo arturo 433 May 11 21:48 opt_Snort_etc.sh

111

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

-rwxr--r-x 1 arturo arturo 211 May 11 21:48 opt_Snort_rules.sh
drwxrwxr-x 2 arturo arturo 4096 May 13 23:00 rules
-rwxrwxr-x 1 arturo arturo 29950 May 14 20:25 sniffer
-rwxr--r-x 1 arturo arturo 208 May 3 16:06 var_log_Snort.sh

2. Use of the removing script shell:

arturo@arturo-laptop:~/....../pcap/9. sniffer_ip_Modbus$./1.remove.sh
...remove.sh done

3. Compilation process:

arturo@arturo-laptop:~/....../pcap/9. sniffer_ip_Modbus$ sudo su
[sudo] password for arturo:
root@arturo-laptop:/home/arturo/...../pcap/9. sniffer_ip_Modbus# ./0.compiling.sh
...compilation process done
...usage: ./sniffer -i <interface> -n <number of packets>
...usage: ./sniffer -f <file_name>

4. Execution of “sniffer” in the form of ./sniffer -f <file_name>

root@arturo-laptop:/home/arturo/..../pcap/9. sniffer_ip_Modbus# ./sniffer -f Modbus_FC_1_Coil.pcap

Modbus_FC_1_Coil.pcap is a pcap file downloaded from Internet that contains precollected
information from a sniffing session.

5.1 Different Screens in the Execution Process

Fig. 14 Brief note about Snort's intallation

112

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig. 15 Contents of the program's file system

Fig.16 Files resulting from the execution of the sniffer

113

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig.17 Checking / creating folders in Snort's file system

Fig.18 Sniffing process (no results dumped directly into screen)

114

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Fig.19 Results explained and further reconfiguration

Fig.20 Last screen

6. “info_docs” folder:

root@arturo-laptop:/home/arturo/....../pcap/9. sniffer_ip_Modbus# cd info_docs/ && tree
.
├── ip_tree.rules
├── ip_tree.txt
├── Modbus_tree.rules

115

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

├── Modbus_tree.txt
├── sniff_data.txt
└── statistics.txt

Fig.21 Example of IP.rules & Modbus.rules file

7. “rules” folder:

root@arturo-laptop:/home/arturo/...../pcap/9. sniffer_ip_Modbus/info_docs# cd ../rules/ && tree
.
├── backdoor.rules
├── community-virus.rules
├── dos.rules
├── ftp.rules
├── icmp.rules
├── ip_tree.rules
├── Modbus_tree.rules
└── Snort.conf

116

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

6. CONCLUSIONS

It is impossible to come up with a tool that secures 100% any information system. Hackers
always find a way to dupe security systems, this is why is so important to adopt a proactive attitude
when working in this issues. This is why it is so important for any security administrator to know the
network he is working in and disallow anything different from what they very well know it is normal.

Speaking about tools, any administrator will always try a combination of them. Some tools are
very good in some environments and later they work poorly in others. Some, propose solutions based
on one of the three methods presented during the abstract of this text (blacklisting, whitelisting or
anomaly detection) and they loose sight over some parts of reality, leaving important security gaps.
So... how to achieve a good level of security without spending big amounts of money?

Nowadays, it exists a lot of opensource programs that help to you to to achieve your desired
security level. In this thesis we have propose a solution for securing networks, specially those working
with Industrial Control System Protocol like Modbus, taking advantage of Snort's features, a IDS
available as opensource in www.Snort.org that has become very famous among system administrators.

The design we propose in OSNA is based on whitelists and blacklists. It is known very well that
just using a single approach of these ones alone, brings to quite disastrous results. We have been
working to build up a solution that could merge whitelisting methods and blacklisting methods, leaving
the door open to near future inclussions addressing methods of anomaly detection based in N-grams.
This total-approach would constitute a very powerful resource to maintain a clean system and control
possible intrusions.

Specifically, the blacklisting approach is achieved through Snort, we will be taking full
advantage of its functionality, and we'll be adding our whitelisting sniffer to it in order to contribute
with whitelisting features, making Snort even more complete and making the whole process very
automatic for any user.

Our whitelisting method, comes up with all the information about the network segment we
connect the program in and during a test period in which we run the code, it creates files that describe
what it is known to be the correct behaving of the devices' interconnections. Everything that is out of
this files, will be consider as a threat and counter measures taken against it.

The tool in this thesis proposed is then a very handy one, allowing to automatize the whole
process of representation of a network in files reducint the amount of work any aministrator would
have to use to create a whitelist of sessions connections among the devices. We are already thinking of
future plug-ins into our program, working in this same direction of “describing the net”, we believe our
sniffer, will be a very important resource for security information employees.

6.1 Further research

A nice step to take for this research, could consist in a graphical interface. This program
together with Snort, works from terminal linux, making difficult to work for those ones that have no
idea of Linux or have never interacted with a terminal where all commands are written instead of
“clicked”.

117

http://www.snort.org/

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Annexe A: Snort.

This annexe consists of a summarize of the open source book Intrusion Detection Systems with

Snort Advanced IDS Techniques Using Snort, Apache, MySQL, PHP, and ACID. [InPe01]

A.1 Introduction to Intrusion Detection and Snort

Intrusion Detection methods started appearing in the last few years. Using Intrusion Detection

methods, you can collect and use information from known types of attacks and find out if someone is

trying to attack your network or particular hosts.

A comprehensive security system consists of multiple tools, including:

- Firewalls: used to block unwanted incoming as well as outgoing traffic of data.

- Intrusion Detection systems (IDS): used to find out if someone has gotten into or is trying to

get into your network.

- Vulnerability assessment tools: used to find and plug security holes present in your network.

Information collected from vulnerability assessment tools is used to set rules on firewalls so that

these security holes are safeguarded from malicious Internet users.

These tools can work together and exchange information with each other. Some products

provide complete systems consisting of all of these products bundled together.

What is Intrusion Detection?

Intrusion Detection Systems fall into two basic categories: signature-based Intrusion Detection

Systems and anomaly detection systems. Intruders have signatures, like computer viruses, that can be

detected using software. You try to find data packets that contain any known intrusion-related

signatures or anomalies related to Internet protocols. Based upon a set of signatures and rules, the

118

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

detection system is able to find and log suspicious activity and generate alerts. Snort is primarily a rule-

based IDS, but input plug-ins are present to detect anomalies in protocol headers as well.

Snort uses rules stored in text files that can be modified by a text editor. Rules are grouped in

categories. Rules belonging to each category are stored in separate files. These files are then included

in a main configuration file called Snort.conf. Snort reads these rules at the start-up time and builds

internal data structures to apply these rules to captured data. Finding signatures and using them in rules

is a tricky job, since the more rules you use, the more processing power is required to process captured

data in real time. It is important to implement as many signatures as you can using as few rules as

possible.

Signatures:

Signature is the pattern that you look for inside a data packet. A signature is used to detect one

or multiple types of attacks. For example, the presence of “scripts/iisadmin” in a packet going to your

web server may indicate an intruder activity. Signatures may be present in different parts of a data

packet depending upon the nature of the attack. For example, you can find signatures in the IP header,

transport layer header (TCP or UDP header) and/or application layer header or payload. You will learn

more about signatures later in this book.

Alerts :

Alerts are any sort of user notification of an intruder activity. When an IDS detects an intruder,

it has to inform security administrator about this using alerts. Alerts may be in the form of pop-up

windows, logging to a console, sending e-mail and so on. Alerts are also stored in log files or databases

where they can be viewed later on by security experts.

Logs :

The log messages are usually saved in file. By default Snort saves these messages under

/var/log/Snort directory. However, the location of log messages can be changed using the command line

switch when starting Snort. Log messages can be saved either in text or binary format. The binary files

can be viewed later on using Snort or tcpdump program. Logging in binary format is faster because it

saves some formatting overhead. In high-speed Snort implementations, logging in binary mode is

119

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

necessary.

Sensor :

The machine on which an Intrusion Detection System is running is also called the sensor in the

literature because it is used to “sense” the network.

Components of Snort:

Snort is logically divided into multiple components. These components work together to detect

particular attacks and to generate output in a required format from the detection system. A Snort-based

IDS consists of the following

major components:

• Packet Decoder

• Preprocessors

• Detection Engine

• Logging and Alerting System

• Output Modules Fig. 22 Snort's inner workings schema

Packet Decoder : takes packets from different types of network interfaces and prepares the

packets to be preprocessed or to be sent to the detection engine. The interfaces may be Ethernet, SLIP,

PPP …

Preprocessors : components or plug-ins that can be used with Snort to arrange or modify data

packets before the detection engine does some operation to find out if the packet is being used by an

intruder. Some preprocessors also perform detection by finding anomalies in packet headers and

generating alerts. They are very important for any IDS to prepare data packets to be analyzed against

rules in the detection engine.

Hackers use different techniques to fool an IDS in different ways. For example, you may have

created a rule to find a signature “scripts/iisadmin” in HTTP packets. If you are matching this string

exactly, you can easily be fooled by a hacker who makes slight modifications to this string. For

120

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

example:

• “scripts/./iisadmin”

• “scripts/examples/../iisadmin”

• “scripts\iisadmin”

• “scripts/.\iisadmin”

To complicate the situation, hackers can also insert in the web Uniform Resource Identifier

(URI) hexadecimal characters or Unicode characters which are perfectly legal as far as the web server

is concerned. Note that the web servers usually understand all of these strings and are able to

preprocess them to extract the intended string “scripts/ iisadmin”. However if the IDS is looking for an

exact match, it is not able to detect this attack. A preprocessor can rearrange the string so that it is

detectable by the IDS.

Preprocessors are also used for packet defragmentation. Receiving systems are capable of

reassembling these smaller units again to form the original data packet. On IDS, before you can apply

any rules or try to find a signature, you have to reassemble the packet. For example, half of the

signature may be present in one segment and the other half in another segment. To detect the signature

correctly you have to combine all packet segments. Hackers use fragmentation to defeat Intrusion

Detection Systems.

The preprocessors are used to safeguard against these attacks. Preprocessors in Snort can

defragment packets, decode HTTP URI, re-assemble TCP streams and so on. These functions are a very

important part of the Intrusion Detection System.

The Detection Engine : is the most important part of Snort. Its responsibility is to detect if any

intrusion activity exists in a packet. The detection engine employs Snort rules for this purpose. The

rules are read into internal data structures or chains where they are matched against all packets. If a

packet matches any rule, appropriate action is taken; otherwise the packet is dropped. Appropriate

actions may be logging the packet or generating alerts.

