Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

UNIVERSIDAD DE ZARAGOZA

ESCUELA DE INGENIERIA Y ARQUITECTURA

Escuela de
Ingenieria y Arquitectura
Universidad Zaragoza

Escuela de Ingenieria y Arquitectura

Desarrollo de un 'sniffer' para la
generacion de listas blancas para Snort

Arturo Ruiz Manas =

OSNA Cyber Security Research Group =~ www.osna-solutions.com S R T TR

Director: Dr. Michael Schukat
Ponente: Dr. José Luis Salazar Riafio

email: arruma2160@gmail.com
Zaragoza, Agosto de 2013

http://www.osna-solutions.com/
mailto:arruma2160@gmail.com

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Resumen

A lo largo de esta memoria, voy a tratar sobre el complejo pero importante problema de la
seguridad en redes de Control Industrial y sistemas SCADA (Supervisory Control And Data
Acquisition). Para esto, previo a este trabajo, se me ha presentado abundante informacién sobre
Hacking y técnicas de Intrusion ICS (Internet Connection Sharing). En el presente texto
profundizaremos en una solucién ante situaciones de “black-hat hacking”'para dichos entornos.

Lograr un nivel alto de seguridad en nuestros sistemas de informacién y sefiales de control es el
objetivo de todo empleado en seguridad informadtica. Durante este texto presentaré el software que he
creado durante mi estancia en el grupo OSNA en Irlanda, que busca precisamente ayudar a conseguir
ese nivel alto de seguridad. Para ello me baso en la idea de “Deep Packet Inspection”[30]: se toma cada
paquete que la interfaz de red detecta y se examinan campos concretos del paquete. De este modo el
programa realizara un estudio de los valores que dichos campos toman, originando una representacion
lo mas precisa posible de la informacion que recorre nuestro segmento de red a estudiar, en forma de
reglas para Snort.

Ademas, otro objetivo afiadido a mi disefio, es el combinar dos de los métodos tradicionales de
seguridad informatica: listas-blancas y listas-negras. Por un lado, nuestro enfoque mediante “Deep
Packet Inspection”, comentado en el parrafo anterior, aporta el enfoque de “listado-blanco”, basado en
listas-blancas, y por otro, el componente de listas-negras vendra dado por la multitud de ficheros de
reglas-Snort colgadas en la red, creadas por especialistas en temas de seguridad informatica[Snus00], y
que como “software libre” que es, podemos perfectamente descargar y utilizar a nuestro antojo. La
integracion en un solo disefio de ambas filosofias, es por lo tanto, un punto interesante a tener en
cuenta.

Sintetizando con pocas palabras, diré que, utilizando mi programa, cuyo fin sera el de elaborar
una descripcion lo mas exacta posible del trafico de red (listas blancas), y pasando dicha representacion
a Snort, programa para la “Deteccion de Intrusiones”, junto con ficheros de listas-negras y
preprocesadores para Snort ya presentes en la Web, estamos generando una herramienta que, sin duda
alguna, va a ser muy util en las tareas de seguridad de redes y que representa a mi parecer, un recurso
muy interesante a tener entre el software de todo encargado de la seguridad en sistemas de
comunicaciones informaticas.

1.Hacking se puede dividir en tres categorias diferentes: hacking de sombrero negro, hacking de sombrero blanco, y hacking de sombrero gris. Los nombres resultan muy
representativos sobre sus significados. Los de sombrero negro son los “malos”, los de sombrero blanco son los “buenos”, y los de sombrero gris son lo que estn entre medio.

il

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Agradecimientos:

En especial a mi familia, por
todo el apoyo recibido por su
parte a lo largo de estos afios.

Agradecimientos al grupo OSNA
y en especial a Michael Schukat.

Debo también agradecer a José Luis su
ayuda en la composicion de este escrito.

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Tabla de Contenidos

Resumen

... i
AGradeCiMIBIILOSeeeeuieeiiiiieeieete ettt ettt ettt st e et e e bt e s ate s be e s bt e sabeesstesabeesatesabeenne ii
Tabla de Contenidos.........ccceirieeiiiiieieeteeee ettt ettt ettt e st e b iii
Tabla de FIGUIASeoriiiiiiieeieee ettt ettt et sttt e be s \%
Lista de Tablascccieeuiiieeiie ettt ettt vi
1. Introduccion y EXposicion de ObjJetiVOscoccuerrueerieerieinieniiienieeieeseeeeeesee e 1

1.1 Introduccién a la Seguridad en Redesccccoeveeriiniinniiennienieeieecceee 1

1.2 Ciberseguridad y Amenazas @ CClccceeeerieeniienieniiienieereesieesie e 1

1.3 Seguridad en Sistemas SCADAcooitiriiritiieeeeteet ettt 2

1.3.1 ¢ Qué significa SCADA?ooovieieeeeeeeeeeeeeee e 2

1.3.2 Nivel de Seguridad en los Sistemas SCADAcccccovvierveeneennnen. 3

1.4 EXpOSiciOn de ODJEtiVOS ...ccueieeuieeeiieeeieeeeieeesteeeereesereeeeeeeeraeesveeeeveeesnnas 3

2. RequiSitos de USUATIOcccveeecieeeiiieeeiieeecieeeeieeeeteeesteeeeveessaaeeseaseesssneessneesseeessseennns 4
2.1 Redes de Comunicacion en el Entorno Industrialccoooeivieniienncnniennee. 4

2.1.1 MOADUS ..ottt ettt st 5

2.2 IDS /IPS (Intrusion Detection System / Intrusion Prevention System) 6
2.2.0 SIIOTT ettt ettt st e s ere e e s nre e e s aee 6

2.3 Requisitos para la Creacion del SOftwareccccccueeeeeeieecieenieeceeeieeieeeen. 7

3. ANALISIS ¥ DISEIIO ...ttt ettt ettt et et et 8
3.1 Entorno de Trabajocccceeecieeeeiieecieeeeeete et e 8

3.2 LIDreria PCAP ...ttt ettt ettt ettt 8

ii

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

3.3 ;Como nuestro programa trabaja con SNOTt?..........ccceeeeevierreeeiieeneeniveeneeneens 9
3.4 Arbol de Listas ANIdadascceceeueeeveeereerereeseseseeseesesssessssessessesssessssesseses 9
4. TMPIEMENTACIONcveeeieiiieriieeiteeie et eete et e steerteeste e bt essbeesaeessseesseasssesssaesnsassseesssesnees 12
4.1 COUIGO .ottt ettt ettt ettt ettt et ettt s et et sae e b et 12
4.2 Diagrama de Flujo del COAig0ccceevueeerieniiriiiiniieieecieeieesteee e 12
4.3 Diagrama de Flujo del Funcionamiento del Programa...........c.ccceecveerueenunennen. 18
5. TSRO ettt s s 20
5.1 Eficacia que NO EfiCienciacccoecerviiiiiiniiieieeieeeecieeee e 20
5.2 Testeo del SOFtWATE........covivuiiiirieeeeeee et 21

5.2.1 Testeo del Sniffer Base y Recogida de Datos IP-TCP y Modbus 21

5.2.2 Testeo mediante “Sniffing” en un Entorno Controlado..................... 24

5.2.3 Testeo del Funcionamiento de 10S SCIIipPtS........cccveerveeirieniiensieennennnen. 24

6. CONCIUSIONESttt ettt ettt et sa et s e b et sae e bt e be s st e be e 24

Anexo A: COdig0 COMPIELO.coociiiiiiiiiiiieeie ettt ettt sttt e st e st e bt e st e e bt e s aeese 26
ANexX0 B: ENGLISH TEPOIT .. .uviiiiiciiieiieeieeteeeett ettt ettt et e e be e e s b e e ssaeeseensneenne 50
Revision de 1a Bibliografiacccocieiiiiiiiiieiieteecee et e 168

iv

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Tabla de figuras

Fig.1 Representacion de mi software + Snort en una red conformada por nodos de interconexion (hubs / switches) ... 4

Fig.2 Ejemplo de set-up de una red MODUSccceouirirririririnininenerteest ettt ettt se b s see s eene 5
Fig.3 MOADUS TCP — ADUoriiiiiiriiiriieeienteerteestee ettt sttt ettt r et e et s e et et sa et e et et s e e s et eneaeneaeneneenens 6
Fig.4 Cabecera en IMOADUS TCPcocoiiiiiiiieiieee ettt ettt ettt et sae et sae e be s bt e be s bt e be e st et e sseenbeeneenseeneenne 6
Fig.5 Flujo de los paquetes a través de 10s mOdulos de SNOTTEcocuevuiiiieriiienieiieieeetee ettt 6
Fig.6 EJemplo de TeZla STIOTTccueoiiiririieriietieiertest ettt ettt ettt sa b e sa ettt e et et et e et e st ebe e b sbe s e benee 7
Fig.7 Nodo en una lista anidadaccceceeeeeruiriinieienieeiee ettt sttt ettt ettt et et ea et b bbbt e st e e ae 10
Fig.8 Ejemplo de lista anidadaccccooueieeiienieieeieiete ettt ettt ettt se et sae et bbbt e besaaens 10
Fig.9 Representacién “reducida” de un “Arbol de listas anidadas”c.cccceeeeveevevruereerensesensesessessssessesessssseenanns 11
Fig.10 Nodo del Arbol de Listas ANIAAAASccueveveeverieceersieeieeseeeeessesssseessessessessessssssssessssssssssessessasssssssssssesses 11
Fig. 11 VISION IODAL ...ttt ettt et ettt s h e bt b e s bt e bt e e et et et e st emeeneebeebeenesbens 12
FIG.12 PCAP_I00P .. ettt ettt e bt et at ettt b et e s bt et s bt et e e h e e be e bt e b e e bt e bt et e beeatenbeenee 13
Fig.13 Carga N ATDOLESc.ovuvueieevececeeeeeeeeeeeeeeesee s sesssses s s ssesae s s s s essssas s s ssssassassas s sssassassassessssassassssseneesansasens 14
Fig.14 ip_func.C & MOADUS_fUNC.Coouiriiiiiiiiieieteteete ettt ettt ettt et ettt be b et s e e nis 15
Fig.15 FUNCiones Para 10S ATDOLESccccurueiueveeieueeeeeesesesseese s sssesse s sesss s sas s ses s s s s sss s s sassas s sssssesassassnnanes 16
Fig.16 Vision del resultado fiNalcooieiiieieieiee ettt ettt ettt et b e s sttt et et 17
Fig.17 Ejecucion SCIIPtS IMICIALESccciiiiirieriirieiieteeet ettt sttt sttt ettt et et e b st e sae et e saeebesaeebesaeenbesneensens 18
Fig.18 Banners de IMICIOcccoerierierieieieceieeeees sttt ettt et ettt st sa bt st st sb e et e b et et et et e st et esesaessenes 18
Fig.19 Comprobacion eXiSteNCia A CATPELAScccererteruerterteiterteteieeseeiestestessestestensessententetesteseeseesesseesessessensensenseneen 19
Fig.20 Distintas pantallas en el funcionamiento del Programacc.cecceceeerirerierenienienieneetece et 19
Fig.21 Output de NUESITO PIOGBTAINIAcevverutertertenteeienteetesteesteseessesutessestessessessessessesnsesseensesstensesseessessessesssessesssessens 20

Fig.22 Estadisticas WITEShATKcc.couiiiiiiiieie ettt sttt ettt ettt st nen 22
Fig.23 Fichero de estadisticas de NUeSIO SIIFFETcccoeririeiieriiieiee ettt s 22
Fig.24 Wireshark estadisticas “endPOINtS”ccooererrierierienieienieerte ettt et st e e st et e e be et e b et e s bt et e s bt et e sbeeneesaee 23

Fig.25 Fichero de informacion TP-TCPccccociviirirerierieieieieieteeeieeseeiestestesbesae st et e sestestente e eneeneenessesseesessessensenes 23

Fig.26 Fichero de reglas IP-TICPcccccceiririririnterentetetet ettt ettt st b e et et s a et et et et e et et saeebeebesaess e b ne 23

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Lista de tablas

B =1 o) 1= R R RTRRRRRN 5

vi

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

1. Introduccion y Exposicion de Objetivos
1.1 Introduccioén a la Seguridad en Redes

A dia de hoy nos vemos envueltos en un mundo sin igual, en el que las comunicaciones y
asuntos diarios pasan a través de una “nube” formada por multitud de maquinas y dispositivos
electrénicos. Nuestros emails alcanzan su destinatario, no sin antes haber atravesado la marana de
routers que conforman Internet; ahora ya podemos sobrevivir sin poner pie en un supermercado, ya que
con tan s6lo un ordenador, una conexion a Internet y un pequefio numero de clicks podemos realizar
nuestra compra semanal; transacciones bancarias, tltimos libros, ropa, redes sociales... Todo puede ser
realizado, y asi lo es, desde el despacho en el trabajo, o desde el confort de tu sofa en casa.

Pero, ¢qué sucede en el ambito de las empresas privadas? Datos personales, informacién y
sefiales de control en entornos industriales, documentos de importancia... todo sale/llega desde/a un
computador, viaja a lo largo del cable en una intranet, estando esta intranet muy probablemente
conectada a la red de redes: Internet estd mas presente que nunca y todo el mundo deberia entender el
importante papel que juega la Seguridad en Redes en todo esto. Guste o no, nos encontramos inmersos
de lleno en una era digital, en la cual todo es traducido a unos y ceros.

Dicho esto, diria que un buen punto de partida para este documento podria consistir en definir
con pocas palabras lo que es la “Seguridad en Redes”. Asi pues, ¢qué es la Seguridad en Redes?

* Segun la Wikipedia [1]:

La seguridad en redes consiste en las medidas y politicas adoptadas por un administrador de red
para prevenir y monitorizar accesos no autorizados, malos usos, modificaciones o restricciones a una
red de computadores o recursos de red accesibles a través de la misma.

* La Webopedia dice [2]:

Un campo especializado dentro del “computer networking” que involucra la seguridad de una
infraestructura de la red. La seguridad en redes es normalmente manejada por un administrador de red
o administrador del sistema que implementa las politicas de seguridad, el software y el hardware
necesitados para proteger una red y los recursos accedidos a través de la misma de accesos no
autorizados.

* Una definicién mas simple la tenemos en la revista digital “ Magazine Encyclopedia”[3]:

Proteccion de sistemas de computadores en red de intrusiones no deseadas.

En definitiva, podemos concluir que la Seguridad en Redes previene de ataques y posibles
amenazas, protegiendo los sistemas de computadores que posibilitan el desarrollo de nuestras
actividades diarias. Pero también podriamos plantear esto desde otra perspectiva, considerando las
implicaciones de la Seguridad de Redes, una vez las medidas de seguridad han sido vulneradas, y
afirmar que se ocupa de controlar y monitorizar lo que dentro de la red sucede, de modo que se pueda
verificar que todo esta dentro de un orden, y en caso contrario poner medidas al respecto.

1.2 Ciberseguridad y Amenazas a CCI

Para explicar correctamente el contexto de este trabajo, me gustaria hablar sobre qué representa
el término Ciberseguridad y qué son los Ataques a CCI (Conexion Compartida a Internet) para
posteriormente realizar la exposicion de objetivos.

En el mundo actual, ataques contra IC (Infraestructuras Criticas) de energia, gas, petroleo,
agua... estan creciendo, y no es extrafio conocer que detras de dichos ataques se encuentran
organizaciones respaldadas econdémicamente tanto por empresas competidoras como incluso por

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

gobiernos de paises[32].

Basta tan sélo para dar un marco real a este punto, con consultar en Internet articulos de
periodicos, que en los meses que llevamos de afio 2013, hacen referencia a ataques a la seguridad
informatica:

. HuffingtonPost [31] — Posted: 05/16/2013 :

“Syria faced an Internet blackout for eight hours on Wednesday, its second one in the past week and the sixth one
of the two-year uprising against President Bashar al-Assad, a U.S. web trdfficking firm reported. Phone lines into
Damascus were also down.”

. Informe Semanal [33] - Espionaje masivo — 15 jun 2013

“Edward Snowden era, hasta hace unos dias, uno mds de los miles de empleados anénimos que analizan la
informacion para las agencias de inteligencia del Gobierno de Estados Unidos. Huido a Hong Kong y después en paradero
desconocido, se ha convertido en uno de los hombres mds buscados por el FBI. ”

. esmateria.com [39] —» “La ciberguerra es inevitable” 04/06/2013
“Los expertos advierten de que las infraestructuras criticas dependen de sistemas vulnerables”

. BBC News Technology [40] - 19 May 2013 Last updated at 23:52 GMT

“How to hack a nation's infrastructure”

La lista de noticias que hablan sobre hechos relacionados con ciberseguridad/ciberataques es
larga, podemos sin duda encontrar una buena coleccion de paginas web que dan cuenta de estos hechos.
Dedicar s6lo unos instantes a leer alguna de estas noticias, nos ayuda a comprender por qué es tan
importante invertir esfuerzos en asegurar y proteger las redes de datos y entornos como el que tratamos
en este texto.

1.3 Seguridad en Sistemas SCADA
1.3.1 ¢Qué significa SCADA?

El acrénimo SCADA hace referencia a Supervisory Control And Data Acquisition. Los sistemas
SCADA son un tipo de CCI, en concreto son sistemas controlados por computador cuya tarea es
monitorizar y controlar sistemas industriales. Han estado presentes en nuestras vidas desde principios
de los afios 70, permitiéndonos controlar remotamente dispositivos distribuidos a lo largo de grandes
extensiones.

Ejemplos de sistemas SCADA son los sistemas que permiten a operadores establecer y
modificar condiciones que hacen saltar alarmas que controlan la temperatura en sistemas de control de
temperatura por enfriamiento de agua en ciertos procesos industriales; o los sistemas que monitorizan
los niveles alto y bajo en tanques de agua, y alertan cuando el nivel de agua ha alcanzado un cierto
limite... Existen muchos ejemplos de sistemas SCADA que desarrollan importantes funciones en
procesos que intervienen directamente en nuestro bienestar social y calidad de vida.

El disefio de los sistemas SCADA ha evolucionado mucho a lo largo de los afios. Su
arquitectura consiste en un sistema de computadores centrales que se comunican con otras maquinas
usando una o mas tecnologias de comunicacién. Durante la ultima década, Internet también se ha
incluido en el disefio de estos sistemas, de este modo, por un lado, se les esta dotando de una mayor
flexibilidad y funcionalidades extra, pero a su vez, por contra, resultan en sistemas mucho mas
vulnerables a ataques, siendo esta la motivacion de este trabajo.

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

1.3.2 Nivel de Seguridad en los Sistemas SCADA

A dia de hoy, la preocupacion sobre como proteger estos sistemas esta en aumento; ya que, a
pesar del importante papel que desarrollan en nuestra vida (responsables del control y motorizacién de
sistemas tales como los de distribucion de agua, de tuberias de petroleo y gas, de red eléctrica), estos
dispositivos atin poseen muchas vulnerabilidades [41] [42].

Muchos ciber-ataques en la actualidad, se centran en lograr el control de estos sistemas SCADA
y otros sistemas CCI. Debemos tener en mente que si uno de estos ataques llega a buen puerto, puede
desencadenar terribles consecuencias en términos de salud humana e incluso llegar a representar un
riesgo para la vida. Ejemplos de estos ataques son: DoS (Denial of Service), mediante el cual dejamos
la maquina fuera de servicio; robo de contrasefias, que otorgan privilegios al atacante en la maquina
atacada; impersonalizacién, como una posible consecuencia del robo de contrasefias; falsificacién de
archivos o borrado de los mismos... Existen multitud de formas de ataque.

Algo que resultara muy ttil a todo administrador de red encargado de poner medidas de
proteccién ante estos ataques expuestos, sera conocer su red. El conocimiento del funcionamiento de
los dispositivos que existen en ella, junto con el conocimiento de “qué es normal” y que “anormal”, va
a ser informacion muy importante de cara a reaccionar con velocidad ante un ataque que esta
ocurriendo. Es por este aspecto que la herramienta que en este documento se presenta resulta tan
atractiva, ya que ayudara a detectar ataques lo antes posible, pudiendo establecer soluciones al respecto
antes de que sea demasiado tarde.

1.4 Exposicién de Objetivos

¢Qué medidas se pueden tomar para mejorar el nivel de seguridad contra ataques a CCI?
Actualmente existen muchas herramientas en manos de los encargados de la seguridad informatica:
cortafuegos , antivirus... Aun asi, con el creciente nimero de ataques y su diversificacién, no se debe
nunca bajar la guardia. Lo que un dia fue un sistema seguro, hoy puede no serlo. La tecnologia avanza
pero los ataques se vuelven mas sofisticados a su vez.

Desde el grupo OSNA, se propone combinar dos de las filosofias tradicionales de proteccion de
sistemas informaticos: “black-listing” y “white-listing”.

. Black-listing o lista-negra

Consiste en un método cuya aproximacién a la seguridad esta basado en la comparacion del
trafico observado con patrones que describen conductas que no deben ser permitidas, consintiendo
solo aquellas conexiones cuyos comportamientos no estén explicitamente descritos en una lista negra.
El problema de este método es que sOlo previene de comportamientos que han sido analizados y
estudiados previamente, dejando un agujero de seguridad durante una cierta ventana de tiempo: desde
el momento en el que surge una nueva forma de ataque, hasta cuando se dispone de un patrén que
describa el comportamiento de tal amenaza.

Ademas, los atacantes estudian formas para burlar estas medidas de seguridad, inclusive
estudian las listas negras. Sus métodos pasan desde dividir la carga del ataque entre diversos paquetes,
de modo que las medidas de seguridad que buscan el ataque completamente contenido en un paquete,
sean incapaces de saltar alarmas; hasta la representacion de la informacién en el mismo paquete de un
modo que no sea facilmente reconocible; llegando a eludir este método de Black-listing.

. White-listing o lista-blanca

En la otra cara de la moneda tenemos la perspectiva contraria: white-listing. Esta filosofia hara
saltar alarmas cada vez que se observe un comportamiento fuera de lo esperado. Dicho comportamiento

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

“correcto” estara completamente descrito dentro de las llamadas listas-blancas.

Aunque de nuevo, este método tampoco resulta 100% seguro. Su fortaleza, pero a la vez su
debilidad, estriban en coémo de bien descrito esté el comportamiento “aceptable” dentro de sus listas de
reglas blancas. Si no somos capaces de afinar bien una regla dentro de dichas listas, estaremos
permitiendo comportamientos que aun estando dentro de lo aceptado, constituyen una amenaza para el
sistema.

Existe a su vez, un tercer método de deteccién de ataques a redes de datos llamado Deteccién
de Anomalias. Este método es una de las tltimas aproximaciones a la Seguridad de Redes y se basa en
el estudio de N-gramas[Anexo B], creados a partir de la informacion contenida en los paquetes.
Realizando un estudio estadistico, la idea es sacar patrones del contenido que se observa en los
paquetes, alertando cuando dicho contenido sea muy distinto del observado durante una fase de estudio
del tréfico de red. Si esta aproximacion no se ha afiadido a nuestro disefio, es debido a que necesita de
un gran trabajo para luego no lograr resultados demasiado positivos: a veces un patron puede ocurrir en
un campo concreto del paquete pero no en otros...

En definitiva, el objetivo del estudio que aqui desarrollo es el de presentar una herramienta que
sea capaz de fundir las filosofias de proteccién de redes previamente expuestas. Por un lado, usando la
idea de DPI (Deep Packet Inspection)[30], mi software sera capaz de, durante una fase preliminar de
estudio del trafico de red, realizar un anadlisis estadistico sobre el trafico en el segmento de red a
controlar, creando listas con los comportamientos que se suponen normales (listas blancas). Por otro
lado, haciendo uso de “listas negras” ya creadas por especialistas en el tema[9] y afiadiéndolas a
nuestro disefio, busco presentar, lo que sin duda alguna, da lugar a una herramienta muy completa.

{ Interfaz en modo promiscuo’ |

Mi software

HUB/SWITCH

Sensor: Alerts

OO0 0O

Fig.1 Representacién de mi software + Snort en una red conformada por nodos de interconexién (hubs / switches)
2. Requisitos de Usuario

Con el fin de presentar de un modo logico la problemaética, iré desde lo mas general a lo mas
particular, exponiendo al final los requisitos parciales de usuario que me he planteado y que me han
ayudado a tener una guia de accion

2.1 Redes de Comunicacion en el Entorno Industrial.

Un primer requisito de usuario, y muy importante a tener en cuenta, es el entorno de trabajo de
las maquinas que vamos a monitorizar. Entornos sometidos a condiciones de trabajo mas exigentes, ya
que se ven sometidos a condiciones extremas, ya sea de temperatura, humedad, vibracion... lo que
conllevara modificaciones en los protocolos que ya conocemos, e incluso, el uso de nuevos estandares.

1. Una interfaz en modo promiscuo es capaz de recibir no sélo los paquetes destinados a su propia interfaz sino cualquier paquete que fluya en el segmento
de red al que se conecta.

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Ejemplos de estos entornos los podemos observar en cualquier central eléctrica (nucleares,
edlicas, hidraulicas...). Para cualquiera que haya visitado alguna en su vida, le sera facil comprender
que, los componentes que trabajan en estos, soportan condiciones que pueden llegar a exceder los
rangos usuales de temperatura, vibracién, presion... de los equipos IT. Para lidiar con estos problemas,
se utilizan los llamados Protocolos de Red de Sistemas de Control Industrial[29]. Ejemplos de estos
protocolos son: Ethernet Industrial[22], Modbus[23], ZigBee, EtherCAT... la lista es extensa y busca
dar solucion a problematicas particulares derivadas del entorno de trabajo.

2.1.1 Modbus

Profundizando en los Protocolos de Red de Sistemas de Control Industrial, presento el
protocolo con el que se me pidi6 que mi software debiera trabajar: Modbus. Se trata de un protocolo
simple y robusto usado para comunicaciones en serie, publicado originalmente por Modicon
(www.modicon.com) para su uso con PL.Cs (Programmable Logic Controller), que se ha consolidado
como un importante protocolo de comunicaciones y un modo de conexién entre dispositivos
electrénicos[ezTCP].

Modbus posibilita la comunicacion de entre aproximadamente hasta 240 maquinas conectadas a
la misma red. Se utiliza para conectar un computador supervisor con una unidad remota RTU (Remote
Terminal Unit) en sistemas de control y adquisicion de datos SCADA[23][24][25].

MODBUS
Client
Serial Line

MODBUS MODBUS
Client Client -
TCP/IP TCPIIP Client
| TcRaR
| | MODBUS
MODBUS MODBUS m WO MODaLS

Server Server ; B =
TCPIP TCPIP Server TCPAP Serial Line Serial Line

gateway | |

MODBUS Serial Line

Fig.2 Ejemplo de set-up de una red Modbus

Existe software a disposicion en Internet para simular el funcionamiento de redes Modbus.
Algunos de los dispositivos en dicha red seran Master (Maestro) y otros seran Slave (Esclavo).
También ha sido desarrollada una API Modbus que simplifica el proceso de creacion de software mas
especifico en la creacion de un escenario virtual Modbus.

Existen varios tipos de Modbus: Modbus RTU, Modbus ASCII y Modbus TCP; mi software
tiene como requisito de disefio trabajar con Modbus TCP. El hecho de trabajar en un software para un
protocolo encapsulado sobre TCP, abre la posibilidad a futuras extensiones a otros protocolos de
similar encapsulado.

Lavyer ISO/MOSI Function Modbus Function

5,6, 7 Application Modbus Application Protocol
3 Transport Transmission Control Protocol
3 Network Internet Protocol
2 Data Link IEEE 802.3
1 Physical IEEE 802.3

Tabla 1 Pila de protocolos en Modbus TCP

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

MODBUS TCP/IP ADU

- >

Fig.3 Modbus TCP - ADU

Transaction Identifier Protocol Identifier Length
2 bytes 2 bytes 2 bytes 1 byte

Fig.4 Cabecera en Modbus TCP

2.2 IDS /IPS (Intrusion Detection System / Intrusion Prevencion System)

Este proyecto se enmarca dentro del campo de la Deteccion y Prevencion de Intrusiones. El
acrénimo IDS/IPS hace alusién a una aplicacién software que es capaz de contrastar los paquetes que
transitan en nuestro segmento de red con unos patrones predefinidos (listas blancas / listas negras). Mas
en concreto, como requisito de usuario, se me presentd con la herramienta IDS llamada Snort,
herramienta de software libre con la que mi software debe de trabajar y que delimita mis opciones de
disefio, como mas adelante veremos.

2.2.1 Snort

Asi pues, teniendo en mente el Detector de Intrusiones Snort, se me pidié idear un método que
fuera capaz de crear un “mapa” informativo de/con las conexiones de nuestro segmento de red y
“darselo de comer a Snort”, de modo que se pueda automatizar el proceso de deteccion de dicho IDS.
Pero, ;qué es Snort en definitiva?

Snort es un programa de software libre desarrollado por Sourcefire[Snus00]. Se usa para
detectar accesos no autorizados a ordenadores y redes de comunicacion. Puede ponerse a funcionar de
tres modos distintos: sniffer, logger, NIDS (Network Intrusion Detection System), siendo este tercer
modo el que nos interesa debido a su caracter IDS.

Su funcionamiento se basa en modulos, los cuales trabajan sobre los paquetes que el sensor
capta en su segmento de red. La siguiente imagen describe visualmente la relacion entre los distintos
madulos que conforman Snort.

/ En este punto es donde conecta mi sniffer con\

f ; ! ik code . .
e DZD Packst Becoder —snort. Las listas blancas creadas con mi software
LNt , se colocan en el médulo de deteccién de snort.

Logging and,
Alerting
System

. Detection
Preprocessors. 5
FEngine

§ Output Alert or |
I Logtoafile }

Packet is

Quiput
\ dropped Modules

Fig.5 Flujo de los paquetes a través de los médulos de Snort
Vayamos paso por paso utilizando como apoyo la imagen anterior:

Primeramente, los paquetes, transmitiéndose por la red, son captados por nuestro sensor Snort,
a través de su NIC (Network Interface Card). Acto seguido son decodificados (primer moddulo),

6

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

permitiendo conocer qué protocolos utilizan las comunicaciones entre maquinas.

Tras ello, y con Snort trabajando como NIDS (Network Intrusion Detection System), los
paquetes seran enviados a los diversos preprocesadores segtin haya sido establecido en el fichero de
configuracion de Snort. Los preprocesadores son plug-ins que Snort usara para realizar ciertas
transformaciones sobre el paquete, de modo que no se nos escapen ataques mas elaborados. Estos
preprocesadores son usados en la escritura de las reglas.

‘ Preprocesadores ‘

=
N

alert udp any any -> 192.168.1.0/24 6838 (msg: "DoS"; content: "server"; classtype:DoS; priority:1)

Fig.6 Ejemplo de regla Snort

Tercer modulo, “Detection Engine”, es donde estan contenidas las reglas y se produce la accion
propiamente de contraste entre paquetes y reglas. El resultado de este modulo sera pasado a los
componentes de alerta y “loggeo”, que generaran las alertas necesarias en caso de haber detectado
algin comportamiento fuera de la norma. Una alerta generara una entrada en un fichero de logging de
modo que pueda ser consultada en un posible futuro estudio del ataque.

Los modulos de Output establecen el modo en el que el administrador podra ser “alertado”:
desde un e-mail a su cuenta personal de correo, un mensaje a su mévil, un busca conectado al sensor
Snort... las posibilidades son multiples y variadas.

2.3 Requisitos para la Creacion del Software

Ahora que tenemos una vision general de la situacion puedo empezar a plantear una solucion a
la problematica expuesta. Voy a crear un software que analice trafico Modbus y cree listas blancas para
Snort basandose en la idea de DPI, aprovechando las alternativas que Snort nos brinda ya de por si.

A fin de lograr una herramienta mas completa se requiere, ademas, afiadir al disefio un enfoque
de black-listing, a través de listas negras ya publicadas en Internet (ej. www.Snort.org) con las que mi
software trabajara a fin de juntar ambos enfoques en el mismo disefio.

Personalmente, he procurado descomponer el problema de disefio del software en varias etapas,
de modo que pudiera ir aproximdndome paso a paso al resultado final. Estas etapas las considero
requisitos parciales de usuario y son las siguientes:

1. Creacion de un “sniffer”: programa que recoge los paquetes que fluyen por el segmento de red al cual se ha
conectado la mdquina sensor y lo descompone en sus campos.

2. Cuando ya tenemos un programa shiffer, debemos ser capaces de trabajar con los campos de interés. En un
primer momento pensamos tnicamente en los protocolos IP y TCP, almacenando en nuestra estructura de drbol
dindmico, estructura explicada mds adelante, los campos de interés: Ip fuente, Ip destino, puerto fuente, puerto
destino.

3. Teniendo un algoritmo que ya es capaz de recoger esos campos y guardarlos como nos interesa, es momento de
extender nuestro algoritmo de modo que también sea capaz de recoger informaciéon Modbus. Los campos Modbus
que queremos almacenar, extendiendo atun mds la idea de drbol dindmico, son tres: longitud del fragmento
Modbus, identidad y cédigo de funcién Modbus.

4. Ahora que ya tenemos la informacion guardada, deberemos representarla en ficheros para poder estudiar que
recoge la informacion correctamente. Logrado esto podemos pasar a representar esta informacién en un modo
que Snort pueda comprender y utilizar.

5. Ya tenemos los ficheros de reglas, pero Snort deberd saber donde estdn contenidos. Nuestro software moverd estos
ficheros de reglas a las carpetas destinadas para tal efecto dentro del sistema de archivos de Snort y modificard el
fichero de configuracion de éste para que Snort sepa que debe tenerlos en cuenta.

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Tras estos 5 puntos, ya s6lo queda poner a funcionar Snort en modo NIDS (Network Intrusion
Detection System) y estar tranquilos sabiendo que ahora Snort, protegera nuestro sistema de todo lo
que no se adecue al “mapa de conexiones” que nuestro software a generado.

3. Analisis y Disefio
3.1 Entorno de Trabajo

La primera decisiéon a tomar ha sido sobre el sistema operativo, ;comercial o software libre?
Personalmente, la idea de software libre me gusta mucho, pero lo que mas ha pesado en mi decision es
el hecho de que Snort sea en si mismo software libre. Ya sélo por esto, mi decision ha sido rapida:
software libre; 1o que me lleva a pensar en Linux[LinSPO00].

Pero, ¢qué distribucién Linux? Mandriva, Debian, CentOS, Fedora... existen tantas que resulta
complicado extraer motivos por los cuales tomar una y descartar otra. Pensando en que lo importante
sera que nuestro sistema dedique, en su mayoria, recursos a lo que realmente interesa, que son las
tareas de sensor y no pierda el tiempo en temas de entorno grafico u otras florituras como muchos
sistemas operativos actuales hacen, me han convencido dos versiones de la distribucion Debian[48][49]
que cumplen con esto: Xubuntu y Openbox. Openbox [46][47], con el entorno grafico mas ligero de
todos los Linux, centrando su funcionamiento especialmente en su shell. Por otro lado Xubuntu[52],
version de Ubuntu, dedica muy pocos recursos a temas graficos y que, personalmente, es la eleccion
para mi ordenador personal. Sera entonces, por motivos de reduccion de la curva de aprendizaje y que
cumple con los requisitos que le pido al sistema operativo, lo que me lleva a elegir Debian Xubuntu.

¢Qué lenguaje vamos a utilizar en la programaciéon? Puedo elegir entre los lenguajes Java, C y
C++; pero tenemos por otro lado un sistema operativo escrito enteramente en C y un programa IDS/IPS
que a su vez, también esta escrito enteramente en C: resulta una eleccién facil por armonizar todo,
elegir como lenguaje de programacién el lenguaje C.

Ademas, uno de los placeres de trabajar en Linux es la programacion de scripts shell [NeSt00];
facilitan las tareas de administracién del sistema y pueden ser incluidos en cualquier cédigo C a través
de la llamada al sistema “system”. Ahora bien, ;qué shell debo elegir? Existen varias versiones de
shell: sh Bourne, csh, zsh, ksh, bash... La version “bash” shell es la mas comun en sistemas Linux, esto
hace que sea mas probable que un administrador de sistema este familiarizado con esta version,
logrando que éste trabaje mas cémodo desde un principio y podamos ahorrar en tiempo de aprendizaje
sobre otros shells, ya que por otro lado, no aportan ventajas unos sobre otros. Asi pues, elegir el “bash”
shell parece la opcién mas acertada.

3.2 Libreria PCAP

Pensando en la creacion de un sniffer de modo que podamos ir cumpliendo con el punto 1 de
los requisitos parciales de usuario y teniendo en cuenta que trabajamos en un entorno Linux y
programamos en C, no disponemos de muchas alternativas de disefio, s6lo nos queda la posibilidad de
buscar una API para C. Una API (Application Program Interface) [4][5][6] define la interfaz a través de
la cual componentes software se comunican entre si a nivel codigo. Provee de un nivel de abstraccion a
través de un conjunto de interfaces, normalmente funciones, que un cédigo puede invocar [LinSP0O].
Resulta una importante ayuda para los desarrolladores de software de cara a poder olvidarse de las
particularidades del hardware con el que trabajan y centrarse en su tarea de programacion.

Las APIs contendran rutinas, estructuras de datos, constantes, variables... que pueden ser usadas

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

en tus programas. El modo en el que se usan siempre es el mismo: comienzas usando una funcién
“open”, que abre un flujo de datos sobre el cual puedes leer y/o escribir como si fuera un archivo
normal. La idea de las API concuerda con la filosofia Linux (y previamente UNIX) de “hacerlo todo
'un archivo' ” (el sistema operativo “mapea” cualquier hardware conectado al PC como si fuera un
archivo) resultando en un nivel de “abstracciéon” que facilita el trabajo.

PCAP (Packet CAPture) es precisamente una implementacion de API que se usa para capturar
trafico de red. Es la base hoy en dia para cualquier programa sniffer o cualquier Sistema de Deteccién
de Intrusiones como Snort o sniffers tales como Wireshark. Conocidos paquetes software como
“Aircrack-ng suite” [HckO1] también basan sus funcionalidades en PCAP. Los sistemas operativos tipo
UNIX implementan PCAP en su libreria libpcap,y podra ser utilizada en tareas de programacién C tras
su inclusion mediante la sentencia #include <pcap/pcap.h>, donde pcap.h es el fichero de cabecera.

3.3 ;Coémo nuestro programa trabaja con Snort?

Snort trabaja contrastando las reglas que describen comportamientos permitidos y no
permitidos y que estan contenidas en sus ficheros de reglas, con el trafico que observa en su NIC
(Network Interface Card). Esta NIC, por su parte, debera estar en modo promiscuo, lo que significa que
debera de ser capaz de captar cualquier paquete que vea circulando en su segmento de red [HckO1] .

El aporte de una filosofia de “listas blancas” implementando la idea de “Deep Packet
Inspection” (DPI) [30] va a ser nuestro aporte principal al campo de la Deteccién de Intrusiones; pero,
;como podemos crear estas listas que describen el comportamiento permitido en nuestra red, sin
necesidad de hacerlo a mano y afinar al maximo en la descripcién de dicho comportamiento?

Snort posee un modo propio de descripcién de los comportamientos que se emplea en la
elaboracién de reglas, que consiste en una estructuracion concreta y forma de escritura particular de sus
reglas, al cual, los archivos resultado de nuestro software, se deben adaptar, de modo que podamos
entendernos con Snort.

Poniendo a correr mi software, durante una fase de estudio inicial del trafico de red en el
segmento a controlar, el sniffer que he elaborado, serd capaz de generar reglas Snort que describan el
comportamiento a nivel IP-TCP (referente a direcciones y puertos) y a nivel Modbus (recogiendo los
campos de funciones, nimeros de identidad, longitud paquete Modbus), automatizando el proceso de
creacion de reglas blancas y cumpliendo con los puntos 2 y 3 de los requisitos parciales de usuario.

Posteriormente, y una vez finalizado este proceso de estudio, también sera capaz de interactuar
con el sistema de archivos y ficheros de Snort, colocando estos ficheros de reglas (ademas de las reglas
negras que se decidan incluir al disefio) dentro de las carpetas que Snort utiliza para almacenar los
ficheros de este tipo y modificara el fichero de configuracién de Snort mediante sentencias “include”,
permitiendo al sensor conocer la existencia de nuestros nuevos ficheros de reglas.

En definitiva el proceso resulta muy automatico y alivia en gran medida las tareas de cualquier
administrador de red, facilitando el proceso de “ajuste” de un sensor IDS/IPS Snort.

3.4 Arbol de Listas Anidadas

Todo programa que se precie de realizar una funcién util, debera contener estructuras de datos
donde almacenar el valor de sus variables. Mi programa necesita almacenar los datos con los que
realizar estadisticas, la estructura que utilizaré la he llamado “Arbol de listas anidadas”.

De modo que podamos entender qué son y como he llegado a ello, muestro a continuacion el
pensamiento evolutivo que me ha llevado hasta dar con la idea del “Arbol de Listas Anidadas”:

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

1. Primera idea: arrays; el principal problema que presenta un array es la delimitacion del mismo: declarar el
niimero de variables que lo componen. Por el tipo de problema al que nos enfrentamos, no podemos determinar a
priori cudntas variables vamos a necesitar; si lo hiciéramos, estariamos haciendo un uso ineficiente de memoria.

