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Abstract
Reducing environmental impacts in transport motivates many studies to offer more sustain-
able freight services. However, most methodologies focus on impacts from fuel consump-
tion, and approaches trying to integrate other transport components have not facilitated its 
application to actual and specific transport services. In this study, we present a harmonized 
approach to address the transport services with a holistic way to increase the knowledge 
about hotspots of the transport sector based on the life cycle assessment methodology. In 
this framework, vehicle manufacturing, fuel production, and infrastructure construction are 
the key transport components around the traffic process. Besides fuel usage, the operation 
and maintenance of vehicles and infrastructures are also included. We developed a tool 
to create the life cycle inventories for each transport component to be applied to specific 
transport services in any location with a comprehensive view and low uncertainty in the 
results. This approach was applied to road-freight services in Colombia, Malaysia, and 
Spain. The main results showed the nature and origin of the environmental impacts, which 
are highly influenced by the emissions control technologies, road characteristics, and traffic 
volume. The contribution of atmospheric pollutants per tonne-km can decrease by a quar-
ter when Euro VI trucks on highways instead of conventional trucks on single-lane roads 
are used. However, these contributions are highly affected by fuel production due to the 
origin of biofuels. The proposed methodology provides relevant information to estimate 
transport impacts in the life cycle assessment of products with superior precision and iden-
tify strategies for systemically improving sustainability.
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1 Introduction

The vital role of freight transport in economic growth has hampered the implantation 
of strategies to reduce energy consumption and emissions in this sector in recent years. 
Energy consumption in the transport sector is closely linked to the economic situation, 
showing reductions during economic recessions, and increasing after economic recovery 
despite the efforts to mitigate transport emissions (IEA, 2020). Given this correlation 
between energy consumption and trading volume, a significant increase in greenhouse 
gases (GHG) emissions at global levels due to the rapid growth in emerging economies 
is expected.

In the short and medium term, strategies for promoting sustainability in road trans-
port should be raised by implementing technological developments in vehicles, improv-
ing roads, providing logistics platforms, promoting intermodality, and using alternative 
energy (European Commission 2013). Nonetheless, any strategy should be evaluated 
from several perspectives by public administration and companies to ensure economic, 
environmental, and social sustainability in response to the demand of all stakeholders 
(Osorio-Tejada et al., 2020).

Awareness of the environmental impacts of road freight transport is relatively recent, 
and hitherto the main priority of the sector has been given to cost optimization. A turn-
ing point has been including vehicle operation on policy packages for transport climate 
policy. Almost simultaneously, customers of transport companies have begun to demand 
services that add the lowest possible carbon footprint to their products, and companies 
have started to calculate it based on fuel consumption.

The increased number of tools to estimate carbon emissions per tonne of product 
transported per km (tkm) has been related to the need of manufacturers and freight com-
panies to include the impacts of transport on the carbon footprint. However, available 
tools are developed for the driving conditions in industrialized countries. In these coun-
tries, roads are constructed to provide the most efficient and safe driving by avoiding 
mountainous terrains with tunnels and bridges and providing roads with two or more 
lanes to allow smooth and constant traffic for most of the vehicle journey. In this sense, 
using these tools for transport services carried out in developing countries with moun-
tainous terrains would underestimate fuel consumption and emissions. Additionally, 
most of the tools and methodologies focus on diesel trucks and GHG emissions, forget-
ting that more and more new propulsion technologies are gaining ground, such as elec-
tric mobility. New technologies reduce dependence on fossil fuels and require less main-
tenance, decreasing GHG emissions, but increasing impacts related to water and human 
toxicity due to the disposal of batteries (Engerer & Horn, 2010). In this sense, analyses 
of strategies to reduce carbon emission should be evaluated from a more comprehensive 
perspective through life cycle assessments (LCA). Life cycle inventories databases, such 
as Ecoinvent (ETH, 2022), include not only the impacts of fuel consumption but also 
the impacts of other transport components, such as manufacturing and maintenance of 
trucks and roads. However, the data are mainly based on the characteristics of Switzer-
land transport, which increases the uncertainty in the results when these inventories are 
used for LCA of products mobilized in other latitudes.

For these reasons, developing methodologies and tools adapted to the peculiarities of 
the freight service and location that provide a comprehensive environmental assessment 
would be helpful for decision-making by all stakeholders (Osorio-Tejada et  al., 2018; 
Scarpellini et al., 2013).
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Suppose the focus on fuels is complemented with these integrated analyses. In that case, 
companies could document the environmental sustainability of the services offered, and 
public administrations could track the achievement of policy goals. Finally, consumers 
would have access to information to select the most sustainable services. Furthermore, in 
a virtuous circle, freight companies might ask for vehicles, fuels, and more environment-
friendly infrastructures from knowing their impacts. In addition, any analysis from a life 
cycle perspective provides comprehensive information about the global implications of 
changes in technologies, management, and behaviour that are proposed as a solution, being 
integrated approaches among the best ways to achieve sustainable alternatives (Aydin et al., 
2021).

With these premises, this study presents a methodological approach to logically define 
boundaries and activities included in the transport system and describe how to specific 
model the life cycle inventories for each transport component, considering the characteris-
tics of cargo, vehicle, fuel, route, and driving conditions. This approach is applied to three 
case studies in very different scenarios from the technological and geographical points of 
view.

The remainder of this article is structured as follows. In Sect.  2, previous LCA stud-
ies conducted in the transport sector are classified according to their scope to identify the 
activities included in their analyses and the approaches’ limitations, solved by applying 
the harmonized approach proposed in this work. In Sect. 3, the methodological approach, 
the developed tool for life cycle inventories creation, and the selected case studies are 
described. In Sect. 4, the results obtained through applying the methodology in the differ-
ent case studies in Colombia, Spain, and Malaysia are discussed. Results representative-
ness and the implications of the methodology for future practices and policies are drawn in 
the conclusions.