121

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

This is the time-critical part of Snort. Depending upon some factors, it may take different

amounts of time to respond to different packets or you may even drop some packets and may not get a

true real-time response:

• Number of rules

• Power of the machine on which Snort is running

• Speed of internal bus used in the Snort machine

• Load on the network

The detection system can dissect a packet and apply rules on different parts of the packet. These

parts may be:

• The IP header of the packet.

• The Transport layer header. (TCP, UDP) or other transport layer headers. It may also work on

the ICMP header.

• The application layer level header. Application layer headers include, but are not limited to,

DNS header, FTP header, SNMP header, and SMTP header. You may have to use some indirect

methods for application layer headers, like offset of data to be looked for.

• Packet payload. This means that you can create a rule that is used by the detection engine to

find a string inside the data that is present inside the packet.

In Snort version 2 all rules are matched against a packet before generating an alert. After

matching all rules, the highest priority rule is selected to generate the alert.

Logging and Alerting System: depending upon what the detection engine finds inside a packet,

the packet may be used to log the activity or generate an alert. Logs are kept in simple text files, tcp-

dump-style files or some other form. All of the log files are stored under /var/log/ Snort folder by

default. You can use –l command line options to modify the location of generating logs and alerts.

Output Modules : output modules or plug-ins can do different operations depending on how you

want to save output generated by the logging and alerting system of Snort. Depending on the

configuration, output modules can do things like the following:

122

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• Simply logging to /var/log/Snort/alerts file or some other file

• Sending SNMP traps

• Sending messages to syslog facility

• Logging to a database like MySQL or Oracle.

• Generating eXtensible Markup Language (XML) output

• Modifying configuration on routers and firewalls.

• Sending Server Message Block (SMB) messages to Microsoft Windows-based machines

Other tools can also be

usedto send alerts in other formats

such as e-mail messages or viewing

alerts using a web interface.

Table 2 Snort's modules summarize.

A.2 Setting up of our Snort sensor

Depending upon the type of switches used, you can use Snort on a switch port. Some

switches, allow you to replicate all ports traffic on one port where you can attach the Snort machine.

These ports are usually referred to as spanning ports. The best place to install Snort is right behind the

firewall or router so that all of the Internet traffic is visible to Snort before it enters any switch or hub.

Fig 23 IDS behind the firewall

123

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

 You can also connect the IDS to a small HUB or a Network TAP right behind the firewall, i.e.,

between firewall and the switch.

Fig.24 Likely scenario for a Snort sensor

Note that when the IDS is connected as shown in this last figure, data flowing among the

company servers is not visible to the IDS. The IDS can see only that data which is coming from or

going to the Internet. This is useful if you expect attacks from outside and the internal network is a

trusted one.

Supported Platforms :

Snort is supported on a number of hardware platforms and operating systems. Currently

Snort is available for the following operating systems:

• Linux

• OpenBSD

• FreeBSD

• NetBSD

• Solaris (both Sparc and i386)

• HP-UX

• AIX

• IRIX

124

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• MacOS

• Windows

For a current list of supported platforms, refer to the Snort home page at http:// www.Snort.org.

How to Protect IDS Itself:

One major issue is how to protect the system on which your Intrusion Detection software is

running. If security of the IDS is compromised, you may start getting false alarms or no alarms at all.

The intruder may disable IDS before actually performing any attack. There are different ways to protect

your system, starting from very general recommendations to some sophisticated methods. Some of

these are mentioned below.

• The first thing that you can do is not to run any service on your IDS sensor itself. Network

servers are the most common method of exploiting a system.

• New threats are discovered and patches are released by vendors. This is almost a continuous

and non-stop process. The platform on which you are running IDS should be patched with the

latest releases from your vendor. For example, if Snort is running on a Microsoft Windows

machine, you should have all the latest security patches from Microsoft installed.

• Configure the IDS machine so that it does not respond to ping (ICMP Echo- type) packets.

• If you are running Snort on a Linux machine, use netfilter/iptable to block any unwanted data.

Snort will still be able to see all of the data.

• You should use IDS only for the purpose of intrusion detection. It should not be used for other

activities and user accounts should not be created except those that are absolutely necessary.

Following are two special techniques that can be used with Snort to protect it from being

attacked:

• Snort on Stealth Interface .

• Snort with no IP Address Interface .

The advantage is that when the Snort host doesn’t have an IP address itself, nobody can access

125

http://www.snort.org/

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

it. You can configure an IP address on eth1 that can be used to access the sensor itself.

A.3 Installing of Snort and Getting Started

A simple Snort installation consists of a single Snort sensor run from terminal or from system

start up as a daemon. To install Snort for this purpose, you can get a pre-compiled version or compile it

yourself from the source code: http://www.Snort.org

Putting the sensor behind a router or firewall will enable you to detect the activity of intruders

into the system. However, if you are really interested in scanning all Internet traffic, you can put the

sensor outside the firewall as well.

Single Sensor with Database and Web Interface : the most common use of Snort should be with

integration to a database. The data-base is used to log Snort data where it can be viewed and analyzed

later on, using a web-based interface. A typical setup of this type consists of three basic components:

1. Snort sensor

2. A database server

3. A web server

Snort logs data into the database. You can view the data using a web browser connected to the

sensor.

Different types of database servers like MySQL, PostgresSQL, Oracle, Microsoft SQL server

and other ODBC-compliant databases can be used with Snort. This setup provides a very good and

omprehensive IDS which is easy to manage and user friendly.

Fig.25 Our company's system administrator.

126

http://www.snort.org/

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Installation:

- Snort's installation from sources:

* some development tools & libraries we need:

• flex

• bison

• checkinstall

• libpcap0.8

• libnet1.0

apt-get install flex bison build-essential checkinstall libpcap0.8-dev

libnet1-dev

* we must download the next components for our installation:

• libpcap1.3 (updated)

• daq0.2

• pcre8.32

• libdnet1.12 (updated)

• zlib1.2.7

• Snort2.9.4

cd libpcap1.3

./configure && make && checkinstall

dpkg -i libpcap0.8*.deb

cd daq-0.2

./configure && make && checkinstall

dpkg -i daq_0.2-1_i386.deb

cd pcre-8.32

./configure && make && checkinstall

dpkg -i pcre*.deb

127

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

cd libdnet-1.12

./configure && make && checkinstall

dpkg -i libdnet*.deb

cd zlib-1.2.7

./configure && make && checkinstall

dpkg -i zlib*.deb

And now we are already able to install our Snort sensor:

cd Snort-2.9.4

./configure && make && checkinstall

dpkg -i Snort_*.deb

Available command line options with the configure script can be listed using the “./configure –

help” ,

“./configure –prefix=/opt/Snort --enable-smbalerts --enable-flexresp --with-mysql --with-snmp

--with-openssl ” would an example of how to enable build in support for mysql database or snmp.

Automatic Startup and Shutdown

You can configure Snort to start at boot time automatically and stop when the system shuts

down. On UNIX-type machines, this can be done through a script that starts and stops Snort. The script

is usually created in the /etc/init.d directory on Linux. A link to the startup script may be created in

/etc/rc3.d directory and shutdown links may be present in /etc/rc2.d, /etc/rc1.d and /etc/rc0.d

directories.

Snort Command Line Options

Snort has many command line options that are very useful for starting Snort in different

128

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

situations. As you have already seen, command line options are helpful in running multiple versions of

Snort on the same system. You can use “Snort -?” command to display command line options.

Snort Modes

Snort operates in two basic modes: packet sniffer mode and NIDS mode. It can be used as a

packet sniffer, like tcpdump or snoop. When sniffing packets, Snort can also log these packets to a log

file. The file can be viewed later on using Snort or tcpdump. No Intrusion Detection activity is done by

Snort in this mode of operation. Using Snort for this purpose is not very useful as there are many other

tools available for packet logging. For example, all Linux distributions come with the tcpdump

program which is very efficient. When you use Snort in network Intrusion Detection (NIDS) mode, it

uses its rules to find out if there is any network Intrusion Detection activity.

Logging Snort Data in Text Format

You can log Snort data in text mode by adding -l <directory name> on the command line. The

following command logs all Snort data in /var/log/Snort directory in addition to displaying it on the

console: Snort -dev -l /var/log/Snort

Logging Snort in Binary Format

On high-speed networks, logging data in ASCII format in many different files may cause high

overhead. Snort allows you to log all data in a binary file in tcpdump format and view it later on. In this

case, Snort logs all data to a single file in raw binary form. A typical command for this type of log is :

Snort -l /tmp -b Snort will create a file in /tmp directory.

To view this raw binary data, you can use Snort. The -r command line switch is used to specify

a file name with Snort. The following command will display the captured data from file Snort.log.1037

Snort -dev -r /tmp/Snort.log.1037 | more

The output of this command will show data in exactly the same way if you are looking at it on

129

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

the console in real time. You can use different switches to display different levels of detail with this

data.

You can also display a particular type of data from the log file. The following command

displays all TCP type data from the log file: Snort -dev -r / tmp/Snort.log.1037840339 tcp Similarly,

ICMP and UDP types of data can also be displayed.

You can also use the tcpdump program to read files generated by Snort when logging in this

mode. The following command reads the Snort files and displays captured packets in the file:

tcpdump -r /tmp/Snort.log.1037

Network Intrusion Detection Mode

In Intrusion Detection mode, Snort does not log each captured packet as it does in the network

sniffer mode. Instead, it applies rules on all captured packets. If a packet matches a rule, only then is it

logged or an alert is generated. If a packet does not match any rule, the packet is dropped silently and

no log entry is created. When you use Snort in Intrusion Detection mode, typically you provide a

configuration file on the command line: Snort -c /opt/Snort/etc/Snort.conf

This configuration file contains Snort rules or reference to other files that contain Snort rules. In

addition to rules, the configuration file also contains information about input and output plug-ins. The

typical name of the Snort configuration file is Snort.conf.

Other command line options and switches can be used when Snort is working in IDS mode. For

example, you can log data into files as well as display data on the command line. The following

command will log data to /var/log/Snort directory and will display it on the console screen in addition

to acting as NIDS: Snort -dev -l /var/log/Snort -c /etc/Snort/Snort.conf However in most real-life

situations, you will use -D command line switch with Snort so that it does not log on the console but

runs as a daemon. In a typical scenario, you will also want to log Snort data into a database. Logging

data into MySQL database could be an example.

