000119928 001__ 119928
000119928 005__ 20240319081018.0
000119928 0247_ $$2doi$$a10.1016/j.jssc.2022.123525
000119928 0248_ $$2sideral$$a130718
000119928 037__ $$aART-2022-130718
000119928 041__ $$aeng
000119928 100__ $$0(orcid)0000-0001-8751-0983$$aOrera, Alodia$$uUniversidad de Zaragoza
000119928 245__ $$aEutectic ceramics of the CeO2 – ZrO2 – MgO system produced by laser-assisted directional solidification
000119928 260__ $$c2022
000119928 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119928 5203_ $$aOxide eutectics have great potentiality as structural or functional materials, owing to the outstanding properties derived from the eutectic microstructure. Among them, the eutectic of the ZrO2 – MgO system is particularly noteworthy because of the unusual combination of thermomechanical, optical and electrical properties. In a recent application, Zr1-δMgδO2-δ – MgO eutectic oxides have been used to produce porous supports for molten-carbonate based CO2 separation membranes. Here we explore composite ceramic oxides of the CexZr1-xO2 – MgO (x ​≤ ​0.5) system with eutectic microstructure, with the motivation that incorporating cerium may enhance the CO2 permeation properties. Eutectic composites with different cerium content are produced by a laser-assisted directional solidification technique at variable solidification rate, v. In all cases the composite bicrystal consists of two phases, MgO and a fluorite-like (CexZr1-x)1-yMgyO2-y phase. A purely fibrilar microstructure is found for x ​≥ ​0.3 ​at v ​= ​25 ​mm/h, with MgO fibres embedded within the fluorite-like matrix. The MgO mol% in the eutectic composites decreases from ∼53% for x ​= ​0 to ∼48% for x ​= ​0.5. X-ray and Raman results evidence long-range ordering in a quasi-tetragonal monoclinic symmetry for x ​= ​0.5. Impedance spectroscopy results are consistent with a change from ionic to mainly electronic conductivity when the atmosphere is changed from air or Ar to 5%H2–Ar.
000119928 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T02-20R$$9info:eu-repo/grantAgreement/ES/MCINN/AEI/RYC2018-025553-I$$9info:eu-repo/grantAgreement/ES/MCINN/FEDER/PID2019-107106RB-C32$$9info:eu-repo/grantAgreement/ES/MCINN/FEDER/PID2021-124863OB-I00
000119928 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000119928 590__ $$a3.3$$b2022
000119928 592__ $$a0.58$$b2022
000119928 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b13 / 42 = 0.31$$c2022$$dQ2$$eT1
000119928 591__ $$aCHEMISTRY, PHYSICAL$$b88 / 161 = 0.547$$c2022$$dQ3$$eT2
000119928 593__ $$aCeramics and Composites$$c2022$$dQ2
000119928 593__ $$aCondensed Matter Physics$$c2022$$dQ2
000119928 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ2
000119928 593__ $$aInorganic Chemistry$$c2022$$dQ2
000119928 593__ $$aMaterials Chemistry$$c2022$$dQ2
000119928 593__ $$aElectronic, Optical and Magnetic Materials$$c2022$$dQ2
000119928 594__ $$a5.6$$b2022
000119928 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119928 700__ $$0(orcid)0000-0003-3480-398X$$aOliete, Patricia B.$$uUniversidad de Zaragoza
000119928 700__ $$0(orcid)0000-0003-0747-405X$$aMerino, Rosa I.
000119928 700__ $$0(orcid)0000-0002-5793-2058$$aSanjuán, María Luisa
000119928 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000119928 773__ $$g315 (2022), 123525 [9 pp]$$pJ. solid state chem.$$tJOURNAL OF SOLID STATE CHEMISTRY$$x0022-4596
000119928 8564_ $$s2297607$$uhttps://zaguan.unizar.es/record/119928/files/texto_completo.pdf$$yVersión publicada
000119928 8564_ $$s2587320$$uhttps://zaguan.unizar.es/record/119928/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119928 909CO $$ooai:zaguan.unizar.es:119928$$particulos$$pdriver
000119928 951__ $$a2024-03-18-15:52:35
000119928 980__ $$aARTICLE