2  Background

This section provides a review of various LCA published to date to assess individual trans-
port components (fuels, vehicles, and infrastructure) and several approaches to integrating 
several components. The objective is to determine what sources of information and what 
evaluation methods were used to identify limitations in the state-of-the-art environmental 
assessment of transport services. This theoretical approach sets the basis for developing a 
specific methodology for integrating road freight services in any geographical location.

Although most of the LCAs for the road freight transport sector have focused on the 
calculation of GHG emissions, following the guidelines of the standard EN 16, 258 “Meth-
odology for calculation and declaration on energy consumptions and GHG Emissions in 
transport services (goods and passengers transport)” (Auvinen et al., 2014), this standard 
limits the assessment to the well-to-wheels (WTW) or fuel life cycle analysis. That is, it 
considers only the emissions from the fuel usage (tank-to-wheels (TTW) analysis) plus the 
emissions from the fuel production and distribution (well-to-tank (WTT) analysis). For this 
reason, there are extensive LCA studies about fuels and their use in different vehicles and 
fewer studies about the life cycle of the other components of the transport systems.

A general picture of transport systems was defined by NTM (2015), identifying 
five components. Based on this definition, Fig.  1 serves as the basis to conduct the lit-
erature review about LCA studies of each of these components. It must be considered 
that the impacts of the end-of-life activities are usually incorporated in the LCA of the 
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infrastructures or vehicles. For this reason, it is not common to find an LCA designed 
explicitly for specific waste recovery plants such as that published by Ciacci et al. (2010).

2.1  LCA on fuels

Most LCAs for the transport sector have focused on fuels, almost exclusively in the GHG 
(the so-called carbon footprint) (Shonnard et al., 2015). In the light of these studies, differ-
ent methodologies, tools such as Excel spreadsheets or software and web-based tools and 
emission factors databases have been developed (Lewis et al., 2014).

The standard EN 16, 258 (Auvinen et al., 2014) is the first international standard that 
harmonizes and normalizes the procedures for calculating and reporting emissions and 
energy consumption for the transport sector, and European companies fully accept it. 
This standard provides one possible basis for future international normalization initiatives 
because it considers specific aspects of freight transport, such as the need to define a vehi-
cle operating system (VOS) as a basis for calculating emissions. It also considers the allo-
cation principles for  CO2 emissions to the load and sets the tkm as the functional unit. 
Finally, EN 16, 258 establishes that emissions at the product level or shipment must be cal-
culated as a percentage of the total amount of tkm performed in the VOS according to the 
proportion of the product in the total mass transported (Davydenko et al., 2014). However, 
there are still some issues to be resolved. First, the standard leaves the user free to choose 
the VOS. This ambiguity could trigger mean values of the annual activity of a fleet with-
out discriminating the route or the geographical location of a specific service. Second, the 
principle that the emissions should be assigned to the causing entity, the base tkm, is insuf-
ficient. It produces the arbitrary allocation of emissions to individual loads, especially for 
combined shipments of light (and bulky) and heavy products, resulting in emissions mainly 
assigned to heavier products. The third issue that is still unsolved is related to the fact that 
the standard is concerned with the providers of transport services and not customer ori-
ented. The standard should incorporate a reporting mechanism that allows the responsible 
party to add shipping emissions in the transport chain. This means that compliance with 

Fig. 1  Components of the transport system Source: Own elaboration from (NTM, 2015)
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the standard should include not only the ability to calculate emissions in transport activity, 
but also a mandatory reporting to the shipping applicant.

Concerning the considered emissions, it has to be taken into account that some emis-
sions such as  CO2 and  SO2 are directly related to the amount of fuel consumed, but other 
pollutants such as CO, NOx,  CH4,  N2O,  NH3 and volatile particles also depend on the load 
factor of the vehicle and the emission control measures.

WTT emission factors for conventional fuels are virtually identical in most LCA stud-
ies and databases because the fuel production processes have been unchanged for decades. 
Slight differences are due to the distances in transporting crude to the refinery plant and 
the final product to service stations. Regarding the TTW phase, current databases contain 
factors for the specific use of diesel and gasoline in road transport. The EMEP/EEA air 
pollutant emission inventory guidebook (EEA 2019) includes biodiesel and natural gas but 
advises that these factors lack accuracy for trucks because there are not enough experiences 
to ensure their reliability statistically.

The interest in finding more environmentally friendly fuels reflects the numerous studies 
comparing the environmental performance of alternative energy sources and fossil fuels. It 
could be envisaged to generalize the results and even use them as a data source. However, 
after analysing recent studies, emission factors vary widely due to having been obtained 
under different boundaries and approximations. For example, in Fig. 2, considering stud-
ies for palm oil biodiesel, it can be concluded that variability of emissions is related to the 
location, dramatically increasing when the palm is cropped in tropical forests. For microal-
gae biodiesel, emissions are largely related to the production process.

For ethanol, Fig.  3, as the gasoline alternative, it also appeared that emission factors 
(from 25 to 65  gCO2eq/MJ) vary depending on the type of biomass from which ethanol is 
produced and not on the conversion process that is invariably fermentation.
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Fossil diesel