Snort Alert Modes

When Snort is running in the Network Intrusion Detection (NID) mode, it generates alerts when

a captured packet matches a rule. Snort can send alerts in many modes. These modes are configurable

130

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

through the command line as well as through Snort.conf file.

Whenever an alert is fired off, Snort captures the packet that fired off the rule and creates an

alert. The amount of information logged with the alert depends on the particular alerting mode.

Fast Mode

The fast alert mode logs the alert with following information:

• Timestamp

• Alert message (configurable through rules)

• Source and destination IP addresses

• Source and destination ports

To configure fast alert mode, you have to use “-A fast” command line option. This alert mode

causes less overhead for the system.

Full Mode

This is the default alert mode. It prints the alert message in addition to the packet header. We

configure the full alert mode with “-A full”.

Other modes: UNIX Socket Mode , No Alert Mode , Sending Alerts to Syslog , Sending Alerts

to SNMP , Sending Alerts to Windows

A.4 Working with Snort rules

Like viruses, most intruder activity has some sort of signature. These signatures may be present

in the header parts of a packet or in the payload. Snort’s detection system is based on rules. These rules

in turn are based on intruder signatures. Snort rules can be used to check various parts of a data packet .

Most of the rules are written in a single line. However you can also extend rules to multiple

lines by using a backslash character at the end of lines. Rules are usually placed in a configuration file,

131

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

typically Snort.conf. You can also use multiple files by including them in a main configuration file.

This point provides information about different types of rules as well as the basic structure of a

rule. I'll expose many examples of common rules for Intrusion Detection activity and together with the

next points we should have enough information to set up Snort as a basic Intrusion Detection System .

Snort rules operate on network (IP) layer and transport (TCP/UDP) layer protocols. However

there are methods to detect anomalies in data link layer and application layer protocols.

The Firsts Bad Rule

Here is the first (very) bad rule. In fact, this may be the worst rule ever written, but it does a

very good job of testing if Snort is working well and is able to generate alerts.

alert ip any any -> any any (msg: "IP Packet detected";)

You can use this rule at the end of the Snort.conf file the first time you install Snort. The rule

will generate an alert message for every captured IP packet. It will soon fill up your disk space if you

leave it there! This should be your first test to make sure that Snort is installed properly .

alert icmp any any -> any any (msg: "ICMP Packet found";)

It generates alerts for all captured ICMP packets.

Structure of a Rule

Now that you have seen some rules which are not-so-good but helpful in a way, let us see the

structure of a Snort rule. All Snort rules have two logical parts: rule header and rule options.

Fig. 26 General structure of a rule.

The rule header contains information about what action a rule takes. It also contains criteria for

matching a rule against data packets. The options part usually contains an alert message and

information about which part of the packet should be used to generate the alert message.

132

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

General structure of a Snort rule header:

Fig.27 General structure of a rule's header.

example: alert icmp any any -> any any (msg: "Ping with TTL=100"; ttl: 100;)

The part of the rule before the starting parenthesis is called the rule header. The part of the rule

that is enclosed by the parentheses is the options part.

Rule Headers :

* Rule Actions:

An action is taken only when all of the conditions mentioned in a rule are true. There are five

predefined actions (however, you can also define your own actions as needed):

-Pass : this action tells Snort to ignore the packet. This action plays an important role in

speeding up Snort operation in cases where you don’t want to apply checks on certain packets.

- Alert : used to send an alert message when rule conditions are true for a particular packet. An

alert can be sent in multiple ways. For example, you can send an alert to a file or to a console. The

functional difference between Log and Alert actions is that Alert actions send an alert message and then

log the packet. The Log action only logs the packet.

- Activate : used to create an alert and then to activate another rule for checking more

conditions. Dynamic rules, as explained next, are used for this purpose. The activate action is used

when you need further testing of a captured packet.

- Dynamic : dynamic action rules are invoked by other rules using the “activate” action. In

normal circumstances, they are not applied on a packet. A dynamic rule can be activated only by an

“activate” action defined in another role.

133

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

- User Defined Actions : you can define your own actions. These new action types are defined

in the configuration file Snort.conf. A new action is defined in the following general structure:

ruletype action_name

{

action definition

}

For example, an action named smb_db_alert that is used to send SMB pop-up window alert

messages to hosts listed in workstation.list file and to MySQL database named “Snort” is defined

below:

ruletype smb_db_alert

{

type alert

output alert_smb: workstation.list

output database: log, mysql, user=rr password=rr \

dbname=Snort host=localhost

}

Theses types of rules will be discussed latter on in detail. Usually they are related to

configuration of output plug-ins.

* Protocols:

The second part of a Snort rule. The protocol part of a Snort rule shows on which type of packet

the rule will be applied. Currently Snort understands the following protocols:

• IP

• ICMP

• TCP

• UDP

134

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

If the protocol is IP, Snort checks the link layer header to determine the packet type. If any other

type of protocol is used, Snort uses the IP header to determine the protocol type. The options part

instead can check parameters in other protocol fields as well.

* Address

There are two address parts in a Snort rule. These addresses are used to check the source from

which the packet originated and the destination of the packet. The address may be a single IP address or

a network address. You can use the “any” keyword to apply a rule on all addresses. Or we can express

an address followed by a slash character and number of bits in the netmask. For example:

- 192.168.2.0/24 represents C class network

- 192.168.2.0 with 24 bits in the network mask.

alert tcp any any -> 192.168.1.10/32 80 (msg: "TTL=100"; ttl: 100;)

Snort provides a mechanism to exclude addresses by the use of the negation symbol !, an

exclamation point.

alert icmp ![192.168.2.0/24] any -> any any (msg: "Ping with TTL=100"; ttl: 100;)

This rule is useful, for instance, when you want to test packets that don’t originate from your

home network (which means you trust everyone in your home network!).

You can also specify list of addresses in a Snort rule.

alert icmp ![192.168.2.0/24,192.168.8.0/24] any -> any any (msg: "Ping with TTL=100"; ttl:

100;)

* Port Number

The port number is used to apply a rule on packets that originate from or go to a particular port

or a range of ports. For example, you can use source port number 23 to apply a rule to those packets

that originate from a Telnet server.

135

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

You can use the keyword any to apply the rule on all packets irrespective of the port number.

Port number is meaningful only for TCP and UDP protocols. If you have selected IP or ICMP as the

protocol in the rule, port number does not play any role.

alert tcp 192.168.2.0/24 23 -> any any (content: "confidential"; msg: "Detected confidential";)

The same rule can be applied to traffic either going to or originating from any Telnet server in

the network by modifying the direction to either side as shown below:

alert tcp 192.168.2.0/24 23 <> any any (content: "confidential"; msg: "Detected

confidential";)

Port numbers are useful when you want to apply a rule only for a particular type of data packet.

For example, if a vulnerability is related to only a HTTP (Hyper Text Transfer Protocol) web server,

you can use port 80 in the rule to detect anybody trying to exploit it. This way Snort will apply that rule

only to web server traffic and not to any other TCP packets. Writing good rules always improves the

performance of IDS.

- Port Ranges : alert udp any 1024:2048 -> any any (msg: “UDP ports”;)

- Upper and Lower Boundaries : for example, a range specified as :1024 includes all

port numbers up to and including port 1024. A port range specified as 1000: will

include all ports numbers including and above port 1000.

- Negation Symbol : log udp any !53 -> any any log udp

You can’t use comma character in the port filed to specify multiple ports. For

example, specifying 53,54 is not allowed. However you can use 53:54 to specify a port

range.

* Direction: determines the source and destination addresses and port numbers in a rule. The

following rules apply to the direction field:

• A ->

• A <-

136

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• A <> symbol shows that the rule will be applied to packets traveling on either direction. This

symbol is useful when you want to monitor data packets for both client and server.

Rule options:

Rule options follow the rule header and are enclosed inside a pair of parentheses. There may be

one option or many and the options are separated with a semicolon. If you use multiple options, these

options form a logical AND. The action in the rule header is invoked only when all criteria in the

options are true.

In general, an option may have two parts: a keyword and an argument.

msg: "Detected confidential";

In this option msg is the keyword and “Detected confidential” is the argument to this keyword.

* The ack Keyword : the TCP header contains an Acknowledgement Number field which is 32

bits long. The field shows the next sequence number the sender of the TCP packet is expecting to

receive. This field is significant only when the ACK flag in the TCP header is set.

Tools like nmap use this feature of the TCP header to ping a machine. For example, among

other techniques used by nmap, it can send a TCP packet to port 80 with ACK flag set and sequence

number 0. Since this packet is not acceptable by the receiving side according to TCP rules, it sends

back a RST packet. When nmap receives this RST packet, it learns that the host is alive. This method

works on hosts that don’t respond to ICMP ECHO REQUEST ping packets. To detect this type of TCP

ping, you can have a rule like the following that sends an alert message:

alert tcp any any -> 192.168.1.0/24 any (flags: A; ack: 0; msg: "TCP ping detected";)

This rule shows that an alert message will be generated when you receive a TCP packet with the

A flag set and the acknowledgement contains a value of 0. Generally when the A flag is set, the ACK

value is not zero.

137

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

* The classtype Keyword : rules can be assigned classifications and priority numbers to group

and distinguish them. To fully understand the classtype keyword, first look at the file

classification.config which is included in the Snort.conf file using the include keyword. Each line in the

classification.config file has the following syntax:

config classification: name,description,priority

for example: config classification: DoS,Denial of Service Attack,2

To fully understand the classtype keyword, first look at the file classification.config which is

included in the Snort.conf file using the include keyword.

Now let us use this classification in a rule. The following rule uses default priority with the

classification DoS:

alert udp any any -> 192.168.1.0/24 6838 (msg:"DoS"; content: "server"; classtype:DoS;)

The following is the same rule but we override the default priority used for the classification.

alert udp any any -> 192.168.1.0/24 6838 (msg:"DoS"; content: "server"; classtype:DoS; priority:1)

Using classifications and priorities for rules and alerts, you can distinguish between high- and

low-risk alerts. This feature is very useful when you want to escalate high-risk alerts or want to pay

attention to them first.

Classifications are used in ACID , if you look at the ACID browser window, you will see the

classification screens.

* The content Keyword : One important feature of Snort is its ability to find a data pattern

inside a packet. The pattern may be presented in the form of an ASCII string or as binary data in the

form of hexadecimal characters. Like viruses, intruders also have signatures and the content

keyword is used to find these signatures in the packet.

The following rule detects a pattern “GET” in the data part of all TCP packets that are leaving

192.168.1.0 network and going to an address that is not part of that network.