2. Necesitamos algo que pueda ser determinado a tiempo real. Las listas anidadas nos dan la facilidad de reservar
espacio de memoria dentro del “heap” de un programa, y sélo, cuando sea necesario. Por contra, esta sequnda
opcion no termina de cubrir nuestras necesidades, de algiin modo perdemos una dimension, no somos capaces de
establecer una clasificacion por niveles (direcciones IP, puertos, funcion, longitud, identidad). Esto hace que esta
segunda idea no termine de encajar.

3. Pero, ;qué tal si extendemos la idea de listas anidadas buscando obtener una dimensionalidad extra? Utilizando
listas anidadas, pero afiadiendo un segundo puntero (un puntero para los datos de un mismo nivel y otro puntero
para los datos del nivel/tipo inmediatamente inferior) guardariamos datos, siempre y cuando, fuera necesario
mediante la asignacion dindmica que caracteriza a las listas anidadas, utilizando de manera eficiente la memoria;
pero ademds tendriamos la informacién almacenada por niveles obteniendo tal dimensionalidad buscada.

Basandonos en un disefio de listas anidadas simple y unidimensional, lo primero que se me
ocurre es presentar el “struct” que se usa para almacenar datos en este método de almacenamiento:

structlinked list node
{

| Dato dentro de la estructura. |

voiddata; | Direccion al nodo siguiente en la
structlinked list node #ptr;’ |lista anidada.

Fig.7 Nodo en una lista anidada
Ejemplificandolo, pudieran existir los 5 nodos siguientes en una lista anidada:

[=, isoo| l aa |?|2| [a [992. [692' [as 10]
1000 13

B0O0 7 992 692

Fig.8 Ejemplo de lista anidada

Cada nodo estara representado por un “struct” como el anterior: cada a; representa el dato
dentro de la estructura y el nimero contenido en el segundo recuadro (800, 712, 992, 692, 0) es la
direccion de la siguiente estructura dentro de la lista anidada. Los numeros bajo los recuadros internos
son la direccion de la estructura de datos dibujada sobre ellos.

Las estructuras seran emplazadas en memoria mediante asignacion dinamica[AIWe0], siendo
esto la ventaja frente a la utilizacion de arrays: mediante asignacion dindmica somos capaces de usar
unicamente la memoria necesaria, sin desperdiciar, o hacer corto de la misma.

Volviendo a la idea de “Arbol” y uniendo disefio y requisitos de usuario: en el punto dos, se
habla sobre la recogida de informaciéon de campos del paquete IP (direcciones IP) y segmento TCP
(puertos); en el punto tres, incluimos Modbus al disefio, en cuyo caso, nuestro “Arbol de Listas
Anidadas” se debera extender varios niveles “hacia abajo” con el fin de dar cabida a tres campos extra
(funcion, identidad y longitud). Asi, vemos un cierto numero de niveles que se corresponden con el tipo
de datos que la variable en si contiene. Ya de aqui, extendiendo la idea de listas anidadas mediante la
afiadidura de un puntero mas, obtenemos la idea de “Arbol de Listas Anidadas”, que es capaz de cubrir
a la perfeccion nuestras necesidades de almacenamiento.

10

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

La siguiente figura muestra una posible realizacién de un “Arbol” que acumula datos IP-TCP:

EExEx

Fig.9 Representacién “reducida” de un “Arbol de listas anidadas”

La idea es que cada vez que el programa encuentre en un paquete una nueva combinacion de

los campos direccion Ip fuente, direccion Ip destino, niimero de puerto fuente y niimero de puerto
destino, respecto a combinaciones anteriormente vistas, debera incluir nuevos nodos en el arbol.

Explicando la figura anterior en la que se mostraba un pequefio Arbol:

Llega un primer paquete con direcciones Ip fuente 207.144.24.5, direccién Ip destino
110.87.25.74, ndmero de puerto fuente 450 y niimero de puerto destino 80. Como la lista estaba
vacia, esta combinaciéon de datos no estan aun almacenados, asi que los guarda. Reservando
para ello espacio y completando los campos de nuestra estructura de datos.

Llega un segundo paquete con direcciones Ip fuente 207.144.24.5, direccién Ip destino
78.207.124.25, nimero de puerto fuente 1240, ntimero de puerto destino 21. Como la direccion
Ip fuente ya la tenia y el primer campo nuevo en aparecer es la direccion Ip destino; a partir de
este nodo, se plantea una nueva conexion desde este nodo hacia una posicion de memoria que
almacene la nueva direccién Ip destino y, a partir de ésta, el resto de campos de informacién
(nimero de puerto fuente y niimero de puerto destino).

Siguiente paquete: Ip fuente 207.144.24.5, direccion Ip destino 78.207.124.25, nimero de
puerto fuente 80 y nimero de puerto destino 1562. Los nuevos campos son los nimeros de
puerto. Desde el nodo que contiene la informacién de direccion Ip destino 78.207.124.25 se
aflade un nuevo nexo a otro nodo que contenga la informacién del nuevo nimero de puerto
fuente y de este, un nexo a otro nodo con la informacion de niimero de puerto destino.

Y asi, este proceso continuaria, comparando la informacién ya presente con la informacién que

llega en el nuevo paquete. El arbol, puede ser tan extenso como nueva informacion vaya llegando.
¢Cuanta informacién debe ser almacenada? Eso dependera del diverso nimero de mdaquinas y del
nimero de conexiones diferentes que se establezcan entre ellas.

La estructura de datos que utiliza cada nodo del “Arbol” presentado es la siguiente:

/ Direccién de memoria del dato. ‘ \

structip node t

{ Direccién de memoria del siguiente

void #ptrdata; ﬁ nodo que contiene informacién del
structip node tsptr r; mismo tipo.

structip_node tsptr b;— Direccién de memoria de la “hoja” que
— |

} contiene informacién del siguiente nivel.

Fig.10 Nodo del Arbol de Listas Anidadas

11

4. Implementacion

4.1 Codigo

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Los archivos que componen el software creado durante estos meses para el proyecto:

Scripts de compilacion y eliminacién de

—— 0.compiling.sh . o .
piling ficheros de realizaciones anteriores.

— 1.remove.sh }

—— conf_Snort_files

— classification.config
—— important_considerations
— input

— output

— reference.config

— Snort.conf

—— demos

—— demol

—— demo?2-less read traffic
—— demo3-UnsolicitedPacketsfrom05

—— demo3-UnsolicitedPacketsfrom06

—— FC1-permit.pcap

— http.cap \
—— Modbus_FC_1_Coil.pcap

—— Modbus.pcap

/—{ Configuracién de Snort

—— DOC_README.odt
—— DOC_README.pdf
—ip.c

—ip_func.c

—ip.h

—ip_node.h

— merge_ip.c

—— Modbus_func.c

—— Modbus_node.h

/_{ Ficheros principales de cédigo

—— moving_conf_files.sh
—— moving_rule_files.sh
—— opt_Snort_etc.sh

Scripts de gestion de archivos de reglas y
carpetas de configuracién dentro de las
jerarquias de carpetas de Snort.

—— opt_Snort_rules.sh

—— var_log_Snort.sh

— rules

backdoor.rules
community-virus.rules
dos.rules

ftp.rules

icmp.rules

\—{ Ficheros .pcap usados para testeo

4.2 Diagrama de Flujo del Codigo

¢Como conectan los archivos previamente expuestos?

CARPETA “rules”:

Aqui aiadiremos los ficheros de reglas
negras que queremos para nuestro disefio.
Mi sniffer afiadira estos ficheros dentro de
la carpeta de reglas de Snort e incluird una
sentencia “include” dentro del fichero de
configuracion para que Snort las tenga en
cuenta. Estos “.rules” son una eleccién
mia, pero se podran afadir todos aquellos
que un administrador de red decida afiadir.

\
\
\

o

Archivos de cabecera:
-ip.h

- ip_node.h

- modbus_node.h

{Paquetes que la NIC detei

\

I
a

()

Uso llamada “system”

Ve

- ip_func.c

- merge.c

;

Archivos de funciones:

- modbus_func.c

Retorno del Script

o

moving_conf_files.sh
moving_rule_files.sh
opt_snort_etc.sh
opt_snort_rules.sh
var_log_snort.sh

Fig.11 Vision global

12

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

[“main" funct.]

peap open offline peap open live

peap_lkoop()
n =n" paquetes cursados

- Estudio estadistico y genermcion de reglas,

- Modificacion de ficheros de configuracion,

- Inclusion de fichers de reglas negras.

- Recolocacion de los ficheros en carpetas Snort,

N =mn" pag curs | . -

EJECUCION

Fig.12 Pcap_loop

En este punto tenemos la estructura general del programa. Primeramente se comprueban los
switches con los que se invoca al programa: -n, -i, -f. Con los switches -f, y -i se indica desde donde va
a “leer” el sniffer (desde fichero .pcap o desde interfaz de red); en el caso de leer desde .pcap, éste se
“toma” como si fuera la misma interfaz de red (NIC), pero resulta interesante entender la distincién.
Para la fase de testeo este switch -f es de especial importancia.

Usando las funciones de libreria “pcap_open_” se ha abierto un descriptor de flujo que nos sirve
para trabajar con el “interfaz” como si trabajdsemos con un fichero cualquiera; es aqui donde
comenzamos a hacer uso de la abstraccion que la API PCAP nos brinda.

El switch -n indica el nimero de paquetes que conformaran la fase de estudio del segmento de
red, el software debera trabajar hasta que se hayan registrado/estudiado dicho nimero de paquetes. Una
vez llegado a dicho nimero, se termina dicha fase de estudio y se comienza la organizacién de ficheros
estadisticos y de reglas como se ha indicado en el recuadro inferior mas a la derecha.

13

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Profundizamos en la ejecucion del programa:
+ Volcado a estructuras de datos, uso ip_func.c y Modbus_func.c para generacién de Arboles y
obtencién de primeras estadisticas (statistics.txt) y datos de “sniffing” (sniff_data.txt) :

[pcap_open_ e }
\
/i cc
/ \
v (’ \\
| |
pcap_loop configurada con| /5 - :\ ‘\
nuestra funcién recurrente \ /
\ Esperar que la \ /
NIC detecte otro \mod Unc.

paquete

Volcado
Ethernet

Tipo de paquete:
- ARP

- RARP

-IP

- otros

Volcado
TCP

f/Te St\\ No

\\MOdblyyii Modbus
—

“Arbol de listas
dinamicas IP”

“Arbol de listas
dindmicas Modbus”

Fig.13 Carga en Arboles

14

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Uso de funciones en ip_func.c: “Arbol de listas dinamicas IP”.

=
=

(@)

Desde |a funcion recurrente se envia i tipa

pagquete por vez a las finclones... - variables globales:
structip node t *s
stuct modbus_node t*r

n Acllas asignamos la dircceion hase

pam los Arboles de listas dinamicas [P
y Modbus,

5= (struct ip_node t *ereatelist();
r={struct modhus_node t *jm_createList{);

€. J

—

... las fimclones ip_funec J [a las funciones nmdhus_ﬁ:nc.c]

i funeion recurrente “our_callback™
5= insertBranch |)
Esta fumeion llama a la funcion desamollada

en el fichero ip_fume.c .

i funeion recurrente “our_callback™
s=m_imsertBranch |)

Esta funcion Hama a la funcion desarmollada
en el fichero modbus_func.e .

msm‘tBranch{] imicia la m _insertBranch{) inicia la
gﬁtnn del Atbol para [P gstu:ln del Arbol para Mudtru

Fig.14 ip_func.c & Modbus_func.c

15

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* Dentro de ip_func.c y Modbus_func.c:

¢

¢ Arbol Modbus

mse:rtBra.nch('} micia la
gesllon del Arbol para IP

m_insertBranch() inicia la
gestion del Arbol para Modbus

¢ Arbol vacio ?

¢ Tenemos direccién Ip fuente?

m_insertBranch

Cuando se dice en esta imagen
“insertamos”, quiere decir que
afiadiremos nueva informacién
al Arbol correspondiente a partir
de donde se ha descubierto que
el paquete con el que se trabaja
contiene informaci6én nueva.

puerto fuente y puerto destino

Insertamos Ip fuente, Ip destinoﬂ

[gTenemos direccion Ip destino?

[aTenemos puerto fuente?

Insertamos Ip destino, puerto fuent
y puerto destino

Insertamos puerto fuente
y puerto destino

¢Tenemos puerto destino?

Insertamos puerto destino

Y

Insertamos Ip fuente, Ip destino, puerto fuente,

[Retum funcién recurrente

¢Tenemos puerto fuente?

¢Tenemos puerto destino?

¢Tenemos direccion Ip fuente?

¢Tenemos direccién Ip destino?

puerto destino, longitud Modbus, identidad Modbus,

funcién Modbus.

Insertamos Ip destino, puerto fuente, puerto
destino, longitud Modbus, identidad Modbus,
funcién Modbus.

Insertamos puerto fuente, puerto destino,
longitud Modbus, identidad Modbus,
funcién Modbus.

¢Tenemos info sobre longitud?|

Insertamos puerto destino,
identidad Modbus, funcién Modbus. |

Campos propios
Modbus

¢Tenemos info sobre identidad?

Insertamos longitud Modbus, identidad ‘
Modbus, funcién Modbus. ‘

. i i6n2
¢Tenemos info sobre funcioi Modbus.

Insertamos identidad modbus, funcién ‘

Insertamos funcién Modbus. ‘

[Return funcién recurrente .

Fig.15 Funciones para los Arboles

16

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* Funcionamiento general:
Entendidas las anteriores partes podemos conectarlas y tener una vision completa del
funcionamiento.

TS i
la NIC

“peap_loop™ cargard nuestra
funcian recurrente cada ver

que un pagquete sea detectado por la NIC,

‘ Acciones de la funcion
mecumente, entre ¢llas

llamada a la funcion “insert™

- Lectura de los Arboles dindmicos
mediante las funciomes readTree ip()y
m_readTree modbus()

- Gieneracionde las reg las,

- Liberacion de la memona dindmica.

- Optimizacian ip_treerules

- Cerramos ficheros

//[_I—sn de scripts:
- movemaos archivos de reglas blineas
a foptisnortrules.
- movemos archivos de reglas negms
seleccionadas por el administrador de
red a foptisnort/rules,
- modificaciin de snort.cont sentencias
include <nomhbre_archivo reglas=
- movemnaos los archives de configuracion

\a fopt/snart/ete Vi

Fig.16 Visién del resultado final

17

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

4.3 Diagrama de Flujo del Funcionamiento del Programa.

Haremos uso de los scripts creados para borrar y compilar. Primeramente, realizamos un
borrado de ficheros, resultado de alguna ejecucion previa (1.remove.sh), tras lo cual ejecutaremos el
script 0.compiling, que compila y enlaza ficheros “objeto” para crear el ejecutable: sniffer.out.

De este modo:
root@arturo-laptop:/homesarturo/Desktop/PROJECT IN TRELAND/New project/pcap/9. sniffer_ip_modbus# ./1.remove.sh
...remove.sh done
root@arturo-laptop:/home/arturo/Desktop/PROJECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus# ./0.compiling.sh
...compilation process done
...usage: .ssniffer -i <interface> -n <number of packets>
...usage: fsniffer -f <file_name>
root@arturo-laptop:/home/arturo/Desktop/PROJECT IN IRELAND/MNew project/pcap/s9. sniffer_ip_modbus#]

Fig.17 Ejecucién scripts iniciales

Tras el proceso de compilacion, vemos una pequefia informacién sobre como usar el programa.
Como en puntos anteriores se hizo mencion, el programa puede funcionar leyendo desde la interfaz de
red o desde un fichero “pcap” que contenga informacién recogida en una captura anterior con
programas del tipo wireshark o tcpdump.

Los switches son bastante autodescriptivos:

e “-i”: switch utilizado para indicar qué interfaz de red es la que se estudiara.

“-n” : numero de paquetes que implica el estudio. Una vez “sniffados” y estudiados “n”
paquetes, el programa concluird y comenzara la etapa de creacién de ficheros de informacion y
de reglas.
* “f”:seusa para indicar la ruta del fichero “pcap” a estudiar.

»

Diagrama de flujo para “sniffer” en modo interfaz de red:
Jsniffer -i wlanO -n 1000 —_ Estudiaremos el trafico relacionado con la interfaz wlan0, en concreto
1000 paquetes de informacién.

En una primera fase del programa se nos presentan banners informativos (sobre instalacion de
Snort e inputs y outputs del sniffer).

File Edit View Terminal Go Help

nfo banner:
THERE ARE THREE WAYS TO INSTALL SNORT

Fi
./configure --prefix=/opt/
make && make install

Jopt/snort it's establishe[_

As well as

in OUTPUT rules folder

etc
ig® into /opt/snort/etc

IMPORTANT :
THIS WHITELISTING PROGRAM IT'S THC

1 L var_log_snor

Fig.18 Banners de inicio

18

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

& DK S =] oiccion... m

=3 Termina.

Comprobacion de la existencia
de carpetas importantes dentro del creeing e e
sistema de carpetas de Snort y que e ;:s:s;eza:czfsamex::/WW
sera donde almacenemos los outputs

de nuestro sniffer.

ffer.ip.modbus

Waking sure you have the /opt/snort/etc directory.
Jopt/snort/etc exist

Maicing sure directory /opt/snort/rules exists
/opt/snort/rules exists

Fig.19 Comprobacién existencia de carpetas

Comienza el proceso de “sniffado”: al concluir éste, se nos informa sobre cuanto tiempo ha
necesitado para detectar y estudiar los “1000” paquetes que le hemos solicitado. Es ahora, cuando
comienza el proceso de organizacion: movimiento de ficheros de reglas resultado del sniffing,

movimiento de ficheros de configuracion, modificacién del fichero de configuracién de Snort...

SEDCE ST O Mozl mmtscree. *Scree.. *Scree.. *Scree.

*Scree.. By Arturo... [Term.

W 9. sniff.. 13 [Scree...

& Terminal - I TIN

niffer_ip_modbus
File Edit View Terminal Go

T [Wed,24)ul 13:17

-+ x

7 _ 4{ Trabaja desde WlanO (interfaz de red)

-== Beginning test on 24/06/113 at 13:16:36 ==-

Ha tardado 26 segundos en detectar y

-== Time test process : 26.00 segs. ==-

---statistic control finished, please, wait----

DG S =

) Reib...mm *Sue. *Sue. *Sue. *Sue. *Sue..

*scre... By Artur... (7] Term... B 9. Sii.. &3

Terminal - pop: N

fsue.. = i

iffer_ip_modbus
Hle kdit View lerminal Go Help
Files created
- snift_data.txt holds the sniffer's output
holds staristical information
- ip_tree.txr holds all The comhinations of ip @ and porTs observed into our network traffic
holds all the combinations of ip @, ports and modbus Tiels observed Into our network Traffic
holds the ip rules to whitesniff our network, placed in ‘ /opT/snort/rules

- modbus Lree.rules holds Lhe modbus rules Lo whilesniff our network, placed in °

/opU/snor U/ Tules
Creating folder info_docs...

. .Moving ip_tree.txt into folder info_docs

.. .Moving modbus_tree.txt into folder info_docs

...Moving statistics.txt into folder info_docs

.. .Moving sniff_data.txt into folder info_docs

.. .Moving ip_trcc.rules into info_docs

.. .Moving modbus_tree.rules into info_docs

.. moving 'classification.config' and 'reference.config' into fopt/snort/etc

Pay atfention: in this same directory, there's a folder named 'rules',

you should load this directory with The hlack-11Sting rules you want for snort.

This program will include automatically The names into snort.conf. releasing you from this task.

Include now, if you need, some .rules files or PRESS LETTER c(lower case) + ENTER (case sensitive) to continue: [|

B wed, 240 1317 [IEN

estudiar los 100 paquetes solicitados
por linea de comandos.

— 4 x

En este momento el programa se detiene
para darnos la oportunidad de incluir
ficheros de reglas con comportamientos
que deseemos vetar. Estos ficheros han
sido ya previamente creados por una
comunidad de expertos en seguridad y
estan disponibles en Internet para su libre
utilizacion. Es en este punto donde
incluimos el enfoque de “black-list” en
nuestro programa.

*scr... By [Art.. [Ter
Torminal - : N

0.5 m (5o

File Edit View Terminal Go Help

Crealing folder info_docs
Moving ip_Lree (xL inlo folder info_docs
. Moving modbus_tree_txt inte folder info_docs
. Moving statisfics.txt into folder info_docs
. Moving sniff_data.txt into folder info_docs
...Moving ip_tree.rules into info_docs
-..Moving modbus_tree.rules into info_docs

.. moving 'classification.config' and 'reference.config' into /opt/snort/etc

Pay attention: in this same directory, there's a folder named 'rules®
you should load this directory with the black-listing rules you want for snort.
Ihis program will include automatically the names into snort.conf, releasing you from this task.
include now, if you need, some .rules Tiles or PRESS LETIER c(lower case) + ENIER (case sensitive) To continue: c._
.. .backdoor.rules moved into /opt/snort/rules and included into snort.conf
communily-virus.rules moved inlo /opl/snorl/rules and included into snorL.confl
dos.rules moved into /opl/snorl/rules and included inle snorL.conl
Filp.rules moved inLo /opl/snorl/rules and included inle snorL.conl
...icmp.rules moved inta /opt/snort/rules and included info snort.conf
_lip_tree.rules moved info /opt/snort/rules and included info snort.conf
- madbus_tree.rules moved inta /opt/snort/rules and included inte smort.conf

...Copying our whilelist compliant rules into /opt/snort/rules

...Moving black-1ist compliant rules from our folder 'rules'into /opt/snort/rules
...Moving snort.conf configuration file with our 'includes' into /opt/snort/etc

Lo g G G 0 s G (G Cominand i @ Sy Gl) Canmili SIS dn Ul
.The appropiate rule file has been created and located in /opt/snort/rulcs as wel.

rootearturo-1aptop: /home/arturo/Desktop/FROJECT IN IRELAND/New project/pcap/s. sniffer_ip modbuss [l

Tl wed. 24l 13:
frar.ip_modbus

“ »

Se ha pulsado la “c” y ahora el programa acude a la
carpeta creada para el prop6sito expuesto. Mediante un
script recoge todos y cada uno de los ficheros
contenidos en dicha carpeta y los traslada a la carpeta
de reglas dentro de la jerarquia de ficheros de Snort.
Ademas, anade dentro del fichero de configuracion de
Snort (“snort.conf”) una sentencia “include” de modo
que Snort no sélo contenga los ficheros de reglas
dentro de su sistema de carpetas, sino que los
reconozca y pueda trabajar con ellos.

Fig.20 Distintas pantallas en el funcionamiento del programa

19

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Volviendo sobre ficheros resultado de nuestro programa:

[D E S =] “ Diccionari..mm *Screens... *Screens... *Screens... B Arturo Ru... F=] Terminal ... M8 9. sniffer_i... =3 [Screensh... @ wed, 24jul 13:16
~ Terminal - root@arturo-laptop: fhome/arturo/Desktop/PROJECT IN IRELAND/New project/pcap/s. sniffer_ip_ s — + x
File Edit View Terminal Go Help
ouUTPUT
info_docs
ip_tree.rules As well as
ip_tree.txt - checking, and if missed creating, /var/log/snort
modbus_tree.rules - checking. and if missed creating. /opt/snort/rules
modbus_tree.txt - checking. and if missed creating., sopt/snort/etc

sniff_data.txt

statistics.txt
rules

"blacklist’.rules

it moves the rules from OUTPUT folder rules to fopt/snort/rules

it adds "include’ statements into snort.conf for all our rules in OUTPUT rules folder
it moves snort.conf in OUTPUT folder to /opt/snort/s/etc

moves 'classification.config' and ‘reference.config’ into fopt/snort/etc

IR

ip_tree.rules
modbus_tree.rules
snort.conf

’ Fig.21 Output de nuestro programa

. ip_tree.txt: fichero que contiene la informacion rescatada en el arbol dindmico para IP-TCP.

. ip_tree.rules: contiene la misma informacién que el fichero anterior “.txt” pero expresada de la forma en que Snort serd capaz de entender. Es
este fichero, uno de los varios ficheros que copiaremos (a través de los scripts que conforman nuestro sniffer) dentro de la estructura de carpetas
de Snort, que se empleara en el enfoque “white-listing”.

. Modbus_tree.txt: equivalente fichero a ip_tree.txt pero con la informacién relativa al arbol dindmico para Modbus.

. Modbus_tree.rules: fichero de reglas para Modbus que el programa copiara dentro de los directorios Snort y que serviran para contribuir al
enfoque de listas blancas.

. sniff_data.txt: para no llenar la pantalla de niimeros y letras que ni siquiera vamos a ser capaces de leer, la visualizacién de los campos de
interés de los paquetes, se envian a un fichero que se podra visualizar en cualquier momento deseado.

. statistics.txt: en este fichero se incluyen estadisticas temporales. Contribuye a afiadir informacién y completar el “dibujo” de la red. Podria
resultar de bastante interés en el desarrollo de aplicaciones futuras dentro de este mismo programa.

5. Testeo
5.1 Eficacia que No Eficiencia

¢Como comprobar los limites de velocidad de un software, cuando estos estan sujetos a la
capacidad de un hardware? La respuesta a esta pregunta pasa por un estudio estadistico sobre el nimero
de paquetes perdidos una vez instalado nuestro sniffer en distintos hardwares. Aun asi, dicho estudio
estadistico esta sujeto a tantas variables (tarjeta de red, RAM, velocidad del procesador, ...) que a mi
parecer resultaria una pérdida de tiempo y no obtendriamos un resultado util.

Las necesidades hardware son indudablemente un aspecto importante a tener en cuenta, pero no
existe una guia que te diga cuantos gigahercios, gigabytes, megabits.. debe tener el computador donde
instalamos el software [BeJSO1]. Las dimensiones del hardware que éste debe tener, dependeran en
gran medida de cuanto trafico querremos controlar, o dicho de otro modo, cémo de “bulliciosa” va a ser
nuestra red.

No debemos perder de vista que nos interesa “comprobar” el mayor, si no el total, nimero de
paquetes que fluyen por nuestra red. Aqui es donde entra la idea de “eficiencia”. Si el administrador de
la red decide instalar el software en un hardware que no es capaz de estar a la altura del nivel de trabajo
de la red que se propone controlar, perdera muchos paquetes y por lo tanto el nivel de seguridad
ofrecido se reduce considerablemente. Las capacidades del hardware en definitiva, estaran sujetas al
trafico a monitorizar y vendran determinadas mejor o peor, por lo mejor o peor que ese administrador

20

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

de red sea. Importante entonces sera cuan bien el administrador conoce su red.

Como recomendacion, no se deberia instalar, ya sea nuestro software, como Snort, en un
hardware antiguo; en su lugar, es una practica muy comun adquirir un computador de altas prestaciones
e instalar el paquete software-sensor en él. Una vez que dicho computador no cubre las expectativas de
“monitorizacion”, se puede colocar a realizar otras funciones mas generales dentro de la empresa.

5.2 Testeo del Software

Al principio de este texto, hemos expuesto unos requisitos parciales de usuario (“Requisitos
para la Creacion del Software”), etapas que yo mismo me he marcado; de modo que, dividiendo el
problema grande en problemas mas pequefios, podamos llegar a una solucion final satisfactoria. A la
hora de testear pues, debemos ir testeando a la finalizacion de cada una de dichas etapas, para
comprobar que el resultado logrado es el esperado y que vamos en la direccién correcta.

5.2.1 Testeo del Sniffer Base y Recogida de Datos IP-TCP y Modbus

- Dos aspectos importantes a testear respecto al primer requisito parcial de usuario seran:

* Comprobamos que el programa conecta correctamente con la interfaz establecida en linea de
comandos y que capta los datos correctamente. Esto se realizara a tiempo real a través del
switch “-i <NIC>”.

* através de un fichero “.cap” usando el switch “-f”: comprobaciéon de un “sniffing” correcto.
Para esto utilizaremos ficheros “.cap” que pueden ser a la vez abiertos con otros programas
como Wireshark, de este modo comprobaremos que los resultados obtenidos por nuestro sniffer
son correctos.

- Entrando ya en los requisitos parciales segundo y tercero:

Fue por motivos de testeo que afiadi la alternativa de funcionamiento para mi “sniffer” desde
ficheros pcap “./sniffer -f <nombre_fichero>". Y es que existen ya de por si multitud de ficheros pcap
creados para proposito en la red [7][8].

Primero quiero comprobar si mi software es capaz de discernir entre paquetes IP-TCP Modbus
y no Modbus. Para esto descargamos un fichero pcap que contenga un cierto nimero de paquetes de
todo tipo y lo abrimos con el Wireshark. Wireshark, como herramienta ya consolidada[], nos da la
seguridad de realizar andlisis completos y correctos sobre un trafico.

Acudimos al menu “statistics” y dentro de él a la opcion “Protocol Hierarchy Statistics”: una
ventana que nos informa de los protocolos que se ven en el trafico junto con el nimero tanto de bytes
como de paquetes de cada tipo. A nosotros nos interesa comparar el numero de paquetes de cada tipo,
con el nimero de paquetes que nuestro sniffer registra.

Ejemplo de prueba: 1. Invocamos wireshark con un fichero cualquiera previamente descargado,
para este ejemplo “Modbus_FC_1_Coil.pcap”. Se trata de un fichero pcap muy sencillo que
simplemente me ayude a mostrar el método de testeo seguido para la comprobacion del correcto
funcionamiento del software.

21

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Tl Modbus FC_1.C... il Wireshark: Prot.. “= Tue 06Aug 10:20 [N

W[K S =] 7 (Enej-Symetryc.. By [Arturo Ruiz Ma... [=] Terminal -artur... ® [EScrito en espa...

File Edit View Terminal I Go Help
arturo@arturo-laptop:~$ wireshark -r /home/arturo/Desktop/PROJECT\ IN\ IRELAND/New\ project/pcap/9.\ sniffer_ip_modbus/Modbus_FC_1_Coil.pcap

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

N = = 2= R
Bleee g Q5K = K FT L HEHE @ o e P o - |
Filter: | ~ | Exp eay 1 ,‘
= - Wireshark: Protocol Hierarchy Statistics [-+ =
No. Time Source Destination Protocol Le
£ Display filter: none ‘\
ERTIEri T oo SR = =4 1| Protocol % Packets Packets % Bytes Bytes Mbit/s End Packets Erjd Bytes End |
3 0.952390 192.168:2.100 192.168.2.25 Modbus/ 66 | [V Frame 60 3686 0.002 o | o
41.001624 192.168.2) 192.168.2.100 wodbus / 641 ¥ Ethernet 60 3686 0.002 o | o
2 jilaton 2 S0l N2 JLoALZ 192.168.2.25 TeP i | ¥ Internet Protocol Version 4 58 3566 0.002 o | o
61.952265 192.168.2.100 192.168.2.25 Modbus / 66 |
¥ Transmission Control Protocol 58 3566 0.002 2 1158
7.1.997724 192.168.2.25 192.168.2.100 Modbus /- 641 |
82.162007 102.168.2.100 .168.2.25 Tcp 54 Modbus/TCh et 27 i 2408 0.001 ST [2208
9 2.952269 192.168.2.100 168.2.25 Modbus/ 66 Address Resolution Protocol 3.33% 2[326% 120 o0.000 z | 120
10 2.967133 192.168.2.25 J168.2.100 T 60 . |
11.3.002275 192.168.2.25 192. . Modbus / 641 N\ |
12/3.167957 192.168.2.100 192.168. T 54 \ |
13 3.953452 192.168.2.100 192.168.2. Modbus / 66 Pantalla principal ireshark \ o |
. \
14 4.005529 192.168.2.25 192.168.2.100 Wodbus/ 641 ‘ antalla principa de wiresha Estadisticas |
- —_— — -4 |
» Frame 1: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) |

. . - - B B B . . .z . |
S o O 0 oLy, Por: 90:99% - invocamos wireshark con la opcién de lectura desde fichero. F

> Internet Protocol Version 4, Src: 192.168.2.25 (192.168.2.25), Dst:
> Transmission Control Protocol, Src Port: asa-appl-proto (502), Dst P
> Modbus /TCP

O File: "fhome/arturo/Desktop/PROJECT ... - Packets: 60 Displayed: 60 Marked: 0 Load time: {

@ Hep 3¢ close

Fig.22 Estadisticas Wireshark

Invocamos nuestro programa de modo que lea el mismo fichero pcap (./sniffer -f
Modbus_FC_1_Coil.pcap) y dejamos que el programa realice su funcion. Una vez finalizado, acudimos a la
carpeta donde se recogen los resultados y abrimos el fichero de texto “statistics.txt”.

root@arturo-laptop: /home/arturo/Desktop/PROJECT IN TRELAND/New project/pcap/9. sniffer_ip_modbus# more info_docs/statistics.txt

-== Beginning test on 6/7/113 at 10:36:39 ==-
-=== STATISTICS OF OUR NETWORK TRAFFIC ===- Observar que también coinciden los paquetes ARP. Aunque los

ARP no son por ahora objeto de estudio.

-PROTOCOL SUPPORTEVQ,,QVER'*ET?TEIWEF;

* ARP = 2 ---> 3.33% of our traffic

* RARP = 0 ---> 0.00% of our traffic

TP = dilesse SliluShonif ol il . Coinciden los 58 paquetes TCP.
* Unknown protocel = 0 ---> 0.00% of our traffic

* Invalid IP header = 0 ---> 0.00% of our traffic

-PROTOCOL SUPPORTED OVER IP- } Y los 37 paquetes Modbus.

* TCP = 58 ---> 96.67% of our traffic —
* * of which TCP_MODBUS = 37 ---> 61.67% of our traffic
* ICMP = 0 ---> 0.00% of our traffic

* UDP = 0 ---> 0.00% of our traffic

* Unknown protocol over IP = 0 ---> 0.00% of our traffic

...when studying from a pcap file there's no TIME STATISTICS

Fig.23 Fichero de estadisticas de nuestro sniffer

Ahora bien, deberemos repetir esta prueba un cierto nimero de veces, con el fin de detectar
errores si los hubiera. ;Cuantas veces? No existe un método que te de la seguridad de que realizando
esta prueba “x” veces, te aseguras un 100% el correcto funcionamiento del software. Yo
particularmente, he probado el software con 20 ficheros pcap diferentes. He procurado eso si, que los
ficheros pcap, contengan una cantidad suficiente de variaciones, representando diversos escenarios,
verificando que el programa detecta todas ellas. De este modo, puedo estar tranquilo, sobre el correcto
funcionamiento del programa. A lo largo del tiempo de vida de un programa pueden detectarse nuevos
fallos conocidos como “bugs” y que van siendo corregidos en nuevas versiones del software. Por ahora,
me siento muy satisfecho con las pruebas realizadas y puedo afirmar que el software funciona.

Continuando con el testeo a través de ficheros pcap, lo siguiente sera comprobar que tenemos
registradas las direcciones y puertos correctamente. De nuevo, Wireshark ofrece una opcién para

22

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

rescatar que direcciones IP y puertos se ven sobre el trafico: Menu “statistics” y opcién “Endpoints”.
Acudimos a la pestafia “TCP” donde veremos la direccién y el puerto.

[F’ ")E[Lf S :‘l "T ® Joaquin Sabi... “® GNUImage... By ArturoRuiz... F] Terminal-ro... @8 pcap -File M... ! Modbus FC_.. 7@ Endpoints: = Tue, 06 Aug 10:52 lil

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

SEee A= Q AT L EHE == o Fl EEE @

Filter: | v | Expression... Clsa

No. Time Source Destination Protocol Length Info
2.0.150404 192.168.2.100 ” i A AT S A e + x F11 Win=65515 Len=0
3:0.952390 :192.168.2.100 unc: 1: Read coils.
4:1.001624 192.168.2.25 Ethemet:‘i” fibreGhanngl) | EDDT unc: 1: Read coils.
5:1.156246 192.168.2.100 TCP Endpoints £=21 Win=65505 Lenfﬂ
6:1.952265 192.168.2.100 unc: 1: Read coils.
7:1.997724 192.168.2.25 Address Port Packets Bytes TxPackets TxBytes Rx Packets Rx Bytes Latitude & = T8 e Gl
82.162097 192.168.2.100 (B2 Tk o il : PN hih i Lol i Zily “ | =31 Win=65495 Len=0
9.2.952269 192.168.2.100 192.168.2.100: 1111 E 58: 3566 35: 2106: 23 1460: . unc: 1: Read coils

2. .168.2. : =] 3 3 3
10:2.967133 192.168.2.25 | T %=37 Win=4084 Len=0
2

11:3.002275 192.168.2.25 “ 771’"""*—@,,; _Puertos Eunc: 1: Read coils.

» Frame 1: 64 bytes on wire (512 bits) | |
B Ethernet II, Src: Telemeca_00:01:01 “ ‘
b Internet Protocol Version 4, Src: 19 ‘
P Transmission Control Protocol, Src P ‘
> Modbus/TCP

| Name resolution | Limit to display filter

4 @ vel | Co @ M3y Close
DOOD 00 00 86 Sa eb 20 00 80 f4 0O O L @Hete | lbicory |G X

0010 00 32 d9 89 00 00 40 06 1b 6f cbae vz 19 cu ao e
0020 02 64 01 f6 04 57 4b 34 3 <3 ca 83 76 08 50 18 .d. . WK P
0030 10 00 94 1c 00 00 00 00 00 00 00 04 ff 01 01 O1

O File: "Modbus_FC_1_Coil.pcap” 4670 By... - Packets: 60 Displayed: 60 Marked: 0 Load time: 0:00.049 Profile: Default 5

Fig.24 Wireshark estadisticas “endpoints”

Para verificar sobre este punto nuestro sniffer, abrimos el fichero “ip_tree.txt” generado con mi
sniffer:

root@arturo-laptop: /home/arturo/Desktop/PROJECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus# more info_docs/ip_tree.txt
0: Ip source: 192.168.2.100, Ip destination: 192.168.2.25, Port Source: 1111, Port destination: 502
1: Ip source: 192.168.2.25, Ip destination: 192.168.2.100, Port Source: 502, Port destipation: 1111

Fig.25 Fichero de informacién IP-TCP

De nuevo podemos ver el mismo resultado en ambos programas.

En el requisito parcial de usuario cuarto, entramos en la elaboracion de reglas Snort,
comprobaremos que los datos obtenidos en “ip_tree.txt” y que han sido verificados como correctos, son
traducidos a “reglas Snort”:

Una tnica regla que recoge ambas direcciones ip con los dos puertos. Esta|
- regla permitira el tréfico que nuestro sniffer ha registrado como “normal”
durante su etapa de “entrenamiento”.

root@a[ﬁrré/—/]:aptop: /homerarturo!Désk:cop!PROJECT IN IRELAND/New proj ect/pcap/9. sniffer;ip_modbus# more info_docs/ip_tree.rules
paSS'/fp 192.168.2.100 1111 <> 192.168.2.25 502
alert ip any any -> any any (msg:"communication out of our ip-white-list";) Mientras que el resto del trafico que

- no ha encajado con la regla “pass”
debera ser alertado: “alert”.

Fig.26 Fichero de reglas IP-TCP

La comprobacién de la correcta recogida de informacion relativa a Modbus es mas compleja y
wireshark parece no ofrecer estudios estadisticos al respecto sobre campos concretos de Modbus. Para
resolver este problema, se ha ideado un entorno controlado que simule una red real de maquinas

23

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

funcionando bajo el protocolo Modbus-TCP.
5.2.2 Testeo mediante “Sniffing” en un Entorno Controlado

Para esta fase de testeo del proyecto, se ha recreado un pequefio entorno SCADA que simula el
funcionamiento de una linea de manufacturaciéon. Dicho entorno, estd controlado por un PLC
(Programmable Logic Controller) y un conjunto de médulos Modbus TCP.

La linea de manufacturacién consiste en una cinta transportadora que transfiere ladrillos desde
un cubo hasta un punto de recoleccion. En el punto de recoleccion un brazo robotico articulado recoge
los ladrillos y los coloca en otra cinta transportadora que coloca los ladrillos en otro cubo de
almacenamiento. En total tenemos 4 motores (dos para el brazo articulado y otros dos, uno por cinta
transportadora) cuyo funcionamiento esta controlado por switches que activan y desactivan relés.

En definitiva se trata de un disefio simple pero que utiliza el protocolo Modbus y que posibilita
el testeo del “sniffer” tanto de modo interactivo como a través de ficheros pcap extraidos de su
funcionamiento. Esta alternativa de creacion de ficheros pcap que recogen el funcionamiento de una
realizacion del entorno es algo muy positivo, ya que permite rescatar la informacién contenida en los
campos de los paquetes para un estudio mas exhaustivo de las conexiones entre maquinas.

Mediante este entorno, somos capaces de generar un gran numero de variaciones en el
funcionamiento de los dispositivos Modbus y comprobar que el software funciona en todos los casos.
El sensor Snort junto con el programa sniffer, se instala en un computador a parte, con sistema
operativo Linux, que se conecta por medio de una interfaz de red a dicho entorno. Se ponen a funcionar
las maquinas, se generan una serie de variaciones y se comprueba que los datos recopilados por el
programa son los que debieran ser.