g CO2eq/MJ

Fig. 2  Life cycle GHG Emissions for diesel alternatives Sources: Fossil diesel (AEA group, 2014; ANL-
Argonne National Laboratory, 2021; Beer et al., 2007; Bio Intelligence Service, 2011; European Commis-
sion, 2009; Hou et al., 2011; Lee Chang et al., 2015; Mata et al., 2011; Styles et al., 2015; Tokunaga & 
Konan, 2014); Algae biodiesel (Adesanya et al., 2014; Azadi et al., 2014; Collet et al., 2014; Hou et al., 
2011; Lee Chang et al., 2015; Mata et al., 2011; Passell et al., 2013; Soratana et al., 2013; Tu et al., 2018; 
Wu et al., 2018; Yuan et al., 2015); Cooking oil biodiesel (Beer et al., 2007; Bhonsle et al., 2022; Boba-
dilla et al., 2021; European Commission, 2009; Ou et al., 2009; Whitaker et al., 2010); Soybean biodiesel 
(European Commission, 2009; Hou et al., 2011; Mata et al., 2011; Ou et al., 2009; Panichelli et al., 2009; 
Tokunaga & Konan, 2014; Zhang et al., 2022); Jatropha biodiesel (Chatterjee et al., 2014; Hagman et al., 
2013; Hou et al., 2011; Ou et al., 2009; Tokunaga & Konan, 2014); Rapeseed biodiesel (Beer et al., 2007; 
Chatterjee et al., 2014; Elsayed et al., 2003; European Commission, 2009; Malça et al., 2014; Mata et al., 
2011; Styles et al., 2015; Whitaker et al., 2010); Palm oil biodiesel (Achten et al., 2010; Anyaoha & Zhang, 
2022; Arpornpong et al., 2015; Beer et al., 2007; Chatterjee et al., 2014; Choo et al., 2011; European Com-
mission, 2009; Hassan et al., 2011; Mata et al., 2011; Permpool & Gheewala, 2017; Tokunaga & Konan, 
2014; Wicke et al., 2008; Yung et al., 2021)
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2.2  LCA on vehicles

The first LCA focused on vehicles manufacturing, use, and final disposal were made by 
truck manufacturers in the 90 s to identify the primary sources of energy waste and take 
measures to achieve savings and reduce the environmental impact (Finkbeiner et al., 2000; 
Volvo AB 2001). Some truck manufacturers, such as Daimler AG, have been using LCA 
for more than 20 years, performing more than 100 individual LCA both for vehicle parts 
and complete trucks (Finkbeiner et al., 2000). DAF Trucks developed an internal tool for 
LCA analysis of new parts and began to apply it to trucks in 2006 (DAF, 2006). Scania AB 
has also adopted a strategy of optimizing the life cycle, designing for reuse, and recyclabil-
ity as the relevant areas in its sustainability policy (Scania AB 2014). Before 2006, when 
Scania began to implement LCA, some Environmental Product Declarations (EPD) for 
trucks had been made, but it is unclear whether these were based on LCA (Nordhall, 2007). 
Recently, Hanesch et al. (2022) presented a LCA for the comparison of an standard Scania 
articulated truck R450 and an overhead line hybrid truck, which would emit 100.7 and 82 g 
 CO2eq/tkm, respectively. In this comparison, the authors concluded that the manufactur-
ing of the standard truck, diesel production, and diesel usage contribute to the 5%, 14.4%, 
and 80.6%, respectively, while for the hybrid truck, its manufacturing (including recharge 
infrastructure), energy production, and energy usage contribute to the 31.1%, 17.6%, and 
51.2%, respectively.

Volvo AB has reported that 94% of GHG emissions from a Renault tractor Euro VI are 
generated in the use phase since most vehicle materials can be recycled (Volvo AB 2013).

IVECO started using LCA methodologies in 2008. Although initially it was applied to 
identify ecological alternatives to refrigerants in the air-conditioning systems, their use has 
been spread to the whole manufacturing process (Fiat group, 2009). According to their 
reports, 85% of  CO2 emissions correspond to the use phase.

MAN SE concluded that more than 90% of GHG emissions come from trucks’ use 
phase, taking into account the life cycle assessment of fuel. In 2013, the company launched 
the project LCA based on ISO 14064 (Davydenko et al., 2014). In 2015, impact categories 
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Fig. 3  Life cycle GHG Emissions for gasoline alternatives Sources: Fossil gasoline (ANL-Argonne 
National Laboratory, 2021; Bio Intelligence Service, 2011; Daystar et  al., 2015; Ou et  al., 2009; Styles 
et al., 2015); Cellulosic crops ethanol (Cai et al., 2013; Daystar et al., 2015; Jeswani et al., 2015; Murphy & 
Kendall, 2015; Olofsson et al., 2017; Shuai et al., 2016; Sun et al., 2021); Cassava ethanol (Jiao et al., 2019; 
Nguyen et al., 2007; Ou et al., 2009); Corn ethanol (European Commission, 2009; Kauffman et al., 2011; 
Liska et al., 2009; Ou et al., 2009; Xu et al., 2022); Sugarbeet ethanol (Elsayed et al., 2003; European Com-
mission, 2009; Whitaker et al., 2010); Sugarcane ethanol (European Commission, 2009; Hiloidhari et al., 
2021; Simone P. Souza & Seabra, 2014; Simone Pereira Souza et  al., 2012); Wheat ethanol (Bernesson 
et al., 2006; Elsayed et al., 2003; European Commission, 2009; Styles et al., 2015; Whitaker et al., 2010)
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such as acidification, photochemical ozone creation potential, eutrophication, and ozone 
depletion (MAN SE, 2014) began to be included.

Besides manufacturers publishing results on GHG emissions without detailing the 
inventories of materials and energy for trucks manufacturing, they also generally include 
the component of traffic in the LCAs, which dwarfs the relative environmental impacts of 
truck manufacturing in the life cycle in this kind of freight vehicle.

2.3  LCA on infrastructure

The infrastructure needed for road freight transport consists of roads, service stations and 
logistics centres such as warehouses, intermodal terminals, and parking lots (Bhatt et al., 
2019). Of these infrastructures, the impact of roads has been the most widely studied due 
to the interest that their construction arouses for society in general since it affects freight 
and passenger transport users and communities and ecosystems in their area of influence. 
As summarized in Table 1, the published studies are very variable from which life cycle 
phases are considered.

The LCAs also differ in the objective. There are studies focused on the environmental 
impact caused by the use of recycled materials (Fernández-Sánchez et al., 2015; Mroueh 
et al., 2000) in the construction phase, on those generated by additives and textures to the 
(Birgisdóttir et al., 2006; Milachowski et al., 2011; Santero et al., 2013), on maintenance 
activities (Huang et al., 2009a, 2009b) or specific issues such as deforestation (Barandica 
et al., 2013; Melanta et al., 2012; Mroueh et al., 2000).