138

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

alert tcp 192.168.1.0/24 any -> ![192.168.1.0/24] any (content: "GET"; msg: "GET matched";)

alert tcp 192.168.1.0/24 any -> ![192.168.1.0/24] any (content: "|47 45 54|"; msg: "GET matched";)

Hexadecimal number 47 is equal to ASCII character G, 45 is equal to E, and 54 is equal to T.

* The offset Keyword : the offset keyword is used in combination with the content keyword.

Using this keyword, you can start your search at a certain offset from the start of the data part of the

packet. Use a number as argument to this keyword. The following rule starts searching for the word

“HTTP” after 4 bytes from the start of the data.

alert tcp 192.168.1.0/24 any -> any any (content: "HTTP"; offset: 4; msg: "HTTP matched";)

* The depth Keyword : The depth keyword is also used in combination with the content

keyword to specify an upper limit to the pattern matching. Using the depth keyword, you can specify

an offset from the start of the data part. Data after that offset is not searched for pattern matching. If

you use both offset and depth keywords with the content keyword, you can specify the range of data

within which pattern matching should be done.

The following rule tries to find the word “HTTP” between characters 4 and 40 of the data part

of the TCP packet.

alert tcp 192.168.1.0/24 any -> any any (content:

"HTTP"; offset: 4; depth: 40; msg: "HTTP matched";)

This keyword is very important since you can use it to limit searching inside the packet. For

example, information about HTTP GET requests is found in the start of the packet. There is no need to

search the entire packet for such strings.

* The content-list Keyword : the content-list keyword is used with a file name. The file name,

which is used as an argument to this keyword, is a text file that contains a list of strings to be searched

139

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

inside a packet. Each string is located on a separate line of the file.

For example, a file named “porn” may contain the following three lines:

“porn”

“hardcore”

“under 18”

The following rule will search these strings in the data portion of all packets matching the rule

criteria.:

alert ip any any -> 192.168.1.0/24 any (content-list: "porn"; msg: "Porn word matched";)

You can also use the negation sign ! with the file name if you want to generate an alert for a

packet where no strings match.

* The dsize Keyword: the dsize keyword is used to find the length of the data part of a packet.

Many attacks use buffer overflow vulnerabilities by sending large size packets. Using this keyword,

you can find out if a packet contains data of a length larger than, smaller than, or equal to a certain

number.

The following rule generates an alert if the data size of an IP packet is larger than 6000 bytes:

alert ip any any -> 192.168.1.0/24 any (dsize: > 6000; msg: "Large size IP packet detected";)

* The flags Keyword : The flags

keyword is used to find out which

flag bits are set inside the TCP header

of a packet.

Table 3 Flags' keywords

140

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

You can also use !, +, and * symbols just like IP header flag bits ! symbol is used for NOT, + is

used for AND, and * is used for OR operation.

alert tcp any any -> 192.168.1.0/24 any (flags: SF; msg: “SYNC-FIN packet detected”;)

* The fragbits Keyword : The IP header contains three flag bits that are used for fragmentation

and reassembly of IP packets.

- DF: Don't Fragment Bit

- MF: More Fragments Bit

Sometimes these bits are used by hackers for attacks and to find out information related to your

network. For example, the DF bit can be used to find the minimum and maximum MTU for a path from

source to destination. Using the fragbits keyword, you can find out if a packet contains these bits set or

cleared.

 The following rule is used to detect if the DF bit is set in an ICMP packet:

alert icmp any any -> 192.168.1.0/24 any (fragbits: D; msg: "Don’t Fragment bit set";)

In this rule, D is used for DF bit. You can use R for reserved bit and M for MF bit.

You can also use the negation symbol ! in the rule. The following rule detects if the DF bit is

not set, although this rule is of little use.

alert icmp any any -> 192.168.1.0/24 any (fragbits: !D;

msg: "Don’t Fragment bit not set";)

* The icmp_id Keyword : The icmp_id option is used to

detect a particular ID used with ICMP packet.

Read texts related to ICMP header for further information.

For example: alert icmp any any -> any any (icmp_id: 100;

msg: "ICMP ID=100";)

Table 4 Type of ICMP packet

141

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

* The icmp_seq Keyword

for example: alert icmp any any -> any any (icmp_seq:100; msg: "ICMP Sequence=100";)

* The itype Keyword : The ICMP header comes after the IP header and contains a type field.

for example:

alert icmp any any -> any any (itype: 4; msg: "ICMP Source Quench Message received";)

alert icmp any any -> any any (itype: 4; msg: "ICMP Source Quench Message received";)

* The icode Keyword : In ICMP packets, the ICMP header comes after the IP header. It contains

a code field . The type field in the ICMP header shows the type of ICMP message.

• If code field is 0, it is a network redirect ICMP packet.

• If code field is 1, it is a host redirect packet.

• If code is 2, the redirect is due to the type of service and network.

• If code is 2, the redirect is due to type of service and host.

The icode keyword in Snort rule options is used to find the code field value in the ICMP header.

The following rule generates an alert for host redirect ICMP packets.

alert icmp any any -> any any (itype: 5; icode: 1; msg: "ICMP ID=100";)

Both itype and icode keywords are used. Using the icode keyword alone will not do the job

because other ICMP types may also use the same code value.

* The id Keyword : The id keyword is used to match the fragment ID field of the IP packet

header. Its purpose is to detect attacks that use a fixed ID number in the IP header of a packet. Its

format is as follows: id: "id_number"

If the value of the id field in the IP packet header is zero, it shows that this is the last fragment

of an IP packet (if the packet was fragmented). The value 0 also shows that it is the only fragment if the

142

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

packet was not fragmented. The id keyword in the

Snort rule can be used to determine the last fragment in an IP packet.

* The ipopts Keyword : A basic IPv4 header is 20 bytes long. You can add options to this IP

header at the end. The length of the options part may be up to 40 bytes. These options can be used by

some hackers to find information about your network.

Using Snort rules, you can detect such attempts with the ipopts keyword. The fol lowing rule

detects any attempt made using Loose Source Routing:

alert ip any any -> any any (ipopts: lsrr; msg: "Loose source routing attempt";)

* The ip_proto Keyword : The ip_proto Keyword The ip_proto keyword uses IP Proto plug-in

to determine protocol number in the IP header.

alert ip any any -> any any (ip_proto: ipip; msg: "IP-IP tunneling detected";)

For further information about protocol numbers, consult the /etc/protocols file in your linux

system.

* The logto Keyword : The logto keyword is used to log packets to a special file.

The general syntax is as follows:

logto:logto_log

Consider the following rule:

alert icmp any any -> any any (logto:logto_log; ttl: 100;)

This rule will log all ICMP packets having TTL value equal to 100 to file logto_log, a file that

later you can open with your “more”, “cat” or any other tool used to display a file into console.

143

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

* The msg Keyword : The msg keyword in the rule options is used to add a text string to logs

and alerts.

You can add a message inside double quotations after this keyword. The msg keyword is a

common and useful keyword and is part of most of the rules.

The general form for using this keyword is as follows:

msg: "Your message text here";

If you want to use some special character inside the message, you can escape them by a

backslash character.

* The nocase Keyword : The nocase keyword is used in combination with the content keyword.

It has no arguments. Its only purpose is to make a case insensitive search of a pattern within the data

part of a packet .

* The priority Keyword : The priority keyword assigns a priority to a rule. Priority is a number

argument to this keyword. Number 1 is the highest priority. The keyword is often used with the

classtype keyword.

alert ip any any -> any any (ipopts: lsrr; msg: "Loose source routing attempt"; priority: 10;)

The priority keyword can be used to differentiate high priority and low priority alerts.

* The react Keyword : The react keyword is used with a rule to terminate a session to block

some sites or services. Not all options with this keyword are operational.

The following rule will block all HTTP connections originating from your home network

192.168.1.0/24. To block the HTTP access, it will send a TCP FIN and/or FIN packet to both sending

and receiving hosts every time it detects a packet that matches these criteria.

The rule causes a connection to be closed:

alert tcp 192.168.1.0/24 any -> any 80 (msg: "Outgoing HTTP connection"; react: block;)

144

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

In the above rule, “block” is the basic modifier. You can also use the “warn” modifier to send a

visual notice to the source. You can also use the additional modifier “msg ” which will include the msg

string in the visual notification on the browser. The following is an example of this additional modifier.

alert tcp 192.168.1.0/24 any -> any 80 (msg: "Outgoing HTTP connection”; react: warn, msg;)

Note: In order to use the react keyword, you should compile Snort with --enable- flexresp

command line option in the configure script. For a discussion of the compilation process. The react

should be the last keyword in the options field.

* The reference Keyword :

* The resp Keyword: The resp keyword is a very important keyword. It can be used to knock

down hacker activity by sending response packets to the host that originates a packet matching the rule.

The keyword is also known as Flexible Response or simply FlexResp and is based on the FlexResp

plug-in. The plug-in should be compiled into Snort using the command line option (--with-flexresp) in

the configure script.

The following rule will send a TCP Reset packet to the sender whenever an attempt to reach

TCP port 8080 on the local network is made.

alert tcp any any -> 192.168.1.0/24 8080 (resp: rst_snd;)

You can send multiple response packets to either sender or receiver by specifying multiple

responses to the resp keyword. The arguments are separated by a comma. The list of arguments that can

be used with this keyword is found in the following table.

Table 5 List of arguments

145

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

* The rev Keyword :

* The rpc Keyword :

* The sameip Keyword : The sameip keyword is used to check if source and destination IP

addresses are the same in an IP packet. It has no arguments. Some people try to spoof IP packets to get

information or attack a server. The following rule can be used to detect these attempts:

alert ip any any -> 192.168.1.0/24 any (msg: "Same IP"; sameip;)

* The seq Keyword : The seq keyword in Snort rule options can be used to test the sequence

number of a TCP packet. The argument to this keyword is a sequence number. The general format is as

follows:

seq: "sequence_number";

Sequence numbers are a part of the TCP header.

* The flow Keyword : The flow keyword is used to apply a rule on TCP sessions to packets

flowing in a particular direction. You can use options with the keyword to determine direction. The

following options can be used with this keyword determine direction:

• to_client

• to_server

• from_client

• from_server

Other options are also available which are used to apply the rule to different states of a TCP

connection.

• The stateless option is used to apply the rule without considering the state of a TCP session.

• The established option is used to apply the rule to established TCP sessions only.

• The no_stream option enables rules to be applied to packets that are not built from a stream.

146

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• The stream_only option is used to apply the rules to only those packets that are built from a

stream.