5.2.3 Testeo del Funcionamiento de los Scripts

Ya por ultimo, deberemos confirmar que los scripts realizan su cometido. Existen ciertas
carpetas dentro de la jerarquia de carpetas de Snort, donde se deben guardar los ficheros de
configuracion y los archivos de reglas. Esta ultima comprobacion consiste en tan solo acceder a dichas
carpetas y comprobar que contienen los archivos que deben contener.

En concreto, el archivo “Snort.conf” modificado por el software, debera estar contenido en
/opt/Snort/etc y por otro lado los archivos de reglas deberan estar en /opt/Snort/rules. Ademas, los
“logs” generados por Snort, se almacenaran en /var/log/Snort, carpeta que debera estar creada si no de
instalacion Snort, si por mi programa.

En definitiva, se trata de un dltimo paso de testeo pero que garantiza el completo y correcto
funcionamiento del software en su totalidad.

6. Conclusiones

El motivo del presente proyecto nos ha llevado a disefiar un método para la realizacion
automatizada de listas blancas para Snort basado en la idea de DPI (Deep Packet Inspection).

A su vez, y buscando disefiar una herramienta mas completa, se busca afiadir al método un
enfoque de “listado-negro”, representado a través de listas negras ya publicadas en Internet, y que al ser
de libre distribucién, puedo usar a mi antojo.

Asi pues, este método esta “instanciado” a través del software que durante el desarrollo de este
texto he presentado y que he probado de manera exitosa. Este, se ha ido desarrollando siguiendo una

24

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

sucesion de etapas marcadas por los requisitos parciales de usuario y que culminan en un programa que
es capaz de satisfacer la motivacién del proyecto.

De cara a un futuro, se plantea realizar mejoras al software:

* Uso de un mayor numero de preprocesadores en las reglas Snort que permitan una mejor
definicion del trafico permitido.

* Generalizacion del software a otros protocolos de Entorno Industrial.

* Posibilidad de incluir en el disefio el desarrollo de reglas para otros IDS.

» Tratamiento y estudio del “payload” del paquete Modbus.

Respecto a la inclusion al disefio de técnicas para la Deteccion de Anomalias, se estudié la
posibilidad de inclusion de estudio estadistico del paquete a través de N-gramas, alternativa que se
descart6 debido al gran trabajo que ésto necesitaria y lo imperfecto del método. El problema del estudio
estadistico a través de N-gramas se basa en su incapacidad para distinguir entre trafico “bueno” y
“malo”, creando demasiados falsos positivos, ya que no tiene en cuenta la estructura del paquete y los
diferentes campos de la cabecera del mismo. En su lugar, lo que mi disefio hace es un “Deep Packet
Inspection”, comprobando las caracteristicas de diversos campos del paquete, lo que ademas constituye
una diferencia importante entre mi enfoque y otros enfoques.

Snort es una herramienta de software libre, cuyo codigo esta abierto a posibles modificaciones:
una de las alternativas de las que se dispone es, precisamente, la implementacion de plug-ins que
funcionen con Snort, pero realizando tareas concretas, para las cuales, dicho IDS software, atin no tiene
herramientas especificas. Futuras inclusiones al disefio presentado durante este trabajo, pasarian
entonces por programar preprocesadores que permitan realizar estudios mas detallados del paquete,
siendo usados directamente en las reglas, permitiendo unas reglas mas concretas.

El campo de la Deteccion y Prevencién de Intrusiones es un campo dentro de la Seguridad de
Redes abierto a nuevas ideas y con un amplio horizonte de desarrollo para los jovenes ingenieros. Es
un campo complejo con continuas mejoras, pero un campo en el cual cada dia surgen nuevos
problemas. Un campo, que constituye un aspecto muy importante dentro de las Telecomunicaciones y
que, a dia de hoy, cobra una especial relevancia por lo presente que las redes de comunicaciones estan
en nuestras vidas, ya sea a través de nuestros ordenadores y moviles conectados a la Red, o a través de
Sistemas Industriales y sistemas SCADA que buscan facilitar y mejorar nuestra calidad de vida.

25

ANEXO A: Cédigo completo

#! /bin/sh
1.remove.sh

rm *.0 2> /dev/null

rm *~ 2> /dev/null

rm sniffer 2> /dev/null

rm -t ./info_docs 2> /dev/null

rm ./rules/Snort.conf 2> /dev/null

rm ./rules/ip_tree.rules 2> /dev/null

rm ./rules/Modbus_tree.rules 2> /dev/null
rm ./conf_Snort_files/*~ 2> /dev/null
echo "...remove.sh done"

#! /bin/sh
0.compiling.sh

gee ip.c -¢

gcc ip_func.c -¢

gcc Modbus_func.c -¢
gcc merge_ip.c -c

gcc ip.o ip_func.o Modbus_func.o merge_ip.o -o sniffer -lpcap

echo "...compilation process done"

echo "...usage:\t ./sniffer -i <interface> -n <number of packets>"

echo "...usage:\t ./sniffer -f <file_name>"
/fip.h

#ifndef _IP_H_
#define _IP_H_

#include <time.h>
#include <sys/types.h>
#include <pcap/pcap.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#define BUFSIZE 2048

#define APP_NAME "ip.out"
#define SIZE_ETHERNET 14
#define ETHER_ADDR_LEN 6

enum eth_type {
ARP=0,
RARP=1,
1P=2,
UNKNOWN=3,
INV_IP_HEADER=4
b

enum upper_eth_type {
TCP_NO_Modbus=0,
TCP_Modbus=1,
ICMP=2,
UDP=3,
UP_UNKNOWN=4,

/* data structures for IP */

26

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

#define ETHER_ADDR_LEN 6

/* Ethernet header */

struct sniff ethernet {
u_char ether_dhostfETHER_ADDR_LEN]; /* Destination host address */
u_char ether_shostfETHER_ADDR_LEN]; /* Source host address */

u_short ether_type; /* IP? ARP? RARP? etc */
b
/* IP header */
struct sniff_ip {
u_char ip_vhl; /* version , header length */
u_char ip_tos; /* type of service */
u_short ip_len; /* total length */
u_short ip_id; /* identification */
u_short ip_off; /* fragment offset field */
u_char ip_ttl; /* time to live */
u_char ip_p; /* protocol */
u_short ip_sum; /* checksum */
struct in_addr ip_src; /* source ip address */
struct in_addr ip_dst; /* dest ip address */
b

#define IP_HL(ip) (((ip)->ip_vhl) & 0x0f)
#define IP_V(ip) (((ip)->ip_vhl) >> 4)

/* TCP header */
typedef uint32_t tcp_seq;

struct sniff_tcp {

u_short th_sport; /* source port */
u_short th_dport; /* destination port */
tcp_seq th_seq; /* sequence number */
tcp_seq th_ack; /* acknowledgement number */
u_char th_offx2; /* data offset, rsvd */
#define TH_OFF(th) (((th)->th_offx2 & 0xf0) >> 4)
u_char th_flags; /* flags */
u_short th_win; /* window */
u_short th_sum; /* checksum */
u_short th_urp; /* urgent pointer */

b

/* Modbus-TCP header */

struct sniff_Modbus_tcp {
u_short mtcp_trans_id; /* synchronization */
u_short mtcp_prot; /* protocol identifier */
u_short mtcp_len; /* remaining! bytes in this frame */
u_char mtcp_iden; /* identifier */
u_char mtcp_func; /* function code */

/* protypes */

void our_callback(u_char *,const struct pcap_pkthdr* ,const u_char*);
void print_app_banner(char *,int);

void create_Statistics (struct tm *,struct tm *,double,int,int) ;

void tail_banner(void);

void pantallazo(int);

void merge_ip(char *);

#include "ip.h"

27

#include "ip_node.h"

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

#include "Modbus_node.h"

/*global variables for statistics */

int packet_type[5]={0,0,0,0,0}; /* statistics of ethernet frame type in our network */

int info_type[5]={0,0,0,0,0}; /* statistics of info type inside the IP payload */
FILE *statistics;

FILE *ip_tree;

FILE *sniff_data;

FILE *ip_tree_rules;

FILE *Modbus_tree;

FILE *Modbus_tree_rules;

struct ip_node_t *s;

struct Modbus_node_t *r;

n_packets; /* number limit of packets we sniff */
char_aux_i=0,char_aux_n=0; /* checking flags from the terminal process */

errbuf[PCAP_ERRBUF_SIZE]; /* holds the error string message in pcap functions */

handler; / pcap handler */

timer_init,timer_end; /* for time-stamps */

tm *st_timer_start,*st_timer_end; /* for time-stamps */

time_diff; /* holds the difference of time the program has used */

/*

* MAIN

*

*/

int

main (int argc, char **argv)

{
/* vars */
int
char
char
pcap_t
time_t
struct
double
int i;

/* for loops */

//getting options for the program
int flag_n=0, flag_i=0, flag_f=0;

int c;

char *nvalue = NULL;
char *ivalue = NULL;
char *fvalue = NULL;

opterr = 0;

while ((c = getopt (argc, argv, "n:i:f:")) 1= -1)

switch(c)
{
case 'n":
flag n=1;
nvalue = optarg;
n_packets = atoi(nvalue);
break;
case 'i":
flag i=1;
ivalue = optarg;
break;
case 'f":
flag_f=1;
fvalue = optarg;
break;
case '?":

fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./ip.out -f <file_name>\n");
exit(1);

28

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

default:

fprintf (stderr,"Unknown option character "\\x%x".\n",optopt);
fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of_packets>\n");

fprintf(stderr,"usage: ./ip.out -f <file_name>\n");
exit(1);

}

/I checking for a correct combination of switches
if(!((flag_f && !flag i && !flag n) || (!flag_f && flag i && flag n)))
{

fprintf(stderr,"misuse of the program switches\n");
fprintf(stderr,"usage: ./sniffer.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./sniffer.out -f <file_name>\n");

exit(1);

telse {
if(!flag_f) print_app_banner(ivalue,n_packets);
else print_app_banner(fvalue,0);

}

// initialize linked list
s = (struct ip_node_t *)createList();
r = (struct Modbus_node_t *)m_createList();

// opening sniff _data to hold the sniffer's output
sniff_data = fopen("sniff_data.txt","w");

ip_tree_rules = fopen("ip_tree.rules","w");
Modbus_tree_rules = fopen("Modbus_tree.rules","w");

// stablishing handler for sniffing:
if(!flag_f)
{

if((handler = pcap_open_live(ivalue,BUFSIZ,1,10000,errbuf)) == NULL)
{

printf("\n%s %s: %s\n","Couldn't open device",ivalue,errbuf);
fprintf(stderr,"\n%s\n","exiting......");
exit(1);

}

} else if((handler = pcap_open_offline(fvalue, errbuf)) == NULL)
{

printf("\n%s %s: %s\n","Couldn't open device",ivalue,errbuf);
fprintf(stderr,"\n%s\n","exiting......");
exit(1);

// printing time stamp of beginning

timer_init=time(NULL);

st_timer_start=localtime(&timer_init);

printf("\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n","Beginning test on",
st_timer_start->tm_mday,st_timer_start->tm_mon,st_timer_start->tm_year,
st_timer_start->tm_hour,st_timer_start->tm_min,st_timer_start->tm_sec

)

// opening files for the linked trees
ip_tree = fopen("ip_tree.txt","w");
Modbus_tree = fopen("Modbus_tree.txt","w");

29

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

// entering in the loop
if((pcap_loop(handler,n_packets,our_callback,NULL))==-1)
{

fprintf(stderr,"\n%s\n","error ocurred while in loop, exiting now...");
exit(1);

// exiting,printing statistics and closing files

timer_end = time(NULL);

st_timer_end = localtime(&timer_end);

printf("\n%s %2.21f %s\n"," -== Time test process :",time_diff = difftime(timer_end,timer_init),"segs. ==-");

/lcreating and closing statistics file

pcap_close(handler);

statistics = fopen("statistics.txt","w");

for(i=0,n_packets=0;i<5;i++) n_packets += packet_type[il;
create_Statistics(st_timer_start,st_timer_end,time_diff,n_packets,flag_f);

fclose(statistics);
fclose(sniff_data);

//reading from the tree and free-ing the allocated space
readTree_ip(s);
m_readTree_Modbus(r);

fclose(ip_tree);
fclose(Modbus_tree);

freeTree_ip(s);
m_freeTree_Modbus(r);

printf("\n%s\n\n"," ----statistic control finished, please, wait----");

fprintf(ip_tree_rules,"alert ip any any -> any any (msg:\"communication out of our ip-white-list\";)");
fclose(ip_tree_rules);

fprintf(Modbus_tree_rules,"alert ip any any -> any any (msg:\"communication out of our Modbus-white-list\";)");
fclose(Modbus_tree_rules);

// merging together the rules in order to get more compact rule files
merge_ip("ip_tree.rules");

// creating folder info_docs and moving files into it
tail_banner();
exit(0);

30

/*

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* our functions

*/

void

our_callback(u_char *args,const struct pcap_pkthdr* pkthdr,const u_char* packet)

{

static int count = 1; /* packet counter */

u_short eth_type; /* ethernet type in host byte order for switch use */

int Modbus_flag = 0; /* Modbus_flag = 1 when it detects a Modbus protocol packet */
char mybuff[50]; /* inet_ functions use statically allocated memory */

/*aux variables to help in the use of tree_linked_list */
u_short sportaux,dportaux;

u_short m_lenaux;

u_char m_idenaux,m_funcaux;

/* declare pointers to packet headers */

const struct sniff _ethernet *ethernet; /* The ethernet header [1] */

const struct sniff_ip *ip; /* The IP header */

const struct sniff_tcp *tcp;

const struct sniff_Modbus_tcp *Modbus_tcp; /* The Modbus TCP header */

/* sizes of ip frame and tcp segment */
int size_header_ip;

int size_header_tcp;

char test_Modbus = 0;

fprintf(sniff_data,"\nPacket number %d:\n", count);
fprintf(sniff_data,"--------------------- \n", count);
count++;

/* define ethernet header torrent*/
ethernet = (struct sniff_ethernet*)(packet);

eth_type=ntohs(ethernet->ether_type);
switch (eth_type) {

case(0x0806):
fprintf(sniff_data,"\tARP packet\n");
packet_type[ARP]++;
return;

case(0x8035):
fprintf(sniff_data,"\tRARP packet\n");
packet_type[RARP]++;
return;

case(0x0800):
fprintf(sniff_data,"\tIP packet\n");
packet_type[IP]++;
break;

default:
fprintf(sniff_data,"\tnot an ARP/RARP/IP packet\n");
packet_type[UNKNOWN]++;
break;

/* define/compute ip header offset */
size_header_ip = IP_HL(ip = (struct sniff_ip*)(packet + SIZE_ETHERNET))*4;
if (size_header_ip < 20)

31

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

{
packet_type[INV_IP_HEADER]++;
packet_type[IP]--;
fprintf(sniff_data,"\t Invalid IP header length: %u bytes\n", size_header_ip);
return;
}

/* print source and destination IP addresses */
strcpy(mybuff,inet_ntoa(ip->ip_src));
fprintf(sniff_data,"\tFrom: %s To: %s\n", mybuff, inet_ntoa(ip->ip_dst));

/* determine protocol */
switch(ip->ip_p)
{

case IPPROTO_TCP:
fprintf(sniff_data,"\t-TCP protocol\n");
info_type[TCP_NO_Modbus]++;
break;

case IPPROTO_UDP:
fprintf(sniff_data,"\t-UDP protocol\n");
info_type[UDP]++;
return;

case IPPROTO_ICMP:
fprintf(sniff_data,"\t-ICMP protocol\n");
info_type[[CMP]++;
return;

default:
fprintf(sniff_data,"\t-Not a TCP/UDP/ICMP protocol\n");
info_type[UP_UNKNOWN]++;
return;

/* define/compute tcp header offset */
tep = (struct sniff_tcp*)(packet + SIZE_ ETHERNET + size_header_ip);
size_header_tcp = TH_OFF(tcp)*4;
if (size_header_tcp < 20)
{
fprintf(sniff_data,"\t-invalid TCP header\n");
return;

}

fprintf(sniff_data,"\t Src port: %d to Dst port: %d\n", ntohs(tcp->th_sport),ntohs(tcp->th_dport));

/* define/print Modbus header fields */
/* is it an IP packet carrying Modbus data ? */

if ((ntohs(ip->ip_len) - size_header_ip) == size_header_tcp) test._ Modbus = 0;
else test_Modbus = 1;

Modbus_tcp = (struct sniff_Modbus_tcp*)(packet + SIZE_ETHERNET + size_header_ip + size_header_tcp);

test_Modbus = test_Modbus && (Modbus_tcp->mtcp_prot == 0)&&(Modbus_tcp->mtcp_iden != 0)&&(Modbus_tcp->mtcp_len != 0);
test_Modbus = test_Modbus && (Modbus_tcp->mtcp_iden < 256) && (Modbus_tcp->mtcp_func < 256);

if (test_Modbus)
{
info_type[TCP_Modbus]++;
fprintf(sniff_data,” - Modbus: \n");
fprintf(sniff_data,"\t\t%s = %d \n","remaining bytes in this frame",ntohs(Modbus_tcp->mtcp_len));
fprintf(sniff_data,"\t\t%s = %d \n","identifier",Modbus_tcp->mtcp_iden);
fprintf(sniff_data,"\t\t%s = %d \n","function code",Modbus_tcp->mtcp_func);
Modbus_flag = 1;

} else {

32

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

fprintf(sniff_data,"\t\t%s \n"," (not a Modbus_tcp protocol / or misformed Modbus_tcp packet)");
Modbus_flag = 0;

/* sending info to the linked tree list */

if ('Modbus_flag)

{
if ((eth_type == 0x0800)&&(ip->ip_p == IPPROTO_TCP))
{

sportaux = ntohs(tcp->th_sport);

dportaux = ntohs(tcp->th_dport);

s = (struct ip_node_t *)insertBranch(s,(struct in_addr *)&ip->ip_src,(struct in_addr *)&ip->ip_dst,
(u_short *)&sportaux,(u_short *)&dportaux);

} else

sportaux = ntohs(tcp->th_sport);

dportaux = ntohs(tcp->th_dport);

m_lenaux = ntohs(Modbus_tcp->mtcp_len);

m_idenaux = Modbus_tcp->mtcp_iden;

m_funcaux = Modbus_tcp->mtcp_func;

1 = (struct Modbus_node_t *)m_insertBranch(r,(struct in_addr *)&ip->ip_src,(struct in_addr *)&ip->ip_dst,

(u_short *)&sportaux,(u_short *)&dportaux,(u_short *)&m_lenaux,(u_char *)&m_idenaux,(u_char

*)&m_funcaux);

return;

}

void
print_app_banner(char *v,int n)

charc="'0";
inti;
char *snt_scrp[] =

"\n Making sure you have /var/log/Snort...\n",
"/var_log_Snort.sh ",

"\n Making sure you have the /opt/Snort/etc directory. \n",
"./opt_Snort_etc.sh ",

"\n Making sure directory /opt/Snort/rules exists. \n",
"./opt_Snort_rules.sh ",

"\n",
"echo \"\n\"",
NULL

I5

char *ord[] =

{
"more ./conf_Snort_files/important_considerations",
"more ./conf_Snort_files/input",
"more ./conf_Snort_files/output”,
NULL

b

pantallazo(1);

printf("Info banner: \n");
for(i=0; ord[i] ; i++)

system(ord[i]);
pantallazo(20);
}

printf("Checking the system...\n");
for(i=0;snt_scrpli] ;)

33

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

{
printf("%s",snt_scrp[i++]);
system(snt_scrp[i++]);
sleep(3);

}

pantallazo(4);

if (n==0)

{
printf("STARTING SNIFFING......");
sleep(1);
printf(" %s\n"," -=============== ");
printf(" -== %s ==- \n", APP_NAME);
printf(" -== %s = %s ==-\n","interface",v);
printf(" %s\n"," -=============== ");
sleep(1);

}

else{
printf("STARTING SNIFFING......");
sleep(1);
printf(" %s\n"," -=============== ");
printf(" -== %s ==-\n", APP_NAME);
printf(" -== %s = %s ==-\n","interface",v);
printf(" -== %s = %d ==-\n","number of packets to study ", n);
printf(" %s\n"," -=============== ");
sleep(1);

}

return;

}
void

create_Statistics (struct tm *begin,struct tm *end,double td, int pkt,int f) {

enum eth_type et_aux; /* aux through for-loops*/
enum upper_eth_type uet_aux; /* aux through for-loops*/

char *et_uet;

int sum_et=0,sum_uet=0;

float assess=0;

fprintf(statistics,"\n -== %s %d/%d/%d at %d:%d:%d ==-\n","Beginning test on",
begin->tm_mday,begin->tm_mon,begin->tm_year,begin->tm_hour,
begin->tm_min,begin->tm_sec);

fprintf(statistics," -=== %s ===- \n"," STATISTICS OF OUR NETWORK TRAFFIC ");

fprintf(statistics,"\n\t%s \n\n"," -PROTOCOL SUPPORTED OVER ETHERNET- ");

for(et_aux=ARP; et_aux<=INV_IP_HEADER; et_aux++)

{
switch(et_aux)
{
case(ARP): et_uet="ARP";break;
case(RARP): et_uet="RARP";break;
case(IP): et_uet="TP";break;
case(UNKNOWN): et_uet="Unknown protocol";break;
case(INV_IP_HEADER):et_uet="Invalid IP header";break;
default: fprintf(statistics,"\t!!debug needed!!\n");
5
assess=(float)(packet_type[et_aux])/pkt;
fprintf(statistics, "\t\t* %s = %d ---> %2.2f%c of our traffic\n",
et_uet,packet_type[et_aux],assess*100,'%");
}

fprintf(statistics,"\n\n");
fprintf(statistics,"\t%s \n\n"," -PROTOCOL SUPPORTED OVER IP-");

for(uet_aux=TCP_NO_Modbus ;uet_aux<=UP_UNKNOWN ;uet_aux++)

34

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

switch(uet_aux)

{
case(TCP_NO_Modbus): et_uet="TCP";break;
case(UDP): et_uet="UDP";break;
case(ICMP): et_uet="ICMP";break;
case(TCP_Modbus): et_uet="\t* of which TCP_Modbus";break;
case(UP_UNKNOWN): et_uet="Unknown protocol over IP";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

assess=(float)(info_type[uet_aux])/pkt;
fprintf(statistics,"\t\t* %s = %d ---> %2.2f%c of our traffic\n",
et_uet,info_type[uet_aux],assess*100,'%");

}

/* when data dumped from a file, there's no sense in time statistics, the file takes 0 secs for the program
to be examined, resulting in divisions by 0 in our next piece of code*/

if (f)

{
fprintf(statistics,"\n\n\t...when studying from a pcap file there's no TIME STATISTICS\n\n");
return;

}

fprintf(statistics,"\n%s %f %s\n\n"," -== TIME STATISTICS : the tests has taken ",td," segs. ==-");

fprintf(statistics,"\t%s \n"," -PROTOCOL SUPPORTED OVER ETHERNET- ");

for(et_aux=ARP; et_aux<=INV_IP_HEADER,; et_aux++)

{
switch(et_aux)
{
case(ARP): et_uet="ARP";break;
case(RARP): et_uet="RARP";break;
case(IP): et_uet="IP";break;
case(UNKNOWN): et_uet="Unknown protocol";break;
case(INV_IP_HEADER):et_uet="Invalid IP header";break;
default: fprintf(statistics,"\t!!debug needed!!\n");
}
fprintf(statistics,"\t\t* %s has %2.31f packets/sec.\n",et_uet,(double)(packet_type[et_aux])/(int)td);
}

fprintf(statistics,"\n\n");
fprintf(statistics,"\t%s \n"," -PROTOCOL SUPPORTED OVER IP-");

for(uet_aux=TCP_NO_Modbus ;uet_aux<=UP_UNKNOWN ;uet_aux++)

{
switch(uet_aux)
{
case(TCP_NO_Modbus): et_uet="TCP";break;
case(UDP): et_uet="UDP";break;
case(ICMP): et_uet="ICMP";break;
case(TCP_Modbus): et_uet="\t* of which TCP_Modbus";break;
case(UP_UNKNOWN): et_uet="Unknown protocol over IP";break;
default: fprintf(statistics,"\t!!debug needed!!\n");
}
fprintf(statistics,"\t\t* %s has %2.31f packets/sec.\n",et_uet,(double)(info_type[uet_aux])/(int)td);
}

fprintf(statistics,"\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n",
"Test start:",begin->tm_mday,begin->tm_mon,begin->tm_year, begin->tm_hour,begin->tm_min,
begin->tm_sec,"Test finish:",end->tm_mday,end->tm_mon,end->tm_year,end->tm_hour,end->tm_min,
end->tm_sec);

"o
>

fprintf(statistics,"\t -=== %s ===-\n
return;

35

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

}

void
tail_banner(void)

char c ='0";

inti;

char *sentences[] =
{

"Files created: \n",

"\t - sniff_data.txt :\t holds the sniffer's output\n",

"\t - statistics.txt :\t holds statistical information\n",

"\t - ip_tree.txt :\t holds all the combinations of ip @ and ports observed into our network traffic\n",

"\t - Modbus_tree.txt :\t holds all the combinations of ip @, ports and Modbus fiels observed into our network traffic\n",
"\t - ip_tree.rules :\t holds the ip rules to whitesniff our network, placed in ' /opt/Snort/rules ' \n",

"\t - Modbus_tree.rules :\t holds the Modbus rules to whitesniff our network, placed in ' /opt/Snort/rules ' \n",

NULL
I8
char *orders[] =
{
"mkdir info_docs","\nCreating folder info_docs...\n",
"mv ./ip_tree.txt ./info_docs/.","\t...Moving ip_tree.txt into folder info_docs\n",
"mv ./Modbus_tree.txt ./info_docs/.","\t...Moving Modbus_tree.txt into folder info_docs\n",
"mv ./statistics.txt ./info_docs/.","\t...Moving statistics.txt into folder info_docs\n",
"mv ./sniff_data.txt ./info_docs/.","\t...Moving sniff_data.txt into folder info_docs\n",
"mv ./ip_tree.rules ./info_docs/.","\t...Moving ip_tree.rules into info_docs\n",
"mv ./Modbus_tree.rules ./info_docs/.","\t...Moving Modbus_tree.rules into info_docs\n\n",
"./moving_conf_files.sh","... moving 'classification.config' and 'reference.config' into /opt/Snort/etc\n",
NULL
I8
char *more_sentences[] =
{
"\n\n\nPay attention: in this same directory, there's a folder named 'rules',\n",
"you should load this directory with the black-listing rules you want for Snort. \n",
"This program will include automatically the names into Snort.conf, releasing you from this task.\n",
"Include now, if you need, some .rules files or PRESS LETTER c(lower case) + ENTER (case sensitive) to continue: ",
NULL
IS
char *last_sentences[] =
{
"\n\nNow you can go to info_docs folder contained in this same directory, and consult the data gathered.\n",
"...The appropiate rule file has been created and located in /opt/Snort/rules as well.\n\n\n\n",
NULL
b
pantallazo(5);

system("rm -r ./info_docs 2> /dev/null");
for (i = 0 ; sentences[i] ; i++)
{
printf("%s",sentences|i]);
sleep(1);
}
for(i = 0; orders[i] ;)

if(system(orders[i++]) != -1) printf("%s",orders[i++]);

sleep(2);

}

for (i = 0; more_sentences[i] ; i++)

{
printf("%s",more_sentences[i]);
sleep(2);

}

fflush(stdin);

for(;cl!l='c;)

scanf("'%c",&c);
if(¢ !="c") printf("\nPRESS LETTER C (case sensitive) + ENTER to continue: ");

36

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

fflush(stdin);

}

if(system("./moving_rule_files.sh") !=-1)

printf("\n\t...Copying our whilelist compliant rules into /opt/Snort/rules\n");

sleep(1);

printf("\t...Moving black-list compliant rules from our folder 'rules'into /opt/Snort/rules\n");
printf("\t...Moving Snort.conf configuration file with our 'includes' into /opt/Snort/etc \n");

for (i = 0; last_sentences[i] ; i++)

printf("%s",last_sentences[i]);

}
sleep(2);
{
sleep(2);
}
return;
}
void
pantallazo (int j)
{
sleep (j);
system("clear");
return;
}
//ip_node.h

#ifndef IP_NODE_H_
#define IP_NODE_H_

struct ip_node_t

{
void *ptrdata;
struct ip_node_t *ptr_r;
struct ip_node_t *ptr_b;

b

enum field_t

{
ip_ip_from =0,
ip_ip_to =1,
ip_src_port = 2,
ip_dst_port =3

b

/* prototypes */

struct ip_node_t *createList (void);

struct ip_node_t *createNode(void *);

struct ip_node_t *insertBranch (struct ip_node_t *s,void *,void *,void *,void *);
void freeTree_ip(struct ip_node_t *);

void readTree_ip(struct ip_node_t *);

#endif
//ip_func.c

#include "ip.h"
#include "ip_node.h"

extern FILE *ip_tree;
extern FILE *ip_tree_rules;

37

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

struct ip_node_t
*createList (void)

{

b

return NULL;

struct ip_node_t
*createNode(void *data)

{

}

struct ip_node_t *s;
s = malloc(sizeof(struct ip_node_t));

if (s != NULL)

{
s->ptrdata = data;
s->ptr_r = NULL;
s->ptr_b = NULL;

}

return s;

struct ip_node_t
*insertBranch (struct ip_node_t *s,void *ob1,void *ob2,void *ob3,void *ob4)

{

struct ip_node_t *aux,*aux1,*aux2,*aux3,*prev,*prevl,*prev2,*prev3;
struct ip_node_t *aux_loop;

void *ob;

enum field_t level = ip_ip_from;

int prev_int;

for (aux =s, prev = NULL ; aux != NULL ; prev = aux, aux = aux->ptr_r)
{

if(!memcmp(aux->ptrdata,ob1,sizeof(struct in_addr)))

for(aux2 = aux1->ptr_b , prev2 = NULL ; aux2 != NULL ; prev2 = aux2, aux2 = aux2->ptr_r)

for(aux3 = aux2->ptr_b , prev3 = NULL ; aux3 != NULL ; prev3 =aux3,

if('memcmp(aux3->ptrdata,ob4,sizeof(u_short)))

return s;

level++;
for(aux1 = aux->ptr_b, prevl = NULL ; aux1 != NULL ; prevl = aux1, aux1 = aux1->ptr_r)
{
if('memcmp(aux1->ptrdata,ob2,sizeof(struct in_addr)))
level++;
{
if('memcmp(aux2->ptrdata,ob3,sizeof(u_short)))
level++;
aux3 = aux3->ptr_r)
{
}
}
}
}
}
}

if (prev == NULL) prev_int = 0; else prev_int = 1;

38

switch (prev_int) {

case(0):

default:

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

ob = malloc(sizeof(struct in_addr)); /lip source
s = createNode(memcpy(ob,ob1,sizeof(struct in_addr)));

ob = malloc(sizeof(struct in_addr)); //ip destination
s->ptr_b = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = s->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));

return s;

switch(level) {
case (ip_ip_from):

ob = malloc(sizeof(struct in_addr)); //ip source
prev->ptr_r = createNode(memcpy(ob,ob1,sizeof(struct in_addr)));
aux_loop = prev->ptr_r;

ob = malloc(sizeof(struct in_addr)); //ip destination
aux_loop->ptr_b = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); /Isrc port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_ip_to):

ob = malloc(sizeof(struct in_addr)); //ip destination
prev1->ptr_r = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = prevl->ptr_r;

ob = malloc(sizeof(u_short)); /Isrc port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_src_port):

ob = malloc(sizeof(u_short)); //src port
prev2->ptr_r = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = prev2->ptr_r;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_dst_port):

ob = malloc(sizeof(u_short)); //dst port

39

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

prev3->ptr_r = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

default:

printf("DEBUG NEEDED \n");

exit(1);
}
}
}
void
freeTree_ip(struct ip_node_t *s)
{
struct ip_node_t *aux_i,*aux_j,*aux_k,*aux_r;
for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{
free(aux_r->ptrdata);
free(aux_r);
}
for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{
free(aux_k->ptrdata);
free(aux_k);
}
for(aux_i =s; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{
free(aux_j->ptrdata);
free(aux_j);
}
for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
{
free(aux_i->ptrdata);
free(aux_i);
}
return;
}
void

readTree_ip(struct ip_node_t *s)

struct ip_node_t *aux_i,*aux_j,*aux_k,*aux_r;

int aux1,aux2;

struct in_addr *in_addr_aux1, *in_addr_aux2;

int count=0;

char mybuff[50]; /* inet_ functions use statically allocated memory */

for(aux_i =s; aux_i != NULL ; aux_i = aux_i->ptr_r)
{
in_addr_aux1 = (struct in_addr *)aux_i->ptrdata;
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{
in_addr_aux2 = (struct in_addr *)aux_j->ptrdata;
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{

aux1 = *(u_short *)aux_k->ptrdata;

40

}

return;

//Modbus_node.h

#ifndef Modbus_NODE_H_
#define Modbus NODE_H

struct Modbus_node_t

{

b

void *ptrdata;
struct Modbus_node_t *ptr_r;
struct Modbus_node_t *ptr_b;

enum m_field_t

{

Modbus_ip_from = 0,
Modbus_ip_to =1,
Modbus_src_port = 2,
Modbus_dst_port = 3,
Modbus_len = 4,
Modbus_iden = 5,
Modbus_func = 6

/* prototypes */

struct Modbus_node_t *m_createList (void);
struct Modbus_node_t *m_createNode(void *);

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

{

aux2 = *(u_short *)aux_r->ptrdata;

fprintf(ip_tree,"%5d: ",count++);

fprintf(ip_tree,"Ip source: %15s, ",inet_ntoa(*in_addr_aux1));

fprintf(ip_tree,"Ip destination: %15s, ",inet_ntoa(*in_addr_aux2));

fprintf(ip_tree,"Port Source: %5d, ",aux1);

fprintf(ip_tree,"Port destination: %5d \n",aux2);

strcpy(mybuff,inet_ntoa(*in_addr_aux2));

fprintf(ip_tree_rules,"pass ip %s %d <> %s %d \n",
inet_ntoa(*in_addr_aux1),aux1,mybuff,aux2);

struct Modbus_node_t *m_insertBranch (struct Modbus_node_t *,void *,void *,void *,void *,void *,void *,void *);

void m_freeTree_Modbus(struct Modbus_node_t *);
void m_readTree_Modbus(struct Modbus_node_t *);

#endif

//Modbus_func.c

#include "ip.h"
#include "Modbus_node.h"

extern FILE *Modbus_tree;
extern FILE *Modbus_tree_rules;

struct Modbus_node_t
*m_createList (void)

{
b

return NULL;

41

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

struct Modbus_node_t
*m_createNode(void *data)
{
struct Modbus_node_t *s;
s = malloc(sizeof(struct Modbus_node_t));

if (s I=NULL)

{
s->ptrdata = data;
s->ptr_r = NULL;
s->ptr_b = NULL;

}

return s;

}

struct Modbus_node_t
*m_insertBranch (struct Modbus_node_t *s,void *ob1,void *ob2,void *ob3,void *ob4,void *ob5,void *ob6,void *ob7)
{
struct Modbus_node_t *aux,*aux1,*aux2,*aux3,*aux4,*aux5, *aux6, *prev, *prev1,*prev2,*prev3,*prev4,*prevs,*preve6;
struct Modbus_node_t *aux_loop;
void *ob;
enum m_field_t level = Modbus_ip_from;
int m_prev_int;

for (aux = s, prev = NULL ; aux != NULL ; prev = aux, aux = aux->ptr_r)

if('memcmp(aux->ptrdata,ob1,sizeof(struct in_addr)))

{
level++;
for(aux1 = aux->ptr_b, prevl = NULL ; aux1 != NULL ; prevl = aux1, aux1 = aux1->ptr_r)

if('memcmp(aux1->ptrdata,ob2,sizeof(struct in_addr)))

{
level++;
for(aux2 = aux1->ptr_b , prev2 = NULL ; aux2 != NULL ; prev2 = aux2, aux2 = aux2->ptr_r)
{
if(!memcmp(aux2->ptrdata,ob3,sizeof(u_short)))
{
level++;
for(aux3 = aux2->ptr_b , prev3 = NULL ; aux3 != NULL ; prev3 =aux3, aux3 = aux3->ptr_r)
{
if('memcmp(aux3->ptrdata,ob4,sizeof(u_short)))
{
level++;
for(aux4 = aux3->ptr_b , prev4d = NULL ; aux4 != NULL ; prev4 =aux4, aux4 = aux4->ptr_r)
{
if('memcmp(aux4->ptrdata,ob5,sizeof(u_short)))
level++;
for(aux5 = aux4->ptr_b , prev5 = NULL ; aux5 != NULL ; prev5 =aux5, aux5 = aux5-
>ptr_r)
{
if(!memcmp(aux5->ptrdata,ob6,sizeof(u_char)))
{
level++;
for(aux6 = aux5->ptr_b , prev6 = NULL ; aux6 != NULL ; prev6 =aux®6,
aux6 = aux6->ptr_r)
if('memcmp(aux6->ptrdata,ob7,sizeof(u_char)))
{
return s;
}
}
}
}
}
}
}

42

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

if (prev == NULL) m_prev_int = 0; else m_prev_int = 1;

switch (m_prev_int) {

case(0):

default:

ob = malloc(sizeof(struct in_addr)); //ip source
s = m_createNode(memcpy(ob,ob1,sizeof(struct in_addr)));

ob = malloc(sizeof(struct in_addr)); //ip destination
s->ptr_b = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = s->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));

return s;

switch(level) {
case (Modbus_ip_from):

ob = malloc(sizeof(struct in_addr)); //ip source
prev->ptr_r = m_createNode(memcpy(ob,ob1,sizeof(struct in_addr)));
aux_loop = prev->ptr_r;

ob = malloc(sizeof(struct in_addr)); //ip destination
aux_loop->ptr_b = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus

aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

43

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

ob = malloc(sizeof(u_char)); //iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));

return s;

case (Modbus_ip_to):

ob = malloc(sizeof(struct in_addr)); //ip destination
prev1->ptr_r = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = prev1->ptr_r;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case (Modbus_src_port):

ob = malloc(sizeof(u_short)); //src port
prev2->ptr_r = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_r;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case (Modbus_dst_port):
ob = malloc(sizeof(u_short)); //dst port
prev3->ptr_r = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_r;
ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));

aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus

44

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case(Modbus_len):

ob = malloc(sizeof(u_short)); //len Modbus
prev4->ptr_r = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = prev4->ptr_r;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));

aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));

return s;
case(Modbus_iden):
ob = malloc(sizeof(u_char)); // iden Modbus

prev5->ptr_r = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = prev5->ptr_r;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case(Modbus_func):

ob = malloc(sizeof(u_char)); //func Modbus
prev6->ptr_r = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;
default:
printf("DEBUG NEEDED \n");
exit(1);
}
}
}
void
m_freeTree_Modbus(struct Modbus_node_t *s)
{

struct Modbus_node_t *aux_i,*aux_j,*aux_k,*aux_r,*aux_s,*aux_t,*aux_u;

for(aux_i =s; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
for (aux_t = aux_s->ptr_b ; aux_t != NULL ; aux_t = aux_t->ptr_r)
for (aux_u = aux_t->ptr_b ; aux_u != NULL ; aux_u = aux_u->ptr_r)

{
free(aux_u->ptrdata);
free(aux_u);

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

45

return;

}

void

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
for (aux_t = aux_s->ptr_b ; aux_t != NULL ; aux_t = aux_t->ptr_r)
{
free(aux_t->ptrdata);
free(aux_t);

for(aux_i =s; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)

{
free(aux_s->ptrdata);
free(aux_s);

}

for(aux_i =s; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{
free(aux_r->ptrdata);
free(aux_r);

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{
free(aux_k->ptrdata);
free(aux_k);

}

for(aux_i =s; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{
free(aux_j->ptrdata);
free(aux_j);

for(aux_i =s; aux_i != NULL ; aux_i = aux_i->ptr_r)
{

free(aux_i->ptrdata);

free(aux_i);

m_readTree_Modbus(struct Modbus_node_t *s)

{

struct Modbus_node_t *aux_i,*aux_j,*aux_k,*aux_r,*aux_s,*aux_t,*aux_u;

int aux1,aux2,aux3;

struct in_addr *in_addr_aux1, *in_addr_aux2;

char aux_charl,aux_char2;

int count=0;

char mybuff[50]; /* inet_ functions use statically allocated memory */

for(aux_i =s; aux_i != NULL ; aux_i = aux_i->ptr_r)

{

in_addr_aux1 = (struct in_addr *)aux_i->ptrdata;

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
{

46

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

in_addr_aux2 = (struct in_addr *)aux_j->ptrdata;
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)
{
aux1 = *(u_short *)aux_k->ptrdata;
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

{
aux? = *(u_short *)aux_r->ptrdata;
for(aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
{
aux3 = *(u_short *)aux_s->ptrdata;
for(aux_t = aux_s->ptr_b ; aux_t != NULL ; aux_t = aux_t->ptr_r)
{
aux_charl = *(u_char *)aux_t->ptrdata;
for(aux_u = aux_t->ptr_b ; aux_u != NULL ; aux_u = aux_u->ptr_r)
aux_char2 = *(u_char *)aux_u->ptrdata;
fprintf(Modbus_tree,"%5d: ",count++);
fprintf(Modbus_tree,"Ip src: %14s, ",inet_ntoa(*in_addr_aux1));
fprintf(Modbus_tree,"Ip dst: %14s, ",inet_ntoa(*in_addr_aux2));
fprintf(Modbus_tree,"Port src: %5d, ",aux1);
fprintf(Modbus_tree,"Port dst: %5d, ",aux2);
fprintf(Modbus_tree,"lenght_data: %5d, ",aux3);
fprintf(Modbus_tree,"ident: %5d, ",(u_char)aux_char1);
fprintf(Modbus_tree,"funct code: %5d \n",(u_char)aux_char2);
strcpy(mybuff,inet_ntoa(*in_addr_aux2));
fprintf(Modbus_tree_rules,"pass ip %s %d <> %s %d (Modbus_func: %d
;Modbus_unit: %d;)\n",
inet_ntoa(*in_addr_aux1),aux1,mybuff,aux2,(u_char)aux_char2,
(u_char)aux_char1);
}
}
}
}
}
}
}
return;
}
// merge_ip.c
#include "ip.h"
void
merge_ip(char *name_f)
FILE *origin_1;
FILE *origin_2;
FILE *copy_aux;
char buff_1[200];
char buff_2[100];
char aux[100];
char pass[10],ip[5],s_add[20],s_port[10],sym[5],d_add[20],d_port[10];
fpos_t pos;

char equal = 0;

/lopening files
origin_1 = fopen(name_f,"r");
origin_2 = fopen(name_f,"r");

copy_aux = fopen("backup.txt","w");

while (!feof(origin_1))
{
fgets(buff_1,sizeof(buff_1),origin_1);

47

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

fgetpos(origin_1,&pos); //pos points to the next line

fscanf(origin_2,"%s %s %s %s %s %s %s",pass,ip,s_add,s_port,sym,d_add,d_port);
if(!strcmp(pass,"alert")) break;

fsetpos(origin_2,&pos); /lorigin_1 and origin_2 must point to the same position
sprintf(buff_2,"%s %s %s %s %s %s %s",pass,ip,d_add,d_port,sym,s_add,s_port);
while(strcmp(pass, "alert™))

fscanf(origin_1,"%s %s %s %s %s %s %s",pass,ip,s_add,s_port,sym,d_add,d_port);
if(!strcmp(pass,"alert")) break;
sprintf(aux,"%s %s %s %s %s %s %s",pass,ip,s_add,s_port,sym,d_add,d_port);
if(!strcmp(buff_2,aux))
{
equal = 1;
break;
}
}
if (lequal)
{

fprintf(copy_aux,"%s\n",buff_2);

telse equal =0 ;
fsetpos(origin_1,&pos);
}
fprintf(copy_aux,"%s\n",buff_1);
/Iclosing files
fclose(origin_1);
fclose(origin_2);
fclose(copy_aux);

rename(""backup.txt",name_f);

}

#! /bin/sh
var_log_Snort.sh

if [-d /var/log/Snort]

then
echo "\t\t... /var/log/Snort exists"
else
echo "\t\t... /var/log/Snort doesn't exists..."
mkdir /var/log/Snort
echo "\t\t\t\t...creating /var/log/Snort"
fi
#! /bin/sh

moving_conf_files.sh

if [-d ./conf_Snort_files]

then
cp ./conf_Snort_files/classification.config /opt/Snort/etc/.
cp ./conf_Snort_files/reference.config /opt/Snort/etc/.
cp ./conf_Snort_files/Snort.conf ./rules/Snort.conf
else
echo " !! revise your sniffer folder, conf_Snort_files folder is missed !! "
exit 1
fi
#! /bin/sh

moving_rule_files.sh

if [-d ./info_docs]
then
cp ./info_docs/*.rules ./rules/.
cp ./conf_Snort_files/Snort.conf ./rules/Snort.conf
chown $SUDO_USER ./rules/Snort.conf
cd rules
echo "\n"

48

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

for file in $(1s *.rules)

do
cp ./$file /opt/Snort/rules/$file
echo "\t...$file moved into /opt/Snort/rules and included into Snort.conf"
sleep 1
echo "include \$RULE_PATH/$file" >> ./Snort.conf
done
cp ./Snort.conf /opt/Snort/etc/.
cd ..
else
echo "debug needed"
exit 1
fi
#! /bin/sh

#opt_Snort_rules.sh

if [-d /opt/Snort/rules]

then

echo "\t\t... /opt/Snort/rules exists"

else

echo "\t\t... /opt/Snort/rules doesn't exists ..."
mkdir /opt/Snort/rules

echo "\t\t\t...creating /opt/Snort/rules"

fi

#! /bin/sh

opt_Snort_etc.sh

if [-d /opt/Snort/etc]

then
echo "\t\t... /opt/Snort/etc exists"
else
echo "\t\t... /opt/Snort/etc doesn't exists..."
if [-d /opt]
then
cd /opt
if [-d /opt/Snort]
then
mkdir /opt/Snort/etc
else
mkdir /opt/Snort
mkdir /opt/Snort/etc
fi
else
mkdir /opt
mkdir /opt/Snort
mkdir /opt/Snort/etc
fi

echo "\t\t\t...creating /opt/Snort/etc"
fi

49

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

ANEXO B: English report

Whitelisting Sniffer and Statistical
Traffic Study for Snort (IDS)

Arturo Ruiz Mafias

Supervisors: Dr. Michael Schukat & Dr. Hugh Melvin
OSNA Cyber Security Research Group http://www.osna-solutions.com/

50

http://www.osna-solutions.com/

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Abstract

Along this thesis, I am going to address the complex and important problem of network security
in Industrial Control and SCADA (Supervisory Control And Data Acquisition) systems. For this,
previous to this work, I have gone through a lot of information about hacking and penetration ICS
(Internet Connection Sharing) techniques, and in the present text I will delve into a solution against

black-hat hacking' in the said environments.