Although the initial phase of excavations and soil movements is not considered in many 
studies, Barandica et  al. (2013) concluded that this initial phase contributes between 60 
and 85% of total GHG emissions. It is important to note that the mentioned study did not 
analyse the impact of traffic or the end-of-life phase.

Based on the analysis of several LCAs conducted for roads, Muench, 2010 concluded 
that, on average, the energy used during the construction of the road equals that used by the 
vehicles in 1 or 2 years of circulation. These values translate into a range of between 125 
and 375 kg of  CO2 equivalent for each metre of lane built.

Muench (2010), Loijos (2011), and Hoxha et al. (2021) highlighted the complex com-
parability of the results. Mainly reasons are the different criteria adopted to select the func-
tional units, system boundaries, the availability and quality of the data and the particu-
larities of the roads in terms of geotechnical conditions, traffic intensity and climate. These 
same reasons prevent extrapolating the results obtained to other cases.

2.4  LCA on several components

Previous works that considered the joint analysis of several components are scarce and gen-
erally aim to compare different transport systems. Among these studies, Marheineke et  al. 
(1998) included the life cycle of trucks and roads for a case study in Germany and Stodolsky 
et al. (1998) compared the  CO2 emissions of rail and road transport in the USA. In this lat-
ter study, the authors concluded that trains generate three times fewer emissions than trucks 
by tkm transported, considering the manufacture of vehicles, fuel production, and its con-
sumption during the use phase and excluding the infrastructure construction and use. On the 
contrary, Dimoula (2015) included the infrastructure in a comparative study for the case of 
Greece and concluded that railways construction emits twice as many GHG emissions as road 
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construction. However, road transport emits 22 times more GHG per transported tkm than rail 
transport during the traffic phase.

Hanesch et al. (2022) included the energy production and usage, the truck manufacturing, 
and the additional infrastructure for electricity recharging for overhead line hybrid trucks, 
which would emit 22.8% more carbon emission than a conventional diesel truck. However, 
roads construction, neither maintenance nor end-of-life of the systems, were included in this 
LCA study.

Other works have developed more comprehensive analyses for freight services. In order 
to make a comparison of the Swiss and European freight transport sectors, Spielmann and 
Scholz (2005) analysed the three main components (fuel, infrastructure, and vehicles) for 
road, rail and river modes, whose results and scope were adopted by the Ecoinvent database 
(Spielmann et al. 2007).

Facanha and Horvath (2007) conducted a comparative study of road, rail, and air freight 
transport in the USA, evaluating  CO2, NOx,  PM10, CO and  SO2 emissions. In this study, the 
impacts of fuel production and fuel usage were contemplated separately. The study concluded 
that the impacts are underestimated if only fuel usage is considered. For example, the TTW 
phase is responsible for 76% of all  CO2 emissions and 92% of NOx emissions for road trans-
port. However, almost 75% of  PM10 emissions come from the construction and maintenance 
of roads, while the manufacture and maintenance of vehicles are mainly responsible for CO 
emissions. The authors discussed the sensitivity of the amount of polluting substances emitted 
by tkm with the type of vehicle, the geography, and the vehicle load.

Nahlik et al. (2016) analysed the vehicle operation, the manufacturing and maintenance of 
vehicles, the construction and maintenance of infrastructure, and the fuel production as sepa-
rate components to estimate the emissions generated by different means of freight transport 
in California. Unlike the Facanha and Horvath (2007) study,  PM10 emissions came mostly 
from vehicle operation and not from infrastructure for road transport. Although CO emissions 
are generated during vehicle manufacturing, the operation phase continues to be the most rel-
evant. The authors explained the low contribution of the infrastructure in the impacts by tkm 
because the volume of goods transported through these North American roads is very high, 
mainly with long distance services and large tonnage.

Analysing integrated LCA for transport services to date has shown no consensus on how to 
set the boundaries for the considered components and which activities should be included in 
the evaluation. In addition, most of the published studies lack specific descriptions of how cal-
culations were made and data sources, being difficult to replicate the studies in other scenar-
ios. The approach followed in the Ecoinvent database described the data sources and assump-
tions. However, the use of this database in LCA software does not allow to modify the specific 
characteristics of the freight service such as load factor, speed, road gradients, vehicle lifespan, 
annually mileage, frequency of maintenance, or traffic flow to adequately allocate the impacts 
of manufacturing and maintenance of vehicle and roads to each tkm. This difficulty increases 
the uncertainty in the results for services outside Europe since most of the assumptions were 
based on data from Switzerland or European averages for traffic and road conditions and from 
Germany for truck manufacturing.
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3  Materials and methods

For the analysis of strategies aimed to reduce the transport carbon footprint, such as 
introducing an alternative fuel, its application can occasionally shift the effects to 
another environmental impact category, another phase of the fuel life cycle, or another 
system component. In this sense, the core analysis of the proposed methodological 
approach was based on the ISO 14040 standard (ISO 2006) for LCA studies, detailed 
below.

3.1  Goal and scope definition

The most crucial step for the integrated LCA analysis of transport services is the system 
definition. For this purpose, the components of the system (Fig.  1) were reorganized 
around a central and transversal traffic process (Fig. 4), considering that activities such 
as maintenance and end-of-life activities for vehicles and infrastructures can mainly 

Fig. 4  Transport system transversal traffic process Source: Own elaboration
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occur if there are traffic operations. This traffic process consists of the emissions from 
vehicle operation such as fuel combustion, lube oil and urea consumption and brakes, 
tires, and road surface abrasion, plus the emissions due to the maintenance of roads and 
vehicles.

This approach solves several limitations in analysing transport systems with compo-
nents in parallel. First, the VOS is perfectly defined, allowing to identify and assign to the 
transport service only the impacts that occur when this takes place and not those of a fleet. 
Second, it sets the system’s limits under analysis which, on the one hand, avoids double 
accounting and, on the other hand, makes it possible to compare results. Third, assigning 
the direct impacts to each tkm allows establishing the effect of the vehicle and load effi-
ciency with more reliability.