* The session Keyword : The session keyword can be used to dump all data from a TCP

session. It can dump all session data or just printable characters. The following rule dumps all printable

data from POP3 sessions:

log tcp any any -> 192.168.1.0/24 110 (session: printable;)

If you use “all” as argument to this keyword, everything will be dumped. Use the logto keyword

to log the traffic to a particular file.

* The sid Keyword : The sid keyword is used to add a “Snort ID” to rules. Output modules or

log scanners can use SID to identify rules.

* The tag Keyword : The tag keyword is another very important keyword that can be used for

logging additional data from/to the intruder host when a rule is triggered. The additional data can then

be analyzed later on for detailed intruder activity. The general syntax of the keyword is as follows:

tag: <type>, <count>, <metric>[, direction]

The following rule logs 100 packets on the session after it is triggered:

alert tcp 192.168.2.0/24 23 -> any any (content: "boota"; msg: "Detected boota"; \

tag: session, 100, packets;)

Table 6 Tag's arguments

147

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

* The tos Keyword : The tos keyword is used to detect a specific value in the Type of Service

(TOS) field of the IP header. The format for using this keyword is as follows:

tos: 1;

* The ttl Keyword : The ttl keyword is used to detect Time to Live value in the IP header of the

packet. The keyword has a value which should be an exact match to determine the TTL value. This

keyword can be used with all types of protocols built on the IP protocol, including ICMP, UDP and

TCP. The general format of the keyword is as follows:

ttl: 100;

Note: The traceroute utility uses TTL values to find the next hop in the path. The traceroute sends UDP packets

with increasing TTL values. The TTL value is decremented at every hop. When it reaches zero, the router generates an

ICMP packet to the source.

Using this ICMP packet, the utility finds the IP address of the router. For example, to find the fifth hop router, the

traceroute utility will send UDP packets with TTL value set to 5. When the packet reaches the router at the fifth hop, its

value becomes zero and an ICMP packet is generated.

Using the ttl keyword, you can find out if someone is trying to traceroute through your network. The only problem

is that the keyword needs an exact match of the TTL value.

* The uricontent Keyword : The uricontent keyword is similar to the content keyword except

that it is used to look for a string only in the URI part of a packet.

A.5 The Snort Configuration File

Snort uses a configuration file at startup time. A sample configuration file Snort.conf is included

in the Snort distribution. You can use any name for the configuration file, however Snort.conf is the

conventional name. You use the -c command line switch to specify the name of the configuration file.

The following command uses /opt/Snort/Snort.conf as the configuration file.

148

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

/opt/Snort/Snort -c /opt/Snort/Snort.conf

Snort.conf contains six basic sections:

• Variable definitions.

• Config parameters.

• Preprocessor configuration.

• Output module configuration.

• Defining new action types.

• Rules configuration and include files.

Using Variables in Rules

you can define a variable HOME_NET in the configuration file: var HOME_NET

192.168.1.0/24

Later on you can use this variable HOME_NET in your rules:

alert ip any any -> $HOME_NET any (ipopts: lsrr; \

msg: “Loose source routing attempt”; sid: 1000001;)

As you can see, using variables makes it very convenient to adapt the configuration file and

rules to any environment. For example, you don’t need to modify all rules when you copy rules from

one network to another.

Using a List of Networks in Variables

var HOME_NET [192.168.1.0/24,192.168.10.0/24]

149

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Using Interface Names in Variables

var HOME_NET $eth0_ADDRESS

var EXTERNAL_NET $eth1_ADDRESS

Using the any Keyword

The any keyword can also be a variable: var EXTERNAL_NET any

There are many variables defined in the Snort.conf file that come with the

Snort distribution. While installing Snort, you need to modify these variables according

to your network.

The config Directives (¡!)

The config directives in the Snort.conf file allow a user to configure many general settings for

Snort. Examples include the location of log files, the order of applying rules and so on.

Preprocessor Configuration

Preprocessors or input plug-ins operate on received packets before Snort rules are applied

to them. The preprocessor configuration is the second major part of the configuration file. Detailed

information about each preprocessor is found in manuals.

The general format of configuring a preprocessor is as follows:

preprocessor <preprocessor_name>[: <configuration_options>]

The following is an example of a line in the configuration file for IP defragmentation

preprocessor frag2.

preprocessor frag2

150

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Output Module Configuration

Output modules, also called output plug-ins, manipulate output from Snort rules. For example,

if you want to log information to a database or send SNMP traps, you need output modules. The

following is the general format for specifying an output module in the configuration file.

output <output_module_name>[: <configuration_options>]

For example, if you want to store log messages to a MySQL database, you can configure an

output module that contains the database name, database server address, user name and password.

output database: alert, mysql, user=rr password=boota \

dbname=Snort host=localhost

There may be additional steps to make the output module work properly. In the case of MySQL

database, you need to setup a database, create tables, create user, set permissions and so on.

Defining New Action Types

You already know that the first part of each Snort rule is the action item. Snort has predefined

action types; however, you can also define your own action types in the configuration file. A new action

type may use multiple output modules.

The following action type creates alert messages that are logged into the database as well as in a

file in

the tcpdump format.

ruletype dump_database

{

type alert

output database: alert, mysql, user=rr dbname=Snort \

151

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

host=localhost

output log_tcpdump: tcpdump_log_file

}

This new action type can be used in rules just like other action types.

dump_database icmp any any -> 192.168.1.0/24 any (fragbits: D; msg: "Don’t Fragment bit

set";)

When a packet matches the criteria in this rule, the alert will be logged to the database as well

as to the tcpdump_log_file.

Rules Configuration

The rules configuration is usually the last part of the configuration file. You can create as many

rules as you like using variables already defined in the configuration file. The rules configuration is the

place in the configuration file where you can put your rules. However the convention is to put all Snort

rules in different text files. You can include these text files in the Snort.conf file using the “include”

keyword. Snort comes with many predefined rule files. The names of these rule files end with .rule.

All files in the Snort distribution whose name ends with .rules contain rules and they are

included in the Snort.conf file. These rule files are included in the main Snort.conf file using the

“include” keyword. The following is an example of including myrules.rules file in the main

configuration file.

include myrules.rules

Note: It is not necessary that the name of the rules file must end with .rule. You can use a name of your choice for

your rule file.

152

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

A.6 Plugins, Preprocessors and Output Modules

Preprocessors

When a packet is received by Snort, it may not be ready for processing by the main Snort

detection engine and application of Snort rules. For example, a packet may be fragmented. Before you

can search a string within the packet or determine its exact size, you need to defragment it by

assembling all fragments of the data packet. The job of a preprocessor is to make a packet suitable for

the detection engine to apply different rules to it.

Configuration parameters for different preprocessors are present in the Snort.conf file. Using the

file, you can enable or disable different preprocessors.

All enabled preprocessors operate on each packet. There is no way to bypass some of the

preprocessors based upon some criteria. If you have enabled a large number of preprocessors, you may

slow down Snort detection process. Therefore you should be careful when enabling preprocessors.

The general format of enabling a preprocessor is as follows:

preprocessor <name of preprocessor>[: parameters]

Brief description of different preprocessors:

HTTP Decode : The Hyper Text Transfer Protocol (HTTP) allows Intrusion Detection Systems

to use hexadecimal characters in URI to defeat known attacks. For example, this can be done by

inserting something like %3A%2F%2F in the URI to replace :// characters. A large number of attacks

on web servers are carried by obfuscating URI characters using hexadecimal numbers in the URI. The

HTTP decode blocks any such attempts by converting them to the actual URI.

Port Scanning : The first step in any intruder activity is usually to find out what services are

running on a network. Once an intruder has found this information, attacks for known vulnerabilities

for these services are tried. The portscan preprocessor is designed to detect port scanning activities.

153

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

You can also use another preprocessor in conjunction with this preprocessor. This preprocessor

is portscan-ignorehosts, which can be used to ignore some hosts if any port scanning activity is

detected from them.

The frag2 Module : With frag2, you can configure timeout and memory limits for packet

defragmenta-

tion. By default, the preprocessor uses 4 MB of memory and a 60-second timeout period. If a

packet assembly is not successful within this time period, previously collected fragments are discarded.

The stream4 Module : It provides two basic functions:

1. TCP stream reassembly

2. Stateful inspection

You must configure two preprocessors in the Snort.conf file for Stream4 to work properly.

These modules are “stream4” and “stream4_reassemble.” Both of these take a number of arguments. If

you don’t specify an argument, a default value is used instead.

ARP Spoofing : Address Resolution Protocol (ARP) is used to find a MAC address when an IP

address is known.

Note: ARP is needed when a host wants to send an IP packet to another host on the local network. The sending

host broadcasts an ARP packet on the network asking, “Who has this IP address?” The host who has that IP address will

respond with its MAC address. After that, the sending host will send the data packet (usually called a frame at the link layer

level) to the destination host.

The arpspoof preprocessor detects anomalies in ARP packets.

Output Modules

Output modules are used to control the output from Snort detection engine. By default, the

154

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

output from alerts and logs go into files in the /var/log/Snort directory. Using output modules, you can

process output and send output messages a number of other destinations.

Output modules can be defined in the Snort configuration file and some of them can also be

configured on the command line as well. The general format for defining the output module inside the

configuration file is as follows: output <module_name>[: arguments]

For example, if you want to log messages to MySQL database called “Snort” using database

user name “rr” and password “rr” located on the same machine where Snort is running, you use the

following line in Snort.conf file.

output database: log, mysql, user=rr password=rr \

dbname=Snort host=localhost

However when you use an output module in the configuration file, alerts will not go into the

alert file. Once you place this line in the Snort.conf file, all alerts will go into the MySQL database.

There are ways to send alerts to multiple destinations.

Sometimes you may want to send alerts to multiple locations. Defining your own action using

the ruletype keyword is a good idea.

Sometimes you may want to send alerts to multiple locations. Defining your own action using

the ruletype keyword is a good idea. For example, the following lines in the Snort.conf file will define

an action type called “smb_db_alert” that will cause alerts to be sent to both the database and SMB

pop-up windows for rules that use this action type.

ruletype smb_db_alert

{

type alert

output alert_smb: workstation.list

output database: log, mysql, user=rr password=rr \

dbname=Snort host=localhost

155

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

}

The following rule uses this new action type. Alerts generated by this rule will go to MySQL

database as well as to the Windows machine in the form of pop-up windows.

smb_db_alert icmp any any -> 192.168.1.0/24 any (fragbits: D; msg: "Dont Fragment bit

set";)

You can also use command line options with some output modules. For example, you can use -s

option to log alerts to Syslog.