The different approaches taken around this issue, are never 100% effective working alone by
themselves, but a combination of some of them can bring a good level of protection. This is why,
employees in these fields, always use a combination of tools for their tasks, trying to cover as many

gaps as possible.

During this work, I introduce our design for a combination of a couple of methods traditionally
used in network security (whitelists and blacklists), and propose further steps into this research in order
to add (anomaly detection)®. Ploughing and ploughing, the idea is to get a powerful tool against

information system's threats.

Using a Network Intrusion Detection System known as Snort, a very famous open-source
program to any system administrator, and adding my program to it, we are sure of offering good safety

to networks.

Of course, not everything is done, and hackers nowadays are able to avert many and very good
security systems, but our tool, is able to come up with a very good representation of what it happens in
our network, in a sense that everything that is outside that behaviour, Snort using our results, will alert

about it, and further measures could be taken about what it could be a likely attack.

1.Hacking can be divided into three different categories: black-hat hacking, white-hat hacking, and grey-hat hacking. Names are very representative of

their meaning.

2.Although this last of anomaly detection is a bit controversial since what we are achieving with our design is a mix between whitelisting and anomaly

detection, but all depends on the point of view we take.

51

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Acknowledgments

I would like to take this opportunity to thank my supervisors Dr. Michael Schukat and Dr. Hugh
Melvin. After this period in which T have been presented with many new tools, got to read many
interesting books and received great direction I believe I got to understand what the term “network
security” means. Your advice, suggestions, and continuous support have been of incredible help not

only for the present moment but very surely for my near future career.

I would like also to thank Jonathan Hanley, who I have had good advice from as well, thank you
Jonny. Stephanus Meiring and David Thornton, even though I have spent little time with you, you are

in my thoughts too.

Gracias ademas a mi ponente, Dr. José Luis Salazar Riafio, tuve ya una muy buena experiencia

en las asignaturas que él imparte de Comercio Electronico y Seguridad y Criptografia.

A mi familia, por toda la ayuda recibida, especialmente en esos momentos en los que parecia

quedarme estancado. Sin vuestro incondicional apoyo no habria llegado a este punto.

Dorotka, thanks for these last two years, good friend, and better partner, I have always found

great support in you.

Y yayo, un recuerdo especial para ti. Gracias por todos los momentos vividos juntos, has sido y

seras siempre una gran referencia. Te echo de menos.

il

52

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Table of Contents

ADSITACE .+ ettt ettt et sa et s bt e be st sa e ae et st e b e et e naeens i
ACKNOWIEAGIMENLS .. .cecueiiiiiiiieiieeeee ettt e e e s ae e e saae e e saaeeseneens il
Table Of CONENLSccceerieieeiieieeieeeeeee ettt ettt ae e e e s esbeennens iii
Table Of FIGUIEScoocuiiiiieieeiieeeetee ettt ettt vi
LISt Of TADIES .. ettt st st viii
1. INETOAUCTION ...ttt ettt ettt st s e st e bt e s ebeesaeeas 59
1.1 Introduction to Networking Securitycccccevvieeveinienseenieenneeenne 59
1.2 Networks in Industrial Environmentc.cccecevveeniennienneeniienneenne 60
2. Literature REVIEWccooviiiiiiiiiiiiiiiceecieeeeeceeere e 61
2.1 Network Protocolsccccooieeiieiiiiniieieeeeeeeee e 61
21T TP ettt e 61
212 TCP ittt sttt s 62
2.1.3 Other IP ProtoCOISccceeeeueriieerieeiienieerieenieeseesresieesneens 63
2. 1.4 MOADUS ...t 64
2. 1.5 ZIGBEE ...ttt 66

2.2 Cybersecurity / Threats on ICS (Internet Connection Sharing) 67

2.2.1 Security on SCADA SYStEmMScceeervreerrreiereeeennreeeeenneeens 68
2.2.1.1 Attacks on SCADA SyStemsccceeveereuveeriueennns 68
2.2.1.2 SOIULIONSeeiiiieeiieieeteee ettt 69

iii

53

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

2.3 IDS / IPS (Intrusion Detection System / Intrusion Prevention System) 70

2.3 1 SNIOTE .. ettt s 72
2.4 Aim of Thesis / Motivation of the Projectcccceccevervieneeneniiencenensieneene 75
S DESIEN ettt ettt et e st e e e e e 77
3.1 Working ENVITONIMENLcccutirieiriienieenieeieeite ettt e steesieeseeesaeeseeesaeeeas 77
3.2 PCAP LIDTATY .. uieriiiiteieeteieeie ettt sttt sttt et sttt sa e s v 77
3.3 How our program works wWith SNOTtcccceeevierieriiienieeieeeieeieeeee e 78
3.4 Tree-Linked LISt ...cccueiiiiiiieieieeeeteeeeteee et 78
7 N0 010] (2 0 1<) 11 L 10) A RSP SRR 82
4.1 Tree-linked LISt IPcc.coiiriiiieieieeee ettt 84
4.2 Tmplementation ModDbUSccccoeeiiiiiiiiiieieeieeeeeeeee e 89
4.3 SCIIPLS SRELL .. euviiiieeeeeeee e ae e 96
4.4 Putting it all together: Main Code and Callback Functioncceceruenneen. 98
5. Deployment and TStccccccueeriirriieriiienieeieesie et este ettt te et e st e saaesbeesatesbeessaesneees 110
DL TESE ettt ettt sttt ettt b st b e et s ae e b et n 112
6. CONCIUSSIONSeeieitieiieeieete ettt ettt ettt e st e bt e st e e bt e e b e e seesaeeenee 117
6.1 Further ReSEarchcocooiuiiiiiiiieiieteeet ettt 117
ANNEXE Al STIOTT .o eeiiiiiiiiiiiieeiieete et be et be e e re e s ne e s enreesan 118
A.1 Introduction to Intrusion Detection and SNOrtccccceceveeverreenerveeneennenne 118
A.2 Setting UP OUr SNOIT SENISOT ... cccuvveerrririeeeeiireeeeniireeeesrireesssrreeesssseeesssssseees 123
A.3 Installation of Snort and Getting Startedccooceervieenieriienniienieeneeeeeene 126
A.4 Working with Snort RUIescccoeiiiiiiiniiniiiiccieeteceeeee e 131
iv

54

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

A.5 The Snort Configuration Filecccocerieviinieninieneeeeieeeeeeeeeeeen 148

A.6 Plug-ins, Preprocessors and Output Modulesccccevvvervieeniennieennennne. 153

A.7 Using Snort with MYSQLoooiiiiiiiiieeieeieesteeeeeee e sane e 158

A.8 Using ACID With SNOTTueiiiiieiiiieiiieeeiieeeteeeieeesveeesaeeesaeeseaeeseaneens 159

Annexe B: Virtual Scenario for Modbus Softwareccccccoveiviiiiiininniiinienieeeee 160

BiDlIOGIaPRY .. .eeiieiiiiieiieiteeee ettt sttt a e nareees 165
\%

55

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Table of figures

Fig.1: IP frame SIIUCIUIEccceevueeiirierierieetenteee ettt ettt 61
Fig.2: OSImOdel ..ottt 62
Fig.3: TCP headercooiiiiiieeieeeeeeeete ettt s 63
Fig.4: OSI Model / DARPA and TCP/IP Protocol Suiteccccceververruenennenne 63
Fig.5: Set up example of a Modbus Networkccccceeervieneeveniienenneneenennne. 64
Fig.6: Modbus TCP/IP ADUooiiiiiieeteeeeeeete ettt 65
Fig.7: Modbus TCP headercccooiieiiiniiiieieeteeeteee ettt 66
Fig.8: ZigBee specification's 1ayersc.cccceverirnenienienenienenieeeereeeeeeenne 66
Fig.9: Snort's inner WOTKiNgGSccccceeereerierieneeienteteteeeesieeee et 73
Fig.10: A single dimension linked liStcccceeiiiiiiiniiniiieeeeeeeeeeee 79
Fig.11: Part of a possible sample of a Tree-Linked Listc.ccccceeveerceereeruennnnne 80
Fig.12: Screen sample of our sniffer's outputccccoceeeeveneenensenenenieneene 83
Fig.13: Screen sample of an example of statistical studycc.cceccerveerervuenneene 84
Fig.14: Brief note about Snort's installationcccceevveeviieniieesienieceesieeen. 112
Fig.15: Contents of the program's file SyStemccoccevveevierceerersienieeneecienens 113
Fig.16: Files resulting from the execution of the snifferc..ccccocervirninnne. 113
Fig.17: Checking / creating folders in Snort's file systemccccceccerveereenenne. 114
Fig.18: Sniffing process (no results dumpled directly into screen) 114
Fig.19: Results explained and further reconfigurationc..ccccceeeevvereesuennnene. 115
Fig.20: LaSt SCIBLINeeeieeueiieeeeiiieeeeeiiteeeeeitteeeeirreeeeenreeeseearteeeeenreeesssmreaeesennrees 115
Fig.21: Example of [P.rules & Modbus.rules filecccoveerervineinennencne 116

vi

56

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Fig.22: Snort's inner workings schemaccccoceiiiiniiiniiniinceecee e 120

Fig.23: IDS behind the firewallsccccceerieriiiiiieniieieeieeeeeete e 123

Fig.24: Likely scenario for a SNOTt SENSOTccccccuerrueerieriieenieenieeseesieesreesveeeees 124

Fig.25: Our company's system adminiStratorccecveeereueeesiueeesiueeesiueessueessneennns 126

Fig.26: General structure of @ ruleccceveeienieninieeeeeeeee e 132

Fig.27: General structure of a rule's headercccovvieeviienieniiiniienieieeeeeee 133
vii

57

Desarrollo de un 'sniffer' para la generacion de listas

List of Tables

Table 1: Stack's layer in Modbus TCPccccoeceeviiiniiiiienieeieerieeeeee e 65
Table 2: Snort's modules SUMMATIZeccccevvueruerrieriieneeenieseeeeeeseeee e 123
Table 3: Flag's KEYWOIdScceciiiiiieiiiiieiiieceite et sve e iae e vneesaae e 140
Table 4: Type of ICMP PACKELcoociiriiiiieiieteeieeteee ettt 141
Table 5: List Of argumentsccccceeiuerrieniieenieeieeieeie et 145
Table 6: Tag's argUIMENLSccccccveerieereeriieenieeieeseeereereeseeesaeessseesseesssessseesns 147

viii

58

Arturo Ruiz Maiias
blancas para Snort

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

1. INTRODUCTION
1.1 Introduction to Network Security

Nowadays, we find ourselves absorbed in a world in which our communications and daily
affairs pass through a large number of computer systems. Our emails, reach its destination not without
previously go along the tangle of routers that conform Internet, at the moment you can “survive”
without stepping in a supermarket, with just a computer, an Internet connection and after a little
number of clicks you can order you weekly shopping; bank transactions, last books, clothes, social
networks. All can be done, and is done, from your desk at work or in the comfort of your sofa at home.
What about private companies? Personal details, industrial data or signal control, important
documents... everything gets off from a computer, goes a long a cable in an intranet, and this intranet is
very likely connected to the network of networks: Internet is here, and everybody should understand

the important role that Network Security plays in all of this.

Whether like it or not, we are already in the digital era in which everything is translated into 1's
and 0's. This is why it is so important to protect the information over this new platform. Thus, I believe
a good starting point for this thesis would be a definition of “network security”. What does network

security refers to?

According to wikipedia, network security consist on [1]:

“Network security consists of the provisions and policies adopted by a network administrator
to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network
and network-accessible resources.”

Webopedia says [2]:

“A specialised field in computer networking that involves securing a computer network
infrastructure. Network security is typically handled by a network administrator or system
administrator who implements the security policy, network software and hardware needed to protect a
network and the resources accessed through the network from unauthorized access and also ensure
that employees have adequate access to the network and resources to work.”

One simpler definition would be the one in the digital magazine “Magazine Encyclopedia” [3]:

“Protecting the computer systems in the network from unwanted intrusions.”

In short, network security prevents from attacts and possible threats, protecting, computer

systems that make possible the development of daily routines in Internet, from misuses. We could also

59

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

see it from the other side, and say as well that once we got hacked, network security controls and

monitorizes these misuses against private networks in companies, personal businesses or your home.

1.2 Networks in Industrial Environment

Let's try to make it familiar to us. Since we have never talked during our University years about
Industrial Networking Protocols, the best thing to start with this topic, will be speaking about Industrial
Ethernet; after all, everybody working in Telematics has come into touch with Ethernet.

Industrial Ethernet refers to the use of Ethernet into industrial environments (connectors...
switches...) for automation or process control. Components in these environments must work
sometimes in extreme conditions of temperature, humidity or vibration; conditions, that on the other
hand, exceed the ranges of usual information technology equipment [22].

This particular Ethernet reduces problems related to electrical noise and prevents from
equipment damage. Although essentially both Ethernets share a common basis, there are some
differences between them, for example: Industrial Ethernet uses deterministic delivery, whereas
Ethernet uses collition detection. But I repeat that, essentially, they both share a common basis.

Some other examples of Industrial Protocols are: Modbus and its variants, ZigBee, EtherCAT,
DeviceNet... it exists a large list.

To sum up, we should think of Industrial Protocols, as an adaptation of the Information
Protocols to harsh environments. They help machines in situations very different to the ones we users

have in our offices or homes, to develop their functionality.

60

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

2. LITERATURE REVIEW

2.1 Network Protocols

“A network protocol defines rules and conventions for communication between network
devices. Protocols for computer networking all generally use packet switching techniques to send and
receive messages in the form of packets.” [26].

The list of Network Protocols can be huge, here we are going to make a little reference to some

that we believe are important for this thesis:

2.1.11P

Internet Protocol (IP), about this protocol, we can find big amounts of information in Internet,
and with reason, since is the fundamental pillar on which Internet is sustained. Without this protocol we
could not have interconnections further than our local network, it is because of this that the IP protocol
represents such a fundamental intruduction into networking technologies, and resulted in the net of
networks we all know nowadays. It's been so important that it has given its name to a whole protocols
stack: TCP/IP.

IP supports unique addressing for computers on a network, IP addresses (IPv4 and IPv6). There
aren't two devices in this world, that could have the same IP address, we could compare it to the postal
address of our homes. Data on the other hand, is organized into packets and all of them include both a
header (with information about source and destination) and the payload with the info itself.

The protocol IP, works in the 3™ layer of the OSI model. It can therefor run on top of different
link layers interfaces: Ethernet, Wifi, Frame Relay, ATM ...

4] 4 8 16 19 31

Version ‘ IHL ‘ Type of Service Total Length

Identification Flags Fragment Offset

Time To Live ‘ Protocol Header Checksum

Source IP Address

Destination IP Address

Cptions Padding

Fig.1 IP frame structure

61

http://compnetworking.about.com/od/networkprotocols/f/packet-switch.htm

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

We could speak much further about this protocol [SteRiO1], and although we could fill many
pages just talking about it, this is not the point of this thesis. Let's move on, and continue with another

important protocol: TCP.

2.1.2 TCP

Transmission Control Protocol (TCP) is one of the main protocols in the TCP/IP stack. TCP
functions are about reliability, packet ordering, error-checking delivery of a stream of bytes between
programs, that established a session between, running on computers connected to a network.

This protocol refers to the transport layer of OSI model.

Data Layer
Application
Data Nelvpvuek Process to
;-‘_1 Application
g Presentation
% Data Data Representation
J and Encryption
I Session
g Data Interhost Communication
I
Transport.
Seg ments End-to-End Connections
and Reliability

o ((Packets) eiEhiots,)
o and IP (Logical Addressing)
>
] Data Link
; Frames MAC and LLC
5 (Physical addressing)
a
=

Fig. 2 OSI model

Some important concepts on TCP are:

- TCP segment structure (TCP header)

- session: data transfer.

- connection diagrams: connection establishment and termination.

- maximum segment size

Many things could be said within TCP, and there is a lot of bibliography written about this
protocol [SteRiO1] and about its “unreliable” protocol partner UDP [SteRi02]. It is important to

understand very well these two protocols if you want to work on networking and topics related to it.

62

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Offsets Octet (+] 1 2 3

Octet Bit 0 1/ 2 3 4 5 6 7 8 91011/12/13/14/15/16/17|18 19|20 21|22 |23|24 /25|26 27 28 29 30 31
o 0 Source port Destination port
4 32 Sequence number
3 64 Acknowledgment number (if ACK set)

C|E(U|A(P|R|S5|F

Reserved N R .
C|5(5|Y|1I Window Size

12 96 Data offset 00 0 - W|C R
RIE|G|K|H| T|N|N

16 128 Checksum Urgent pointer (if URG set)

20 160 Options (if data offset > 5. Padded at the end with "0" bytes if necessary.)

Fig.3 TCP header

2.1.3 Other IP Protocols

There are other protocols included into the IP-TCP protocols stack and not only the ones named

before and there are many other protocols that are gradually adapting their technology to be included

inside an IP frame or an TCP segment.

Just to see the IP-TCP protocols stack, we include the next figure. In it, we can differenciate

between levels: application level would be the one on the top, later downward transport layer, network

layer' and link layer.

|p|ng| |BOOTP| |TFTP| |SNMP| |tr1ceroube| | FTP | |1helnet| | HTTP |

Network Interface

Fig.4 OSI model / DARPA and TCP/IP Protocol Suite

HTTP: HyperText Transfer Procotol used by the WWW (World Wide Web). Defines messages'

format and how this messages are transmitted. It also defines how Web-servers and browsers should

respond to commands.

1. The protocols ICMP and IGMP, although they are at the same high as UDP and TCP, they are not part of the transport level. They are encapsuled inside

IP and that's why in the image they are drawn near the latter protocols.

63

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

FTP: File Transfer Protocol, built on a client-server protocol architecture, it is used to exchange
files over the Internet.

SMTP: Simple Mail Transfer Protocol, used for sending e-mails between servers. E-mails can
be retrieved with an e-mail client.

ARP: Address Resolution Protocol, a network layer protocol used to translate IP network
addresses into link layer addresses (MAC addresses).

UDP: a connectionless protocol associated to the transport layer in the OSI model, running on
top of IP. Provides very few error recovery services, leaving this tasks normally for protocols that run

on top of him.

2.1.4 Modbus

As this is a completely new protocol for us in our Telecommunications Engineering education,
we will delve a bit deeper into it than with the previous protocols, and since in this work, we are to deal
with a solution for Industrial Control System Protocol networks (and more precisely with Modbus), a
brief but good intruction to Modbus is required.

Modbus is a simple and robust serial communications protocol originally published by Modicon
for its use with its programmable logic controllers(PLCs). It has become an important standard

communications protocol, and a commonly available way to connect electronic devices [ezTCP].

It renders possible communication between many devices, approximately 240, connected to the
same network, a common example would be a system that measures temperature and humidity and
communicates the results to a computer. Modbus is usally used to connect a supervisory computer with
a remote terminal unit (RTU) in supervisory control and data acquisition (SCADA) systems [23][24]
[25].

MODBUS
Client
Serial Line
MODBUS MODBUS
Client Client :
TCP/IP TCP/IP S | Gtient
| TCP/P
MODBUS
MODBUS MODBUS
MODBUS MODBUS ‘ Server Server
Server Server i i i
TCPR/IP TCP/IP Server TCP/IP b St Lines

gateway |
MODBUS Serial Line

Fig.5 Setup example of a Modbus Network

64

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

There is software available in Internet in order to emulate set ups that work with Modbus
devices, some devices are master some others slave. It's been developed as well an API Modbus that
simplifies the process of creating more especific sofware and virtualization of a whole Modbus
scenario. As a matter of fact, for this project, it was created a virtual network, using Virtualbox for this

purpose.

In this network, it was configured three virtual machines: a virtual machine representing the
Modbus master and another machine for the Modbus slave, finally another machine plays the role of
NIDS (Network Intrusion Detector System) sensor. There is an annexe at the end of this text explaining

the process of virtualization and the Modbus software employed in it.

To make things clearer, let's make a little reference to the terminology “master” and “slave”.
Nowadays we know this as the server-client model. A master-device works as a client, who sends
requests for the slave (server) to process them and produce answers or replies. If you know how the

model server-client works, this master-slave terminology shouldn't be a problem [SteRi02].

There are several types of Modbus: Modbus RTU, Modbus ASCII, and Modbus TCP. Our
solution works on TCP-Modbus. Encapsulation of Modbus inside a segment TCP it's been a great
advantage to our design, since it makes easier to work with it in a much wider environment, and our
design can be comfortably extendable to other protocols that are included into the IP-TCP model as
application layer SDU, resulting very straightforward to add functionalities following the same

procedure seen in our program code.

Layer ISO/OSI Function Modbus Function

5,6,7 Application Modbus Application Protocol
4 Transport Transmission Control Protocal
3 Network Internet Protocol
2 Data Link IEEE 802.3
1 Physical IEEE 802.3

Table 1 Stack's layer in Modbus TCP

v

d
4%

MBAP Header

MODBUS TCP/IP ADU

v

a
]

Fig.6 Modbus TCP/IP ADU

65

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Transaction Identifier

Protocol Identifier

Length

2 bytes

2 bytes

2 bytes

1 byte

2.1.5 ZigBee

Fig. 7 Modbus-TCP header

Though it is not important for our thesis, learning a bit about ZigBee can help us to see clearer

the idea of Industrial Network Protocols:

ZigBee, is a specification for a suite of high level communication protocols using small, low-
power digital radios based on an IEEE 802 standard for personal area networks. Devices are often used
in mesh network form to transmit data over longer distances, passing data through intermediate devices
to reach more distant ones. This allows ZigBee networks to be formed ad-hoc, with no centralized
control or high-power transmitter/receiver able to reach all of the devices. Any ZigBee device can be

tasked with running the network.

The list of uses its quite extensive, but some examples to consider are:

- Home Entertainment and Control — Smart homes.

- Wireless sensor networks
- Industrial control

- Embedded sensing

- Medical data collection

- Smoke and intruder warning

- Building automation

ZigBee specification

Security
services

Application layer

ZD0
Application ubli

objects inter-

ZigBee
device object

oA

Endpgint 0

Application support sublayer

|._

i

T

}

lv |ZDD managemem:l

IEEE 802.15.4

Fig.8 ZigBee specificiation's layers

66

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

ZigBee builds upon the physical layer and medium access control defined in IEEE standard
802.15.4 . As we can see in the previous figure, ZigBee stack architecture consists of Physical and
Medium Access control layer, that gives support to the ZigBee network layer. For its part, the ZigBee
specification (network) layer, consists of the APS sub-layer, the ZDO (containing the ZDO

management plane), and the manufacturer-defined application objects.

2.2 Cybersecurity / Threats on ICS

To contextualise this work, let's talk a little about cybersecurity and threats on ICS (Internet
Connection Sharing). In the world we're living in, attacks against IC (Critical Infrastructure) of energy,
gas, oil and water are increasing, and it's not weird to know that these attacks are well-funded by
organizations, competitors or even governments.

Just to put this into the right context, let's take some examples of attacks in the recent year.
Although we shouldn't believe everything we read in the Internet, we can get a good smattering of what
it is possible nowadays with just a computer and an Internet connection and how vulnerable are all the
systems we base our daily routines (electricity, water, heating) on:

* HuffingtonPost — Posted: 05/16/2013 11:17 am EDT | Updated: 05/16/2013 11:23 am EDT

[31]:

“Syria faced an Internet blackout for eight hours on Wednesday, its second one in the past week

and the sixth one of the two-year uprising against President Bashar al-Assad, a U.S. web

trafficking firm reported. Phone lines into Damascus were also down.”

* BBC - Posted: 20 May 2013 Last updated at 10:13 GMT [32]:
“State-sponsored hackers have renewed attacks on the US after a three-month hiatus, the New
York Times reports.”

* Infosecurity-magazine.com — Posted: 12 April 2013 [33]:
“The latest issue of the ICS-CERT Monitor has described two similar hacks that happened last
year where attackers used a weak credentials vulnerability to gain access to buildings’ energy
management system (EMS), Tridium Niagara.”
The list of reported attacks during 2013 would be large, and it's just been four months since the

beginning of the year. So “security”, such an important thing, but a thing on the other hand, that we

usually don't put too much effort in.

67

http://www.huffingtonpost.com/2013/05/15/syria-internet-access-down_n_3277387.html?utm_hp_ref=technology
http://www.huffingtonpost.com/2013/05/15/syria-internet-access-down_n_3277387.html?utm_hp_ref=technology
http://www.bbc.co.uk/news/world-middle-east-22447247

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

2.2.1 Security on SCADA Systems

SCADA stands for Supervisory Control And Data Acquisition. But what is a SCADA system
and what is it used for? The term SCADA refers to a type of Industrial Control Systems (ICS). These
ICS are computer controlled systems whose task is to monitor and control industrial processes.
Examples of SCADA systems could be those systems that allow operators to change and enable alarm
conditions related to temperature in systems designed to control the flow of cooling water in some
industrial processes or those systems that monitor high and low levels in water tanks and alarm when a
certain level is reached. There are plenty of examples and they develop important functions in many

processes that influence in our welfare.

2.2.1.1 Attacks on SCADA Systems

In these days, worries about how to protect SCADA systems are increasing. With the ever-
growing threat of “cyber terrorism” (specially after the 11S of New York) [35], specialists in
information security issues are becaming more concerned about vulnerabilities in SCADA systems
since as I explained before, these systems are responsible for controlling and monitoring our water
distribution systems, oil and gas pipelines or electrical grid...

The design of such systems has evolved during the years, providing them with extra flexibility
and functionalities, but turning them more vulnerable as well. SCADA systems have been present since
earlies 1970, allowing us to monitor and remotely control devices distributed along wide extensions.
The architecture of these systems, consists of a central computer system that communicate with other
machines using one or more telecommunication technologies. During the last decade, Internet and
other Internet-based techonologies have been included into the SCADA systems' design.

Attackers nowadays are determined to get control over SCADA and other ICS devices, for this
they use different techniques. We must see these systems as real-time control system on which a
successful attack could bring very serious and terrible consequences (in terms of human health or even
life), and attacks against them doesn't seem to be very different from attacks to devices inside a
common information network.

Good examples of attacks are: DoS (Denial of Service), passwords stealing, impersonalization,

forgery of documents or deletion of them, not properly an attack but the prelude to one could be

68

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

scanning of ports of our machines... there is a wide range of threats to our systems and it is a good
practice for any administrator to be aware about all of them.

Just to illustrate a little bit more this, threats such DoS (Denial of Services) against SCADA
systems (or other informatic systems), consists on attacks in which attackers generate a high number of
requests to our machines in such a level that they stop being able to give service and collapse [37].

Another example of attack to SCADA systems could be different types of malware that take
advantage over vulnerabilities in the software of these devices. A known one is “a new type of malware
that uses the .Ink vulnerability in Microsoft Windows and Siemens SCADA systems” [34].

There are many ways in which our system could be compromised, and a constant revision of
our network devices is highly recommendable. On this respect, any tool that could automatise the

process will be always a great help.

2.2.1.2 Solutions

What can we do to alleviate this? There are many tools and ideas out there to help security
employees to deal with these threats. Of course, we should never lower the guard, and have always an
eye on new threats. Today we have a safe system, but maybe tomorrow we are in troubles...

One idea, although not a solution in itself, is the use of honeypots [36]. A honeypot is a very
smart way to get to know if there are people interested in your network and who they are. It consists of
a “dummy” device that accurately expose the same characteristics as any of those devices controlling
our network and that results in an easy target for attackers. Leaving there this device “unattended”, and
monitoring attacks against it, can offer to system administrators with a very good source of information
about those who intend to break into our system.

Any other form of security against for example DoS attacks in normal informatic systems,
could do the job as well in SCADA systems. For example firewalls, such us Iptables or some other
commercial ones, or other tools to control the connections flow would work just fine.

There are tools and solutions for many threats nowadays, the problem is how to use them in the
most accurately manner as possible and for this, if you are in charge of these security aspects, you need
to know your network.

Here is where it comes our idea. The solucion we propose to secure these systems; systems

based on protocols as Modbus, is using Deep Packet Inspection [30]. Being able to come with a good

69

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

description of our network's behavings is a big advantage for any administrator, and it is on this aspect

that our research in OSNA and in particular the research for this thesis is focused in.

2.3 IDS / IPS (Intrusion Detection System / Intrusion Prevention System)

The term Intrusion Detection System/Intrusion Prevention System (IDS/IPS) refers to a
software application that is able to contrast the packets that flow in our network with some predefined
patterns. Sometimes this patterns refer to allowed traffic, and some others to traffic that should be
disallowed. Thus, we come across with two very important concepts which we will be speaking about

along this text: blacklisting versus whitelisting.

Actually, to be more precise, there are three main traditional detection methods for network

based attacks:
- blacklisting,
- whitelisting,
- and anomaly detection.
Let's explain them:
* Blacklisting

Blacklisting is a method whose approach to security is signature-based. It allows through all
elements except those explicitly mentioned. But... this method, can only prevent from previously
analyzed threads and is easy for attackers to dupe these protections. For example, by doing
modifications in the packet's payloads; this modifications can range from fragmenting and spreading
the payload of a single packet into different smaller packets, to the representation of the info contained
inside the packet's payload in a manner that can completely avert the packet's inspection procedures of

any Intrusion Detection System or an antivirus program.

Many other techniques can be used to avoid being detected... Furthermore, it may happen that
every time a new threat is discovered, till a new signature is developed and distributed to all of our
systems, it could pass weeks or even months before a complete updating against them, leaving us

completely exposed to these new attacks.

70

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* Whitelisting

On the other side of the coin, we have whitelisting, this would be the very opposite approach to
the previous one. Instead of having the program checking for “bad-known” behaviours and alert about
them, with a whitelisting approach, what we have is an approach to security that just allows “good-
known” behaviours in the network traffic: all packets that don't match with what is listed into our

whitelist, will be alerted about and taken apart for further study as a posible threat.

But... once again, this approach turns out not to be perfect, since we should be able to fine-tune
as best as we can our detection system in order not to allow possible attacks, or possibly even allow

actions that had previously been disallowed by a blacklist.

Additionally to this, hackers can study our whitelist, and construct packets that, though they are
conformed according to what is considered to be “good”, they disguise what is the last virus or trojan,

and our whitelisting measures would be useless.
* Anomaly detection

The last method, known as well as qualitative anomaly detection, is one of the last approaches
to network security, and offer protection by analising one by one the packets, and rising an alert
everytime the content of a packet is “too different” from “the norm”. For this approach to be possible,
we should be able to seize network traffic's intrinsic characteristics. They would use N-gram analysis.
N-grams are sequences of N-consecutive bytes extracted from the payload of the packets, for later

compare these N-grams to the N-gram allowed models.

The problem we find in N-gram statistical study is that it does not allow to distinguish between
good and bad traffic or creates too many false positives since N-gram does not take into account packet
structure and different header fields. Instead, what the design here explained does is Deep Packet
Inspection, looking into the characteristics of network fields, constituing with it an important difference
between other approaches and ours. With my program, during an initial training phase, we could build
statistics about N-grams present in normal network traffic and according to them we conform traffic
models. The packets later sniffed from the network will be compared to these models to rise alerts in

case of a certain deviation from this normal behaviour.

In this thesis, we will be presenting our desing and code for a new program. The program began

being a simple sniffer to which we have added new features in order to implement a whitelisting

71

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

approach. Although we have focused specially in whitelisting, blacklisting features are included as

well, in such a way that we could have the best of both worlds.

However, in OSNA, we believe that the combination of the three policies, and not only the first
two, is what is desirable, and a possible modification to this thesis for future developments would pass
through including a more thorough statistical study of traffic characteristics. This would complete what

we are sure to be a very powerful tool for system administrators.

To discover unauthorized access to a computer network, IDS analyze traffic on the network for
signs of malicious activity. They base their functionality in comparing well-established packet patterns
to the ones it sees in the network. This packet patterns are known as “signatures”. Normaly, this
“signatures” are part of this schema of blacklisting, although you can find as well some “pass-rules”
that would exemplify the whitelisting approach. As we commented in our abstract, there exists a period
of time then, in which from the moment of the creation and expansion of a new threat, till the moment
in which we have its pattern registered and updated in all of our devices, we are completely unprotected
from this malware. And this is why the combination of both policies offers a better proctection, on one
side blacklisting protect from already known attackts, from other a well fine-tuned whitelist can avoid

most recent attacks during those periods of unprotection.

2.3.1 Snort

Our program will transmit useful information to Snorts, an open source Network Intrusion
Prevention and Detection System (IDS/IPS) developed by Sourcefire. It combines the benefits of
signature, protocol, and anomaly-based inspection. It is used to detect non-authorised accesses to
computers or networks. This non-authorized accesses vary from skilful attacks from nimble hackers to
the well-known script kiddies used by teenagers to gain access to social network accounts of their
partners in highschool.

To have a better grasp of what is intended here, we should do a little description of how Snort
works. After it, the idea we are chasing and what we are seeking with it will be much clearer.

Snort can work in three different manners: as a packet sniffer itself, as a packet logger, or it can
work as a Packet Intrusion Detection System tool. Its functionality is based in several modules that
manage the information a single packet at a time, and after all the needed transformations carried out

by these modules, the result is handed to an “alerting and logging component” which, if it's the case, it

72

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

will fire off an alert and log the packet.
Let's go step by step: to illustrate the path followed by a packet, once it arrives to the computer's

network interface, I'm including the next figure.

Internet :}: . ™ Packet Decoder

\ i g
—

Output Alert or
Log to a file

Fig.9 Snort's inner workings

As we see in this image, Snort uses a very well defined set of behaviors and for its purposes it
uses several modules .

Let's describe the inner workings of Snort:

First, the packets arrive to the device's NIC and are decoded off the wire by the packet decoder,
which will determine what protocol is in use for a given packet. Then, when using Snort as a NIDS,
after the incoming packets are parsed by the packet decoders, data is sent through any preprocessor you
may have enabled in your Snort.conf file. It continues through the detection engine which matches it
against the rules in any ruleset enabled in your Snort.conf file. “Snort.conf”, being a configuration file,
is a very important file to bear in mind then, as it is where we can configure Snort's behaviours.

Afterwards, matches are sent to the alerting and logging components, to be passed through
whatever plug-ins you have selected, alerting and logging the data as it has been configured to do.

Some of this modules would need some further explanation as we do next:

* The packet decoders
Note: here alerts can be generated based on malformed protocol headers:
- overly long packets

- unusual or incorrect TCP options

73

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

- and other such behavior.
* Preprocessors

Plug-ins to Snort that allow you to parse incoming data in different ways useful for the alerting
modules. Without preprocessors you will only look at each individual packet as it comes in over the
wire, missing some modern attacks:

- overwriting data in overlapping fragments.

- deliberated IDS evasion techniques like putting part of a milicious application request in one

packet and the rest in another packet.

- and other similar practices.

After the data is returned from the preprocessors, it is passed to the detection engine.

* The detection engine

It's the component of Snort that takes data from the packet decoder and preprocessors (if any
enabled) and compares it against the rules in your Snort.conf.

First, the detection engine will try to determine what rulesets it ought to be matching against for
a given piece of data. It classifies this first by protocol: TCP, UDP, ICMP, or IP.

For TCP or UDP this is source and destination port number.
For ICMP: it's the ICMP type.
For plain old IP packets ...

* Rules and matching

IMPORTANT: in general, “alert” rules will fire before “pass” rules. However, if you would
rather have this behavior reversed, you can specify the -o option to Snort on the command line, making
the order “pass”, “alert”, “log” instead. Since we intend to provide a whilisting feature to this detection
tool, we must be careful what's the order in which Snort execute its actions otherwise we could be
alerting that is intended to be allower. So, this is a very importan note to have in mind.

