Resumen: Distributed acoustic sensors (DASs) based on direct-detection Φ-OTDR use the light–matter interaction between light pulses and optical fiber to detect mechanical events in the fiber environment. The signals received in Φ-OTDR come from the coherent interference of the portion of the fiber illuminated by the light pulse. Its high sensitivity to minute phase changes in the fiber results in a severe reduction in the signal to noise ratio in the intensity trace that demands processing techniques be able to isolate events. For this purpose, this paper proposes a method based on Unsupervised Anomaly Detection techniques which make use of concepts from the field of deep learning and allow the removal of much of the noise from the Φ-OTDR signals. The fact that this method is unsupervised means that no human-labeled data are needed for training and only event-free data are used for this purpose. Moreover, this method has been implemented and its performance has been tested with real data showing promising results. Idioma: Inglés DOI: 10.3390/s22176515 Año: 2022 Publicado en: Sensors 22, 17 (2022), 6515 [14 pp] ISSN: 1424-8220 Factor impacto JCR: 3.9 (2022) Categ. JCR: CHEMISTRY, ANALYTICAL rank: 26 / 86 = 0.302 (2022) - Q2 - T1 Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 19 / 63 = 0.302 (2022) - Q2 - T1 Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 100 / 274 = 0.365 (2022) - Q2 - T2 Factor impacto CITESCORE: 6.8 - Engineering (Q1) - Chemistry (Q1) - Biochemistry, Genetics and Molecular Biology (Q2) - Physics and Astronomy (Q1)