In short, this new proposed system is more interesting for management and decision 
making on the environmental impacts of transport. For example, the carbon footprint of a 
road freight service could be calculated as the sum of the direct  CO2eq emissions caused by 
the traffic process (fuel consumed plus the use and maintenance of vehicles and infrastruc-
ture) and three indirect footprints on those that the transport company can influence by 
selecting the vehicle, the fuel, and the route.

The goal of each case study was to draw up the environmental profiles of specific road 
freight services to find out the activities that generate the most relevant impacts in each 
transport system. A comparative analysis of the studies can also ascertain the influence 
of vehicle technology, load factor and road characteristics. The system functions included 
freight services of a certain amount of merchandise from one point to another in a specific 
type of vehicle and given geographical conditions. The functional unit is the tkm.

Three different services were selected from the technological and geographical point 
of view to analyse the effect of traffic conditions, road topology, and technological and 
normative variables on environmental impacts. In this sense, a freight service using a non-
regulated rigid truck in a mountainous road in Colombia, a Euro I rigid truck on a flat road 
with heavy traffic in Malaysia, and a Euro VI articulated truck in rolling roads with low 
traffic in Spain. The main data are collected in Table 2.

Regarding the impacts assessment method, ReCiPe (Goedkoop et al., 2009) was selected 
since it brings together the most relevant aspects for the transport sector in a set of 18 
impact categories and three damage areas (human health, ecosystems, and resources). The 
impacts assessment was modelled using the SimaPro 8.5.0 tool (PRé Consultants, 2018), 
considering mass allocation under the cut-off approach and the hierarchical (100  years) 
perspective, excluding long-term emissions.

3.2  Inventory analysis

The life cycle inventories analysis initiates by defining a set of data related to the flow of 
materials, energy, and emissions in each of the components of the system. The detailed 
procedures for elaborating inventories and allocation factors are summarized in Fig. 5.

According to the procedures detailed in the diagram in Fig.  5, we have developed a 
helpful tool to estimate the emissions from each transport component by considering the 
specific characteristics of the assessed transport services. This procedure would reduce 
the uncertainty in the results, especially when the vehicle, roads, and driving conditions 
differ significantly from the average European characteristics. For this complex inven-
tory analysis, the Excel-based calculator is in the supplementary information SI-1. For the 
main activity of vehicle operation, specific information for the service and the route such 
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as load factor, size and axles number of the vehicle, emissions control technology, speed, 
and road gradients was considered. The EMEP/EEA 1.A.3.b.i-iv Road transport hot EFs 
Annex (EEA, 2019) coefficients are applied for estimating CO, NOx, VOC, and PM emis-
sions. These coefficients are estimated by considering the specific emission control tech-
nology (conventional, Euro I–VI), load factor (0%, 50% and 100%) and the road gradient 
(0%, ± 2%, ± 4% and ± 6%) to obtain the results based on the vehicle speed. For the specific 
load factor (LF), emissions factors (EF) were obtained for 0% and 100% LF and then, cal-
culated to the partial load (EFLF = EFempty + (EFfull − EFempty) × LF). For the other fuel com-
bustion emissions  (CO2,  CH4,  N2O,  NH3, PAHs, alkanes, alkenes cycloalkanes, aldehydes, 
and aromatics) and tire and brake abrasion particles, Tier 2 and Tier 1 factors were applied 
(EEA, 2019). This approach was applied for different sections of the route, which was split 
at the points where considerable changes in road gradient, speed, or driving zone (urban 
or interurban) took place. Otherwise, taking an average gradient and speed for the com-
plete route would omit road sections with rough conditions, underestimating the results. 
The routes were divided into 33, 33, and 29 sections for the assessed services in Colombia, 
Malaysia, and Spain.

Regarding fuel production, specific data for the origin of fossil sources and biofu-
els were considered to create the inventories for the fuel mixture used in each case. For 
trucks manufacturing and road construction, as well as for maintenance activities, based 
on generic inventories from Ecoinvent (Spielmann et al. 2007), specific inventories were 
developed by considering country statistics for each case study such as the length and pro-
portion of highways, primary, secondary, and tertiary roads, and quantity of tunnels and 
bridges per km for each kind of road.

Given that vehicles are used for different transport services in their useful life, and the 
infrastructure is shared for other purposes such as passenger transport, a key aspect was 

Traffic 
process

Vehicle 
operation

Vehicle 
maintenance

Road operation 
and maintenance

Emissions from fuel
combustion, oil and urea 

usage, and parts abrasion

Tier 3 by sections - equations
and factors EMEP/EEA 

Materials and energy used 
annually 

Specific inventory according 
to frequency of parts change

Materials, energy, and
emissions per meter-year

(m-y)

Data according to the km of 
bridges, tunnels, and type of 

roads in the country

Vehicle manufacturing Materials, energy, and
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Fig. 5  Transport system inventory analysis procedures
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how to allocate the resulting impacts for the different system components to the evaluated 
road freight service. In this sense, the road construction impacts were distributed among 
the gross tonnes per km (Gtkm) mobilized annually in the country, considering the average 
load factors of the different freight and passenger vehicles and total km travelled by each 
kind of vehicle in the country. The impacts allocation of the road maintenance activities 
was made based on the vehicle-kilometres (vkm) travelled annually. The impacts allocation 
of the manufacturing and maintenance of the vehicle was based on the total tkm trans-
ported in its useful life. The created inventory data for each case study are presented in the 
supplementary information SI-2.

4  Results and discussion

4.1  Impacts assessment and interpretation

Based on these findings from the inventory analyses, the life cycle impacts assessment 
results for each case are presented in Table 3. The contribution of each component of the 
proposed system is shown in Fig. 6 for the different case studies.