Eventually, we can understand that the whole idea about Snort goes around files that describe
network correct or wrong behavings. All Snort's modules described in this section carry out their
functions having a common direction: work on the packets Snort picks from the net, and transform
them in a way that alert and logging modules (next explained module) can perfectly alert and log about
possible threats. If we could run a program that is able to come up with what is suppose to be
acceptable, or with what is suppose to be allowable, we can automatize this powerful IDS tool and

make system administrators' duties much easier.

74

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* Alerting and Logging components
After the rules have been matched against the data, we have the alerting and logging
components.
- The logging mechanism in Snort will archive the packets that triggered Snort rules.
- While the alerting mechanism is used to notify the analyst that a rule has fired.
— Pass rules will allow some behaviours, seen as acceptable-behaviours, if we have

established correctly the order to be checked in the previous module.

2.4 Aim of Thesis / Motivation of the Project

As we were speaking before, both security approaches, whitelisting and blacklisting, have their
pros and cons separatelly, and this is why we intend to build up a solution in order to merge them into a
single program and get the best from both perspectives. Hence, we propose a solution that we believe
will be a very powerful tool in any system administrator's resources.

During a study phase in which the user runs our program, the idea is to come up with all the
possible sessions established among devices in a network, collecting its IP addresses and ports and
collecting as well information about functions, identificators and lengths in Modbus packets. With this
information, the application will generate file rules, being this file rules the basis for a whilelisting
approach.

Normally, networks in private companies, can consist in hundreds of devices, exchanging in
just little time thousands of packets among them. For any system administrator, trying to register all
these exchanges would represent a daunting task. In OSNA, we want to make this task much simpler
for that workers, and come up with a complete study of these connections. What in a beginning can
seem a very complex network, our program is designed to summarize in a file, all those sessions
stablished between machines.

For this, we have modified the “idea” of sniffer program, including on it some new features. A
sniffer or packet analyzer is a computer program that can intercept and log traffic passing over a digital
network. Ours, is able to create different files, some of them containing pass-rules, according to the
network traffic it sees in the segment of the network it is connected to, for afterwards transmitting them
to the Snort file system.

Snort will use its own features to alert on any behaviour out of its blacklist rules file that has

been set in its configuration file, and on the other hand, it will use the “pass rules” created by our

75

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

sniffer, allowing what is consider to be a “good-known” behavior. Merging then both security methods:
black and white -listing.

To understand the whole schema, we should get at least some smattering of Snort, and once
then, we will see our design's idea a bit clearer. Since it is not our intention to speak too deeply about
Snort in this thesis, an annexe talking about it has been included at the end of this text. But to get a

general concept of it, we will continue into the next point with a little review on Snort.

76

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

3. DESIGN

3.1 Working Environment

During this project I have been working in a Linux environment, using a Debian Linux
distribution in its Xubuntu version. The programming language used is C and shell programming. The
shell program used is the Bash Unix shell of the GNU project and the compiler it's been gcc - GNU
project C and C++ compiler-.

Steps in our work till the final result:

The development of our sniffer has gone through several steps. From a simple sniffer able to
sniff the packets in promiscuous mode and dump the information contained in the packet's header, to
the final product in which it is able to implement all the functionality we had in mind, leaving it open to
further plug-ins.

Let's describe the different steps taken in our development process of our program.

3.2 PCAP Library

An important concept to understand, and that I came to understand when faced this project is
“what is an API?”

API stands for Application Program Interface, is a protocol created to be used as an interface by
software components in order to communicate among them. It's an important help for software
developers allowing them to forget about particularities of the hardward they are working with.

The bottom line is that once you use an API, everything can be used according to the Linux
philosophy of “all is a file in Linux”. Is a library that have routines, data structures, object classes and
variables that you can use into your programs. One example of it would be the PCAP (Packet CAPture)
library [4] [5] [6].

Pcap (packet capture) consists of an API used for capturing network traffic, is the basis of any
sniffer nowadays or Intrusion Detection Systems such as Snort. Unix-like systems implement pcap, in
the libpcap library. During the section dedicated to our design's code, it is seen the statement #include
<pcap/pcap.h> which “pcap.h” is the header file that allows us to use the functions, constants, macros...

available in libpcap, inside our program.

77

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

3.3 How our program works with Snort

The program has been designed to bring some help to Snort tasks. What firstable was a hard
task for any system administrator, our program is thought to make things easier for our employees
working in securiting our information systems.

The idea is to take advantage from the workings of Snort, which is able to contrast the packets
that arrive to the NIC (Network Interface Card) with some predefined patterns. If we could be able to
come up with a representation of our segment network's behaviours and express it into a file, after
moving this file into Snort's file system, we could count with a very powerful tool.

Well then, the program designed during this period is able to create that file (among some other
more files) with what is called “whitelist”, then takes responsibilities in checking if some important
folders are within Snort's file system, and if they don't exist, our program creates them, for later on,
moving the whitelists into this folders.

It handles as well, some of the configuration issues within Snort. Snort bases its configuration
on a configuration file called “Snort.conf”. In this files, you can find variables, defines and some other
statements related to configuration of our Snort sensor.

The sniffer here proposed, includes the defines statements into this file, for later moving this
file into Snort folders, substituing the previous configuration file for this new one. A new one on the

other hand, that is already fixed in order to indicate Snort where the rules' files are.'

3.4 Tree Linked List

The Tree-Linked list is the meat and potatoes of our sniffer's intentions. At this point of the
project we're not taking in to consideration if it's a Modbus packet or any other TCP packet, what we
are going to focus on, is to rescue IP addresses source, IP addresses destination, TCP source ports and

TCP destination ports of the packets sniffed. This point give us the starting point for further ploughing.

The whole point of it, is to save all this relevant information about IPs and ports, to later
elaborate (the program will) the rules that will be transmitted into Snort's file system. We should bear in

mind, that it is very important to restrict the amount of data we are taking from the network. We don't

1. Rules must be contained in /opt/Snort/rules. The program creates this folder and places the blacklisting rule files and whitelisting rule files in here.

78

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

want to put unnecessary extra rules, or rules that refers to previous rules' especifications, because it will
make Snort much slower. Thus, we are here dealing with a trade-off: max security versus accuracy and
amount of rules.

To take just the necessary info then, we will design functions that will load a modified linked
lists with the combinations of IP addresses and ports of queries and replies, with repeating any. The
reason to use linked lists and not arrays is because if we used arrays, we would not know how much
space we should allocate for it, and since we are picking packets as they flow in the wire, we can't
dynamically establish the length of an array, some times could be 1000 elements others 10000 should
be necessary...

We will introduce my Tree- Linked list here: We will start simple. What is a linked list? A

linked list is a nested list of structs linked by addresses.

The struct used is as follow: _ Space for data.

struct linked_list_node ,/'/

/

{ /y,/,,
void ptr_data;

| Next node in the list.

struct linked_list_node *ptr;

An accurate visual representation would be:

a iﬂﬂﬂ‘ | as m‘ ‘ as (992 ay 1692 ‘ as U‘
] I
1000 500 712 597 692

Fig.10 A single dimension linked list

where 1000, 800, 712, 992 and 692 are the memory addresses of these structures containing the
data and a pointer to the next structure. al, a2, a3, a4 and a5 are the data itself. The type void allows to
store any kind of data in it.

These structures will be dynamically allocated, allowing users to keep big amounts of data,
allowing the user to forget about stablishing sizes in arrays.

But the linked list shower before is not what we have in mind, a one-dimensional linked list

doesn't help us to cope with our intentions. We will develop a Tree-Linked list. At the moment, I repeat,

79

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

we are dealing just with IP header information, we haven't got yet to the point of dealing with Modbus

protocol, and the “linked list of linked lists” is consisting just of information related to IP-TCP.

The structure I'll be using for our Address to node's data.

struct ip_node_t

{ /—{ Next node in the same level's list.
void *ptrdata;

struct ip_node_t *ptr_r;

struct ip_node_t *ptr_b; - -
— I Next node into the downwards' list.

What better way to see the idea than through an ilustration of our tree? The next figure will

clarify the idea, and later we explain the fields in my structure:

EExEx

Fig.11 Part of a possible sample of a Tree-Linked list

The data structure then is composed by:

. void *ptrdata — is a pointer to data allocated dynamically by my code.

. struct ip_node_t *ptr_r — pointer to the next node in the same level (horizontal arrows
in the graph).

. struct ip_node_t *ptr_b; — pointer to the node in the lower level (arrows pointing
downwards).

Let's explain the previous image:

It could happen that the sniffer has picked up a packet with:

IP source address: 207.102.1.5
IP destination address: 10.10.1.37
Port source address: 345

Port destination address: 80

80

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Later, in any moment, it picks up another one:
IP source address: 207.102.1.5
IP destination address: 10.10.1.115
Port source address: 3295
Port destination address: 80

Another packet any time later:
IP source address: 154.245.0.7
IP destination address: 10.10.1.37
Port source address: 1245
Port destination address: 21

Maybe after...
IP source address: 207.102.1.5
IP destination address: 10.10.1.115
Port source address: 80
Port destination address: 3987

And this would continue till the moment it reaches the number of packets we have tell the

sniffer to sniff in the command line of our terminal.

81

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

4. IMPLEMENTATION

At this point we build the basis for the project, it consists just of a normal sniffer that picks the
packets from the network in promiscuous mode. Promiscuous mode means that our NIC is able to pick
not only the packets addressed to itself but packets addressed to any machine connected to that segment
of the network. For this, the computer's NIC should be configurated, but normally Snort does it

himself. To configure oneself the NIC in promiscuous mode we can do it through Linux terminal.

arturo@arturo-laptop:~$ sudo su
root@arturo-laptop:/home/arturo# ifconfig wlanO down
root@arturo-laptop:/home/arturo# iwconfig wlanO mode monitor
root@arturo-laptop:/home/arturo# iwconfig wlanO
wlanO0 |IEEE 802.11bgn Mode:Monitor Tx-Power=15 dBm
Retry long limit:7 RTS thr:off Fragment thr:off
Power Management:off

To put back your NIC in managed mode (otherwise you'll not be able to use your browser):

arturo@arturo-laptop:~$ sudo su
root@arturo-laptop:/home/arturo# ifconfig wlanO down
root@arturo-laptop:/home/arturo# iwconfig wlanO0 mode managed
root@arturo-laptop:/home/arturo# ifconfig wlan0O up
root@arturo-laptop:/home/arturo# iwconfig wlan0
wlan0 |IEEE 802.11bgn ESSID:"UPC943203"

Mode:Managed Frequency:2.437 GHz Access Point: 70:71:BC:00:83:01

Bit Rate=54 Mb/s Tx-Power=15 dBm

Retry long limit:7 RTS thr:off Fragment thr:off

Power Management:off

Link Quality=50/70 Signal level=-60 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:298 Missed beacon:0

Functionality: the packets' header information of any packet sniffed in our network segment, are
dumped to the screen. Is it an IP packet? TCP over IP? Modbus over TCP-IP? Malformed IP packet?

ARP? To illustrate this, next we have included a sample of the sniffed data during one of our tests:

82

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

~ Terminal - root@arturc-laptop: fhome/arturo/Desktop/PROYECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus

File Edit View Terminal Go Help

Packet number 2:
IP packet _—
From: 192.168.2.100 TD://,192/.163.2.25
-TCP protocol /////
Src port: 1111 @ Dst port: 502

(not a modbus_tcp protocol / or misformed modbus_tcp packet)

Packet number 3:

IP packet —
From: 192.168.2.100 To: 192.168.2.25
-TCP protocol
Src port: 1111 to Dst port: 502
- MODBUS:_
rematning bytes in this frame = 6
identifier-= 255
function code =-1_

Packet number 4: —

IP packet

From: 192.168.2.25 To: 192.168.2.100

-TCP protocol

Src port: 502 to Dst port: 1111

- MODBUS:
remaining bytes—in this frame = 4
identifier = 255
function code = 1

Packet number 5:
IP packet
From: 192.168.2.100 To: 192.168.2.25
-TCP protocol
Src port: 1111 to Dst port: 502

Not a modbus packet.
A simple Tcp packet.

IP add. destination

IP add. source

Modbus info.

Ports' info.

(not a modbus_tcp protocol / or misformed modbus_tcp packet)

Fig.12 Screen sample of our sniffer's output

Another interesting feature to speak a bit about, is that, at this stage, we have started to

implement the statistical study. Just a simple one: how many packets of one type has seen, what

percentage represents from the total... from here we could develop future plug-ins to this sniffer as N-

Gram study, but at the moment this is just an idea.

Since there are two ways our sniffer can work (sniffing from a pcap file or from a NIC), it can

happen that when it picks packets from a pcap file, the time stadistics are useless, since the processing

time of the pcap file usually is “0.00”, and then statistical time study leads to divisions by “0”, making

the program to show this result as “-nan” or any other type of error.

A more thorough statistical study could be a great asset for our program as commented before,

and could represent a next step to take in its design. It could be used for whitelisting information inside

the payload, resulting in a very powerful tool for securing networks.

83

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

This next screen capture shows the output of a statistical study from a pcap file:

e Terminal - root@arturo-laptop: fhome/arturo/Desktop/PROYECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus

File Edit View Terminal Go Help

root@arturo-laptop:/home/arturo/Desktop/PROYECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus# more info_docs/statistics.txt
- Beginning test on 12/4/113 at 16:9:27 ==-
= STATISTICS OF OUR NETWORK TRAFFIC ===-

-PROTOCOL SUPPORTED OVER ETHERNET-

* ARP = 2 ---> 3.33% of our traffic
* RARP = 0 ---> 0.00% of our traffic
* IP = 58 ---> 96.67% of our traffic
* Unknown protocol = 0 ---> 0.00% of our traffic
* Invalid IP header = 0 ---> 0.00% of our traffic

-PROTOCOL SUPPORTED OVER IP-

TCP = 58 ---> 96.67% of our traffic

*
L * of which TCP_MODBUS = 37 ---> 61.67% of our traffic
* ICMP = 0 ---> 0.00% of our traffic

* UDP = 0 ---> 0.00% of our traffic

* Unknown protocol over IP = 0 ---> 0.00% of our traffic

...when studying from a pcap file there's no TIME STATISTICS

root@arturo-laptop:/homesarturo/Desktop/PROYECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus# [|

Fig.13 Screen sample of an example of statistical study

4.1 Tree-Linked List for IP

We create a code file called ip_func.c with its header ip_node.h. Let's explain this files:

ip_node.h — header file for ip linked list functions:

#ifndef IP_NODE_H_
#define IP_NODE_H_

struct ip_node_t

{

¥

enum field_t

{

¥

/* prototypes */

void *ptrdata; Our nOd_e for t}_le
struct ip_node_t *ptr_r; » Tree — linked list.

struct ip_node_t *ptr_b;

Enumeration type that we will use

ip_ip_fro . .

iE:iS:to to reference in which level of the
ip_src_port Tree — linked list the program is.
ip_dst_port = 3

It can be understood by looking into the
“insertBranch” function.

struct ip_node_t *createList (void);

struct ip_node_t *createNode(void *);

struct ip_node_t *insertBranch (struct ip_node_t *s,void *,void *,void *,void *);
void freeTree_ip(struct ip_node_t *);

84

void readTree_ip(struct ip_node_t *);
#endif

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Ip_func.c — file with the functions to use for the linked ip list.

#include "ip.h"
#include "ip_node.h"

extern FILE *ip_tree;
extern FILE *ip_tree_rules;

struct ip_node_t
*createlList (void)

{

N -

return NULL;

This function it's not totally
necessary but it makes the code
more readable.

¥

struct ip_node_t
*createNode(void *data)
{ ~

struct ip_nede_t *s;

s = malloc(siz\eof\gstruct ip_node_t));

.

if (s != NULL)
{

s->ptrdata = data;

s->ptr_r = NULL;

s->ptr_b = NULL;
}

return s;

structip_node_t

create nodes.

the structure.

This function will create a
node and will be used in the
next function in order to

It also starts up the fields in

*insertBranch (struct ip_node_t *s,void *ob1,void *ob2,void *ob3,void *ob4)

{

struct ip_node_t *aux,*aux1,*aux2,*aux3,*prev,*prevl, *prev2,*prev3;

struct ip_node_t *aux_loop;
void *ob;

enum field_t level = ip_ip_from;

int prev_int;

-

This is the function that we will use
in the main program function. It go
across the linked tree list and
compares the info in the nodes. If
the info is already in the tree, it
returns, if not, it stores it in the last
position of the level it corresponds
to.

for (aux = s, prev = NULL ; aux '= NULL ; prev = aux, aux = aux->ptr_r)

{

if('memcmp(aux->ptrdata,ob1l,sizeof(struct in_addr)))

level++;

for(auxl = aux->ptr_b, prevl = NULL ; aux1 != NULL ; prevl = auxl, auxl = aux1l->ptr_r)

{

if('memcmp(auxl->ptrdata,ob2,sizeof(struct in_addr)))

level++;

for(aux2 = aux1l->ptr_b, prev2 = NULL ; aux2 != NULL ; prev2 = aux2,

85

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

aux2 = aux2->ptr_r)

During this big and nested
for loop, the program runs
along the Tree-list (if
already created) and checks
if the information is already
contained in the it.

if('memcmp(aux2->ptrdata,ob3,sizeof(u_short)))

level++;

for(aux3 = aux2->ptr_b, prev3 = NULL ; aux3 != NULL ;
prev3 =aux3, aux3 = aux3->ptr_r)

{

if('memcmp(aux3->ptrdata,ob4,sizeof(u_short)))

{

33388,

if (prev == NULL) prev_int

switch (prev_int) {

return s;
If the Tree has not been
created yet, this case(0) will
add the first “branch”.

/
=0; e)s/e prev_int = 1;
//
/

/
/

/
//
case(0): /
//
916 = malloc(sizeof(struct in_addr)); //ip source
5= createNode(memcpy(ob,obl,sizeof(struct in_addr)));
ob = malloc(sizeof(struct in_addr)); //ip destination
s->ptr_b = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = s->ptr_b;
. . ob = malloc(sizeof(u_short)); /Isrc port
At this point aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
there's at aux_loop = aux_loop->ptr_b;
least one B ob = malloc(sizeof(u_short)); //dst port
node in our aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
tree. return s;

default:

switch(level) {

The name of the function
“insertBranch” is very
reprensentative of what it
does:

whenever it finds some
new data, and therefore,
non-stored data, it adds a
whole “branch” to the
Tree. A branch larger or
smaller depending on
What's the new item
found. If the new item is
an IP source... it will add
IP source and destination
and source and destiny
ports.

case (ip_ip_to): v

Here we see the enumerated type
data. In this case is an Ip source.

Ve

case (ipZip_from):

ob = malloc(sizeof(struct in_addr)); //ip source
prev->ptr_r = createNode(memcpy(ob,obl,sizeof(struct in_addr)));
aux_loop = prev->ptr_r;

ob = malloc(sizeof(struct in_addr)); //ip destination
aux_loop->ptr_b = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //src port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));

turn s; i i inati i
returmn s Now the new item found is an Ip destination. So it

adds the whole branch of information: Ip destination
and ports. For this the enumeration type is useful.

>

ob = malloc(sizeof(struct in_addr)); //ip destination
prevl->ptr_r = createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = prevl->ptr_r;

ob = malloc(sizeof(u_short)); /Isrc port
aux_loop->ptr_b = createNode(memcpy(ob,ob3,sizeof(u_short)));

86

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
Malloc is the function used return s;
to get heap memory space. | case (ip_src_port):
We allocate memory both ob = malloc(sizeof(u_short)); //src port
for the data itself and for the prev2->ptr_r = createNode(memcpy(ob,ob3,sizeof(u_short)));
node in the Tree-Linke list. aux_loop = prev2->ptr_r;
ob =¥\alIoc(sizeof(u_short)); //dst port
aux_loop->ptr_b = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;

case (ip_dst_port):

ob = malloc(sizeof(u_short)); //dst port
prev3->ptr_r = createNode(memcpy(ob,ob4,sizeof(u_short)));
return s;
default:
printf("DEBUG NEEDED \n");
exit(1);
}
}
}
void
freeTree_ip(struct ip_node_t*s) The allocated memory, must be deallocated.

P> This is the function for that purpose.

struct ip_node_t *aux_i,*aux_j,¥aux_k,*aux_r;

for(aux_i = s; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k !'= NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)

{
free(aux_r->ptrdata);
free(aux_r);
}
for(aux_i = s; aux_i != NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j !'= NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k != NULL ; aux_k = aux_k->ptr_r)

{
free(aux_k->ptrdata); \ -
free(aux_k); Freeing both data
} P> and linked list node.
for(aux_i = s; aux_i != NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

free(aux_j->ptrdata);
free(aux_j);

for(aux_i = s; aux_i != NULL ; aux_i = aux_i->ptr_r)

{

87

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

free(aux_i->ptrdata);

free(aux_i);
}
t ; . . .
} retum This function will
write down both files:
- ip_tree.txt
[- ip_tree.rules

void . . .
readTree_ip(struct ip_node._t *s) Will be used in the main process of
{ the program after the Tree has been

struct ip_node_t *aux_i,*aux_j,*aux_k,*aux_r;

int auxl aux2; completely loaded.

struct in_addr *in_addr_aux1, *in_addr_aux2;

int count=0;

char mybuff[50]; /* inet_ functions use statically allocated memory */ ‘{ Moving along the Tree ‘

for(aux_i = s; aux_i '= NULL ; aux_i = aux_i->ptr_r) :

{

in_addr_aux1 = (struct in_addr *)aux_i->ptrdata;
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

in_addr_aux2 = (struct in_addr *)aux_j->ptrdata;
for (aux_k = aux_j->ptr_b ; aux_k !'= NULL ; aux_k = aux_k->ptr_r)
{
auxl = *(u_short *)aux_k->ptrdata;
for (aux_r = aux_k->ptr_b ; aux_r !'= NULL ; aux_r = aux_r->ptr_r)
{
aux2 = *(u_short *)aux_r->ptrdata;
fprintf(ip_tree,"%5d: ",count++);
fprintf(ip_tree,"Ip source: %15s, ",inet_ntoa(*in_addr_aux1));
fprintf(ip_tree,"Ip destination: %15s, ",inet_ntoa(*in_addr_aux2));
fprintf(ip_tree,"Port Source: %5d, ",auxl);
— - fprintf(ip_tree,"Port destination: %5d \n",aux2);
Writing into files. “ strcpy(mybuff,inet_ntoa(*in_addr_aux2));
fprintf(ip_tree_rules,"pass ip %s %d <> %s %d \n",
inet_ntoa(*in_addr_aux1l),auxl,mybuff,aux2);

—_ AR

} | | Alittle note about “inet_ntoa”:
} ‘ the string that is returned, is returned in a
return; statically allocated buffer, which subsequent
} calls will overwrite.

In reference to files “ip_tree.txt” and “ip_tree.rules”:

Ip_tree.txt is the file in which our program will write in a readable format all the information
previously stored into our Tree-linked list. An example of a line in this file:

1: Ip source: 192.168.2.25, Ip destination: 192.168.2.100, Port Source: 502, Port
destination: 1111

Ip_tree.rules is the file in which the rules are written so that Snort can use them to compare it
with the traffic in our network. This file will be stored, moved, later through some shell-scripts that we

plug into the program's structure. An example of a line in this file:

pass ip 192.168.2.100 1111 <> 192.168.2.25 502

88

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

4.2 Implementation in Modbus

Right now we have a good understanding of how we can collect the info, keep it in dynamically
allocated memory, and create files to store in a readable format both the info and the rules. It is time
then to jump into the Modbus part.

For this we have again two files: Modbus_node.h and Modbus_node.c.

Modbus_node.h — header file for our Modbus linked list functions.

#ifndef Modbus_NODE_H_
#define Modbus_NODE_H_

struct Modbus_node_t

{ T~ We have here a similar structure
void *ptrdata; T~ 1 ;
struct Modbus_node t *ptr r; B for the "Free.hnlfed list node, but
struct Modbus_node_t *ptr_b; in this time it will reference

} modbus information.

enum m_field_t

{
Modbus_ip_from = 0, -
Modbus_ip_to = 1, Now we have included three new types
Modbus_src_port = 2, . ;
Modbus_dst_port =3, | to the enumerated types: representing
Modbus_len = 4, length of the data packet + 2,
Modbus_iden =5, identification and function.

Modbus_func = 6

/* prototypes */

struct Modbus_node_t *m_createlList (void);

struct Modbus_node_t *m_createNode(void *);

struct Modbus_node_t *m_insertBranch (struct Modbus_node_t *,void *,void *,void *,void *,void *,void *,void *);
void m_freeTree_Modbus(struct Modbus_node_t *);

void m_readTree_Modbus(struct Modbus_node_t *);

#endif

And the Modbus_func.c — with all the functions we will use for the Modbus Tree-linked list:

#include "ip.h"

#include "Modbus_node.h"

extern FILE *Modbus_tree; Function to create the list's
extern FILE *Modbus_tree_rules; first node's address for modbus

struct Modbus_node_t
*m_createlist (void)
{

¥

return NULL;

89

struct Modbus_node_t

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

*m_createNode(void *data)
{ > modbus nodes

struct Modbus_node_t *s;

Function to create list's

s = malloc(sizeof(struct Modbus_node_t));

if (s '= NULL)

{
s->ptrdata = data;
s->ptr_r = NULL;
s->ptr_b = NULL;

}

return s;

struct Modbus_node_t
*m_insertBranch (struct Modbus node _t *s,void *ob1,void *ob2,void *ob3,void *ob4,void *ob5,void *ob6,void *ob7)

{

N
struct Modbus_node_t *aux,*aux1,*aux2,*aux3,*aux4,*aux5;

struct Modbus_node-t *aux6,*prev,*prevl *prev2,*prev3,*prev4 *prevs,*preveé;

struct Modbus_node_t *aux_loop;
N

void *ob; -
enum m_field_t level = Modbus_ip-from;
int m_prev_int; S .

for (aux = s, prev = NULL ; aux != NULL ; prev = aux, aux = aux->ptr_|

Same function as “insertBranch” in
the ip parallel function. Here three
more steps are included in order to
take into account the three new info
"Yata fields: id, func, len.

{

if('memcmp(aux->ptrdata,obl,sizeof(struct in_addr)))

level++;

for(auxl = aux->ptr_b, prevl = NULL ; aux1 != NULL ; prevl = auxl, auxl = aux1l->ptr_r)

if('memcmp(auxl->ptrdata,ob2,sizeof(struct in_addr)))

level++;

for(aux2 = aux1l->ptr b, prev2 = NULL ; aux2 != NULL ; prev2 = aux2, aux2 = aux2->ptr_r)

{

if('memcmp(aux2->ptrdata,ob3,sizeof(u_short)))

level++;

for(aux3 = aux2->ptr_b, prev3 = NULL ; aux3 != NULL ; prev3 =aux3, aux3 =

aux3->ptr_r)
if('memcmp(aux3->ptrdata,ob4,sizeof(u_sho

level++;

rt))

for(aux4 = aux3->ptr_b, prev4 = NULL ; aux4 != NULL ; prev4 =aux4,

aux4= aux4->ptr r)

{

if('memcmp(aux4->ptrdata,ob5,sizeof(u_short)))

level++;

for(aux5 = aux4->ptr_b, prev5 = NULL ; aux5 != NULL ;
prev5 =aux5, aux5 = aux5->ptr_r)

if('memcmp(aux5->ptrdata,ob6,sizeof(u_char)))

level++;

for(aux6 = aux5->ptr_b, prevé = NULL ; aux6 != NULL ;
prevé =aux6, aux6 = aux6->ptr_r)

{

if(fmemcmp(aux6

90

->ptrdata,ob7,sizeof(u_char)))

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

{
return s;
}
h
}
}
}
h
}
h
}
}
}
h
}
}
if (prev == NULL) m_prev_int = 0; else m_prev_int = 1;
switch (m_prev_int) {
case(0):
ob = malloc(sizeof(struct in_addr)); //ip source

s = m_createNode(memcpy(ob,obl,sizeof(struct in_addr)));

ob = malloc(sizeof(struct in_addr)); //ip destination
s->ptr_b = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = s->ptr_b;

ob = malloc(sizeof(u_short)); /Isrc port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_ b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
/aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
/ aux_loop = aux_loop->ptr_b;

Here we
include the
three new
fields for
Modbus

_ob = malloc(sizeof(u_char)); //iden Modbus
// aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
44\ aux_loop = aux_loop->ptr_b;
AN
“ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));

return s;

default:
- New enumerated type.

switch(level) { /

y,
/
case (Modbus_ip_from):

ob = malloc(sizeof(struct in_addr)); //ip source
prev->ptr_r = m_createNode(memcpy(ob,obl,sizeof(struct in_addr)));
aux_loop = prev->ptr_r;

ob = malloc(sizeof(struct in_addr)); //ip destination
aux_loop->ptr_b = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //src port

91

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));

return s;

case (Modbus_ip_to):

ob = malloc(sizeof(struct in_addr)); //ip destination
prevl->ptr_r = m_createNode(memcpy(ob,ob2,sizeof(struct in_addr)));
aux_loop = prevl->ptr_r;

ob = malloc(sizeof(u_short)); /Isrc port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case (Modbus_src_port):

ob = malloc(sizeof(u_short)); /Isrc port
prev2->ptr r = m_createNode(memcpy(ob,ob3,sizeof(u_short)));
aux_loop = aux_loop->ptr_r;

ob = malloc(sizeof(u_short)); //dst port
aux_loop->ptr_b = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

92

Three new
steps into
this
version of
The
function

-~
\
\
\
\
\
\
\

void
m_freeTree_Modbus(struct Modbus_node_t *s)

{

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

case (Modbus_dst_port):

ob = malloc(sizeof(u_short)); //dst port
prev3->ptr_r = m_createNode(memcpy(ob,ob4,sizeof(u_short)));
aux_loop = aux_loop->ptr_r;

ob = malloc(sizeof(u_short)); //len Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

case(Modbus_len):

ob = malloc(sizeof(u_short)); /llen Modbus
prev4->ptr_r = m_createNode(memcpy(ob,ob5,sizeof(u_short)));
aux_loop = prev4->ptr_r;

ob = malloc(sizeof(u_char)); // iden Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = aux_loop->ptr_b;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));

return s;

~ case(Modbus_iden):

ob = malloc(sizeof(u_char)); // iden Modbus
prev5->ptr_r = m_createNode(memcpy(ob,ob6,sizeof(u_char)));
aux_loop = prev5->ptr_r;

ob = malloc(sizeof(u_char)); //func Modbus
aux_loop->ptr_b = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

cése(Modbus_func):

default:

ob = malloc(sizeof(u_char)); //func Modbus
preve->ptr r = m_createNode(memcpy(ob,ob7,sizeof(u_char)));
return s;

printf("DEBUG NEEDED \n");
exit(1);

struct Modbus_node_t *aux_i,*aux_j,*aux_k,*aux_r,*aux_s,*aux_t,*aux_u;

93

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

for(aux_i = s; aux_i !'= NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k !'= NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
for (aux_t = aux_s->ptr_b ; aux_t !'= NULL ; aux_t = aux_t->ptr_r)
for (aux_u = aux_t->ptr_b ; aux_u !'= NULL ;
aux_u = aux_u->ptr_r)
{

free(aux_u->ptrdata);
free(aux_u);

for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r)
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k !'= NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r !'= NULL ; aux_r = aux_r->ptr_r)
for (aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
for (aux_t = aux_s->ptr_b ; aux_t '= NULL ; aux_t = aux_t->ptr_r)

{
free(aux_t->ptrdata);
free(aux_t);
}
for(aux_i = s; aux_i != NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k !'= NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
for (aux_s = aux_r->ptr_b; aux_s != NULL ; aux_s = aux_s->ptr r)

{
free(aux_s->ptrdata);
free(aux_s);
}
for(aux_i = s ; aux_i !'= NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k !'= NULL ; aux_k = aux_k->ptr_r)
for (aux_r = aux_k->ptr_b ; aux_r !'= NULL ; aux_r = aux_r->ptr_r)

{
free(aux_r->ptrdata);
free(aux_r);
}
for(aux_i = s; aux_i !'= NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)
for (aux_k = aux_j->ptr_b ; aux_k !'= NULL ; aux_k = aux_k->ptr_r)

{
free(aux_k->ptrdata);
free(aux_k);
}
for(aux_i = s; aux_i !'= NULL ; aux_i = aux_i->ptr_r)

for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r)

free(aux_j->ptrdata);

free(aux j);
}
for(aux_i = s; aux_i != NULL ; aux_i = aux_i->ptr_r)
{
free(aux_i->ptrdata);
free(aux_i);
}

94

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

return;

}

void
m_readTree_Modbus(struct Modbus_node_t *s)
{
struct Modbus_node_t *aux_i,*aux_j,*aux_k,*aux_r,*aux_s,*aux_t, *aux_u;
int aux1,aux2,aux3;
struct in_addr *in_addr_aux1, *in_addr_aux2;
char aux_charl,aux_char2;

int count=0;
char mybuff[50]; /* inet_ functions use statically allocated memory */
for(aux_i = s ; aux_i != NULL ; aux_i = aux_i->ptr_r) {

in_addr_auxl = (struct in_addr *)aux_i->ptrdata;
for(aux_j = aux_i->ptr_b ; aux_j != NULL ; aux_j = aux_j->ptr_r) {
in_addr_aux2 = (struct in_addr *)aux_j->ptrdata;
for (aux_k = aux_j->ptr_b ; aux_k !'= NULL ; aux_k = aux_k->ptr_r)
{
auxl = *(u_short *)aux_k->ptrdata;
for (aux_r = aux_k->ptr_b ; aux_r != NULL ; aux_r = aux_r->ptr_r)
{
aux2 = *(u_short *)aux_r->ptrdata;
for(aux_s = aux_r->ptr_b ; aux_s != NULL ; aux_s = aux_s->ptr_r)
{
aux3 = *(u_short *)aux_s->ptrdata;
for(aux_t = aux_s->ptr_b ; aux_t !'= NULL ; aux_t = aux_t->ptr_r)
{
aux_charl = *(u_char *)aux_t->ptrdata;
for(aux_u = aux_t->ptr_b ; aux_u != NULL ; aux_u = aux_u->ptr_r)
{

aux_char2 = *(u_char *)aux_u->ptrdata;

fprintf(Modbus_tree,"%5d: ",count++);
fprintf(Modbus_tree,"Ip src: %14s, ",inet_ntoa(*in_addr_aux1));
fprintf(Modbus_tree,"Ip dst: %14s, ",inet_ntoa(*in_addr_aux2));
fprintf(Modbus_tree,"Port src: %5d, ",aux1);

fprintf(Modbus_tree,"Port dst: %5d, ",aux2);
fprintf(Modbus_tree,"lenght_data: %5d, ",aux3);
fprintf(Modbus_tree,"ident: %5d, ",(u_char)aux_charl);
fprintf(Modbus_tree,"funct code: %5d \n",(u_char)aux_char2);
strcpy(mybuff,inet_ntoa(*in_addr_aux2));
fprintf(Modbus_tree_rules,"pass ip %s %d <> %s %d
(Modbus_func: %d ;Modbus_unit: %d;)\n",
inet_ntoa(*in_addr_aux1),auxl,mybuff,aux2,
(u_char)aux_char2,(u_char)aux_charl);
}

return;

Walking through this part of the code, we can see the similarities between the functions for IP
and for Modbus, actually Modbus' functions are just an extension including the three more fields to
study in this protocol, but the algorithm in whiche they are based is exactly the same.

95

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

4.3 Scripts shell

The operative system we have been working in during this project as stated before is Linux, to
be more precise it is a Debian in its Xubuntu version. Including shell scripts and using them in the
code of our sniffer it's been relatively easy thanks to the system call “system()”. The shell program is
one of the possitive aspects of working in Linux and it has brought useful and good results.

System() 's man page : “man system” in our shell program.

NAME
system - execute a shell command

SYNOPSIS
#include <stdlib.h>

int system(const char *command);

DESCRIPTION
system() executes the command specified in command by calling “ /bin/sh -c command ”, and returns after
the command has been completed. During execution of the command, SIGCHLD will be blocked, and SIGINT and
SIGQUIT will be ignored.

We wanted to make automatic the inclusion of the rule files created by our program into Snort's
file system, and add the possibility for our users to include, through our program as well, other
blacklisting rule files into Snort's workings. For this, and considering that Snort has been installed
through a process of “configure && install” from a source code, our sniffer will detect if the proper
folders exists in Snort's file system and will copy the rules files inside. At the same time, it will add
automatically the corresponding “include” states in Snort configuration file allowing the system
administrator to forget about his issues.

This scripts are: Folder “conf_snort_files” inside our program's structure.
- - It contains configuration files for Snort and some other

#! /bi h
/bin/s files related to information about how to use our sniffer.

if [-d ./conf_Snort files]
then

cp ./conf_Snort _files/classification.config /opt/Snort/etc/.
cp ./conf_Snort_files/reference.config /opt/Snort/etc/.
“._cp ./conf Snort_files/Snort.conf ./rules/Snort.conf

clse e\ého " Il revise your sniffer folder, conf Snort files folder is missed !! "
eXit\l\ If this info_docs exists then it carries out the commands listed
fi P here, if not, there's some missed stuff and you should revise the
contents of your programm
] Once the program has finished, folder

#! [bin/sh p “info_docs” should have been created,
if [-d . /info_doc’g’]”””// containing info texts and rules files created by it.

then

cp ./info_docs/*.rules ./rules/.

96

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

cp ./conf_Snort_files/Snort.conf ./rules/Snort.conf

h SUDO_USER ./rules/Short. f .
Ed?,ﬁnef - rules/ Q\r\ O Folder “rules” is a folder created to keep the
echo "\n" . pp rules generated by our sniffer and some other
for file n $(Is *.rules) blacklisting rules add by the user.
N\ do
N\ cp ./$file /opt/Snort/rules/$file
N\ echo "\t...$file moved into /opt/Snort/rules and included into Snort.conf"
N\ sleep 1
. echo "include \$RULE_PATH/$file" >> ./Snort.conf
done\ This for-loop is an interesting feature:
cp ./Snort.conf/opt/Snort/etc/. p leresting :]
od .. \\ It goes along all the files in “rules” folder copying
else) them into the right place into Snort file system and
echo "debug needed" includi “include” stat t int t f
oxit 1 including an “include” statement into snort.con
fi configuration file.
#! /bin/sh The next three scripts are run at the

if [-d /opt/Snort/etc] -
then

beginning of the main code of our sniffer,
they will check for the existence of:

echo "\t\t...\\70p§/5nort/etc exists" - /opt/snort/etc
else - /opt/snort/rules
echo "\t\t... /opt/Snort/etc doesn't exists..." - /var/log/snort
if [-d /opt] N This are important folders into Snort's file
then - [. .
cd Jopt system, and they will house the files related
if [-d /opt/Snort] to configuration, rules and logs. This is why
then «dir fobt/Snort/et is so important to check if they exists and if
alse MKAIr JOPHSNOTYEEC they don't, this scripts will create them.
mkdir /opt/Snort Actually, the previous scripts
. mkdir /opt/Snort/etc | copy their files into these
|
clse folders.
mkdir /opt

mkdir /opt/Snort
mkdir /opt/Snort/etc

fi

echo "\t\t\t...creating /opt/Snort/etc"
fi

#! /bin/sh

if [-d /opt/Snort/rules]

then

echo "\t\t... /opt/Snort/rules exists"

else

echo "\t\t... /opt/Snort/rules doesn't exists ..."
mkdir /opt/Snort/rules

echo "\t\t\t...creating /opt/Snort/rules"

fi

#! /bin/sh

97

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

if [-d /var/log/Snort]

then
echo "\t\t... /var/log/Snort exists"
else
echo "\t\t... /var/log/Snort doesn't exists..."
mkdir /var/log/Snort
echo "\t\t\t\t...creating /var/log/Snort"
fi

4.4 Putting it all together: Main Code and Callback Function

First we show the header file: ip.h

#ifndef _IP_H_
#define _IP_H_

#include <time.h>
#include <sys/types.h>
#include <pcap/pcap.h>
#include <sysjsocket.h> P Includes with all header files needed. |
#include <netinet/in.h>
#include <arpal/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#define BUFSIZE 2048
#define APP_NAME "ip.out" —
#define SIZE_ETHERNET 14 Constants.
#define ETHER_ADDR_LEN 6

enum eth_type

ARP=0, N

RARP=1, S

IP=2, N

}}I\:\\I,Kll\lpoxvé\ﬁ)%h 4 AN Enumeration data type for protocols
¥ o P> over the link layer.

enum upper_eth_type

TCP_NO_Modbus=0,

TCP_Modbus=1, Enumeration data type for protocols
ICMP=2, —p
UDP=3, over IP.