* The alert_syslog Output Module : The alert_syslog module allows you to send alerts to the

syslog facility.

* The alert_full Output Module : The alert_full module logs full alert messages in a file. The

following line will log all alert messages to alert_detailed file under the Snort logging directory.

output alert_full: alert_detailed

However, enabling full alerts consumes a significant amount of time to log data into a file,

causing some packets to be ignored by the detection engine.

* The alert_fast Output Module : Like alert_full, alert_fast also takes as an argument a file

name for storing data. It is fast compared to full alerting. Packet headers are not saved in the alert file.

The fol-

lowing line in the Snort.conf file enables one-line alert messages to be stored in alert_quick file.

output alert_fast: alert_quick

* The alert_smb Module : SMB alerts are sent to Microsoft Windows-based workstations using

the smb client program which is part of the SAMBA client package on Linux machines. To send these

alerts, the smbclient must be present in the PATH variable.

156

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

* The log_tcpdump Output Module : This module is used to store alert data in a tcpdump

format file that can be viewed later on using tcpdump or some other tool. This method is quick for

heavily loaded networks where you want to offload processing from the Snort system and analyze data

using some other mechanism. Following is the general format for using this module in Snort.conf file.

output log_tcpdump: <filename>

Typical entries in the Snort.conf file may look like the following:

output log_tcpdump: /var/log/Snort/Snort_tcpdump.log

Each time you start Snort, a new file is created.

Now you can display the contents of this file (the captured data) using the tcpdump command as

follows:

 tcpdump -v -r /var/log/Snort/ Snort_tcpdump.log.1039971287 since the file created is in

rcpdump format.

* Logging to Databases : Databases are used with Snort to store log and alert data. Logging data

to files in the disk is fine for smaller applications. However, keeping log data in disk files is not

appropriate when you have multiple Snort sensors or you want to keep historical data as well.

Databases also allow you to analyze data generated by Snort sensors.

For example, if you want to find the top 15 alerts that are generated most frequently, you can

use SQL statements for the database. Finding the same information from log files is difficult. Similarly,

if you want to find the most active attackers in the month of November 2002, it is very easy to find out

that information from a database.

You can use multiple types of databases with Snort including Oracle and MySQL.

output database: log, mysql, user=rr password=rr \

dbname=Snort host=localhost

157

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

To enable support of databases, you need to compile Snort with database support enabled. The

following configure script enables MySQL database support in Snort.

./configure --prefix=/opt/Snort --with-mysql=/usr/lib/mysql

There are some other output modules, but are beyond the scope of this project:

* CSV Output Module .

* Unified Logging Output Module .

* SNMP Traps Output Module .

*Log Null Output Module .

A.7 Using Snort with MySQL

All systems need some type of efficient logging feature, usually using a database at the

backend. Snort can be made to work with MySQL or Oracle for example.You already know from the

discussion of output modules in the previous point that you can save logs and alerts to a database.

Logging to a database is very useful for maintaining history data, generating reports and

analyzing information. By using other tools like Analysis Control for Intrusion Detection (ACID),

discussed in next, you can get very useful information from the database about attack patterns. For

example, you can get a report about the last fifteen unique attacks, information about hosts that are

continuously attacking your network, the distribution of attacks by different protocols, and so on.

Since MySQL is a freely available database and works perfectly well on Linux and other

operating systems, this is a natural choice for Snort.

There exists different scenarios when dealing with Snort and databases, but when you are

running only one sensor and don’t have any pre-existing database server, it is a natural choice to install

the database on the Snort machine itself.

158

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Before you start logging to MySQL database, you have to create a database on the database

server for Snort. After creating the database, you have to create tables where Snort data is logged.

However, you don’t need to create tables manually because Snort comes with a script that will do the

entire job for you. To work with MySQL, you may have to recompile Snort with MySQL support.

After going through this point, you should be able to install Snort and MySQL so that all of the

Snort activity is logged to the database.

A.8 Using ACID with Snort

Analysis Console for Intrusion Databases (ACID) is a tool used to analyze and present Snort

data using a web interface. It is written in PHP. It works with Snort and databases like MySQL.

ACID consists of many Pretty Home Page (PHP) scripts and configuration files that work

together to collect and analyze information from a database and present it through a web interface. A

user will use a web browser to interact with ACID. You have to have a web server, database server,

PHP and some other tools installed on your system to make it work.

159

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Annexe B: Virtual scenario for Modbus software.

I'm going to be using virtualbox for this.

B.1 Introduction Modbus IP

References:

1. “Modbus for Field Technicians” by Peter Chipkin.
2. programming the Modbus: http://pes.free.fr/libModbus.html
3. Modbus and Snort: pag. 131 in Snort_manual.pdf
4. coils and registers, slave (server) client (master) http://www.control.com/thread/1230731691
5. Modbus_protocol.pdf
6. Modbus_wiki.pdf
7. Snort-intrusion-detection-Modbus-tcp-ip-communications.pdf

B.2 Modbus IP , simulated Master, simulated Slave, Snort with fixed Modbus ruleset

VIRTUAL MACHINES:

Installing the virtual machines:

2 x Xubuntu/Openbox Modbus master & slave
1 x Xubuntu : Snort sensor.

Linux- Snort_Sensor:

Name: LinuxXubuntu-Snort sensor
OS Type: Ubuntu
Base Memory: 512 Mb
Start-up Disk: LinuxXubuntu - Snort sensor.vdi (Normal, 4.00 GB)
Network: Adapter 1: Intel PRO/1000 MT Desktop (Bridged adapter, wlan0)

Modbus – Master:

Name: Modbus - Master
OS Type: Ubuntu
Base Memory: 512 MB
Start-up Disk: Modbus - Master.vdi (Normal, 4.00 GB)
Network: Adapter 1: Intel PRO/1000 MT Desktop (Bridged adapter, wlan0)

160

http://www.control.com/thread/1230731691
http://pes.free.fr/libmodbus.html

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Modbus – Slave:

Name: Modbus - Slave
OS Type: Ubuntu
Base Memory: 512 MB
Start-up Disk: Modbus - Slave.vdi (Normal, 4.00 GB)
Network: Adapter 1: Intel PRO/1000 MT Desktop (Bridged adapter, wlan0)

→ note: less than 4.00 GB for storage is not possible, the installation doesn't run.

- VirtualBox: how to install our Debian

How to create a virtual machine from an .iso file
http://www.pentest.ro/install-a-clean-debian-on-virtualbox/

IMPORTANT: for further reboots, pay attention to the configuration of the boot order...
- place the “hard disk” as the first option, otherwise you'll get the installation
routine every time you reboot the virtual machine.

CREATING OUR VIRTUAL NETWORK:

References:
• http://www.virtualbox.org/manual/ch06.html
• https://blogs.oracle.com/fatbloke/entry/networking_in_virtualbox1
• Virtualbox: Virtual networking by Ravikiran Dighade

http://www.csee.umbc.edu/~kalpakis/Courses/621/project/VirtualBox-VirtualNetworking.pdf

XUBUNTU && OPENBOX:

- Xubuntu-12.10
From .iso, we create a virtual machine in which we install our Snort following the

instructions in the previously signaled website.

- remove unnecessary: games, chat-irc, open-office... through “Ubuntu Sofware
Center”, it will make faster our system.

- By now, we leave any development tool, but when setting off our Snort in a real
environment, remember to strip off any compiler, unnecessary libraries or other useful
stuff to a posible intruder.

- Alternatively you can install openbox, one of the most lightweight window managers
available:

sudo apt-get install openbox openbox-themes obconf obmenu

It will add an openbox session to the login menu.

161

http://www.csee.umbc.edu/~kalpakis/Courses/621/project/VirtualBox-VirtualNetworking.pdf
https://blogs.oracle.com/fatbloke/entry/networking_in_virtualbox1
http://www.virtualbox.org/manual/ch06.html
http://www.pentest.ro/install-a-clean-debian-on-virtualbox/

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

sudo apt-get remove xfce*

It will supress the graphical environment for the xfce just leaving the options of
Xubuntu graphical interface and Openbox when rebooting our VM, from which we choose Openbox.

With this new environment (Openbox) our machine works faster.
The environment is so simple that we don't even have a task bar with the windows we

have in use, for that “Alt + tab” will move you from one window to the other.

- Snort's installation from sources:

* some development tools & libraries we need:
• flex
• bison
• checkinstall
• libpcap0.8
• libnet1.0

apt-get install flex bison build-essential checkinstall libpcap0.8-dev libnet1-dev

* we must download the next components for our installation:

• libpcap1.3 (updated)
• daq0.2
• pcre8.32
• libdnet1.12 (updated)
• zlib1.2.7
• Snort2.9.4

cd libpcap1.3
./configure && make && checkinstall
dpkg -i libpcap0.8*.deb

cd daq-0.2
./configure && make && checkinstall
dpkg -i daq_0.2-1_i386.deb

cd pcre-8.32
./configure && make && checkinstall
dpkg -i pcre*.deb

cd libdnet-1.12

./configure && make && checkinstall

dpkg -i libdnet*.deb

cd zlib-1.2.7
./configure && make && checkinstall
dpkg -i zlib*.deb

162

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

And now we are already able to install our Snort sensor:

cd Snort-2.9.4
./configure && make && checkinstall
dpkg -i Snort_*.deb

ERROR when running for the first time Snort:

“Snort: error while loading shared libraries: libdnet.1: cannot open shared object file: no such file”
Meaning that Snort does not find libdnet location.

Solution:
LD_LIBRARY_PATH=/usr/local/lib
export LD_LIBRARY_PATH

But this is a tiresome solution, since you have to add this any time you start off Snort...

Must find any “fix” solution...
http://www.linuxquestions.org/questions/linux-newbie-8/Snort-error-while-loading-shared-libraries-
libd net-1-cannot-open-shared-object-fil-901530/
Using a manually installed "libdnet-1.11" (Installed to /usr/local/) :
cd /usr/lib/
sudo ln -s /usr/local/lib/libdnet.1.0.1 libdnet.1

This solution adds a soft link to the libraries directory, possibiliting Snort to find the library that he
missed.