In general, the assessed service in Malaysia had the highest impacts per tkm mainly 
because of the low load factor of this freight service, being the total impacts allocated in 
fewer transported tonnes.

According to Fig. 6, in Colombia and Malaysia, the prevalent responsible in most of the 
impact categories was the traffic process, while in Spain, it was mainly the production of 
fuel.

Table 3  LCA midpoint results for the total system per tkm

Impact category Units Colombia Malaysia Spain

Climate change kg  CO2 eq 1.67E-01 8.01E-01 2.31E-01
Ozone depletion kg CFC11 eq 3.45E-08 4.10E-08 3.60E-08
Ionizing radiation kBq U235 eq 1.43E-03 5.49E-02 1.19E-02
Formation of particulate matter PM10 kg eq 6.56E-04 2.34E-03 2.11E-04
Formation of photochemical oxidants kg NMVOC 2.61E-03 8.29E-03 5.16E-04
Terrestrial acidification kg  SO2 eq 1.47E-03 5.05E-03 4.38E-04
Fresh water eutrophication kg P eq 1.04E-05 4.32E-05 1.74E-05
Marine eutrophication kg N eq 1.03E-04 5.22E-04 9.16E-05
Terrestrial ecotoxicity kg 1,4-DCB eq 1.43E-04 2.30E-03 1.54E-03
Fresh water ecotoxicity kg 1,4-DCB eq 4.15E-04 2.26E-03 1.10E-03
Marine ecotoxicity kg 1,4-DCB eq 4.41E-04 2.96E-03 8.73E-04
Human toxicity kg 1,4-DCB eq 2.94E-02 1.12E-01 2.62E-02
Agricultural land occupation m2. yr 1.06E-02 2.76E-02 9.71E-03
Urban land occupation m2. yr 4.26E-03 5.04E-03 8.01E-03
Natural land transformation m2 -2.44E-04 4.37E-04 1.71E-04
Mineral resource depletion kg Fe eq 4.30E-03 2.12E-02 1.01E-02
Fossil fuel depletion kg oil eq 5.68E-02 2.52E-01 7.12E-02
Water consumption m3 4.26E-04 2.24E-03 8.21E-04
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In general terms, the traffic process generated the highest contributions to global warm-
ing (from 72 to 86%) and terrestrial ecotoxicity (from 66 to 88%). It is followed by the 
fuels production component with a high contribution to marine eutrophication (from 88 to 
96%), fossil fuel depletion (from 81 to 89%), and land use in Malaysia and Spain.

The contribution of vehicle manufacturing was moderate in Colombia and Malaysia, 
with the most significant impacts in the categories of mineral resources depletion (from 41 
to 47%) and human carcinogenic toxicity (from 36 to 50%). Nevertheless, in the Spanish 
case, the environmental impacts of this input were present in many more categories.

Road construction had the highest contribution in the urban land occupation category, 
with significant differences for the other impacts among the three countries. In Malaysia, 
the low contribution road construction in the assessed service was due to the significant 
traffic volume along the roads; hence, the allocation of road construction to the specific 
service was minimal. On the contrary, a high proportion of the assessed roads in Spain 
corresponded to highways, which present relatively low traffic volumes. Here, the assign-
ment of the impacts associated with the construction of highways to each transported tkm 
was considerable, which explains its high contribution to most of the impact categories. In 
addition, the traffic process in the Spanish case had lower contributions than in the other 
cases because a Euro VI truck was used, emitting low pollutant emissions. Consequently, 
the lower the impact of the traffic process, the more significant the contribution of the other 
components in the related categories.

One of the main results to be analysed was the positive impact on the natural land trans-
formation category in the Colombian case study due to the fuel production component, 
Fig. 6. In this sense, the midpoint characterization results for the production and distribu-
tion of B10 diesel (90% fossil diesel + 10% palm oil biodiesel) in the Colombian case are 
shown in Fig. 7.

This positive environmental impact in Fig. 7 was due to palm oil biodiesel produc-
tion, positively impacting climate change. However, this positive accounting is debat-
able. Firstly, the natural land transformation was considered positive in the ReCiPe 
method because most palm oil has been planted on former grasslands or annual crops 
(ETH 2022) in Colombia, which is considered reforestation. However, considering mon-
ocultures as forests is debatable mainly due to biodiversity issues (Fonseca 2003) and 
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Fig. 6  Contribution of the system components in midpoints
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the effect on native forests and carbon stocks from indirect land use changes (EFE 2015; 
Grainger 2013; Vijay et al. 2016). Secondly, ReCiPe considered the absorption of  CO2 
during palm growing positively, but this is not correct when this biomass is for combus-
tion, where  CO2 is re-released. The additional carbon stock in the soil is released when 
the land is prepared for another crop. In the updated method ReCiPe 2016, these posi-
tive accountings were removed, consequently increasing the climate change results from 
232 to 320 g  CO2eq per kg of B10 diesel at a fuel station.
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Fig. 7  WTT analysis of 1 kg of B10 at Pereira station
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In addition to analysing which components of the transport systems had greater 
or lesser relevance in each impact category, it is important to analyse the normalized 
results to identify the magnitude of impacts on the global environmental problem, as 
shown in Fig. 8.

It could be concluded that the results of the LCA for the cases of Colombia and 
Malaysia agreed with similar studies for Europe (Spielmann et  al. 2007) and North 
America (Facanha & Horvath, 2007; Nahlik et  al., 2016), where the traffic process is 
responsible for most of the emissions related to climate change and air quality, such 
as  CO2, CO, NOx, PM and NMVOC. However, when the normalized results are iso-
lated for the traffic process, as shown in Fig. 9 for the Colombian case, emissions from 
fuel combustion are not the only primary source of pollution. Vehicle maintenance and 
brake abrasion also generate toxic pollutants such as copper and other metal particles 
released into the air and water. Specifically, impacts of maintenance activities are due 
to the use of electricity, which requires the use of cooper in the distribution networks.