UP_UNKNOWN=4,
¥

/* data structures for IP */

Data structure for Ethernet, this

> sniffer is designed to work over

#define ETHER_ADDR_LEN 6

[* Ethernet header */

struct sniff_ethernet { Ethernet.
u_char ether_dhost[ETHER_ADDR_LEN]; /* Destination host address */
u_char ether_shost[ETHER_ADDR_LEN]; /* Source host address */
u_short ether_type; /* IP? ARP? RARP? etc */

b

98

/* IP header */
struct sniff_ip {

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Data Ip structure: it will house

¥

#define IP_HL(ip) (((ip)->ip_vhl) & 0x0f)
#define IP_V(ip) (((ip)->ip_vhl) >> 4)

u_charip_vhl;
u_char ip_tos;

* version , header length */ gy the different fields an Ip
/* type of service */ /

packet must have.

u_short ip_len; /* total length */ /
u_shortip_id; /* identification */ /
u_short ip_off; /* fragment offset field */
u_char ip_ttl; /* time to live */
u_charip_p; /* protocol */

u_short ip_sum; /* checksum */

struct in_addr ip_src;

struct in_addr ip_dst; /* dest ip address */

/* TCP header */
typedef uint32_t tcp_seq;

struct sniff_tcp {

¥

u_short th sport;
u_short th_dport;
tcp_seq th_seqs
tcp_seq th_ack;
u_char th offx2; .

#define TH_OFF(th) \\

u_char th_flags;

u_short th_win; window */ Data for TCP structure
u_short th_sum; /*checksum */
U short th_urp; /* urgent pointer containing the different fields in

/* Modbus-TCP header */
struct sniff Modbus_tcp {_

¥

/* protypes */

u_short mtcp_trans_id;~_

u_short mtcp_prot;

u_char
u_char

mtcp_iden;
mtcp_func;

_ /* synchronization */
“/*-protocol identifier */
u_short mtcp_len;/* remaining! bytes in this frame */

/* source ip address */

Macros: the first field in the Ip
Structure is double, I mean, it

and “header length”. Header
length will be useful along
the program.

S contains the fields for “version”

/* source port */

/* destination port */

/* sequence number */

/* acknowledgement number */
/* data offset, rsvd */

(((th)->th_offx2 & 0xf0) >> 4)

/* flags */

a TCP segment.

/* identifier/_ >

/* function code */ were previously

TCP — Modbus data
structure. These fields

commented when the
introduction to Modbus.

void our_callback(u_char *,const struct pcap_pkthdr* ,const u_char*);
void print_app_banner(char *,int);
void create_Statistics (struct tm *,struct tm *,double,int,int) ;
void tail_banner(void);
void pantallazo(int);

void merge_ip(char *);

#endif

And now the main code with the call back function and some other secundary functions such as the
statistical study: ip.c

#include "ip.h"

#include "ip_node.h"

#include "Modbus_node.h"

It's in the main code and the call-back function
that we use the functions previously explained,

ip_node.h and modbus_node.h along with ip.h

99

/*global variables for statistics */

AN
int packet_type[5]={0,0,0,0,0};
int info_type[5]={0,0,0,0,0};
FILE *statistics; .
FILE *ip_tree; AN
FILE *sniff_data; AN
FILE *ip_tree_rules;
FILE *Modbus_tree;
FILE *Modbus_tree_rules;
struct ip_node_t *s;
struct Modbus_node_t *r;

/*

* MAIN

*

*/

int

main (int argc, char **argv)

{
[* vars */
int n_packets;
char char_aux_i=0,char_aux_n=0;
char errbuf[PCAP_ERRBUF_SIZE];
pcap_t *handler;
time_t timer_init,timer_end;
struct tm *st_timer_start,*st_timer_end;
double time_diff;
int i; /* for loops */

//getting options for the program
int flag_n=0, flag_i=0, flag_f=0;
int c;

char *nvalue = NULL;

char *ivalue = NULL;

char *fvalue = NULL;

opterr = 0;

while ((c = getopt (argc, argv, "n:i:f:")) = -1)

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

/* statistics of ethernet frame type in our network */

/* statistics of info type inside the IP payload */

~——pp» Global variables

/* number limit of packets we sniff */
/* checking flags from the terminal process */

/* holds the error string message in pcap functions */
/* pcap handler */

/* for time-stamps */
/* for time-stamps */
/* holds the difference of time the program has used */

Getopt is used to break up (parse) options
in command lines for easy parsing by shell
procedures, and to check for legal options.

fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./ip.out -f <file_name>\n");

switch(c)
{
case 'n":
flag_n=1;
nvalue = optarg;
n_packets = atoi(nvalue);
break;
case 'i":
flag_i = 1;
ivalue = optarg;
break;
case 'f:
flag_f=1;
fvalue = optarg;
break;
case '?":
exit(1);
default:

100

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

fprintf (stderr,"Unknown option character "\\x%x'.\n",optopt);
fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of_packets>\n");
fprintf(stderr,"usage: ./ip.out -f <file_name>\n");

exit(1);

// checking for a correct combination of switches
if(!((flag_f && !flag_i && !flag_n) || (Iflag_f && flag_i && flag_ n)))
{

fprintf(stderr,"missuse of the program switches\n");

fprintf(stderr,"usage: ./ip.out -i <interface> -n <number_of packets>\n")
fprintf(stderr,"usage: ./ip.out -f <file_name>\n");

exit(1); || Are we sniffing from
}else { A . 5

if(!flag_f) print_app_banner(ivalue,n_packets); a pcap file or from the

else print_app_banner(fvalue,0); network interface?

Starting our Tree-Linked lists:
// initialize linked list - one for ip alone.
s = (struct ip_node_t *)createlList(); B anOthe,r for MOdbus'.
= (struct Madbus__node_t *)m_createList(); 4» - fOHOWIHg their algorlthm we could
perfectly add new Tree-Linked list and

create a whole information data base about
// opening sniff_data to hold the sniffer's output our network.

sniff data = fopen("sniff _data.txt","w");
ip_tree_rules = fopen("ip_tree.rules","w");
Modbus_tree_rules = fopen("Modbus_tree.rules","w");

// stablishing handler for sniffing:

if(flag_f)
¢ if((handler = pcap_ open live(ivalue,BUFSIZ,1,10000,errbuf)) == NULL)
¢ printf("\n%s %s: %s\n" "Couldn't open device",ivalue,errbuf); Are we snifﬁng from our
Z’Xr,'{(‘;f)‘“de” \n%s\n’, "exiting...-1); p NIC? In that case we will
} use “pcap_open_life”.

} else if((handler = pcap_open_offline(fvalue, errbuf)) == NULL)
{

printf("\n%s %s: %s\n","Couldn't open device",ivalue,errbuf);
fprintf(stderr,"\n%s\n","exiti
exit(1);

Are we sniffing from a file?
In this case we will use
“pcap_open_offline”.

// printing time stamp of beginning
timer_init=time(NULL);

st_timer_start=localtime(&timer_init);
printf("\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n","Beginning test on",

101

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

st_timer_start->tm_mday,st_timer_start->tm_mon,st_timer_start->tm_year,
st_timer_start->tm_hour,st_timer_start->tm_min,st_timer_start->tm_sec);

// opening files for the linked trees

ip_tree = fopen("ip_tree.txt","w");
Modbus_tree = fopen("Modbus_tree.txt","w");

- everytime a packet hits our NIC

/] entering in the loop

if((pcap_loop(ha ndler,h;backets,ou r_callback,NULL))==-1
{ -

Establish call-back function for

or a new packet is detected in a
pcap file.

)

fprintf(stde}\n~1!§p%s\n","error ocurred while in loop, exiting now...");

exit(1); N

Handler is our call-back function, inside
of it, we use the Tree-linked list functions.

// exiting,printing statistics and closing files

timer_end = time(NULL);
st_timer_end = localtime(&timer_end);

printf("\n%s %2.2If %s\n"," -== Time test process :",time_diff = difftime(timer_end,timer _init),"segs. ==-");

//creating and closing statistics file

pcap_close(handler);
statistics = fopen("statistics.txt","w");

Creating file for statistics in packet
types and time.

for(i=0,n_packets=0;i<5;i++) n_packets += packet_typel[il;
create_Statistics(st_timer_start,st_timer_end,time_diff,n_packets,flag f);

fclose(statistics);
fclose(sniff_data);

//reading from the tree and free-ing the allocated space

readTree_ip(s);
m_readTree_Modbus(r); AN

fclose(ip_tree);
fclose(Modbus_tree);

freeTree_ip(s);

m_freeTree_Modbus(r);

-

At this point we have all the data
saved into our Trees and it's time for
our program to read it and create the
corresponding files: .txt and .rules

The allocated space in the heap
must be freed.

printf("\n%s\n\n"," ----statistic control finished, please, wait----");

fprintf(ip_tree_rules,"alert ip any any -> any any (msg:\"communication out of our ip-white-list\";)");

fclose(ip_tree_rules);

fprintf(Modbus_tree_rules,"alert ip any any -> any any (msg:\"communication out of our Modbus-white-list\";)");

fclose(Modbus_tree_rules);

// merging together the rules in order to get more compact rule files

merge_ip("ip_tree.rules");

N
N\
~

// creating folder info_docs and mov\i\ﬁ‘g\f es into it

il
tail_banner(); N >

exit(0);

Added feature: most of the information is
double. There are “queries” and “replies”.
They both are going to give us the same
information, and if we don't remove one
of the copies, we have a doble extension
in our ip.rules file.

102

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

/*
* our functions
*/
void
our_callback(u_char *args,const struct pcap_pkthdr* pkthdr,const u_char* packet)
{ \\
static int count = 1; /* packet counter */
u_short eth.type; /* ethernet type in host byte order for switch use */
int Modbus_flag = 0; /* Modbus_flag = 1 when it detects a Modbus protocol packet */
char mybuff[SO]T*\ /* inet_ functions use statically allocated memory */
L
N CALL-BACK FUNCTION:

/*aux variables to help in tTﬁ&\Lfe of tree_linked_list */ everytime a new packet
u_short sportaux,dportaux; .

u_short m_lenaux; P> arrives to the NIC or in a pcap
u_char m_idenaux,m_funcaux; file a new packet is read, this
functions is called.

/* declare pointers to packet headers */

const struct sniff_ethernet *ethernet; /* The ethernet header [1] */

const struct sniff_ip *ip; /* The IP header */

const struct sniff_tcp *tcp;

const struct sniff Modbus_tcp *Modbus_tcp; /* The Modbus TCP header */

/* sizes of ip frame and tcp segment */

int size_header_ip;

int size_header_tcp;

char test_Modbus = 0;

fprintf(sniff_data,"\nPacket number %d:\n", count);
fprintf(sniff_data,"--------------------- \n", count);
count++;

Initial byte of a new packet.

P Establishing-filling in the
/* define ethernet header torrent*/ — r I
ethernet = (struct sniff_ethernet*)(packet); structures.

eth_type=ntohs(ethernet->ether_type);

What is it?
switch (eth_type) { - ARI;{P
case(0x0806): i
fprintf(sniff_data,"\tARP packet\n"); - IP
packet_type[ARP]++; - UNKOWN
return; _ :
case(0x8035): maybe an invaled IP
fprintf(sniff_data,"\tRARP packet\n"); packet
packet type[RARP]++;
return;
case(0x0800):

fprintf(sniff_data,"\tIP packet\n");
packet type[lP]++;
break;
default:
fprintf(sniff_data,"\tnot an ARP/RARP/IP packet\n");
packet type[UNKNOWN]++;
}

/* define/compute ip header offset */
size_header_ip = IP_HL(ip = (struct sniff_ip*)(packet + SIZE_ETHERNET))*4;
if (size_header_ip < 20)

{
packet_type[INV_IP_HEADER]++;
fprintf(sniff_data,"\t Invalid IP header length: %u bytes\n", size_header _ip);
return;

}

103

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

/* print source and destination IP addresses */

strcpy(mybuff,inet_ntoa(ip->ip_src));
fprintf(sniff_data,"\tFrom: %s To: %s\n", mybuff, inet_ntoa(ip->ip_dst));

p What is the IP packet keeping?

switch(ip->ip-p)—
{

case IPPROTO_TCP:
fprintf(sniff_data,"\t-TCP protocol\n");
info_type[TCP_NO_Modbus]++;
break;

case IPPROTO_UDP:
fprintf(sniff_data,"\t-UDP protocol\n");
info_type[UDP]++;
return;

case IPPROTO_ICMP:
fprintf(sniff_data,"\t-ICMP protocol\n");
info_type[ICMP]++;
return;

default:
fprintf(sniff_data,"\t-Not a TCP/UDP/ICMP protocol\n");
info_type[UP_UNKNOWN]++;
return;

/* define/compute tcp header offset */
tcp = (struct sniff_tcp*)(packet + SIZE_ETHERNET + size_header_ip);
size_header_tcp = TH_OFF(tcp)*4;
if (size_header_tcp < 20)
{
packet_type[INV_IP_HEADER]++;
return;

}
fprintf(sniff_data,"\t Src port: %d to Dst port: %d\n", ntohs(tcp->th_sport),ntohs(tcp->th_dport));

/* define/print Modbus header fields */
/*is it an IP packet carrying Modbus data ? */

if ((ntohs(ip->ip_len) - size_header_ip) == size_header_tcp) test Modbus = 0;
else test Modbus = 1;

Modbus_tcp = (struct sniff Modbus_tcp*)(packet + SIZE_ETHERNET + size_header_ip + size_header_tcp);
test Modbus = test Modbus && (Modbus_tcp->mtcp_prot == 0);

test_Mod5u§ = test_ Modbus &&(Modbus_tcp->mtcp_iden != 0)&&(Modbus_tcp->mtcp_len '= 0);
test_Modbus = test_Modbus && (Modbus_tcp->mtcp_iden < 256) && (Modbus_tcp->mtcp_func < 256);

How do we know that it is Modbus what is inside

p the TCP packet...??? there are several tests to carry
if (test_Modbus) on...
{

info_type[TCP_Modbus]++;

fprintf(sniff_data," - Modbus: \n");

fprintf(sniff_data,"\t\t%s = %d \n","remaining bytes in this
frame",ntohs(Modbus_tcp->mtcp_len));

fprintf(sniff_data,"\t\t%s = %d \n","identifier",Modbus_tcp->mtcp_iden);

fprintf(sniff_data,"\t\t%s = %d \n","function code",Modbus_tcp->mtcp_func);

Modbus_flag = 1;

} else {
fprintf(sniff_data,"\t\t%s \n"," (not a Modbus_tcp protocol / or misformed Modbus_tcp
packet)");
Modbus_flag = 0;

}

104

/* sending info to the linked tree list */

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

At this point we have an IP packet

if (IModbus flag) p- Carrying a simple .TC.P protocol
{ that doesn't wrap inside any

if ((eth_type == 0x0800)&&(ip->ip_p == IPPROTO_TCP)) | Modbus data
; .

sportaux = ntohs(tcp->th_sport);
dportaux = ntohs(tcp->th_dport);
s = (struct ip_node_t *)insertBranch(s,(struct in_addr *)&ip->ip_src,

(struct in_addr *)&ip->ip_dst, (u_short *)&sportaux,(u_short *)&dportaux);

}
} else In case of Modbus, we call
{ - the modbus Tree-linked list
sportaux = ntohs(tcp->th_sport); .
dportaux = ntohs(tcp->th_dport); functions.
m_lenaux = ntohs(Modbus_tcp->mtcp_len); /
m_idenaux = Modbus_tcp->mtcp_iden; :
m_funcaux = Modbus_tcp->mtcp_func;
r = (struct Modbus_node_t *)m_insertBranch(r,(struct in_addr *)&ip->ip_src,
(struct in_addr *)&ip->ip_dst, (u_short *)&sportaux,(u_short *)&dportaux,
(u_short *)&m_lenaux,(u_char *)&m_idenaux,(u_char *)&m_funcaux);
}
return; X .
} Secondary function that is used to
void P display a banner at the beginning of
print_app_banner(char*v,int n) our program when run.
{
charc="'0";
inti;
char *snt_scrp[] =
{
"\n Making sure you have /var/log/Snort...\n",
"./var_log_Snort.sh ",
"\n Making sure you have the /opt/Snort/etc directory. \n",
".Jopt_Snort_etc.sh ",
"\n Making sure directory /opt/Snort/rules exists. \n",
".Jopt_Snort_rules.sh ",
“A\n",
"echo \"\n\"",
NULL
b
char *ord[] =
{
"more ./conf _Snort_files/important_considerations",
"more ./conf_Snort_files/input",
"more ./conf_Snort_files/output”,
NULL
b
43 »
pantallazo(1); > Use of “system” system call.

printf("Info banner: \n");
for(i = 0 ; ord[i] ; i++)
e

{

}

printf("Checking the system...\n"); /

systerfi/(ord[i]);
pantallazo(20);

P Using the scripts shell.

for(i = 0;snt_scrpli];) /

{

printf("%s",snt_scrpli++1);
system(snt_scrpli++1);
sleep(3);

105

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

pantallazo(4);

if (n==0)

{
printf("STARTING SNIFFING...... ");
sleep(1);
printf(" %S\n""' -===============-");
printf(" -== %s ==-\n", APP_NAME);
printf(" -== %s = %s ==-\n","interface",v);
printf(" %S\n""' -===============-");
sleep(1);

}

else{
printf("STARTING SNIFFING...... ");
sleep(1);
printf(" %s\n"," -===============.");
printf(" -== %s ==-\n", APP_NAME);
printf(" -== %s = %s ==-\n","interface",v);
printf(" -== %s = %d ==-\n","number of packets to study ", n);
printf(" %s\n"," -===============-"),
sleep(1);

}

return;

}
void

create_Statistics (struct tm *begin,struct tm *end,double td, int pkt,int f) {

enum eth_type et-aux; /* aux through for-loops*/ This function creates:
enum upper_eth_type uet_aux; /* aux through for-loops*/ . ..
char *et_uet; - Time statistics.
int sum_et=0,sum_uet=0; - Packet number
float assess=0; . .
statistics.
fprintf(statistics,"\n -== %s %d/%d/%d at %d:%d:%d ==-\n","Beginning test on",
begin->tm_mday,begin->tm_mon,begin->tm_year,begin->tm_hour,
begin->tm_min,begin->tm_sec);
fprintf(statistics," -=== %s ===-\n"," STATISTICS OF OUR NETWORK TRAFFIC ");

fprintf(statistics,"\n\t%s \n\n"," -PROTOCOL SUPPORTED OVER ETHERNET-");

for(et_aux=ARP; et_aux<=INV_IP_HEADER; et_aux++)

{
switch(et_aux)
{
case(ARP): et_uet="ARP";break;
case(RARP): et_uet="RARP";break;
case(IP): et_uet="IP";break;
case(UNKNOWN): et_uet="Unknown protocol";break;
case(INV_IP_HEADER):et_uet="Invalid IP header";break;
default: fprintf(statistics,"\t!'debug needed!!\n");
b
assess=(float)(packet_type[et_aux])/pkt;
fprintf(statistics,"\t\t* %s = %d ---> %2.2f%c of our traffic\n",
et_uet,packet_type[et_aux],assess*100,'%");
}

fprintf(statistics,"\n\n");
fprintf(statistics,"\t%s \n\n"," -PROTOCOL SUPPORTED OVER IP-");

for(uet_aux=TCP_NO_Modbus ;uet_aux<=UP_UNKNOWN ;uet_aux++)
{

switch(uet_aux)

{
case(TCP_NO_Modbus): et_uet="TCP";break;

106

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

case(UDP): et_uet="UDP";break;

case(ICMP): et_uet="ICMP";break;

case(TCP_Modbus): et_uet="\t* of which TCP_Modbus";break;
case(UP_UNKNOWN): et_uet="Unknown protocol over IP";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

assess=(float)(info_type[uet aux])/pkt;
fprintf(statistics,"\t\t* %s = %d ---> %2.2f%c of our traffic\n",
et _uet,info_type[uet_aux],assess*100,'%");

}

/* when data dumped from a file, there's no sense in time statistics, the file takes 0 secs for the program
to be examined, resulting in divisions by 0 in our next piece of code*/

if ()

{
fprintf(statistics,"\n\n\t...when studying from a pcap file there's no TIME STATISTICS\n\n");
return;

}

fprintf(statistics,"\n%s %f %s\n\n"," -== TIME STATISTICS : the tests has taken ",td," segs. ==-");

fprintf(statistics,"\t%s \n"," -PROTOCOL SUPPORTED OVER ETHERNET- ");

for(et_aux=ARP; et_aux<=INV_IP_HEADER; et_aux++)
{
switch(et_aux)
{
case(ARP): et_uet="ARP";break;
case(RARP): et_uet="RARP";break;
case(IP): et_uet="IP";break;
case(UNKNOWN): et_uet="Unknown protocol";break;
case(INV_IP_HEADER):et_uet="Invalid IP header";break;
default: fprintf(statistics,"\t!!debug needed!!\n");

}
fprintf(statistics,"\t\t* %s has %2.3If packets/sec.\n",et_uet,(double)(packet_typel[et_aux])/(int)td);
}

fprintf(statistics,"\n\n");
fprintf(statistics,"\t%s \n"," -PROTOCOL SUPPORTED OVER IP-");

for(uet_aux=TCP_NO_Modbus ;uet_aux<=UP_UNKNOWN ;uet_aux++)

{
switch(uet_aux)
{
case(TCP_NO_Modbus): et_uet="TCP";break;
case(UDP): et_uet="UDP";break;
case(ICMP): et_uet="ICMP";break;
case(TCP_Modbus): et_uet="\t* of which TCP_Modbus";break;
case(UP_UNKNOWN): et_uet="Unknown protocol over IP";break;
default: fprintf(statistics,"\t!!debug needed!!\n");
}
fprintf(statistics,"\t\t* %s has %2.3If packets/sec.\n",et_uet,(double)(info_type[uet_aux])/(int)td);
}

fprintf(statistics,"\n -== %s %02d/%02d/%d at %02d:%02d:%02d ==-\n\n -== %s %02d/%02d/%d at %02d:%02d:
%02d ==-\n",
"Test start:",begin->tm_mday,begin->tm_mon,begin->tm_year, begin->tm_hour,begin->tm_min,
begin->tm_sec,"Test finish:",end->tm_mday,end->tm_mon,end->tm_year,end->tm_hour,end->tm_min,
end->tm_sec);

fprintf(statistics,"\t -=== %s ===-\n"," ------ END OF OUR STATISTICS FILE ------- ")

return;

107

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

When the program has kept all the important information
into the Tree lists, now it's moment to sort out all the

void e S
tail_banner(void) different files into the program's file system and specially in
{ o fi

char ¢ = 0" Snort's file system.

inti;

char *sentences|[] =

{

"Files created: \n",

"\t - sniff_data.txt :\t holds the sniffer's output\n",

"\t - statistics.txt :\t holds statistical information\n",

"\t - ip_tree.txt :\t holds all the combinations of ip @ and ports observed into our network traffic\n",
"\t - Modbus_tree.txt :\t holds all the combinations of ip @, ports and Modbus fiels observed into our
network traffic\n",

"\t - ip_tree.rules :\t holds the ip rules to whitesniff our network, placed in ' /opt/Snort/rules ' \n",

"\t - Modbus_tree.rules :\t holds the Modbus rules to whitesniff our network, placed in ' /opt/Snort/rules

“An",
NULL
b
char *orders[] =
{
"mkdir info_docs","\nCreating folder info_docs...\n",
"mv ./ip_tree.txt ./info_docs/.","\t...Moving ip_tree.txt into folder info_docs\n",
"mv ./Modbus_tree.txt ./info_docs/.","\t...Moving Modbus_tree.txt into folder info_docs\n",
"mv ./statistics.txt ./info_docs/.","\t...Moving statistics.txt into folder info_docs\n",
"mv ./sniff_data.txt ./info_docs/.","\t...Moving sniff_data.txt into folder info_docs\n",
"mv ./ip_tree.rules ./info_docs/.","\t...Moving ip_tree.rules into info_docs\n",
"mv ./Modbus_tree.rules ./info_docs/.","\t...Moving Modbus_tree.rules into info_docs\n\n",
"./moving_conf files.sh","... moving 'classification.config' and 'reference.config' into /opt/Snort/etc\n",
NULL
b
char *more_sentences[] =
{
"\n\n\nPay attention: in this same directory, there's a folder named 'rules'\n",
"you should load this directory with the black-listing rules you want for Snort. \n",
"This program will include automatically the names into Snort.conf, releasing you from this task.\n",
"Include now, if you need, some .rules files or PRESS LETTER c(lower case) + ENTER (case sensitive) to
continue: ",
NULL
h
char *last_sentences[] =
{
"\n\nNow you can go to info_docs folder contained in this same directory, and consult the data
gathered.\n",
"...The appropiate rule file has been created and located in /opt/Snort/rules as well.\n\n\n\n",
NULL
b

pantallazo(5);
system("rm -r ./info_docs 2> /dev/null");
for (i = 0 ; sentencesl[i] ; i++)

{
printf("%s",sentences[i]);
sleep(1);

}

for(i = 0; orders[i];)

{
if(system(orders[i++1]) != -1) printf("%s",orders[i++1]);
sleep(2);

}

for (i = 0; more_sentencesl[i] ; i++)

{
printf("%s",more_sentencesli]);
sleep(2);

}

108

void

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

fflush(stdin);
for(;cl="'c";)

{
scanf("%c",&c);
if(c !="c") printf("\nPRESS LETTER C (case sensitive) + ENTER to continue: ");
fflush(stdin);

}

if(system("./moving_rule_files.sh") I=-1)

printf("\n\t...Copying our whilelist compliant rules into /opt/Snort/rules\n");

sleep(1);

printf("\t...Moving black-list compliant rules from our folder 'rules'into /opt/Snort/rules\n");
printf("\t...Moving Snort.conf configuration file with our 'includes' into /opt/Snort/etc \n");

}

sleep(2);

for (i = 0; last_sentencesl[i] ; i++)

{
printf("%s",last_sentenceslil);
sleep(2);

}

return;

Clears the screen to keep
P writing information to
e the user.

%
%

pantallazo (int j)

{

sleep (j);
system("clear");
return;

109

5. DEPLOYMENT AND TEST

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Our program's file system is composed by 2 directories and 31 files . From this 31 files, 4 are
pcap files that are useful to test the functionality of the whitelisting-sniffer.

—— 0.compiling.sh

—— 1l.remove.sh

— conf_Snort_files
classification.config

Folder conf snort_files

—— important_considerations
— input

—— output

— reference.config

—— Snort.conf

—— DOC_README.odt
—— DOC_README.pdf
—— FC1-permit.pcap

—— Modbus_FC_1_Coil.pcap
— http.cap

—— Modbus.pcap

— ip.cC

—— ip_func.c

— ip.h

—— ip_node.h

—— merge_ip.cC

—— Modbus_func.c

—— Modbus_node.h
——rules

—— backdoor.rules

—— community-virus.rules
—— dos.rules

—— ftp.rules

—— icmp.rules

—— moving_conf_files.sh
—— moving_rule_files.sh

—— opt_Snort_etc.sh

—— opt_Snort_rules.sh

—— var_log_Snort.sh

Explanation of the different files:

Folder: rules

. 0.compiling.sh : script shell to compile the program. The program must be compiled

previous use.

. 1.remove.sh : script shell that remove not needed files in the program's file system. It's
positive to use it before to compile the program but not after it. It would erase the

110

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

executable files and you would have to compile back.

Folder “conf_Snort_files ” : it contains important configuration program files. The most
important among them is “Snort.conf”. Over this file, our sniffer with write the
“include” statements, and after that, it will move this file into Snort's file system,
overwriting the previous existing Snort.conf in there.

DOC_README.odt && DOC_README.pdf : contain information about the
whitelisting-sniffer.

Next “.pcap” files: FC1-permit.pcap , Modbus_FC_1_Coil.pcap, http.cap,
Modbus.pcap are files downloaded from Internet in order to test the correct function of
the program.

ip.c , ip_func.c, ip.h, ip_node.h, merge_ip.c, Modbus_func.c, Modbus_node.h have
already been explained along this text in previous points.

Folder “rules” : it conforms an important feature to our whitelisting program. During its
execution, at the end of it, there's a moment in which the program informs you that rule
files created are going to be moved into Snort's file system, advicing you and giving
time to include inside this folder some other blacklisting file rules that the user could
consider to be useful for Snort to use.

moving_conf_files.sh , moving_rule_files.sh, opt_Snort_etc.sh , opt_Snort_rules.sh,
var_log_Snort.sh have also already been explained. They interact with Snort's file

system contributing to a more automatic use of this program with Snort.
Let's go through an example of execution:

1. Let's lists the contents of our folder:

arturo@arturo-laptop:~/....../pcap/9. sniffer_ip_Modbus$ Is -1

total 272

-rwxr--1-x 1 arturo arturo 289 May 6 13:39 0.compiling.sh
-rwxr--r-x 1 arturo arturo 284 May 3 16:03 1.remove.sh
drwxrwxr-x 2 arturo arturo 4096 May 6 13:10 conf_Snort_files
-rw-rw-T-- 1 arturo arturo 20850 May 6 13:28 DOC_README.odt
-rw-rw-r-- 1 arturo arturo 29415 May 6 13:29 DOC_README.pdf
-rw-rw-1-- 1 arturo arturo 3138 May 2 18:48 FC1-permit.pcap
-rw-r--1-- 1 arturo arturo 25803 May 2 13:37 http.cap

-rw-r--1-- 1 arturo arturo 17864 May 6 13:15 ip.c

-rw-r--1-- 1 arturo arturo 5846 May 11 16:28 ip_func.c

-rw-rw-r-- 1 arturo arturo 4204 May 14 20:25 ip_func.o

-rw-r--r-- 1 arturo arturo 2561 May 6 13:02 ip.h

-rw-r--1-- 1 arturo arturo 481 May 1 19:11 ip_node.h

-rw-rw-r-- 1 arturo arturo 17572 May 14 20:25 ip.o

-rw-r--r-- 1 arturo arturo 1340 May 3 15:33 merge_ip.c

-rw-rw-1-- 1 arturo arturo 2464 May 14 20:25 merge_ip.o
-rw-rw-T-- 1 arturo arturo 4670 May 2 18:08 Modbus_FC_1_Coil.pcap
-rw-r--1-- 1 arturo arturo 11957 May 11 16:35 Modbus_func.c
-rw-rw-r-- 1 arturo arturo 6976 May 14 20:25 Modbus_func.o
-rw-r--1-- 1 arturo arturo 633 Apr 30 15:11 Modbus_node.h
-rw-rw-r-- 1 arturo arturo 8337 May 2 16:24 Modbus.pcap
-rwxr--1-x 1 arturo arturo 322 Apr 30 18:28 moving_conf_files.sh
-rwxr--1-x 1 arturo arturo 501 May 3 15:47 moving_rule_files.sh
-rwxr--1-x 1 arturo arturo 433 May 11 21:48 opt_Snort_etc.sh

111

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

-rwxr--1-x 1 arturo arturo 211 May 11 21:48 opt_Snort_rules.sh
drwxrwxr-x 2 arturo arturo 4096 May 13 23:00 rules
-rwxrwxr-x 1 arturo arturo 29950 May 14 20:25 sniffer
-rwxr--r-x 1 arturo arturo 208 May 3 16:06 var_log_Snort.sh

2. Use of the removing script shell:

arturo@arturo-laptop:~/....../pcap/9. sniffer_ip_Modbus$./1.remove.sh
..remove.sh done

3. Compilation process:

arturo@arturo-laptop:~/....../pcap/9. sniffer_ip_Modbus$ sudo su
[sudo] password for arturo:
root@arturo-laptop:/home/arturoy...../pcap/9. sniffer_ip_Modbus# ./0.compiling.sh

...compilation process done
...usage: ./sniffer -i <interface> -n <number of packets>
...usage: ./sniffer -f <file_name>

4. Execution of “sniffer” in the form of ./sniffer -f <file_name>

root@arturo-laptop:/home/arturo/..../pcap/9. sniffer_ip_Modbus# ./sniffer -f Modbus_FC_1_Coil.pcap

Modbus_FC_1_Coil.pcap is a pcap file downloaded from Internet that contains precollected
information from a sniffing session.

5.1 Different Screens in the Execution Process

[D E S [B cdmondHolohanThesis... By Untitled 1.0dt - LibreOffic... 7] Terminal - root@arturo-l.. M8 PROJECT IRELAND -File .. = (@} ! Tue, 14 May 20:32

- Terminal - laptop: p T IN IRELAND/New project/pcap/9. sniffer_ip_ modbus - + x
File Edit View Terminal Go Help

Info banner:

THERE ARE THREE WAYS TO INSTALL SNORT:

1) Installing snort from source code:

./configure --prefix=/opt/snort
make &% make install

/opt/snort it's established as the main node in Snort's file system.

2) rpm --install snort-1.9.0-1snort.i386.rpm

This command will perform the following actions:

+ Create a directory setc/snort where all snort rule files and configuration files are stored.

+ Create a directory /var/log/snort where Snort log files will be stored.

* Create a directory /usr/share/doc/snort-1.9.0 and store Snort documentation files in that directory.
« Create a file snort-plain in /usr/sbin directory. This is the Snort daemon.

+ Create a file setc/rc.d/init.d/snortd file which is startup and shutdown script.

3) installing snort from repositories:

sudo apt-get install snort

IMPORTANT:
THIS WHITELISTING PROGRAM IT'S THOUGHT TO BE USED WITH THE FIRST OPTION OF INSTALLATION.

Fig. 14 Brief note about Snort's intallation

112

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

EdmondHolehanThe: B untitled 1.0d
= Terminal - laptop: P T IN IRELAND/New project/pcap/9. sniffer ip modbus =
File Edit View Terminal Go Help
CONTENTS:
— O.compiling.sh INPUT
— 1.remove.sh -
— conf_snort_files ./sniffer -i <interface> -n <number of packets>
classification.config ./sniffer -f <file name>
important_considerations -> interface: eth0,eth1,wlan0 ...
input_output -> file name: 'any_name'.pcap
reference.config
snort.conf + blacklist rules: 'name’'.rules added by user in "rules" directory
ip.c
ip_func.c
ip.h
ip_node.h

merge_ip.c
modbus_func.c
modbus_node.h
moving_conf_files.sh
moving rule_files.sh
opt_snort_etc.sh
opt_snort_rules.sh
rules
*blacklist'.rules (added by user)

[TTTTTTTITTTT

— var_log_snort.sh

Fig. 15 Contents of the program's file system

B Untitled 1.od

= Terminal - root@arturo-laptop: /home/arturo/Desktop/PROYECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus - + X
File Edit View Terminal Go Help
OUTPUT:

info_docs

t— ip_tree.rules As well as:

— ip_tree.txt - checking, and if missed creating, /var/log/snort

— modbus_tree.rules - checking, and if missed creating, /opt/snort/rules

— modbus_tree. txt - checking, and if missed creating, /opt/snort/etc

sniff_data.txt
— statistics.txt
rules

— 'blacklist'.rules

it moves the rules from OUTPUT folder rules to /opt/snort/rules

it adds 'include’ statements into snort.conf for all our rules in OUTPUT rules folder
it moves snort.conf in OUTPUT folder to /opt/snort/etc

moves 'classification.config' and 'reference.config' into /opt/snort/etc

+ o+ o+ 4+

— ip_tree.rules
+— modbus_tree.rules
— snort.conf

Fig.16 Files resulting from the execution of the sniffer

113

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

arture

EdmondHolohanTh B Untitled 1.0dt - Libr =) r
Terminal - root@arturo-laptop: /home/arturo/Desktop/PROYECT IN IRELAND/New project/pcap/9. sniffer_ip modbus - + %

File Edit View Terminal Go Help
Checking the system...

Making sure you have /var/log/snort...
... /var/log/snort exists

Making sure you have the /opt/snort/etc directory.
... lopt/snort/etc exists

Making sure directory /opt/snort/rules exists.
... /opt/snort/rules exists

Fig.17 Checking / creating folders in Snort's file system

#® PROJECT IRELAND - File ...

wFEDEES
= =

p/PROYECT IN IRELAND/New project/pcap/8. sniffer_ip_modbus

File Edit View Terminal Go Help

STARTING SNIFFING......
ip.out ==-
interface Modbus_FC_1_Coil.pcap ==-

-== Beginning test on 14/04/113 at 20:34:07 ==-
-== Time test process : 0.00 segs. ==-

----statistic control finished, please, wait----

Fig.18 Sniffing process (no results dumped directly into screen)

114

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

EdmondHolohanTh

File Edit

Files created:

Creating

Terminal - root@arturo-laptop: /home/arturo/Desktop/PROYECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus - + X
View Terminal Go Help
sniff_data.txt : holds the sniffer's output
statistics.txt : holds statistical information
ip_tree.txt 3 holds all the combinations of ip @ and ports observed into our network traffic
modbus_tree. txt : holds all the combinations of ip @, ports and modbus fiels observed into our network traffic
ip_tree.rules : holds the ip rules to whitesniff our network, placed in ' /opt/snort/rules '

modbus_tree.ru

holds the modbus rules to whitesniff our network, placed in ' /opt/snort/rules '

folder info_docs...

.Moving ip_tree.txt into folder info_docs
.Moving modbus_tree.txt into folder info_docs
.Moving statistics.txt into folder info_docs
.Moving sniff_data.txt into folder info_docs
.Moving ip_tree.rules into info_docs

.Moving modbus_tree.rules inte info_docs

... moving 'classification.config' and 'reference.config’ into /opt/snort/etc

Pay attention: in this same directory, there's a folder named 'rules’',

you should load this directory with the black-listing rules you want for snort.

This program will include automatically the names into snort.conf, releasing you from this task.

Include now, if you need, some .rules files or PRESS LETTER c(lower case) + ENTER (case sensitive) to continue: I

Fig.19 Results explained and further reconfiguration

PROJECT IRELAI

- Terminal - ptop: T IN IRELAND/New project/pcap/3. sniffer_ip_modbus -+ x
File Edit View Terminal Go Help

creating folder info_docs...

Moving ip_tree.txt into folder info_docs
Moving modbus_tree.txt into folder info_docs
Moving statistics.txt into folder info_docs
Moving sniff_data.txt into folder info_docs
Moving ip_tree.rules into info_docs

...Moving modbus_tree.rules into info_docs

... moving 'classification.config’ and 'reference.config’' into /opt/snort/etc

Pay attention: in this same directory, there's a folder named ‘rules’,
you should load this directory with the black-listing rules you want for snort.

This program will include automatically the names into snort.conf, releasing you from this task.

Include now, if you need, some .rules files or PRESS LETTER c(lower case) + ENTER (case sensitive) to continue: c

...backdoor.rules moved into /opt/snort/rules and included inte snort.conf
community-virus.rules moved into /opt/snort/rules and included into snort.conf
dos.rules moved into fopt/snort/rules and included into snort.conf

ftp.rules moved into fopt/snort/rules and included into snort.conf

icmp.rules moved into /opt/snort/rules and included into snort.conf
ip_tree.rules moved into sopt/snort/rules and included into snort.conf
...modbus_tree.rules moved into fopt/snort/rules and included into snort.conf

...Copying our whilelist compliant rules into /opt/snort/rules
Moving black-list compliant rules from our folder 'rules'into /opt/snort/rules
...Moving snort.conf configuration file with our 'includes' into /opt/snort/etc

Now you can go to info_docs folder contained in this same directory, and consult the data gathered.

...The appropiate rule file has been created and located in /opt/snort/rules as well.

root@arturo-laptop:/home/arturo/Desktop/PROYECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus# [l H

Fig.20 Last screen

6. “info_docs” folder:

root@arturo-laptop:/home/arturo/....../pcap/9. sniffer_ip_Modbus# cd info_docs/ && tree

—— ip_tree.rules
— ip_tree.txt
—— Modbus_tree.rules

115

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

—— Modbus_ tree.txt
—— sniff data.txt
—— statistics.txt

arturo@arturo-laptop:~/Desktop/PROJECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus/info_docs$ more ip_tree.rules
pass ip 192.168.2.100 1111 <> 192.168.2.25 502

alert ip any any -> any any (msg:"communication out of our ip-white-list";)

arturo@arturo-laptop:~/Desktop/PROJECT IN IRELAND/New project/pcap/9. sniffer_ip_modbus/info_docs$ more modbus_tree.rules
pass ip 192.168.2.25 502 <> 192.168.2.100 1111 (modbus_func: 255 ;modbus_unit: 255;)

pass ip 192.168.2.25 502 <> 192.168.2.100 1111 (modbus_func: 1 ;modbus_unit: 255;)

pass ip 192.168.2.25 502 <> 192.168.2.100 1111 (modbus_func: 5 ;modbus_unit: 255;)

pass ip 192.168.2.100 1111 <> 192.168.2.25 502 (modbus_func: 1 ;modbus_unit: 255;)

pass ip 192.168.2.100 1111 <> 192.168.2.25 502 (modbus_func: 5 ;modbus_unit: 255;)

alert ip any any -> any any (msg:"communication out of our modbus-white-list";)

Fig.21 Example of IP.rules & Modbus.rules file

7. “rules” folder:

root@arturo-laptop:/home/arturoy...../pcap/9. sniffer_ip_Modbus/info_docs# cd ../rules/ && tree

—— backdoor.rules
—— community-virus.rules
—— dos.rules
—— ftp.rules
—— icmp.rules
ip_tree.rules
—— Modbus_tree.rules
—— Snort.conf

116

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

6. CONCLUSIONS

It is impossible to come up with a tool that secures 100% any information system. Hackers
always find a way to dupe security systems, this is why is so important to adopt a proactive attitude
when working in this issues. This is why it is so important for any security administrator to know the
network he is working in and disallow anything different from what they very well know it is normal.