Modbus:

www.Modbusdriver.com/modpoll.html → master simulator
www.Modbusdriver.com/diagslave.html → slave simulator
• download the program for slave and master: diagslave, modpoll.
• Enter into the linux folder where we can find the binary.
◦ */Downloads/xxxxx/linux
◦ The binary contained in has no execution rights: we must give them to it.
▪ chmod u+x diagslave && ./diagslave
▪ chmod u+x modpoll && ./modpoll

• In our slave:
ifconfig → to get the IP address xxx.xxx.xxx.xxx

163

http://www.modbusdriver.com/diagslave.html
http://www.modbusdriver.com/modpoll.html
http://www.linuxquestions.org/questions/linux-newbie-8/snort-error-while-loading-shared-libraries-libdnet-1-cannot-open-shared-object-fil-901530/
http://www.linuxquestions.org/questions/linux-newbie-8/snort-error-while-loading-shared-libraries-libdnet-1-cannot-open-shared-object-fil-901530/
http://www.linuxquestions.org/questions/linux-newbie-8/snort-error-while-loading-shared-libraries-libdnet-1-cannot-open-shared-object-fil-901530/

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

./diagslave -m tcp -a 1
- put our server waiting for requests in Modbus tcp.

• In our master:
./modpoll -m tcp -a 1 -r 100 -c 5 -l /dev/ttyS0 xxx.xxx.xxx.xxx

- where
./modpoll is our program's name
/dev/ttyS0 is our communication port in linux (in windows it would be COM1, COM2 …)
192.160.1.60 is our Server's address (slave's address)

The process:

1) we put our server to listen (slave)
2) send the request from our master (client)
3) Snort must be listening our network in order to capture the trafic Snort -dev (in mode verbose)

164

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Bibliography:

Books:

• [SteRi01] Stevens, W.Richard “ TCP/IP Illustrated, Volume 1 The Protocols ” Addison-Wesley
Professional Computing Series
Publication Date: December 31, 1993 | ISBN-10: 0201633469 | ISBN-13: 978-0201633467

• [SteRi02] Stevens, W.Richard “UNIX Network Programming: Networking APIs: Sockets and
XTI; Volume 1”

ISBN-10: 013490012X | ISBN-13: 978-0134900124

• [Hck01] Cache, Jonnhy and Liu, Vincent “Hacking Exposed Wireless: Wireless Security
Secrets & Solutions” McGraw-Hill Osborne Media
Publication Date: March 26, 2007 | ISBN-10: 0072262583

• [CmRe01]Schildt, Herbert “ C++: The Complete Reference ” McGraw-Hill Osborne Media
Publication Date: August 1, 1998 | ISBN-10: 0078824761 | ISBN-13: 978-0078824760

• [ProgC01]Kelley, Al and Pohl, Ira “ A Book on C: Programming in C” Addison-Wesley
Professional
Publication Date: January 8, 1998 | ISBN-10: 0201183994 | ISBN-13: 978-0201183993

• [BeJS01]Beale, Jay and R.Baker, Andrew “Snort 2.1 Intrusion Detection” Syngress
Publication Date: May 2004 | ISBN-10: 1931836043 | ISBN-13: 978-1931836043

• [Snus00]The Snort Project May 23, 2012 “Snort Users Manual 2.9.3 ”
Open source: http://www.Snort.org/assets/166/Snort_manual.pdf

• [NeSt00]Matthew, Neil and Stones, Richard “Beginning Linux Programming ” Wrox
Publication Date: November 5, 2007 | ISBN-10: 0470147628 | ISBN-13: 978-0470147627

• [InPe01]Perens, Bruce “Intrusion Detection Systems with Snort Advanced IDS Techniques
Using Snort, Apache, MySQL, PHP, and ACID ”
Open source:
http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/perens/0131407333.pdf

• [AlWe0]Allen Weiss, Mark “Data Structures and Algorithm Analysis in C” Addison-Wesley
Publication Date: September 19, 1996 | ISBN-10: 0201498405 | ISBN-13: 978-0201498400

• [MiLaw0]H.Miller, Lawrence and E.Quilici, Alexander “The Joy of C” Wiley
Publication Date: January 30, 1997 | ISBN-10: 047112933X | ISBN-13: 978-0471129332

165

http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/perens/0131407333.pdf
http://www.snort.org/assets/166/snort_manual.pdf

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Open source references (pdf):

• [AcroM0] Acromag Technical Reference – Modbus TCP/IP INTRODUCTION TO Modbus
TCP/IP
http://www.dee.hcmut.edu.vn/vn/ptn/sch/download/Network_Architecture/intro_ModbusTCP.pdf

• [ezTCP] Technical Document Modbus/TCP of ezTCP Version 1.3
http://www.eztcp.com/documents/application/an_Modbus_tcp_en.pdf

• [MoSe00] Modbus over Serial Line Specification and Implementation Guide V1.02
http://www.Modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

Web:

• About network security:

◦ [1] at wikipedia: http://en.wikipedia.org/wiki/Network_security (2013,May 5th)
◦ [2] at webopedia:

http://www.webopedia.com/TERM/N/network_security.html (2013,May 5th)
◦ [3] at Magazine Encyclopedia: http://www.pcmag.com/encyclopedia/term/47911/network-

security (2013,May 5th)

• About pcap:

◦ [4] http://yuba.stanford.edu/~casado/pcap/section1.html
◦ [5] http://code.google.com/p/pcapsctpspliter/issues/detail?id=6
◦ [6] http://www.tcpdump.org/pcap.htm

• Pcap samples:

◦ [7] http://wiki.wireshark.org/SampleCaptures
◦ [8] http://www.pcapr.net/home

• About Snort:

◦ [9] http://www.Snort.org/
◦ [10] http://manual.Snort.org/node1.html
◦ [11] http://oreilly.com/pub/h/1393
◦ [12] http://insidetrust.blogspot.ie/2010/12/how-to-use-Snort-on-backtrack-4-basic.html
◦ [13] http://www.aboutdebian.com/Snort.htm
◦ [14] http://bailey.st/blog/2010/10/06/compiling-Snort-2-9-0/

166

http://bailey.st/blog/2010/10/06/compiling-snort-2-9-0/
http://www.aboutdebian.com/snort.htm
http://insidetrust.blogspot.ie/2010/12/how-to-use-snort-on-backtrack-4-basic.html
http://oreilly.com/pub/h/1393
http://manual.snort.org/node1.html
http://www.snort.org/
http://www.pcapr.net/home
http://wiki.wireshark.org/SampleCaptures
http://www.tcpdump.org/pcap.htm
http://code.google.com/p/pcapsctpspliter/issues/detail?id=6
http://yuba.stanford.edu/~casado/pcap/section1.html
http://www.pcmag.com/encyclopedia/term/47911/network-security
http://www.pcmag.com/encyclopedia/term/47911/network-security
http://www.webopedia.com/TERM/N/network_security.html
http://en.wikipedia.org/wiki/Network_security
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
http://www.eztcp.com/documents/application/an_modbus_tcp_en.pdf
http://www.dee.hcmut.edu.vn/vn/ptn/sch/download/Network_Architecture/intro_modbusTCP.pdf

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• About linux and C programming:

◦ [15] http://www.freeos.com/guides/lsst/
◦ [16] http://linuxcommand.org/writing_shell_scripts.php
◦ [17] http://www.cprogramming.com/
◦ [18] http://www.tenouk.com/Module40c.html
◦ [19] http://www.thegeekstuff.com/2011/12/c-socket-programming/
◦ [20] http://www.gnu.org/software/libc/manual/html_node/Getopt.html
◦ [21] http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.15.html

• About Modbus and other Industrial Protocols or networking in general:

◦ [22] http://en.wikipedia.org/wiki/Industrial_Ethernet
◦ [23] http://en.wikipedia.org/wiki/Modbus
◦ [24] http://www.Modbus.org/
◦ [25] http://www.rtaautomation.com/Modbustcp/
◦ [26] http://compnetworking.about.com/od/networkprotocols/g/protocols.htm
◦ [27] http://en.wikipedia.org/wiki/Transmission_Control_Protocol

• About cybersecurity in Industrial Control and SCADA systems.

◦ [28] http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-
control-systems/

◦ [29] http://en.wikipedia.org/wiki/Control_system_security
◦ [30] http://www.tofinosecurity.com/
◦ [31] http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-

blackout _ n_3279626.html?utm_hp_ref=technology
◦ [32] http://www.bbc.co.uk/news/technology-22594140
◦ [33] http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-

building -management-systems/
◦ [34] https://www.cert.be/pro/attacks-scada-systems
◦ [35] http://www.electricenergyonline.com/?page=show_article&article=181
◦ [36] http://threatpost.com/attacks-scada-ics-honeypots-modified-critical-operations-031913/
◦ [37] http://www.prweb.com/releases/2013/3/prweb10580258.htm

167

http://www.prweb.com/releases/2013/3/prweb10580258.htm
http://threatpost.com/attacks-scada-ics-honeypots-modified-critical-operations-031913/
http://www.electricenergyonline.com/?page=show_article&article=181
https://www.cert.be/pro/attacks-scada-systems
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building-management-systems/
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-
http://www.bbc.co.uk/news/technology-22594140
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout_n_3279626.html?utm_hp_ref=technology
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout_n_3279626.html?utm_hp_ref=technology
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-
http://www.tofinosecurity.com/
http://en.wikipedia.org/wiki/Control_system_security
http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-control-systems/
http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://compnetworking.about.com/od/networkprotocols/g/protocols.htm
http://www.rtaautomation.com/modbustcp/
http://www.modbus.org/
http://en.wikipedia.org/wiki/Modbus
http://en.wikipedia.org/wiki/Industrial_Ethernet
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.15.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.thegeekstuff.com/2011/12/c-socket-programming/
http://www.tenouk.com/Module40c.html
http://www.cprogramming.com/
http://linuxcommand.org/writing_shell_scripts.php
http://www.freeos.com/guides/lsst/

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Revisión de la Bibliografía

Libros :

• [SteRi01] Stevens, W.Richard “ TCP/IP Illustrated, Volume 1 The Protocols ” Addison-Wesley
Professional Computing Series , Publication Date: December 31, 1993 | ISBN-10: 0201633469 |
ISBN-13: 978-0201633467

• [SteRi02] Stevens, W.Richard “UNIX Network Programming: Networking APIs: Sockets and
XTI; Volume 1” , ISBN-10: 013490012X | ISBN-13: 978-0134900124

• [Hck01] Cache, Jonnhy and Liu, Vincent “Hacking Exposed Wireless: Wireless Security Secrets
& Solutions” McGraw-Hill Osborne Media , Publication Date: March 26, 2007 | ISBN-10:
0072262583

• [CmRe01]Schildt, Herbert “ C++: The Complete Reference ” McGraw-Hill Osborne Media
Publication Date: August 1, 1998 | ISBN-10: 0078824761 | ISBN-13: 978-0078824760