In this same line, the analysis of the impact of the fuel production on the different 
environmental impact categories also yields information of interest Fig. 10.

In the Malaysian (diesel B7) and Spanish (diesel B5) case studies, biodiesel in the 
fuel mixture had a higher contribution than its proportion in the mixture in categories 
related to ecosystems toxicity and atmospheric pollution. For example, biodiesel (fatty 
acid methyl ester, FAME) production was responsible for 36% of the total  CO2eq emis-
sions from diesel B5 in Spain. The production of 1 kg of FAME from crude palm oil 
imported from Indonesia generates 5.12 kg  CO2eq, while the production of 1 kg of ultra-
low sulphur diesel (ULSD) produces 0.46  kg  CO2eq. Unlike other energy crops that 
tend to be established in already exploited soils, most palm oil crops in Indonesia were 
settled in tropical and peat forests, whose preparation for cultivation releases a large 
amount of  CO2.

Fig. 9  Normalized results. Traffic 
process—Colombia 0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05
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Contrary to expectations, the incorporation of biofuels in the case of Spain and 
Malaysia caused an increase in the impacts on climate change and land uses, which 
placed a burden on final damages to ecosystems.

In order to compare the global environmental impact of each of the three freight 
transport services, the contribution of each transport component in the aggregated score 
is shown in Fig. 11. It can see that the most significant differences are due to the key 
parameters: vehicle characteristics (technological and regulatory differences), route 
typology, and service efficiency.

The type of route, mainly a one-lane road in each direction in mountainous terrain 
and the efficiency of the vehicle, explains the high fuel consumption per km travelled 
in the case of Colombia. Even though fuel consumption was higher in the Spanish 
case than in the Malaysian case, emissions control measures in the vehicle make direct 
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emissions less dominant in the Spanish case. In this sense, the lower the traffic impacts 
of using a Euro VI vehicle, the higher the contributions of the rest of the components.

In the Colombian case, although the environmental impacts per unit of fuel are low, the 
high fuel consumption in the route explains the critical contribution of this component in 
the aggregated score. On the other hand, the low contribution of the vehicle manufacturing 
is because the truck was usually used with high load factors and a longer vehicle life span 
than in the other cases.

As for the road construction process, the expenditure of energy and materials for con-
structing highways was high, but it was compensated by a high volume of traffic per km 
built. In Malaysia, the traffic volume was double that in Spain, making the environmental 
impact of road construction very low per each transported tkm.

In brief, addressing the environmental impacts of transport services with a holistic 
approach has allowed us to identify hotspots in other components than the traffic process 
and understand the extent to which the kinds of vehicles, fuels, and roads contribute to 
the total environmental impacts. The significant impacts related to the emissions control 
technology, the kind of fuel, and road reveal the need for promoting different propulsion 
technologies and transport modes and their respective infrastructures to enable more fluid 
and efficient freight services. The results of this study would also suggest the implanta-
tion and evaluation of freight services on electric vehicles, following the electrification of 
processes in the way to the net-zero emissions scenario. However, the observed impacts 
on toxicity due to the electricity distribution networks might suggest that electric vehicles 
would be acceptable as long as they use electricity locally produced in a distributed manner 
on small-scale plants from renewable sources.

4.2  Validation of results

The proposed methods for estimating the emissions of vehicle operation have demonstrated 
to increase the accuracy of the results, especially for transport services in mountainous or 
steep areas where the fuel consumption ratios and the average emission factors available in 
the literature are not representative. For example, the averaged fuel consumption for this 
route informed by the transport company in the case in Colombia was 58 L/100 km. How-
ever, if fuel consumption was estimated by using Tier 2 factors, considering only the vehi-
cle’s size and emissions control technology, as well as the energy density of diesel B10, 
the estimate would be 21.6 L/100 km. While using Tier 3 equations for the whole route, 
considering also a unique average road gradient, the estimate would be 39.2 L/100 km. In 
contrast, the obtained estimate of 44.7 L/100 km by the proposed Tier 3 by sections was 
closer than other methods. For example, a well-known web-based free access tool, such as 
EcoTransIT (IFEU 2022), estimates a consumption of 24 L/100 km for the Pereira-Quibdo 
transport service. Moreover, the Ecoinvent datasets also use Tier 2 factors, based on the 
Handbook emission factors for road transport-HBEFA (Keller et  al., 2010), with aver-
age equivalent consumption of 19 L/100 km of diesel B10 for the 7.5–16 t diesel trucks 
datasets.

For the cases in Malaysia and Spain, the Tier 3 by sections method also gave the best 
estimates, even closer to the measured fuel consumptions. Tier 2 and Tier 3 estimates 
were not too different because the characteristics of the transport services through high-
ways were similar to the average European conditions. That is, using the methods Tier 2, 
Tier 3, Tier 3 by sections, and the direct measurement of the transport company, the fuel 
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consumptions rates were 18.5, 19.0, 21.6, and 26  L/100  km in the Malaysian case, and 
29.9, 30.5, 31.2, and 31.0 L/100 km in the Spanish case, respectively.

Regarding the impacts of the other components of the transport systems, the allocation 
of impacts through using specific load factors and vehicle lifespan, as well as the statistics 
for tkm and vkm travelled by each kind of vehicle in each country, also generated more 
accurate results than when life cycle inventories databases are utilised. For example, the 
total tkm transported in a 16-tonne rigid truck in Ecoinvent v2 were 1,582,200 tkm (Spiel-
mann et al. 2007), and in the current Ecoinvent v3 (ETH, 2022) database is 1,776,600 tkm; 
this given that the average load factors were updated from 2.93 t to 3.29  t for a vehicle 
lifetime performance of 540,000 km, based on the models EcoTransIT (Knörr et al., 2011) 
and Tremove (G et al., 2009). On the other hand, a total of 5,565,000 tkm were considered 
for the Colombian case due to the high average load factor and the 21 year vehicle lifespan. 
This difference is reflected in the transport components contributions, e.g. in the aggre-
gated endpoints assessment using the Ecoinvent datasets for a 7.5–16 t diesel truck, the 
vehicle manufacturing impact shared around 7% of the impacts, while in the Colombian 
case the share was 2.9%. Similarly, given that most of total Gtkm in Colombia are mobi-
lized over single-lane roads, whose construction generates fewer impacts than highways, 
as well as the high traffic volume on these roads, the allocation of these impacts per tkm 
was small. This situation resulted in a share of 3.2% of the infrastructure component in 
the Colombian case, in comparison with the average share of 10% using the Ecoinvent 
datasets.