Speaking about tools, any administrator will always try a combination of them. Some tools are
very good in some environments and later they work poorly in others. Some, propose solutions based
on one of the three methods presented during the abstract of this text (blacklisting, whitelisting or
anomaly detection) and they loose sight over some parts of reality, leaving important security gaps.
So... how to achieve a good level of security without spending big amounts of money?

Nowadays, it exists a lot of opensource programs that help to you to to achieve your desired
security level. In this thesis we have propose a solution for securing networks, specially those working
with Industrial Control System Protocol like Modbus, taking advantage of Snort's features, a IDS
available as opensource in www.Snort.org that has become very famous among system administrators.

The design we propose in OSNA is based on whitelists and blacklists. It is known very well that
just using a single approach of these ones alone, brings to quite disastrous results. We have been
working to build up a solution that could merge whitelisting methods and blacklisting methods, leaving
the door open to near future inclussions addressing methods of anomaly detection based in N-grams.
This total-approach would constitute a very powerful resource to maintain a clean system and control
possible intrusions.

Specifically, the blacklisting approach is achieved through Snort, we will be taking full
advantage of its functionality, and we'll be adding our whitelisting sniffer to it in order to contribute
with whitelisting features, making Snort even more complete and making the whole process very
automatic for any user.

Our whitelisting method, comes up with all the information about the network segment we
connect the program in and during a test period in which we run the code, it creates files that describe
what it is known to be the correct behaving of the devices' interconnections. Everything that is out of
this files, will be consider as a threat and counter measures taken against it.

The tool in this thesis proposed is then a very handy one, allowing to automatize the whole
process of representation of a network in files reducint the amount of work any aministrator would
have to use to create a whitelist of sessions connections among the devices. We are already thinking of
future plug-ins into our program, working in this same direction of “describing the net”, we believe our
sniffer, will be a very important resource for security information employees.

6.1 Further research

A nice step to take for this research, could consist in a graphical interface. This program
together with Snort, works from terminal linux, making difficult to work for those ones that have no
idea of Linux or have never interacted with a terminal where all commands are written instead of
“clicked”.

117

http://www.snort.org/

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Annexe A: Snort.

This annexe consists of a summarize of the open source book Intrusion Detection Systems with

Snort Advanced IDS Techniques Using Snort, Apache, MySQL, PHP, and ACID. [InPe01]

A.1 Introduction to Intrusion Detection and Snort

Intrusion Detection methods started appearing in the last few years. Using Intrusion Detection
methods, you can collect and use information from known types of attacks and find out if someone is

trying to attack your network or particular hosts.

A comprehensive security system consists of multiple tools, including:

- Firewalls: used to block unwanted incoming as well as outgoing traffic of data.

- Intrusion Detection systems (IDS): used to find out if someone has gotten into or is trying to

get into your network.
- Vulnerability assessment tools: used to find and plug security holes present in your network.
Information collected from vulnerability assessment tools is used to set rules on firewalls so that

these security holes are safeguarded from malicious Internet users.

These tools can work together and exchange information with each other. Some products

provide complete systems consisting of all of these products bundled together.

What is Intrusion Detection?

Intrusion Detection Systems fall into two basic categories: signature-based Intrusion Detection
Systems and anomaly detection systems. Intruders have signatures, like computer viruses, that can be
detected using software. You try to find data packets that contain any known intrusion-related

signatures or anomalies related to Internet protocols. Based upon a set of signatures and rules, the

118

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

detection system is able to find and log suspicious activity and generate alerts. Snort is primarily a rule-

based IDS, but input plug-ins are present to detect anomalies in protocol headers as well.

Snort uses rules stored in text files that can be modified by a text editor. Rules are grouped in
categories. Rules belonging to each category are stored in separate files. These files are then included
in a main configuration file called Snort.conf. Snort reads these rules at the start-up time and builds
internal data structures to apply these rules to captured data. Finding signatures and using them in rules
is a tricky job, since the more rules you use, the more processing power is required to process captured
data in real time. It is important to implement as many signatures as you can using as few rules as

possible.

Signatures:

Signature is the pattern that you look for inside a data packet. A signature is used to detect one
or multiple types of attacks. For example, the presence of “scripts/iisadmin” in a packet going to your
web server may indicate an intruder activity. Signatures may be present in different parts of a data
packet depending upon the nature of the attack. For example, you can find signatures in the IP header,
transport layer header (TCP or UDP header) and/or application layer header or payload. You will learn

more about signatures later in this book.

Alerts :

Alerts are any sort of user notification of an intruder activity. When an IDS detects an intruder,
it has to inform security administrator about this using alerts. Alerts may be in the form of pop-up
windows, logging to a console, sending e-mail and so on. Alerts are also stored in log files or databases

where they can be viewed later on by security experts.

Logs :

The log messages are usually saved in file. By default Snort saves these messages under
/var/log/Snort directory. However, the location of log messages can be changed using the command line
switch when starting Snort. Log messages can be saved either in text or binary format. The binary files
can be viewed later on using Snort or tcpdump program. Logging in binary format is faster because it

saves some formatting overhead. In high-speed Snort implementations, logging in binary mode is

119

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

necessary.
Sensor :
The machine on which an Intrusion Detection System is running is also called the sensor in the

literature because it is used to “sense” the network.

Components of Snort:

Snort is logically divided into multiple components. These components work together to detect
particular attacks and to generate output in a required format from the detection system. A Snort-based

IDS consists of the following

ma] or COIDpODEDtS: Internet Z/ib Packet Decoder

» Packet Decoder

Logging and,
Alerting
System

=N

Output Alert or
Log to a file

* Preprocessors

* Detection Engine
=

* Logging and Alerting System

* Output Modules Fig. 22 Snort's inner workings schema

Packet Decoder : takes packets from different types of network interfaces and prepares the
packets to be preprocessed or to be sent to the detection engine. The interfaces may be Ethernet, SLIP,

PPP ...

Preprocessors : components or plug-ins that can be used with Snort to arrange or modify data
packets before the detection engine does some operation to find out if the packet is being used by an
intruder. Some preprocessors also perform detection by finding anomalies in packet headers and
generating alerts. They are very important for any IDS to prepare data packets to be analyzed against

rules in the detection engine.

Hackers use different techniques to fool an IDS in different ways. For example, you may have
created a rule to find a signature “scripts/iisadmin” in HTTP packets. If you are matching this string

exactly, you can easily be fooled by a hacker who makes slight modifications to this string. For

120

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

example:

* “scripts/./iisadmin”
* “scripts/examples/../iisadmin”
* “scripts\iisadmin”

* “scripts/.\iisadmin”

To complicate the situation, hackers can also insert in the web Uniform Resource Identifier
(URI) hexadecimal characters or Unicode characters which are perfectly legal as far as the web server
is concerned. Note that the web servers usually understand all of these strings and are able to
preprocess them to extract the intended string “scripts/ iisadmin”. However if the IDS is looking for an
exact match, it is not able to detect this attack. A preprocessor can rearrange the string so that it is

detectable by the IDS.

Preprocessors are also used for packet defragmentation. Receiving systems are capable of
reassembling these smaller units again to form the original data packet. On IDS, before you can apply
any rules or try to find a signature, you have to reassemble the packet. For example, half of the
signature may be present in one segment and the other half in another segment. To detect the signature
correctly you have to combine all packet segments. Hackers use fragmentation to defeat Intrusion
Detection Systems.

The preprocessors are used to safeguard against these attacks. Preprocessors in Snort can
defragment packets, decode HTTP URI, re-assemble TCP streams and so on. These functions are a very

important part of the Intrusion Detection System.

The Detection Engine : is the most important part of Snort. Its responsibility is to detect if any
intrusion activity exists in a packet. The detection engine employs Snort rules for this purpose. The
rules are read into internal data structures or chains where they are matched against all packets. If a
packet matches any rule, appropriate action is taken; otherwise the packet is dropped. Appropriate

actions may be logging the packet or generating alerts.

121

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

This is the time-critical part of Snort. Depending upon some factors, it may take different
amounts of time to respond to different packets or you may even drop some packets and may not get a

true real-time response:

* Number of rules
* Power of the machine on which Snort is running
* Speed of internal bus used in the Snort machine

» Load on the network

The detection system can dissect a packet and apply rules on different parts of the packet. These

parts may be:

* The IP header of the packet.

* The Transport layer header. (TCP, UDP) or other transport layer headers. It may also work on
the ICMP header.

* The application layer level header. Application layer headers include, but are not limited to,
DNS header, FTP header, SNMP header, and SMTP header. You may have to use some indirect
methods for application layer headers, like offset of data to be looked for.

* Packet payload. This means that you can create a rule that is used by the detection engine to

find a string inside the data that is present inside the packet.

In Snort version 2 all rules are matched against a packet before generating an alert. After
matching all rules, the highest priority rule is selected to generate the alert.

Logging and Alerting System: depending upon what the detection engine finds inside a packet,
the packet may be used to log the activity or generate an alert. Logs are kept in simple text files, tcp-
dump-style files or some other form. All of the log files are stored under /var/log/ Snort folder by
default. You can use -1 command line options to modify the location of generating logs and alerts.

Output Modules : output modules or plug-ins can do different operations depending on how you

want to save output generated by the logging and alerting system of Snort. Depending on the

configuration, output modules can do things like the following:

122

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

« Simply logging to /var/log/Snort/alerts file or some other file

* Sending SNMP traps
* Sending messages to syslog facility

* Logging to a database like MySQL or Oracle.

* Generating eXtensible Markup Language (XML) output

* Modifying configuration on routers and firewalls.

* Sending Server Message Block (SMB) messages to Microsoft Windows-based machines

Other tools can also be

Name

Description

usedto send alerts in other formats

Packet Decoder

Prepares packets for processing.

Preprocessors or Input Plugins

such as e-mail messages or viewing

Used to normalize protocol headers, detect anomalies, packet re-
assembly and TCP stream re-assembly.

Detection Engine

Applies rules to packets.

alerts using a web interface.

Logging and Alerting System

Generates alert and log messages.

Output Modules

Process alerts and logs and generate final output.

Table 2 Snort's modules summarize.

A.2 Setting up of our Snort sensor

Depending upon the type of switches used, you can use Snort on a switch port. Some
switches, allow you to replicate all ports traffic on one port where you can attach the Snort machine.
These ports are usually referred to as spanning ports. The best place to install Snort is right behind the

firewall or router so that all of the Internet traffic is visible to Snort before it enters any switch or hub.

Firewall

Switch

/.—

V00DDO00DOET)
Connection 1o
the Internet

Servers used
for the IDS
company connected to
presence on Spanning
the Internet port of the
Switch

Fig 23 IDS behind the firewall

123

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

You can also connect the IDS to a small HUB or a Network TAP right behind the firewall, i.e.,

between firewall and the switch.

Firewall

Connection to Switch

the Internet

IDS connected to
HUB so that all
incoming and
outgoing traffic is

visible to irt.

Servers used for
the company
presence on the
Internet

Fig.24 Likely scenario for a Snort sensor

Note that when the IDS is connected as shown in this last figure, data flowing among the
company servers is not visible to the IDS. The IDS can see only that data which is coming from or
going to the Internet. This is useful if you expect attacks from outside and the internal network is a

trusted one.

Supported Platforms :

Snort is supported on a number of hardware platforms and operating systems. Currently

Snort is available for the following operating systems:

* Linux

* OpenBSD

* FreeBSD

* NetBSD

* Solaris (both Sparc and i386)
* HP-UX

* AIX

« IRIX

124

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* MacOS

» Windows

For a current list of supported platforms, refer to the Snort home page at http:// www.Snort.org.

How to Protect IDS Itself:

One major issue is how to protect the system on which your Intrusion Detection software is
running. If security of the IDS is compromised, you may start getting false alarms or no alarms at all.
The intruder may disable IDS before actually performing any attack. There are different ways to protect
your system, starting from very general recommendations to some sophisticated methods. Some of

these are mentioned below.

+ The first thing that you can do is not to run any service on your IDS sensor itself. Network
servers are the most common method of exploiting a system.

* New threats are discovered and patches are released by vendors. This is almost a continuous
and non-stop process. The platform on which you are running IDS should be patched with the
latest releases from your vendor. For example, if Snort is running on a Microsoft Windows
machine, you should have all the latest security patches from Microsoft installed.

* Configure the IDS machine so that it does not respond to ping (ICMP Echo- type) packets.

« If you are running Snort on a Linux machine, use netfilter/iptable to block any unwanted data.
Snort will still be able to see all of the data.

* You should use IDS only for the purpose of intrusion detection. It should not be used for other

activities and user accounts should not be created except those that are absolutely necessary.

Following are two special techniques that can be used with Snort to protect it from being

attacked:
. Snort on Stealth Interface .
o Snort with no IP Address Interface .

The advantage is that when the Snort host doesn’t have an IP address itself, nobody can access

125

http://www.snort.org/

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

it. You can configure an IP address on eth1 that can be used to access the sensor itself.

A.3 Installing of Snort and Getting Started

A simple Snort installation consists of a single Snort sensor run from terminal or from system
start up as a daemon. To install Snort for this purpose, you can get a pre-compiled version or compile it

yourself from the source code: http://www.Snort.org

Putting the sensor behind a router or firewall will enable you to detect the activity of intruders
into the system. However, if you are really interested in scanning all Internet traffic, you can put the
sensor outside the firewall as well.

Single Sensor with Database and Web Interface : the most common use of Snort should be with
integration to a database. The data-base is used to log Snort data where it can be viewed and analyzed
later on, using a web-based interface. A typical setup of this type consists of three basic components:

1. Snort sensor

2. A database server

3. A web server

Snort logs data into the database. You can view the data using a web browser connected to the
Sensor.

Different types of database servers like MySQL, PostgresSQL, Oracle, Microsoft SQL server
and other ODBC-compliant databases can be used with Snort. This setup provides a very good and

omprehensive IDS which is easy to manage and user friendly.

Snort Sensor 3

All of these
Snort sensors

upload log
Snort Sensor 2

centralized

server using
SCP utility

Centralized database
server which runs SSH
server and receives log

Server.

intrusion data

collected by Snort
through web

browser

Fig.25 Our company's system administrator.

126

http://www.snort.org/

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Installation:
- Snort's installation from sources:

* some development tools & libraries we need:

o flex
. bison
. checkinstall

. libpcap0.8
. libnet1.0

apt—-get install flex bison build-essential checkinstall libpcapO.8-dev
libnetl-dev

* we must download the next components for our installation:

. libpcap1.3 (updated)
. daq0.2

. pcre8.32

. libdnet1.12 (updated)
. zlib1.2.7

. Snort2.9.4

cd libpcapl.3
./configure && make && checkinstall

dpkg —-i libpcap0.8*.deb

cd dag-0.2
./configure && make && checkinstall

dpkg -1 dag_0.2-1_1386.deb

cd pcre-8.32
./configure && make && checkinstall

dpkg —-i pcre*.deb

127

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

cd libdnet-1.12
./configure && make && checkinstall

dpkg —-i libdnet*.deb

cd zlib-1.2.7
./configure && make && checkinstall

dpkg -1 zlib*.deb

And now we are already able to install our Snort sensor:

cd Snort-2.9.4

./configure && make && checkinstall

dpkg —-i Snort_*.deb

Available command line options with the configure script can be listed using the “./configure —
help”,

“./configure —prefix=/opt/Snort --enable-smbalerts --enable-flexresp --with-mysql --with-snmp

--with-openssl ” would an example of how to enable build in support for mysql database or snmp.

Automatic Startup and Shutdown

You can configure Snort to start at boot time automatically and stop when the system shuts
down. On UNIX-type machines, this can be done through a script that starts and stops Snort. The script
is usually created in the /etc/init.d directory on Linux. A link to the startup script may be created in
/etc/rc3.d directory and shutdown links may be present in /etc/rc2.d, /etc/rcl.d and /etc/rc0.d

directories.

Snort Command Line Options

Snort has many command line options that are very useful for starting Snort in different

128

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

situations. As you have already seen, command line options are helpful in running multiple versions of

Snort on the same system. You can use “Snort -?” command to display command line options.

Snort Modes

Snort operates in two basic modes: packet sniffer mode and NIDS mode. It can be used as a
packet sniffer, like tcpdump or snoop. When sniffing packets, Snort can also log these packets to a log
file. The file can be viewed later on using Snort or tcpdump. No Intrusion Detection activity is done by
Snort in this mode of operation. Using Snort for this purpose is not very useful as there are many other
tools available for packet logging. For example, all Linux distributions come with the tcpdump
program which is very efficient. When you use Snort in network Intrusion Detection (NIDS) mode, it

uses its rules to find out if there is any network Intrusion Detection activity.

Logging Snort Data in Text Format

You can log Snort data in text mode by adding -1 <directory name> on the command line. The
following command logs all Snort data in /var/log/Snort directory in addition to displaying it on the

console: Snort -dev -1 /var/log/Snort

Logging Snort in Binary Format

On high-speed networks, logging data in ASCII format in many different files may cause high
overhead. Snort allows you to log all data in a binary file in tcpdump format and view it later on. In this
case, Snort logs all data to a single file in raw binary form. A typical command for this type of log is :

Snort -1 /tmp -b Snort will create a file in /tmp directory.

To view this raw binary data, you can use Snort. The -r command line switch is used to specify
a file name with Snort. The following command will display the captured data from file Snort.log.1037

Snort -dev -r /tmp/Snort.log.1037 | more

The output of this command will show data in exactly the same way if you are looking at it on

129

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

the console in real time. You can use different switches to display different levels of detail with this
data.

You can also display a particular type of data from the log file. The following command
displays all TCP type data from the log file: Snort -dev -r / tmp/Snort.log.1037840339 tcp Similarly,
ICMP and UDP types of data can also be displayed.

You can also use the tcpdump program to read files generated by Snort when logging in this
mode. The following command reads the Snort files and displays captured packets in the file:

tcpdump -r /tmp/Snort.log.1037

Network Intrusion Detection Mode

In Intrusion Detection mode, Snort does not log each captured packet as it does in the network
sniffer mode. Instead, it applies rules on all captured packets. If a packet matches a rule, only then is it
logged or an alert is generated. If a packet does not match any rule, the packet is dropped silently and
no log entry is created. When you use Snort in Intrusion Detection mode, typically you provide a
configuration file on the command line: Snort -c /opt/Snort/etc/Snort.conf

This configuration file contains Snort rules or reference to other files that contain Snort rules. In
addition to rules, the configuration file also contains information about input and output plug-ins. The
typical name of the Snort configuration file is Snort.conf.

Other command line options and switches can be used when Snort is working in IDS mode. For
example, you can log data into files as well as display data on the command line. The following
command will log data to /var/log/Snort directory and will display it on the console screen in addition
to acting as NIDS: Snort -dev -1 /var/log/Snort -c /etc/Snort/Snort.conf However in most real-life
situations, you will use -D command line switch with Snort so that it does not log on the console but
runs as a daemon. In a typical scenario, you will also want to log Snort data into a database. Logging

data into MySQL database could be an example.

Snort Alert Modes

When Snort is running in the Network Intrusion Detection (NID) mode, it generates alerts when

a captured packet matches a rule. Snort can send alerts in many modes. These modes are configurable

130

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

through the command line as well as through Snort.conf file.
Whenever an alert is fired off, Snort captures the packet that fired off the rule and creates an

alert. The amount of information logged with the alert depends on the particular alerting mode.

Fast Mode

The fast alert mode logs the alert with following information:

* Timestamp
* Alert message (configurable through rules)
* Source and destination IP addresses

* Source and destination ports

To configure fast alert mode, you have to use “-A fast” command line option. This alert mode

causes less overhead for the system.

Full Mode

This is the default alert mode. It prints the alert message in addition to the packet header. We

configure the full alert mode with “-A full”.

Other modes: UNIX Socket Mode , No Alert Mode , Sending Alerts to Syslog , Sending Alerts
to SNMP , Sending Alerts to Windows

A.4 Working with Snort rules

Like viruses, most intruder activity has some sort of signature. These signatures may be present
in the header parts of a packet or in the payload. Snort’s detection system is based on rules. These rules
in turn are based on intruder signatures. Snort rules can be used to check various parts of a data packet .

Most of the rules are written in a single line. However you can also extend rules to multiple

lines by using a backslash character at the end of lines. Rules are usually placed in a configuration file,

131

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

typically Snort.conf. You can also use multiple files by including them in a main configuration file.
This point provides information about different types of rules as well as the basic structure of a

rule. I'll expose many examples of common rules for Intrusion Detection activity and together with the

next points we should have enough information to set up Snort as a basic Intrusion Detection System .
Snort rules operate on network (IP) layer and transport (TCP/UDP) layer protocols. However

there are methods to detect anomalies in data link layer and application layer protocols.

The Firsts Bad Rule

Here is the first (very) bad rule. In fact, this may be the worst rule ever written, but it does a
very good job of testing if Snort is working well and is able to generate alerts.

alert ip any any -> any any (msg: "IP Packet detected";)

You can use this rule at the end of the Snort.conf file the first time you install Snort. The rule
will generate an alert message for every captured IP packet. It will soon fill up your disk space if you
leave it there! This should be your first test to make sure that Snort is installed properly .

alert icmp any any -> any any (msg: "ICMP Packet found";)

It generates alerts for all captured ICMP packets.

Structure of a Rule

Now that you have seen some rules which are not-so-good but helpful in a way, let us see the

structure of a Snort rule. All Snort rules have two logical parts: rule header and rule options.

[Rule Header] Rule Options I

Fig. 26 General structure of a rule.

The rule header contains information about what action a rule takes. It also contains criteria for
matching a rule against data packets. The options part usually contains an alert message and

information about which part of the packet should be used to generate the alert message.

132

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

General structure of a Snort rule header:

[Action | Protocol | Address

Port | Direction | Address

Port ‘

Fig.27 General structure of a rule's header.
example: alert icmp any any -> any any (msg: "Ping with TTL=100"; ttl: 100;)

The part of the rule before the starting parenthesis is called the rule header. The part of the rule

that is enclosed by the parentheses is the options part.

Rule Headers :

* Rule Actions:

An action is taken only when all of the conditions mentioned in a rule are true. There are five

predefined actions (however, you can also define your own actions as needed):

-Pass : this action tells Snort to ignore the packet. This action plays an important role in

speeding up Snort operation in cases where you don’t want to apply checks on certain packets.

- Alert : used to send an alert message when rule conditions are true for a particular packet. An
alert can be sent in multiple ways. For example, you can send an alert to a file or to a console. The
functional difference between Log and Alert actions is that Alert actions send an alert message and then

log the packet. The Log action only logs the packet.

- Activate : used to create an alert and then to activate another rule for checking more
conditions. Dynamic rules, as explained next, are used for this purpose. The activate action is used

when you need further testing of a captured packet.
- Dynamic : dynamic action rules are invoked by other rules using the “activate” action. In

normal circumstances, they are not applied on a packet. A dynamic rule can be activated only by an

“activate” action defined in another role.

133

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

- User Defined Actions : you can define your own actions. These new action types are defined

in the configuration file Snort.conf. A new action is defined in the following general structure:

ruletype action_name
{
action definition

}

For example, an action named smb_db_alert that is used to send SMB pop-up window alert
messages to hosts listed in workstation.list file and to MySQL database named “Snort” is defined
below:

ruletype smb_db_alert

{

type alert

output alert_smb: workstation.list

output database: log, mysql, user=rr password=rr \

dbname=Snort host=localhost

}

Theses types of rules will be discussed latter on in detail. Usually they are related to

configuration of output plug-ins.

* Protocols:

The second part of a Snort rule. The protocol part of a Snort rule shows on which type of packet
the rule will be applied. Currently Snort understands the following protocols:

« I[P

* ICMP

* TCP

« UDP

134

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

If the protocol is IP, Snort checks the link layer header to determine the packet type. If any other
type of protocol is used, Snort uses the IP header to determine the protocol type. The options part

instead can check parameters in other protocol fields as well.

* Address

There are two address parts in a Snort rule. These addresses are used to check the source from
which the packet originated and the destination of the packet. The address may be a single IP address or
a network address. You can use the “any” keyword to apply a rule on all addresses. Or we can express

an address followed by a slash character and number of bits in the netmask. For example:
- 192.168.2.0/24 represents C class network
- 192.168.2.0 with 24 bits in the network mask.

alert tcp any any -> 192.168.1.10/32 80 (msg: "TTL=100"; ttl: 100;)

Snort provides a mechanism to exclude addresses by the use of the negation symbol !, an

exclamation point.

alert icmp ![192.168.2.0/24] any -> any any (msg: "Ping with TTL=100"; ttl: 100;)

This rule is useful, for instance, when you want to test packets that don’t originate from your

home network (which means you trust everyone in your home network!).

You can also specify list of addresses in a Snort rule.

alert icmp !1[192.168.2.0/24,192.168.8.0/24] any -> any any (msg: "Ping with TTL=100"; ttl:

100;)

* Port Number

The port number is used to apply a rule on packets that originate from or go to a particular port
or a range of ports. For example, you can use source port number 23 to apply a rule to those packets

that originate from a Telnet server.

135

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

You can use the keyword any to apply the rule on all packets irrespective of the port number.
Port number is meaningful only for TCP and UDP protocols. If you have selected IP or ICMP as the

protocol in the rule, port number does not play any role.

alert tcp 192.168.2.0/24 23 -> any any (content: "confidential"; msg: "Detected confidential";)

The same rule can be applied to traffic either going to or originating from any Telnet server in

the network by modifying the direction to either side as shown below:

alert tcp 192.168.2.0/24 23 <> any any (content: "confidential'; msg: "Detected

confidential";)

Port numbers are useful when you want to apply a rule only for a particular type of data packet.
For example, if a vulnerability is related to only a HTTP (Hyper Text Transfer Protocol) web server,
you can use port 80 in the rule to detect anybody trying to exploit it. This way Snort will apply that rule
only to web server traffic and not to any other TCP packets. Writing good rules always improves the

performance of IDS.

- Port Ranges : alert udp any 1024:2048 -> any any (msg: “UDP ports”;)

- Upper and Lower Boundaries : for example, a range specified as :1024 includes all
port numbers up to and including port 1024. A port range specified as 1000: will
include all ports numbers including and above port 1000.

- Negation Symbol : log udp any !53 -> any any log udp

You can’t use comma character in the port filed to specify multiple ports. For

example, specifying 53,54 is not allowed. However you can use 53:54 to specify a port

range.

* Direction: determines the source and destination addresses and port numbers in a rule. The
following rules apply to the direction field:

o« A >

o A <-

136

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* A <> symbol shows that the rule will be applied to packets traveling on either direction. This

symbol is useful when you want to monitor data packets for both client and server.

Rule options:

Rule options follow the rule header and are enclosed inside a pair of parentheses. There may be
one option or many and the options are separated with a semicolon. If you use multiple options, these
options form a logical AND. The action in the rule header is invoked only when all criteria in the
options are true.

In general, an option may have two parts: a keyword and an argument.

msg: "Detected confidential";

In this option msg is the keyword and “Detected confidential” is the argument to this keyword.

* The ack Keyword : the TCP header contains an Acknowledgement Number field which is 32
bits long. The field shows the next sequence number the sender of the TCP packet is expecting to
receive. This field is significant only when the ACK flag in the TCP header is set.

Tools like nmap use this feature of the TCP header to ping a machine. For example, among
other techniques used by nmap, it can send a TCP packet to port 80 with ACK flag set and sequence
number 0. Since this packet is not acceptable by the receiving side according to TCP rules, it sends
back a RST packet. When nmap receives this RST packet, it learns that the host is alive. This method
works on hosts that don’t respond to ICMP ECHO REQUEST ping packets. To detect this type of TCP

ping, you can have a rule like the following that sends an alert message:
alert tcp any any -> 192.168.1.0/24 any (flags: A; ack: 0; msg: "TCP ping detected";)
This rule shows that an alert message will be generated when you receive a TCP packet with the

A flag set and the acknowledgement contains a value of 0. Generally when the A flag is set, the ACK

value is not zero.

137

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* The classtype Keyword : rules can be assigned classifications and priority numbers to group
and distinguish them. To fully understand the classtype keyword, first look at the file
classification.config which is included in the Snort.conf file using the include keyword. Each line in the

classification.config file has the following syntax:

config classification: name,description,priority

for example: config classification: DoS,Denial of Service Attack,2

To fully understand the classtype keyword, first look at the file classification.config which is
included in the Snort.conf file using the include keyword.
Now let us use this classification in a rule. The following rule uses default priority with the

classification DoS:

alert udp any any -> 192.168.1.0/24 6838 (msg:"DoS"; content: "server"; classtype:DoS;)

The following is the same rule but we override the default priority used for the classification.

alert udp any any -> 192.168.1.0/24 6838 (msg:"DoS"; content: "server"; classtype:DoS; priority:1)

Using classifications and priorities for rules and alerts, you can distinguish between high- and
low-risk alerts. This feature is very useful when you want to escalate high-risk alerts or want to pay

attention to them first.

Classifications are used in ACID , if you look at the ACID browser window, you will see the

classification screens.

* The content Keyword : One important feature of Snort is its ability to find a data pattern
inside a packet. The pattern may be presented in the form of an ASCII string or as binary data in the

form of hexadecimal characters. Like viruses, intruders also have signatures and the content
keyword is used to find these signatures in the packet.

The following rule detects a pattern “GET” in the data part of all TCP packets that are leaving

192.168.1.0 network and going to an address that is not part of that network.

138

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

alert tcp 192.168.1.0/24 any -> 1[192.168.1.0/24] any (content: "GET"; msg: "GET matched";)
alert tcp 192.168.1.0/24 any -> 1[192.168.1.0/24] any (content: "|47 45 54|"; msg: "GET matched";)

Hexadecimal number 47 is equal to ASCII character G, 45 is equal to E, and 54 is equal to T.

* The offset Keyword : the offset keyword is used in combination with the content keyword.
Using this keyword, you can start your search at a certain offset from the start of the data part of the
packet. Use a number as argument to this keyword. The following rule starts searching for the word

“HTTP” after 4 bytes from the start of the data.

alert tcp 192.168.1.0/24 any -> any any (content: "HTTP"; offset: 4; msg: "HTTP matched";)

* The depth Keyword : The depth keyword is also used in combination with the content
keyword to specify an upper limit to the pattern matching. Using the depth keyword, you can specify
an offset from the start of the data part. Data after that offset is not searched for pattern matching. If
you use both offset and depth keywords with the content keyword, you can specify the range of data

within which pattern matching should be done.

The following rule tries to find the word “HTTP” between characters 4 and 40 of the data part
of the TCP packet.

alert tcp 192.168.1.0/24 any -> any any (content:
"HTTP"; offset: 4; depth: 40; msg: "HTTP matched";)

This keyword is very important since you can use it to limit searching inside the packet. For
example, information about HTTP GET requests is found in the start of the packet. There is no need to

search the entire packet for such strings.

* The content-list Keyword : the content-list keyword is used with a file name. The file name,

which is used as an argument to this keyword, is a text file that contains a list of strings to be searched

139

Arturo Ruiz Mafias

Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

inside a packet. Each string is located on a separate line of the file.
For example, a file named “porn” may contain the following three lines:
“porn”
“hardcore”

“under 18”

The following rule will search these strings in the data portion of all packets matching the rule

criteria.:

alert ip any any -> 192.168.1.0/24 any (content-list: "porn"; msg: "Porn word matched";)

You can also use the negation sign ! with the file name if you want to generate an alert for a

packet where no strings match.

* The dsize Keyword: the dsize keyword is used to find the length of the data part of a packet.

Many attacks use buffer overflow vulnerabilities by sending large size packets. Using this keyword,

you can find out if a packet contains data of a length larger than, smaller than, or equal to a certain

number.

The following rule generates an alert if the data size of an IP packet is larger than 6000 bytes:

alert ip any any -> 192.168.1.0/24 any (dsize: > 6000; msg: "Large size IP packet detected";)

* The flags Keyword : The flags

Argument character used in

keyword is used to find out which

flag bits are set inside the TCP header

of a packet.

Flag Snort rules
FIN or Finish Flag F
SYN or Sync Flag S
RST or Reset Flag R
PSH or Push Flag P
ACK o Acknowledge Flag A
URG or Urgent Flag U
Reserved Bit 1 1
Reserved Bit 2 2
No Flag set 0

Table 3 Flags' keywords

140

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

You can also use !, +, and * symbols just like IP header flag bits ! symbol is used for NOT, + is

used for AND, and * is used for OR operation.

and reassembly of IP packets.

- DF: Don't Fragment Bit
- MF: More Fragments Bit

alert tcp any any -> 192.168.1.0/24 any (flags: SF; msg: “SYNC-FIN packet detected”;)

* The fragbits Keyword : The IP header contains three flag bits that are used for fragmentation

Sometimes these bits are used by hackers for attacks and to find out information related to your

network. For example, the DF bit can be used to find the minimum and maximum MTU for a path from

source to destination. Using the fragbits keyword, you can find out if a packet contains these bits set or

cleared.

The following rule is used to detect if the DF bit is set in an ICMP packet:
alert icmp any any -> 192.168.1.0/24 any (fragbits: D; msg: "Don’t Fragment bit set";)

In this rule, D is used for DF bit. You can use R for reserved bit and M for MF bit.

You can also use the negation symbol ! in the rule. The following rule detects if the DF bit is

not set, although this rule is of little use.

Value

Type of ICMP Packet

Echo reply

Destination unreachable

Source quench

Redirect

Echo request

Time exceed

Parameter problem

Timestamp request

Timestamp reply

Information request

Information reply

Table 4 Type of ICMP packet

alert icmp any any -> 192.168.1.0/24 any (fragbits: !D;

msg: "Don’t Fragment bit not set";)

* The icmp_id Keyword : The icmp_id option is used to
detect a particular ID used with ICMP packet.

Read texts related to ICMP header for further information.

For example: alert icmp any any -> any any (icmp_id: 100;

msg: "ICMP ID=100";)

141

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* The icmp_seq Keyword
for example: alert icmp any any -> any any (icmp_seq:100; msg: "ICMP Sequence=100";)

* The itype Keyword : The ICMP header comes after the IP header and contains a type field.

for example:
alert icmp any any -> any any (itype: 4; msg: "ICMP Source Quench Message received";)
alert icmp any any -> any any (itype: 4; msg: "ICMP Source Quench Message received";)

* The icode Keyword : In ICMP packets, the ICMP header comes after the IP header. It contains
a code field . The type field in the ICMP header shows the type of ICMP message.

« If code field is 0, it is a network redirect ICMP packet.

« If code field is 1, it is a host redirect packet.

* If code is 2, the redirect is due to the type of service and network.

* If code is 2, the redirect is due to type of service and host.

The icode keyword in Snort rule options is used to find the code field value in the ICMP header.

The following rule generates an alert for host redirect ICMP packets.

alert icmp any any -> any any (itype: 5; icode: 1; msg: "ICMP ID=100";)

Both itype and icode keywords are used. Using the icode keyword alone will not do the job

because other ICMP types may also use the same code value.

* The id Keyword : The id keyword is used to match the fragment ID field of the IP packet
header. Its purpose is to detect attacks that use a fixed ID number in the IP header of a packet. Its

format is as follows: id: "id_number"

If the value of the id field in the IP packet header is zero, it shows that this is the last fragment

of an IP packet (if the packet was fragmented). The value 0 also shows that it is the only fragment if the

142

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

packet was not fragmented. The id keyword in the

Snort rule can be used to determine the last fragment in an IP packet.

* The ipopts Keyword : A basic IPv4 header is 20 bytes long. You can add options to this IP
header at the end. The length of the options part may be up to 40 bytes. These options can be used by
some hackers to find information about your network.

Using Snort rules, you can detect such attempts with the ipopts keyword. The fol lowing rule
detects any attempt made using Loose Source Routing;:

alert ip any any -> any any (ipopts: Isrr; msg: "Loose source routing attempt";)

* The ip_proto Keyword : The ip_proto Keyword The ip_proto keyword uses IP Proto plug-in

to determine protocol number in the IP header.

alert ip any any -> any any (ip_proto: ipip; msg: "IP-IP tunneling detected";)

For further information about protocol numbers, consult the /etc/protocols file in your linux

system.

* The logto Keyword : The logto keyword is used to log packets to a special file.

The general syntax is as follows:

logto:logto_log

Consider the following rule:

alert icmp any any -> any any (logto:logto_log; ttl: 100;)

This rule will log all ICMP packets having TTL value equal to 100 to file logto_log, a file that

<«

later you can open with your “more”, “cat” or any other tool used to display a file into console.

143

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* The msg Keyword : The msg keyword in the rule options is used to add a text string to logs
and alerts.

You can add a message inside double quotations after this keyword. The msg keyword is a
common and useful keyword and is part of most of the rules.

The general form for using this keyword is as follows:

msg: ""Your message text here";

If you want to use some special character inside the message, you can escape them by a

backslash character.

* The nocase Keyword : The nocase keyword is used in combination with the content keyword.
It has no arguments. Its only purpose is to make a case insensitive search of a pattern within the data

part of a packet .

* The priority Keyword : The priority keyword assigns a priority to a rule. Priority is a number
argument to this keyword. Number 1 is the highest priority. The keyword is often used with the
classtype keyword.

alert ip any any -> any any (ipopts: Isrr; msg: "Loose source routing attempt"; priority: 10;)

The priority keyword can be used to differentiate high priority and low priority alerts.

* The react Keyword : The react keyword is used with a rule to terminate a session to block
some sites or services. Not all options with this keyword are operational.

The following rule will block all HTTP connections originating from your home network
192.168.1.0/24. To block the HTTP access, it will send a TCP FIN and/or FIN packet to both sending
and receiving hosts every time it detects a packet that matches these criteria.

The rule causes a connection to be closed:

alert tcp 192.168.1.0/24 any -> any 80 (msg: "Outgoing HTTP connection"; react: block;)

144

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

In the above rule, “block” is the basic modifier. You can also use the “warn” modifier to send a
visual notice to the source. You can also use the additional modifier “msg ” which will include the msg
string in the visual notification on the browser. The following is an example of this additional modifier.

alert tcp 192.168.1.0/24 any -> any 80 (msg: "Outgoing HTTP connection”; react: warn, msg;)

Note: In order to use the react keyword, you should compile Snort with --enable- flexresp

command line option in the configure script. For a discussion of the compilation process. The react.

should be the last keyword in the options field.

* The reference Keyword :

* The resp Keyword: The resp keyword is a very important keyword. It can be used to knock
down hacker activity by sending response packets to the host that originates a packet matching the rule.

The keyword is also known as Flexible Response or simply FlexResp and is based on the FlexResp

plug-in. The plug-in should be compiled into Snort using the command line option (--with-flexresp) in

the configure script.
The following rule will send a TCP Reset packet to the sender whenever an attempt to reach

TCP port 8080 on the local network is made.

alert tcp any any -> 192.168.1.0/24 8080 (resp: rst_snd;)

You can send multiple response packets to either sender or receiver by specifying multiple
responses to the resp keyword. The arguments are separated by a comma. The list of arguments that can

be used with this keyword is found in the following table.

Argument Description

rst_snd Sends a TCP Reset packet to the sender of the packet
rst_rcv Sends a TCP Reset packet to the receiver of the packet
rsi_all Sends a TCP Reset packet to both sender and receiver
icmp_net Sends an ICMP Network Unreachable packet to sender
icmp_host Sends an ICMP Host Unreachable packet to sender
icmp_port Sends an ICMP Port Unreachable packet to sender
icmp_all Sends all of the above mentioned packets to sender

Table 5 List of arguments

145

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* The rev Keyword :

* The rpc Keyword :

* The sameip Keyword : The sameip keyword is used to check if source and destination IP
addresses are the same in an IP packet. It has no arguments. Some people try to spoof IP packets to get

information or attack a server. The following rule can be used to detect these attempts:

alert ip any any -> 192.168.1.0/24 any (msg: "Same IP"; sameip;)

* The seq Keyword : The seq keyword in Snort rule options can be used to test the sequence
number of a TCP packet. The argument to this keyword is a sequence number. The general format is as
follows:

seq: "sequence_number";

Sequence numbers are a part of the TCP header.

* The flow Keyword : The flow keyword is used to apply a rule on TCP sessions to packets
flowing in a particular direction. You can use options with the keyword to determine direction. The

following options can be used with this keyword determine direction:

* to_client
* to_server
* from_client

» from_server

Other options are also available which are used to apply the rule to different states of a TCP
connection.

* The stateless option is used to apply the rule without considering the state of a TCP session.

* The established option is used to apply the rule to established TCP sessions only.

* The no_stream option enables rules to be applied to packets that are not built from a stream.

146

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* The stream_only option is used to apply the rules to only those packets that are built from a

stream.

* The session Keyword : The session keyword can be used to dump all data from a TCP
session. It can dump all session data or just printable characters. The following rule dumps all printable
data from POP3 sessions:

log tcp any any -> 192.168.1.0/24 110 (session: printable;)

If you use “all” as argument to this keyword, everything will be dumped. Use the logto keyword

to log the traffic to a particular file.

* The sid Keyword : The sid keyword is used to add a “Snort ID” to rules. Output modules or

log scanners can use SID to identify rules.