• [ProgC01]Kelley, Al and Pohl, Ira “ A Book on C: Programming in C” Addison-Wesley
Professional , Publication Date: January 8, 1998 | ISBN-10: 0201183994 | ISBN-13: 978-
0201183993

• [BeJS01]Beale, Jay and R.Baker, Andrew “Snort 2.1 Intrusion Detection” Syngress Publication
Date: May 2004 | ISBN-10: 1931836043 | ISBN-13: 978-1931836043

• [Snus00]The Snort Project May 23, 2012 “Snort Users Manual 2.9.3 ” ,
Open source: http://www.Snort.org/assets/166/Snort_manual.pdf

• [NeSt00]Matthew, Neil and Stones, Richard “Beginning Linux Programming ” Wrox
Publication Date: November 5, 2007 | ISBN-10: 0470147628 | ISBN-13: 978-0470147627

• [LinSP00]Love, Robert “Linux System Programming” O'Reilly
Publication Date: September 2007 | ISBN-10: 0-596-00958-5 | ISBN-13: 978-0-596-00958-8

• [InPe01]Perens, Bruce “Intrusion Detection Systems with Snort Advanced IDS Techniques
Using Snort, Apache, MySQL, PHP, and ACID ”
Open source:
http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/perens/0131407333.pdf

• [AlWe0]Allen Weiss, Mark “Data Structures and Algorithm Analysis in C” Addison-Wesley
Publication Date: September 19, 1996 | ISBN-10: 0201498405 | ISBN-13: 978-0201498400

• [MiLaw0]H.Miller, Lawrence and E.Quilici, Alexander “The Joy of C” Wiley
Publication Date: January 30, 1997 | ISBN-10: 047112933X | ISBN-13: 978-0471129332

168

http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/perens/0131407333.pdf
http://www.snort.org/assets/166/snort_manual.pdf

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

Open source references (pdf):

• [AcroM0] Acromag Technical Reference – Modbus TCP/IP INTRODUCTION TO Modbus
TCP/IP
http://www.dee.hcmut.edu.vn/vn/ptn/sch/download/Network_Architecture/intro_ModbusTCP.pdf

• [ezTCP] Technical Document Modbus/TCP of ezTCP Version 1.3
http://www.eztcp.com/documents/application/an_Modbus_tcp_en.pdf

• [MoSe00] Modbus over Serial Line Specification and Implementation Guide V1.02
http://www.Modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

Web:

• About network security:

◦ [1] at wikipedia: http://en.wikipedia.org/wiki/Network_security (2013,May 5th)
◦ [2] at webopedia: http://www.webopedia.com/TERM/N/network_security.html (2013,May

5th)
◦ [3] at Magazine Encyclopedia: http://www.pcmag.com/encyclopedia/term/47911/network-

security.html (2013,May 5th)

• About pcap:

◦ [4] http://yuba.stanford.edu/~casado/pcap/section1.html
◦ [5] http://code.google.com/p/pcapsctpspliter/issues/detail?id=6
◦ [6] http://www.tcpdump.org/pcap.htm

• Pcap samples:

◦ [7] http://wiki.wireshark.org/SampleCaptures
◦ [8] http://www.pcapr.net/home

• About Snort:

◦ [9] http://www.Snort.org/
◦ [10] http://manual.Snort.org/node1.html
◦ [11] http://oreilly.com/pub/h/1393
◦ [12] http://insidetrust.blogspot.ie/2010/12/how-to-use-Snort-on-backtrack-4-basic.html
◦ [13] http://www.aboutdebian.com/Snort.htm
◦ [14] http://bailey.st/blog/2010/10/06/compiling-Snort-2-9-0/

169

http://bailey.st/blog/2010/10/06/compiling-Snort-2-9-0/
http://www.aboutdebian.com/snort.htm
http://insidetrust.blogspot.ie/2010/12/how-to-use-snort-on-backtrack-4-basic.html
http://oreilly.com/pub/h/1393
http://manual.snort.org/node1.html
http://www.snort.org/
http://www.pcapr.net/home
http://wiki.wireshark.org/SampleCaptures
http://www.tcpdump.org/pcap.htm
http://code.google.com/p/pcapsctpspliter/issues/detail?id=6
http://yuba.stanford.edu/~casado/pcap/section1.html
http://www.pcmag.com/encyclopedia/term/47911/network-security.html
http://www.pcmag.com/encyclopedia/term/47911/network-security.html
http://www.pcmag.com/encyclopedia/term/47911/network-security.html
http://www.webopedia.com/TERM/N/network_security.html
http://en.wikipedia.org/wiki/Network_security
http://www.Modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
http://www.eztcp.com/documents/application/an_Modbus_tcp_en.pdf
http://www.dee.hcmut.edu.vn/vn/ptn/sch/download/Network_Architecture/intro_ModbusTCP.pdf

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• About linux and C programming:

◦ [15] http://www.freeos.com/guides/lsst/
◦ [16] http://linuxcommand.org/writing_shell_scripts.php
◦ [17] http://www.cprogramming.com/
◦ [18] http://www.tenouk.com/Module40c.html
◦ [19] http://www.thegeekstuff.com/2011/12/c-socket-programming/
◦ [20] http://www.gnu.org/software/libc/manual/html_node/Getopt.html
◦ [21] http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.15.html

• About Modbus and other Industrial Protocols or networking in general :

◦ [22] http://en.wikipedia.org/wiki/Industrial_Ethernet
◦ [23] http://en.wikipedia.org/wiki/Modbus
◦ [24] http://www.Modbus.org/
◦ [25] http://www.rtaautomation.com/Modbustcp/
◦ [26] http://compnetworking.about.com/od/networkprotocols/g/protocols.htm
◦ [27] http://en.wikipedia.org/wiki/Transmission_Control_Protocol

• About cybersecurity in Industrial Control and SCADA systems.

◦ [28]http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-
control-systems/

◦ [29] http://en.wikipedia.org/wiki/Control_system_security
◦ [30] http://www.tofinosecurity.com/
◦ [31]http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-

blackout_n_3279626.html?utm_hp_ref=technology
◦ [32] http://www.bbc.co.uk/news/technology-22594140
◦ [33]http://www.rtve.es/alacarta/videos/informe-semanal/informe-semanal-espionaje-

masivo/1875087
◦ [34]http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-

building-management-systems/
◦ [35] https://www.cert.be/pro/attacks-scada-systems
◦ [36] http://www.electricenergyonline.com/?page=show_article&article=181
◦ [37] http://threatpost.com/attacks-scada-ics-honeypots-modified-critical-operations-031913/
◦ [38] http://www.prweb.com/releases/2013/3/prweb10580258.htm
◦ [39] http://esmateria.com/2013/06/04/la-ciberguerra-es-inevitable/
◦ [40] http://www.bbc.co.uk/news/technology-22524274)
◦ [41] http://www.datacenterdynamics.es/focus/archive/2012/01/los-ataques-se-incrementa

%C3%A1n-sobre-los-sistemas-scada-en-2012
◦ [42] http://www.eset.es/soporte/315

170

http://www.eset.es/soporte/315
http://www.datacenterdynamics.es/focus/archive/2012/01/los-ataques-se-incrementa%C3%A1n-sobre-los-sistemas-scada-en-2012
http://www.datacenterdynamics.es/focus/archive/2012/01/los-ataques-se-incrementa%C3%A1n-sobre-los-sistemas-scada-en-2012
http://www.datacenterdynamics.es/focus/archive/2012/01/los-ataques-se-incrementa%C3%A1n-sobre-los-sistemas-scada-en-2012
http://www.bbc.co.uk/news/technology-22524274
http://esmateria.com/2013/06/04/la-ciberguerra-es-inevitable/
http://www.prweb.com/releases/2013/3/prweb10580258.htm
http://threatpost.com/attacks-scada-ics-honeypots-modified-critical-operations-031913/
http://www.electricenergyonline.com/?page=show_article&article=181
https://www.cert.be/pro/attacks-scada-systems
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building-management-systems/
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building-management-systems/
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building-management-systems/
http://www.rtve.es/alacarta/videos/informe-semanal/informe-semanal-espionaje-masivo/1875087
http://www.rtve.es/alacarta/videos/informe-semanal/informe-semanal-espionaje-masivo/1875087
http://www.rtve.es/alacarta/videos/informe-semanal/informe-semanal-espionaje-masivo/1875087
http://www.bbc.co.uk/news/technology-22594140
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout_n_3279626.html?utm_hp_ref=technology
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout_n_3279626.html?utm_hp_ref=technology
http://www.tofinosecurity.com/
http://en.wikipedia.org/wiki/Control_system_security
http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-control-systems/
http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-control-systems/
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://compnetworking.about.com/od/networkprotocols/g/protocols.htm
http://www.rtaautomation.com/Modbustcp/
http://www.Modbus.org/
http://en.wikipedia.org/wiki/Modbus
http://en.wikipedia.org/wiki/Industrial_Ethernet
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.15.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.thegeekstuff.com/2011/12/c-socket-programming/
http://www.tenouk.com/Module40c.html
http://www.cprogramming.com/
http://linuxcommand.org/writing_shell_scripts.php
http://www.freeos.com/guides/lsst/

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

• About Linux:

◦ [43]http://en.wikipedia.org/wiki/Linux
◦ [44]http://distrowatch.com/
◦ [45]http://slashdot.org/
◦ [46]http://openbox.org/
◦ [47]http://en.wikipedia.org/wiki/Openbox
◦ [48]http://www.debian.org/
◦ [49]http://en.wikipedia.org/wiki/Debian
◦ [50]http://en.wikipedia.org/wiki/Ubuntu_%28operating_system%29
◦ [51]http://xubuntu.org/

▪ [52]http://xubuntu.org/about/

171

http://xubuntu.org/about/
http://xubuntu.org/
http://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://en.wikipedia.org/wiki/Debian
http://www.debian.org/
http://en.wikipedia.org/wiki/Openbox
http://openbox.org/
http://slashdot.org/
http://distrowatch.com/
http://en.wikipedia.org/wiki/Linux

Arturo Ruiz Mañas
Desarrollo de un 'sniffer' para la generación de listas blancas para Snort

172

	Whitelisting Sniffer and Statistical
	Traffic Study for Snort (IDS)
	B.1 Introduction Modbus IP
	B.2 Modbus IP , simulated Master, simulated Slave, Snort with fixed Modbus ruleset
	[SteRi02] Stevens, W.Richard “UNIX Network Programming: Networking APIs: Sockets and XTI; Volume 1”