The total tkm transported in the vehicle lifespan, as well as the total Gtkm mobilized 
in the specific roads, were also pointed out as relevant aspects by Nahlik et al. (2016) (fol-
lowing previous works published by Facanha and Horvath (2007)), whose results showed 
low contributions of the vehicle and infrastructure components on the total emissions per 
tkm. The authors concluded that these contributions were due to the high volume of freight 
traffic with large tonnage on the evaluated route. This scenario might be comparable to the 
analysed transport service in Malaysia. However, given that Nahlik et  al. (2016) did not 
characterized the emissions into impact categories, only the estimated quantity of  CO2eq 
per tkm could be compared to our results for the climate change category. They estimated 
emission factors of 0.34 and 0.22 kg  CO2eq per tkm transported in a medium- and large-
size diesel trucks, respectively, which are higher to the European datasets from Ecoinvent 
with averages of 0.21 and 0.09 kg  CO2eq per tkm transported by 7.5–16 t and > 32 t diesel 
trucks. While, in the case in Malaysia, the freight service in the medium-size vehicle gen-
erated an average of 0.80 kg  CO2eq per tkm. This large difference in the emission factor 
was due to the few tkm transported in the service in Malaysia, whose average load factor 
was only 1.0 t (i.e. 20% loaded in the outward journey and empty return). In contrast, the 
emission factor in the Colombian case was only 0.17 kg  CO2eq per tkm because the vehicle 
transported 10 t (full loaded), obtaining a lower rate per tkm despite the high fuel con-
sumption per km. Yet, a similarity of the Colombian and Malaysian cases with the Nahlik 
et al. (2016) study was the low contribution of infrastructure construction given the high 
traffic volume on the assessed roads. Another similarity with this study was the emission 
factor for large-size diesel truck for the case in Spain, where the service emitted 0.23  CO2eq 
per tkm. However, the contribution of infrastructure was near 10% in the Spanish case, 
mainly due to the relative low traffic volume. Moreover, despite the average load factor 
in this case was low (5.0 t, i.e. 40% loaded in the outward journey and empty return), the 
emission factor was not high given the high fuel efficiency due to the skilled driver, the 
modern Euro VI vehicle and, more importantly, the smooth driving conditions related to 
the low traffic volume.
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In short, this benchmark demonstrates that despite different services generate similar 
emission factors, each service has particularities that can be only analysed by a holis-
tic approach, which unveils the contributions to the total impacts of each transport sys-
tem component. The respective results can guide to analyse the causes of the impacts and 
design strategies to improve the environmental performance of transport services, based on 
well-defined components across the traffic operations.

5  Conclusions

Due to the energy transition and the need to improve the sustainability of the transport sec-
tor, a specific integrated methodology has been developed to deliver a better understand-
ing of the relevance of transport components for LCA practitioners. This methodological 
approach presents a novel perspective to define the boundaries and scopes of transport sys-
tems to address its evaluation logically and systematically. This integrated approach was 
applied to three different case studies. An Excel-based calculator to create the life cycle 
inventories for each transport component was developed, considering the specific charac-
teristics of the transport services in each case study in Colombia, Malaysia, and Spain. 
Additionally, the obtained results of the studies carried out in different countries and con-
tinents can be incorporated into the inventories of the life cycle of diesel and biodiesel 
production and construction and road maintenance for future studies in these territories.

As a general remark, this study raises awareness of the importance of the specific trans-
port modelling in the environmental assessments, resulting in enormous differences in the 
contribution of this input in the carbon or ecological footprints of any assessed product. 
This fact is significant when a product must be transported for long distances, making it 
necessary to establish strategies to reduce emissions focused on other transport compo-
nents than fuel combustion.

The results show that in the event of accounting only for exhaust emissions, the total life 
cycle emissions are underestimated between 15 and 30% in the case of  CO2eq and between 
10 and 80% for the rest of the atmospheric pollutants. It can also be deduced that mixing 
biofuels with diesel can exacerbate some of the impacts that are intended to be reduced. 
This situation raises concerns on the importance of analysing the origin of biofuels, which 
can cause worse impacts than fossil fuels if they come from burnt forests or displaced 
crops.

The obtained results also suggest the expansion in the debate and investigation about 
the critical points of the transport sector. Research on alternatives for road transport has 
focused on comparing the reduction in emissions by energy use, without giving relevance 
to the emissions caused by the abrasion of tires and brakes, which have relevant impacts on 
water and human toxicity. In general terms, it would mean increasing the energy efficiency 
of transport through both more efficient engines and better roads (in the case of Colombia); 
finding fuels with lower production impacts and balancing the traffic to the highways (if 
applicable in the case of Spain, the improvements would be substantial), and optimizing 
the load of the vehicles (in the case of Malaysia).

Since the overall aggregated scores depend on weighting factors used in the assessment 
method, they should be taken as an approximation to the real potential impacts and used 
only as a comparison. However, the results obtained for the three cases under study show a 
clear correlation with three critical parameters of a freight transport service: vehicle char-
acteristics, route topology, and service efficiency.
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Following all the above, one of the main contributions of this study is related to the 
decision-making process to define the most appropriate strategies and the priorities in 
each territory to achieve more environmentally sustainable transport services. In addi-
tion, the new system that has been defined in this analysis focused on the transversal 
traffic process also could be applied to other transport services by train or ship and 
intermodal, both goods and passengers.
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