* The tag Keyword : The tag keyword is another very important keyword that can be used for
logging additional data from/to the intruder host when a rule is triggered. The additional data can then
be analyzed later on for detailed intruder activity. The general syntax of the keyword is as follows:

tag: <type>, <count>, <metric>[, direction]

The following rule logs 100 packets on the session after it is triggered:
alert tcp 192.168.2.0/24 23 -> any any (content: "boota"; msg: "Detected boota"; \

tag: session, 100, packets;)

Argument Description

Type You can use either “session™ or “host™ as the type argument. Using session, packets are
logged from the particular session that triggered the rule. Using host, all packets from
the host are logged.

Count This indicates either the number of packets logged or the number of seconds during
which packets will be logged. The distinction between the two is made by the metric
argument.

Metric You can use either “packets™ or “seconds™ as mentioned above.

Direction This argument is optional. Y ou can use either “src” to log packets from source or “dst”

to log packets from the destination.

Table 6 Tag's arguments

147

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* The tos Keyword : The tos keyword is used to detect a specific value in the Type of Service
(TOS) field of the IP header. The format for using this keyword is as follows:

tos: 1;

* The ttl Keyword : The ttl keyword is used to detect Time to Live value in the IP header of the
packet. The keyword has a value which should be an exact match to determine the TTL value. This
keyword can be used with all types of protocols built on the IP protocol, including ICMP, UDP and
TCP. The general format of the keyword is as follows:

ttl: 100;

Note: The traceroute utility uses TTL values to find the next hop in the path. The traceroute sends UDP packets
with increasing TTL values. The TTL value is decremented at every hop. When it reaches zero, the router generates an

ICMP packet to the source.

Using this ICMP packet, the utility finds the IP address of the router. For example, to find the fifth hop router, the
traceroute utility will send UDP packets with TTL value set to 5. When the packet reaches the router at the fifth hop, its

value becomes zero and an ICMP packet is generated.

Using the ttl keyword, you can find out if someone is trying to traceroute through your network. The only problem

is that the keyword needs an exact match of the TTL value.

* The uricontent Keyword : The uricontent keyword is similar to the content keyword except

that it is used to look for a string only in the URI part of a packet.

A.5 The Snort Configuration File

Snort uses a configuration file at startup time. A sample configuration file Snort.conf is included
in the Snort distribution. You can use any name for the configuration file, however Snort.conf is the
conventional name. You use the -c command line switch to specify the name of the configuration file.

The following command uses /opt/Snort/Snort.conf as the configuration file.

148

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

/opt/Snort/Snort -c /opt/Snort/Snort.conf

Snort.conf contains six basic sections:

* Variable definitions.

* Config parameters.

* Preprocessor configuration.

* Output module configuration.
* Defining new action types.

* Rules configuration and include files.

Using Variables in Rules

you can define a variable HOME_NET in the configuration file: var HOME_NET
192.168.1.0/24

Later on you can use this variable HOME_NET in your rules:

alert ip any any -> $HOME_NET any (ipopts: Isrr; \

msg: “Loose source routing attempt”; sid: 1000001;)
As you can see, using variables makes it very convenient to adapt the configuration file and

rules to any environment. For example, you don’t need to modify all rules when you copy rules from

one network to another.

Using a List of Networks in Variables

var HOME_NET [192.168.1.0/24,192.168.10.0/24]

149

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Using Interface Names in Variables

var HOME_NET $eth0_ADDRESS
var EXTERNAL_NET $ethl_ADDRESS

Using the any Keyword

The any keyword can also be a variable: var EXTERNAL_NET any

There are many variables defined in the Snort.conf file that come with the
Snort distribution. While installing Snort, you need to modify these variables according

to your network.

The config Directives (;!)

The config directives in the Snort.conf file allow a user to configure many general settings for

Snort. Examples include the location of log files, the order of applying rules and so on.

Preprocessor Configuration

Preprocessors or input plug-ins operate on received packets before Snort rules are applied
to them. The preprocessor configuration is the second major part of the configuration file. Detailed

information about each preprocessor is found in manuals.

The general format of configuring a preprocessor is as follows:

preprocessor <preprocessor_name>[: <configuration_options>]

The following is an example of a line in the configuration file for IP defragmentation

preprocessor frag?2.

preprocessor frag2

150

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Output Module Configuration

Output modules, also called output plug-ins, manipulate output from Snort rules. For example,
if you want to log information to a database or send SNMP traps, you need output modules. The

following is the general format for specifying an output module in the configuration file.

output <output_module_name>[: <configuration_options>]

For example, if you want to store log messages to a MySQL database, you can configure an

output module that contains the database name, database server address, user name and password.

output database: alert, mysql, user=rr password=boota \

dbname=Snort host=localhost

There may be additional steps to make the output module work properly. In the case of MySQL

database, you need to setup a database, create tables, create user, set permissions and so on.

Defining New Action Types

You already know that the first part of each Snort rule is the action item. Snort has predefined
action types; however, you can also define your own action types in the configuration file. A new action
type may use multiple output modules.

The following action type creates alert messages that are logged into the database as well as in a
file in

the tcpdump format.

ruletype dump_database

{
type alert

output database: alert, mysql, user=rr dbname=Snort \

151

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

host=Ilocalhost
output log_tcpdump: tcpdump_log_file
}

This new action type can be used in rules just like other action types.

dump_database icmp any any -> 192.168.1.0/24 any (fragbits: D; msg: "Don’t Fragment bit

set";)

When a packet matches the criteria in this rule, the alert will be logged to the database as well

as to the tcpdump_log_file.

Rules Configuration

The rules configuration is usually the last part of the configuration file. You can create as many
rules as you like using variables already defined in the configuration file. The rules configuration is the
place in the configuration file where you can put your rules. However the convention is to put all Snort
rules in different text files. You can include these text files in the Snort.conf file using the “include”
keyword. Snort comes with many predefined rule files. The names of these rule files end with .rule.

All files in the Snort distribution whose name ends with .rules contain rules and they are
included in the Snort.conf file. These rule files are included in the main Snort.conf file using the
“include” keyword. The following is an example of including myrules.rules file in the main

configuration file.

include myrules.rules

Note: It is not necessary that the name of the rules file must end with .rule. You can use a name of your choice for

your rule file.

152

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

A.6 Plugins, Preprocessors and Output Modules

Preprocessors

When a packet is received by Snort, it may not be ready for processing by the main Snort
detection engine and application of Snort rules. For example, a packet may be fragmented. Before you
can search a string within the packet or determine its exact size, you need to defragment it by
assembling all fragments of the data packet. The job of a preprocessor is to make a packet suitable for

the detection engine to apply different rules to it.

Configuration parameters for different preprocessors are present in the Snort.conf file. Using the

file, you can enable or disable different preprocessors.

All enabled preprocessors operate on each packet. There is no way to bypass some of the
preprocessors based upon some criteria. If you have enabled a large number of preprocessors, you may

slow down Snort detection process. Therefore you should be careful when enabling preprocessors.

The general format of enabling a preprocessor is as follows:
preprocessor <name of preprocessor>[: parameters]

Brief description of different preprocessors:

HTTP Decode : The Hyper Text Transfer Protocol (HTTP) allows Intrusion Detection Systems
to use hexadecimal characters in URI to defeat known attacks. For example, this can be done by
inserting something like %3A%2F%2F in the URI to replace :// characters. A large number of attacks
on web servers are carried by obfuscating URI characters using hexadecimal numbers in the URI. The

HTTP decode blocks any such attempts by converting them to the actual URI.

Port Scanning : The first step in any intruder activity is usually to find out what services are
running on a network. Once an intruder has found this information, attacks for known vulnerabilities

for these services are tried. The portscan preprocessor is designed to detect port scanning activities.

153

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

You can also use another preprocessor in conjunction with this preprocessor. This preprocessor
is portscan-ignorehosts, which can be used to ignore some hosts if any port scanning activity is

detected from them.

The frag?2 Module : With frag2, you can configure timeout and memory limits for packet

defragmenta-
tion. By default, the preprocessor uses 4 MB of memory and a 60-second timeout period. If a

packet assembly is not successful within this time period, previously collected fragments are discarded.

The stream4 Module : It provides two basic functions:

1. TCP stream reassembly

2. Stateful inspection

You must configure two preprocessors in the Snort.conf file for Stream4 to work properly.
These modules are “stream4” and “stream4_reassemble.” Both of these take a number of arguments. If

you don’t specify an argument, a default value is used instead.

ARP Spoofing : Address Resolution Protocol (ARP) is used to find a MAC address when an IP

address is known.

Note: ARP is needed when a host wants to send an IP packet to another host on the local network. The sending
host broadcasts an ARP packet on the network asking, “Who has this IP address?” The host who has that IP address will
respond with its MAC address. After that, the sending host will send the data packet (usually called a frame at the link layer

level) to the destination host.

The arpspoof preprocessor detects anomalies in ARP packets.

Output Modules

Output modules are used to control the output from Snort detection engine. By default, the

154

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

output from alerts and logs go into files in the /var/log/Snort directory. Using output modules, you can

process output and send output messages a number of other destinations.

Output modules can be defined in the Snort configuration file and some of them can also be
configured on the command line as well. The general format for defining the output module inside the
configuration file is as follows: output <module_name>[: arguments]

For example, if you want to log messages to MySQL database called “Snort” using database
user name “rr” and password “rr” located on the same machine where Snort is running, you use the

following line in Snort.conf file.

output database: log, mysql, user=rr password=rr \

dbname=Snort host=Iocalhost

However when you use an output module in the configuration file, alerts will not go into the
alert file. Once you place this line in the Snort.conf file, all alerts will go into the MySQL database.

There are ways to send alerts to multiple destinations.

Sometimes you may want to send alerts to multiple locations. Defining your own action using

the ruletype keyword is a good idea.

Sometimes you may want to send alerts to multiple locations. Defining your own action using
the ruletype keyword is a good idea. For example, the following lines in the Snort.conf file will define
an action type called “smb_db_alert” that will cause alerts to be sent to both the database and SMB

pop-up windows for rules that use this action type.

ruletype smb_db_alert

{

type alert

output alert_smb: workstation.list

output database: log, mysql, user=rr password=rr \

dbname=Snort host=localhost

155

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

}
The following rule uses this new action type. Alerts generated by this rule will go to MySQL

database as well as to the Windows machine in the form of pop-up windows.

smb_db_alert icmp any any -> 192.168.1.0/24 any (fragbits: D; msg: "Dont Fragment bit

set";)

You can also use command line options with some output modules. For example, you can use -s

option to log alerts to Syslog.

* The alert syslog Output Module : The alert_syslog module allows you to send alerts to the

syslog facility.

* The alert full Output Module : The alert_full module logs full alert messages in a file. The

following line will log all alert messages to alert_detailed file under the Snort logging directory.

output alert_full: alert_detailed

However, enabling full alerts consumes a significant amount of time to log data into a file,

causing some packets to be ignored by the detection engine.

* The alert fast Output Module : Like alert_full, alert_fast also takes as an argument a file

name for storing data. It is fast compared to full alerting. Packet headers are not saved in the alert file.
The fol-
lowing line in the Snort.conf file enables one-line alert messages to be stored in alert_quick file.

output alert_fast: alert_quick

* The alert smb Module : SMB alerts are sent to Microsoft Windows-based workstations using

the smb client program which is part of the SAMBA client package on Linux machines. To send these

alerts, the smbclient must be present in the PATH variable.

156

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* The log tcpdump Output Module : This module is used to store alert data in a tcpdump

format file that can be viewed later on using tcpdump or some other tool. This method is quick for
heavily loaded networks where you want to offload processing from the Snort system and analyze data
using some other mechanism. Following is the general format for using this module in Snort.conf file.

output log_tcpdump: <filename>

Typical entries in the Snort.conf file may look like the following:

output log_tcpdump: /var/log/Snort/Snort_tcpdump.log

Each time you start Snort, a new file is created.

Now you can display the contents of this file (the captured data) using the tcpdump command as

follows:

tcpdump -v -r /var/log/Snort/ Snort_tcpdump.log.1039971287 since the file created is in

rcpdump format.

* Logging to Databases : Databases are used with Snort to store log and alert data. Logging data
to files in the disk is fine for smaller applications. However, keeping log data in disk files is not
appropriate when you have multiple Snort sensors or you want to keep historical data as well.

Databases also allow you to analyze data generated by Snort sensors.

For example, if you want to find the top 15 alerts that are generated most frequently, you can
use SQL statements for the database. Finding the same information from log files is difficult. Similarly,
if you want to find the most active attackers in the month of November 2002, it is very easy to find out

that information from a database.
You can use multiple types of databases with Snort including Oracle and MySQL.

output database: log, mysql, user=rr password=rr \

dbname=Snort host=localhost

157

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

To enable support of databases, you need to compile Snort with database support enabled. The

following configure script enables MySQL database support in Snort.

/configure --prefix=/opt/Snort --with-mysql=/usr/lib/mysql

There are some other output modules, but are beyond the scope of this project:

* CSV Output Module .

* Unified Logging Output Module .
* SNMP Traps Output Module .
*Log Null Output Module .

A.7 Using Snort with MySQL

All systems need some type of efficient logging feature, usually using a database at the
backend. Snort can be made to work with MySQL or Oracle for example.You already know from the

discussion of output modules in the previous point that you can save logs and alerts to a database.

Logging to a database is very useful for maintaining history data, generating reports and
analyzing information. By using other tools like Analysis Control for Intrusion Detection (ACID),
discussed in next, you can get very useful information from the database about attack patterns. For
example, you can get a report about the last fifteen unique attacks, information about hosts that are

continuously attacking your network, the distribution of attacks by different protocols, and so on.

Since MySQL is a freely available database and works perfectly well on Linux and other

operating systems, this is a natural choice for Snort.
There exists different scenarios when dealing with Snort and databases, but when you are

running only one sensor and don’t have any pre-existing database server, it is a natural choice to install

the database on the Snort machine itself.

158

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Before you start logging to MySQL database, you have to create a database on the database
server for Snort. After creating the database, you have to create tables where Snort data is logged.
However, you don’t need to create tables manually because Snort comes with a script that will do the

entire job for you. To work with MySQL, you may have to recompile Snort with MySQL support.

After going through this point, you should be able to install Snort and MySQL so that all of the

Snort activity is logged to the database.

A.8 Using ACID with Snort

Analysis Console for Intrusion Databases (ACID) is a tool used to analyze and present Snort

data using a web interface. It is written in PHP. It works with Snort and databases like MySQL.

ACID consists of many Pretty Home Page (PHP) scripts and configuration files that work
together to collect and analyze information from a database and present it through a web interface. A
user will use a web browser to interact with ACID. You have to have a web server, database server,

PHP and some other tools installed on your system to make it work.

159

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Annexe B: Virtual scenario for Modbus software.

I'm going to be using virtualbox for this.

B.1 Introduction Modbus IP

References:

“Modbus for Field Technicians” by Peter Chipkin.

programming the Modbus: http://pes.free.fr/libModbus.html

Modbus and Snort: pag. 131 in Snort_manual.pdf

coils and registers, slave (server) client (master) http://www.control.com/thread/1230731691
Modbus_protocol.pdf

Modbus_wiki.pdf

Snort-intrusion-detection-Modbus-tcp-ip-communications.pdf

Nouhkwn =

B.2 Modbus IP, simulated Master, simulated Slave, Snort with fixed Modbus ruleset

VIRTUAL MACHINES:

Installing the virtual machines:

2 x Xubuntu/Openbox Modbus master & slave
1 x Xubuntu : Snort sensor.

Linux- Snort Sensor:

Name: LinuxXubuntu-Snort sensor

OS Type: Ubuntu

Base Memory: 512 Mb

Start-up Disk: LinuxXubuntu - Snort sensor.vdi (Normal, 4.00 GB)
Network: Adapter 1: Intel PRO/1000 MT Desktop (Bridged adapter, wlan0)

Modbus — Master:

Name: Modbus - Master

OS Type: Ubuntu

Base Memory: 512 MB

Start-up Disk: Modbus - Master.vdi (Normal, 4.00 GB)

Network: Adapter 1: Intel PRO/1000 MT Desktop (Bridged adapter, wlan0)

160

http://www.control.com/thread/1230731691
http://pes.free.fr/libmodbus.html

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Modbus — Slave:

Name: Modbus - Slave

OS Type: Ubuntu

Base Memory: 512 MB

Start-up Disk: Modbus - Slave.vdi (Normal, 4.00 GB)

Network: Adapter 1: Intel PRO/1000 MT Desktop (Bridged adapter, wlan0)

- note: less than 4.00 GB for storage is not possible, the installation doesn't run.
- VirtualBox: how to install our Debian

How to create a virtual machine from an .iso file
http://www.pentest.ro/install-a-clean-debian-on-virtualbox/

IMPORTANT: for further reboots, pay attention to the configuration of the boot order...
- place the “hard disk” as the first option, otherwise you'll get the installation
routine every time you reboot the virtual machine.

CREATING OUR VIRTUAL NETWORK:

References:

* http://www.virtualbox.org/manual/ch06.html

* https://blogs.oracle.com/fatbloke/entry/networking in virtualbox1
* Virtualbox: Virtual networking by Ravikiran Dighade

http://www.csee.umbc.edu/~kalpakis/Courses/621/project/VirtualBox- VirtualNetworking.pdf

XUBUNTU && OPENBOX:

- Xubuntu-12.10
From .iso, we create a virtual machine in which we install our Snort following the
instructions in the previously signaled website.

- remove unnecessary: games, chat-irc, open-office... through “Ubuntu Sofware
Center”, it will make faster our system.

- By now, we leave any development tool, but when setting off our Snort in a real
environment, remember to strip off any compiler, unnecessary libraries or other useful
stuff to a posible intruder.

- Alternatively you can install openbox, one of the most lightweight window managers
available:

sudo apt-get install openbox openbox-themes obconf obmenu

It will add an openbox session to the login menu.

161

http://www.csee.umbc.edu/~kalpakis/Courses/621/project/VirtualBox-VirtualNetworking.pdf
https://blogs.oracle.com/fatbloke/entry/networking_in_virtualbox1
http://www.virtualbox.org/manual/ch06.html
http://www.pentest.ro/install-a-clean-debian-on-virtualbox/

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

sudo apt-get remove xfce*

It will supress the graphical environment for the xfce just leaving the options of
Xubuntu graphical interface and Openbox when rebooting our VM, from which we choose Openbox.

With this new environment (Openbox) our machine works faster.

The environment is so simple that we don't even have a task bar with the windows we
have in use, for that “Alt + tab” will move you from one window to the other.

- Snort's installation from sources:

* some development tools & libraries we need:

. flex

i bison

. checkinstall
. libpcap0.8

. libnet1.0

apt-get install flex bison build-essential checkinstall libpcap0.8-dev libnet1-dev

* we must download the next components for our installation:

. libpcap1.3 (updated)
. daq0.2
. pcre8.32
. libdnet1.12 (updated)
. zlib1.2.7
d Snort2.9.4

cd libpcapl.3

.Jconfigure && make && checkinstall
dpkg -i libpcap0.8*.deb

cd dag-0.2
.JJconfigure && make && checkinstall
dpkg -i dag_0.2-1_i386.deb

cd pcre-8.32
.JJconfigure && make && checkinstall
dpkg -i pcre*.deb

cd libdnet-1.12
.Jconfigure && make && checkinstall
dpkg -i libdnet*.deb

cd zlib-1.2.7
.JJconfigure && make && checkinstall
dpkg -i zlib*.deb

162

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

And now we are already able to install our Snort sensor:

cd Snort-2.9.4
.Jconfigure && make && checkinstall
dpkg -i Snort_*.deb

ERROR when running for the first time Snort:

“Snort: error while loading shared libraries: libdnet.1: cannot open shared object file: no such file”
Meaning that Snort does not find libdnet location.

Solution:
LD_LIBRARY_PATH=/usr/local/lib
export LD_LIBRARY_PATH
But this is a tiresome solution, since you have to add this any time you start off Snort...

Must find any “fix” solution...
http://www.linuxquestions.org/questions/linux-newbie-8/Snort-error-while-loading-shared-libraries-

libdnet-1-cannot-open-shared-object-fil-901530/
Using a manually installed "libdnet-1.11" (Installed to /usr/local/) :

cd /usr/lib/
sudo In -s /usr/local/lib/libdnet.1.0.1 libdnet.1

This solution adds a soft link to the libraries directory, possibiliting Snort to find the library that he
missed.

Modbus:

www.Modbusdriver.com/modpoll.html — master simulator
www.Modbusdriver.com/diagslave.html — slave simulator

. download the program for slave and master: diagslave, modpoll.

. Enter into the linux folder where we can find the binary.

° */Downloads/xxxxx/linux

o The binary contained in has no execution rights: we must give them to it.
= chmod u+x diagslave && ./diagslave

= chmod u+x modpoll && ./modpoll

. In our slave:

ifconfig — to get the IP address XxX.XXX.XXX.XXX

163

http://www.modbusdriver.com/diagslave.html
http://www.modbusdriver.com/modpoll.html
http://www.linuxquestions.org/questions/linux-newbie-8/snort-error-while-loading-shared-libraries-libdnet-1-cannot-open-shared-object-fil-901530/
http://www.linuxquestions.org/questions/linux-newbie-8/snort-error-while-loading-shared-libraries-libdnet-1-cannot-open-shared-object-fil-901530/
http://www.linuxquestions.org/questions/linux-newbie-8/snort-error-while-loading-shared-libraries-libdnet-1-cannot-open-shared-object-fil-901530/

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

J/diagslave -m tcp -a 1
- put our server waiting for requests in Modbus tcp.

. In our master:
./modpoll -m tcp -a 1 -r 100 -c 5 -1 /dev/ttySO XXX.XXX.XXX.XXX
- where
./modpoll is our program's name
/dev/ttyS0 is our communication port in linux (in windows it would be COM1, COM2 ...)
192.160.1.60 is our Server's address (slave's address)

The process:
1) we put our server to listen (slave)

2) send the request from our master (client)
3) Snort must be listening our network in order to capture the trafic Snort -dev (in mode verbose)

164

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Bibliography:
Books:

* [SteRiO1] Stevens, W.Richard “ TCP/IP Illustrated, Volume 1 The Protocols ” Addison-Wesley
Professional Computing Series
Publication Date: December 31, 1993 | ISBN-10: 0201633469 | ISBN-13: 978-0201633467

* [SteRi02] Stevens, W.Richard “UNIX Network Programming: Networking APIs: Sockets and
XTI; Volume 1”

ISBN-10: 013490012X | ISBN-13: 978-0134900124

* [HckO1] Cache, Jonnhy and Liu, Vincent “Hacking Exposed Wireless: Wireless Security
Secrets & Solutions” McGraw-Hill Osborne Media
Publication Date: March 26, 2007 | ISBN-10: 0072262583

* [CmRe01]Schildt, Herbert “ C++: The Complete Reference ” McGraw-Hill Osborne Media
Publication Date: August 1, 1998 | ISBN-10: 0078824761 | ISBN-13: 978-0078824760

* [ProgCO01]Kelley, Al and Pohl, Ira “ A Book on C: Programming in C” Addison-Wesley
Professional
Publication Date: January 8, 1998 | ISBN-10: 0201183994 | ISBN-13: 978-0201183993

* [BeJS01]Beale, Jay and R.Baker, Andrew “Snort 2.1 Intrusion Detection” Syngress
Publication Date: May 2004 | ISBN-10: 1931836043 | ISBN-13: 978-1931836043

* [Snus00]The Snort Project May 23, 2012 “Snort Users Manual 2.9.3 ”
Open source: http://www.Snort.org/assets/166/Snort manual.pdf

* [NeSt00]Matthew, Neil and Stones, Richard “Beginning Linux Programming ” Wrox
Publication Date: November 5, 2007 | ISBN-10: 0470147628 | ISBN-13: 978-0470147627

* [InPeO1]Perens, Bruce “Intrusion Detection Systems with Snort Advanced IDS Techniques
Using Snort, Apache, MySQL, PHP, and ACID ”
Open source:

http://ptgmedia.pearsoncmg.com/imprint downloads/informit/perens/0131407333.pdf

* [AIWeO]Allen Weiss, Mark “Data Structures and Algorithm Analysis in C” Addison-Wesley
Publication Date: September 19, 1996 | ISBN-10: 0201498405 | ISBN-13: 978-0201498400

* [MiLawO]H.Miller, Lawrence and E.Quilici, Alexander “The Joy of C” Wiley
Publication Date: January 30, 1997 | ISBN-10: 047112933X | ISBN-13: 978-0471129332

165

http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/perens/0131407333.pdf
http://www.snort.org/assets/166/snort_manual.pdf

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Open source references (pdf):

* [AcroMO0] Acromag Technical Reference — Modbus TCP/IP INTRODUCTION TO Modbus
TCP/TP
http://www.dee.hcmut.edu.vn/vn/ptn/sch/download/Network Architecture/introModbusTCP.pdf

¢ [ezTCP] Technical Document Modbus/TCP of ezTCP Version 1.3
http://www.eztcp.com/documents/application/an Modbus tcp en.pdf

* [MoSe00] Modbus over Serial Line Specification and Implementation Guide V1.02
http://www.Modbus.org/docs/Modbus_over_serial line V1 02.pdf

Web:

* About network security:

o [1] at wikipedia: http://en.wikipedia.org/wiki/Network security (2013,May 5™)
o [2] at webopedia:
http://www.webopedia.com/TERM/N/network security.html (2013,May 5")

o [3] at Magazine Encyclopedia: http://www.pcmag.com/encyclopedia/term/47911/network-
security (2013,May 5")

* About pcap:

o [4] http://yuba.stanford.edu/~casado/pcap/sectionl.html
o [5] http://code.google.com/p/pcapsctpspliter/issues/detail ?id=6

o [6] http://www.tcpdump.org/pcap.htm

e Pcap samples:

o [7] http://wiki.wireshark.org/SampleCaptures
o [8] http://www.pcapr.net/home

e About Snort:

o [9] http://www.Snort.org/

© [10] http://manual.Snort.org/nodel.html

o [11] http://oreilly.com/pub/h/1393

o [12] http://insidetrust.blogspot.ie/2010/12/how-to-use-Snort-on-backtrack-4-basic.html
o [13] http://www.aboutdebian.com/Snort.htm

o [14] http://bailey.st/blog/2010/10/06/compiling-Snort-2-9-0/

166

http://bailey.st/blog/2010/10/06/compiling-snort-2-9-0/
http://www.aboutdebian.com/snort.htm
http://insidetrust.blogspot.ie/2010/12/how-to-use-snort-on-backtrack-4-basic.html
http://oreilly.com/pub/h/1393
http://manual.snort.org/node1.html
http://www.snort.org/
http://www.pcapr.net/home
http://wiki.wireshark.org/SampleCaptures
http://www.tcpdump.org/pcap.htm
http://code.google.com/p/pcapsctpspliter/issues/detail?id=6
http://yuba.stanford.edu/~casado/pcap/section1.html
http://www.pcmag.com/encyclopedia/term/47911/network-security
http://www.pcmag.com/encyclopedia/term/47911/network-security
http://www.webopedia.com/TERM/N/network_security.html
http://en.wikipedia.org/wiki/Network_security
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
http://www.eztcp.com/documents/application/an_modbus_tcp_en.pdf
http://www.dee.hcmut.edu.vn/vn/ptn/sch/download/Network_Architecture/intro_modbusTCP.pdf

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* About linux and C programming:

[15] http://www.freeos.com/guides/lsst/

[16] http://linuxcommand.org/writing shell scripts.php

[17] http://www.cprogramming.com/

[18] http://www.tenouk.com/Module40c.html

[19] http://www.thegeekstuff.com/2011/12/c-socket-programming/

[20] http://www.gnu.org/software/libc/manual/html node/Getopt.html
[21] http://www.acm.uiuc.edu/webmonkeys/book/c guide/2.15.html

* About Modbus and other Industrial Protocols or networking in general:

[22] http://en.wikipedia.org/wiki/Industrial Ethernet
[23] http://en.wikipedia.org/wiki/Modbus

[24] http://www.Modbus.org/

[25] http://www.rtaautomation.com/Modbustcp/

[26] http://compnetworking.about.com/od/networkprotocols/g/protocols.htm
[27] http://en.wikipedia.org/wiki/Transmission Control Protocol

* About cybersecurity in Industrial Control and SCADA systems.

@)

[28] http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-
control-systems/

[29] http://en.wikipedia.org/wiki/Control system security
[30] http://www.tofinosecurity.com/

[31] http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-
blackout n 3279626.html?utm hp ref=technology

[32] http://www.bbc.co.uk/news/technology-22594140

[33] http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-
building-management-systems/

[34] https://www.cert.be/pro/attacks-scada-systems

[35] http://www.electricenergyonline.com/?page=show _article&article=181

[36] http://threatpost.com/attacks-scada-ics-honeypots-modified-critical-operations-031913/
[37] http://www.prweb.com/releases/2013/3/prweb10580258.htm

167

http://www.prweb.com/releases/2013/3/prweb10580258.htm
http://threatpost.com/attacks-scada-ics-honeypots-modified-critical-operations-031913/
http://www.electricenergyonline.com/?page=show_article&article=181
https://www.cert.be/pro/attacks-scada-systems
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building-management-systems/
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-
http://www.bbc.co.uk/news/technology-22594140
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout_n_3279626.html?utm_hp_ref=technology
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout_n_3279626.html?utm_hp_ref=technology
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-
http://www.tofinosecurity.com/
http://en.wikipedia.org/wiki/Control_system_security
http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-control-systems/
http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://compnetworking.about.com/od/networkprotocols/g/protocols.htm
http://www.rtaautomation.com/modbustcp/
http://www.modbus.org/
http://en.wikipedia.org/wiki/Modbus
http://en.wikipedia.org/wiki/Industrial_Ethernet
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.15.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.thegeekstuff.com/2011/12/c-socket-programming/
http://www.tenouk.com/Module40c.html
http://www.cprogramming.com/
http://linuxcommand.org/writing_shell_scripts.php
http://www.freeos.com/guides/lsst/

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Revision de la Bibliografia
Libros :

* [SteRiO1] Stevens, W.Richard “ TCP/IP Illustrated, Volume 1 The Protocols ” Addison-Wesley
Professional Computing Series , Publication Date: December 31, 1993 | ISBN-10: 0201633469 |
ISBN-13: 978-0201633467

* [SteRi02] Stevens, W.Richard “UNIX Network Programming: Networking APIs: Sockets and
XTI; Volume 17, ISBN-10: 013490012X | ISBN-13: 978-0134900124

* [HckO1] Cache, Jonnhy and Liu, Vincent “Hacking Exposed Wireless: Wireless Security Secrets
& Solutions” McGraw-Hill Osborne Media , Publication Date: March 26, 2007 | ISBN-10:
0072262583

* [CmRe01]Schildt, Herbert “ C++: The Complete Reference ” McGraw-Hill Osborne Media
Publication Date: August 1, 1998 | ISBN-10: 0078824761 | ISBN-13: 978-0078824760

* [ProgCO01]Kelley, Al and Pohl, Ira “ A Book on C: Programming in C” Addison-Wesley
Professional , Publication Date: January 8, 1998 | ISBN-10: 0201183994 | ISBN-13: 978-
0201183993

* [BeJS01]Beale, Jay and R.Baker, Andrew “Snort 2.1 Intrusion Detection” Syngress Publication
Date: May 2004 | ISBN-10: 1931836043 | ISBN-13: 978-1931836043

* [Snus00]The Snort Project May 23, 2012 “Snort Users Manual 2.9.3 7,
Open source: http://www.Snort.org/assets/166/Snort manual.pdf

* [NeSt0O0]Matthew, Neil and Stones, Richard “Beginning Linux Programming ” Wrox
Publication Date: November 5, 2007 | ISBN-10: 0470147628 | ISBN-13: 978-0470147627

* [LinSPOO]Love, Robert “Linux System Programming” O'Reilly
Publication Date: September 2007 | ISBN-10: 0-596-00958-5 | ISBN-13: 978-0-596-00958-8

* [InPeO1]Perens, Bruce “Intrusion Detection Systems with Snort Advanced IDS Techniques
Using Snort, Apache, MySQL, PHP, and ACID ”
Open source:

http://ptgmedia.pearsoncmg.com/imprint downloads/informit/perens/0131407333.pdf

* [AlWeO]Allen Weiss, Mark “Data Structures and Algorithm Analysis in C” Addison-Wesley
Publication Date: September 19, 1996 | ISBN-10: 0201498405 | ISBN-13: 978-0201498400

* [MiLawO]H.Miller, Lawrence and E.Quilici, Alexander “The Joy of C” Wiley
Publication Date: January 30, 1997 | ISBN-10: 047112933X | ISBN-13: 978-0471129332

168

http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/perens/0131407333.pdf
http://www.snort.org/assets/166/snort_manual.pdf

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

Open source references (pdf):

Web:

[AcroMO0] Acromag Technical Reference — Modbus TCP/IP INTRODUCTION TO Modbus

TCP/TP
http://www.dee.hcmut.edu.vn/vn/ptn/sch/download/Network Architecture/intro ModbusTCP.pdf

[ezTCP] Technical Document Modbus/TCP of ezTCP Version 1.3
http://www.eztcp.com/documents/application/an Modbus tcp en.pdf

[MoSe00] Modbus over Serial Line Specification and Implementation Guide V1.02
http://www.Modbus.org/docs/Modbus over serial line V1 02.pdf

About network security:

© [1] at wikipedia: http://en.wikipedia.org/wiki/Network security (2013,May 5th)
o [2] at webopedia: http://www.webopedia.com/TERM/N/network security.html (2013,May
5th)

o [3] at Magazine Encyclopedia: http://www.pcmag.com/encyclopedia/term/47911/network-
security.html (2013,May 5th)

About pcap:

o [4] http://yuba.stanford.edu/~casado/pcap/sectionl.html

o [5] http://code.google.com/p/pcapsctpspliter/issues/detail ?id=6
o [6] http://www.tcpdump.org/pcap.htm

Pcap samples:

o [7] http://wiki.wireshark.org/SampleCaptures
o [8] http://www.pcapr.net/home

About Snort:

o [9] http://www.Snort.org/

© [10] http://manual.Snort.org/nodel.html

o [11] http://oreilly.com/pub/h/1393
o [12] http://insidetrust.blogspot.ie/2010/12/how-to-use-Snort-on-backtrack-4-basic.html

o [13] http://www.aboutdebian.com/Snort.htm
o [14] http://bailey.st/blog/2010/10/06/compiling-Snort-2-9-0/

169

http://bailey.st/blog/2010/10/06/compiling-Snort-2-9-0/
http://www.aboutdebian.com/snort.htm
http://insidetrust.blogspot.ie/2010/12/how-to-use-snort-on-backtrack-4-basic.html
http://oreilly.com/pub/h/1393
http://manual.snort.org/node1.html
http://www.snort.org/
http://www.pcapr.net/home
http://wiki.wireshark.org/SampleCaptures
http://www.tcpdump.org/pcap.htm
http://code.google.com/p/pcapsctpspliter/issues/detail?id=6
http://yuba.stanford.edu/~casado/pcap/section1.html
http://www.pcmag.com/encyclopedia/term/47911/network-security.html
http://www.pcmag.com/encyclopedia/term/47911/network-security.html
http://www.pcmag.com/encyclopedia/term/47911/network-security.html
http://www.webopedia.com/TERM/N/network_security.html
http://en.wikipedia.org/wiki/Network_security
http://www.Modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
http://www.eztcp.com/documents/application/an_Modbus_tcp_en.pdf
http://www.dee.hcmut.edu.vn/vn/ptn/sch/download/Network_Architecture/intro_ModbusTCP.pdf

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

* About linux and C programming:

[15] http://www.freeos.com/guides/lsst/

[16] http://linuxcommand.org/writing shell scripts.php

[17] http://www.cprogramming.com/

[18] http://www.tenouk.com/Module40c.html

[19] http://www.thegeekstuff.com/2011/12/c-socket-programming/

[20] http://www.gnu.org/software/libc/manual/html node/Getopt.html
[21] http://www.acm.uiuc.edu/webmonkeys/book/c guide/2.15.html

* About Modbus and other Industrial Protocols or networking in general :

[22] http://en.wikipedia.org/wiki/Industrial Ethernet

[23] http://en.wikipedia.org/wiki/Modbus

[24] http://www.Modbus.org/

[25] http://www.rtaautomation.com/Modbustcp/

[26] http://compnetworking.about.com/od/networkprotocols/g/protocols.htm
[27] http://en.wikipedia.org/wiki/Transmission Control Protocol

* About cybersecurity in Industrial Control and SCADA systems.

o

[28]http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-
control-systems/

[29] http://en.wikipedia.org/wiki/Control system security

[30] http://www.tofinosecurity.com/
[31]http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-
blackout n 3279626.html?utm hp ref=technology

[32] http://www.bbc.co.uk/news/technology-22594140
[33]http:/www.rtve.es/alacarta/videos/informe-semanal/informe-semanal-espionaje-
masivo/1875087
[34]http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-
building-management-systems/

[35] https://www.cert.be/pro/attacks-scada-systems

[36] http://www.electricenergyonline.com/?page=show _article&article=181

[37] http://threatpost.com/attacks-scada-ics-honeypots-modified-critical-operations-031913/

[38] http://www.prweb.com/releases/2013/3/prweb10580258.htm
[39] http://esmateria.com/2013/06/04/la-ciberguerra-es-inevitable/

[40] http://www.bbc.co.uk/news/technology-22524274)

[41] http://www.datacenterdynamics.es/focus/archive/2012/01/los-ataques-se-incrementa
%C3%A1n-sobre-los-sistemas-scada-en-2012

[42] http://www.eset.es/soporte/315

170

http://www.eset.es/soporte/315
http://www.datacenterdynamics.es/focus/archive/2012/01/los-ataques-se-incrementa%C3%A1n-sobre-los-sistemas-scada-en-2012
http://www.datacenterdynamics.es/focus/archive/2012/01/los-ataques-se-incrementa%C3%A1n-sobre-los-sistemas-scada-en-2012
http://www.datacenterdynamics.es/focus/archive/2012/01/los-ataques-se-incrementa%C3%A1n-sobre-los-sistemas-scada-en-2012
http://www.bbc.co.uk/news/technology-22524274
http://esmateria.com/2013/06/04/la-ciberguerra-es-inevitable/
http://www.prweb.com/releases/2013/3/prweb10580258.htm
http://threatpost.com/attacks-scada-ics-honeypots-modified-critical-operations-031913/
http://www.electricenergyonline.com/?page=show_article&article=181
https://www.cert.be/pro/attacks-scada-systems
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building-management-systems/
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building-management-systems/
http://www.infosecurity-magazine.com/view/31793/icscert-reports-two-hacks-on-building-management-systems/
http://www.rtve.es/alacarta/videos/informe-semanal/informe-semanal-espionaje-masivo/1875087
http://www.rtve.es/alacarta/videos/informe-semanal/informe-semanal-espionaje-masivo/1875087
http://www.rtve.es/alacarta/videos/informe-semanal/informe-semanal-espionaje-masivo/1875087
http://www.bbc.co.uk/news/technology-22594140
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout_n_3279626.html?utm_hp_ref=technology
http://www.huffingtonpost.com/2013/05/16/anonymous-telecomix-syria-internet-blackout_n_3279626.html?utm_hp_ref=technology
http://www.tofinosecurity.com/
http://en.wikipedia.org/wiki/Control_system_security
http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-control-systems/
http://www.technologyreview.com/view/511671/cybersecurity-risk-high-in-industrial-control-systems/
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://compnetworking.about.com/od/networkprotocols/g/protocols.htm
http://www.rtaautomation.com/Modbustcp/
http://www.Modbus.org/
http://en.wikipedia.org/wiki/Modbus
http://en.wikipedia.org/wiki/Industrial_Ethernet
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.15.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.thegeekstuff.com/2011/12/c-socket-programming/
http://www.tenouk.com/Module40c.html
http://www.cprogramming.com/
http://linuxcommand.org/writing_shell_scripts.php
http://www.freeos.com/guides/lsst/

Arturo Ruiz Maiias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

e About Linux;

o [43]http://en.wikipedia.org/wiki/Linux

o [44]http://distrowatch.com/
o [45]http://slashdot.org/

o [46]http://openbox.org/
o [47]http://en.wikipedia.org/wiki/Openbox
o [48]http://www.debian.org/
o [49]http://en.wikipedia.org/wiki/Debian
o [50]http://en.wikipedia.org/wiki/Ubuntu %28operating system%-29
o [51]http://xubuntu.org/
= [52]http://xubuntu.org/about/

171

http://xubuntu.org/about/
http://xubuntu.org/
http://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://en.wikipedia.org/wiki/Debian
http://www.debian.org/
http://en.wikipedia.org/wiki/Openbox
http://openbox.org/
http://slashdot.org/
http://distrowatch.com/
http://en.wikipedia.org/wiki/Linux

Arturo Ruiz Mafias
Desarrollo de un ‘sniffer' para la generacion de listas blancas para Snort

172

	Whitelisting Sniffer and Statistical
	Traffic Study for Snort (IDS)
	B.1 Introduction Modbus IP
	B.2 Modbus IP , simulated Master, simulated Slave, Snort with fixed Modbus ruleset
	[SteRi02] Stevens, W.Richard “UNIX Network Programming: Networking APIs: Sockets and XTI; Volume 1”

