000119946 001__ 119946
000119946 005__ 20250422120332.0
000119946 0247_ $$2doi$$a10.1007/s00348-022-03497-4
000119946 0248_ $$2sideral$$a130634
000119946 037__ $$aART-2022-130634
000119946 041__ $$aeng
000119946 100__ $$0(orcid)0000-0001-7930-272X$$aLobera, Julia$$uUniversidad de Zaragoza
000119946 245__ $$aLarge field Digital Image Plane Holography with a double cavity high speed laser
000119946 260__ $$c2022
000119946 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119946 5203_ $$aThe three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a double cavity can also imply a small wavelength difference between the two laser beams. In this work, we present an improved Optical Path Length Enlarging Device that allows the velocity measurement, in a 2D field whose width is four times larger than the laser coherence length. The optical set-up and the procedure for measuring in a larger field (ten times the laser coherence length) were optimized, and the issues derived from the laser spatial and temporal coherence and wavelength changes were analyzed and solved. Digital Image Plane Holography with the Optical Path Length Enlarging Device and Particle Image Velocimetry were applied for measuring the whole velocity field in the central plane of a cylindrical cavity with a rotating lid, for two Reynolds numbers (800 and 2000), showing both of them a very good agreement with the numerical simulations.
000119946 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E44-17R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113303GB-C22$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2013-46799-C2-2-P/1-P$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2016-75791-C2-2-P/1-P$$9info:eu-repo/grantAgreement/ES/UZ/UZ2020-CIE-04
000119946 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000119946 590__ $$a2.4$$b2022
000119946 592__ $$a0.764$$b2022
000119946 591__ $$aMECHANICS$$b70 / 137 = 0.511$$c2022$$dQ3$$eT2
000119946 593__ $$aComputational Mechanics$$c2022$$dQ1
000119946 591__ $$aENGINEERING, MECHANICAL$$b71 / 136 = 0.522$$c2022$$dQ3$$eT2
000119946 593__ $$aPhysics and Astronomy (miscellaneous)$$c2022$$dQ1
000119946 593__ $$aMechanics of Materials$$c2022$$dQ1
000119946 593__ $$aFluid Flow and Transfer Processes$$c2022$$dQ1
000119946 594__ $$a4.9$$b2022
000119946 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119946 700__ $$0(orcid)0000-0001-5935-897X$$aArroyo, Mª Pilar$$uUniversidad de Zaragoza
000119946 700__ $$0(orcid)0000-0003-1183-7052$$aRoche, Eva Mª
000119946 700__ $$0(orcid)0000-0003-2639-3562$$aAndrés, Nieves$$uUniversidad de Zaragoza
000119946 700__ $$aSancho, Irene
000119946 700__ $$aVernet, Antón
000119946 700__ $$aPallarés, Jordi
000119946 700__ $$0(orcid)0000-0003-1955-6714$$aPalero, Virginia$$uUniversidad de Zaragoza
000119946 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000119946 773__ $$g63, 9 (2022), 150 [17 pp.]$$pExp. fluids$$tEXPERIMENTS IN FLUIDS$$x0723-4864
000119946 8564_ $$s7960030$$uhttps://zaguan.unizar.es/record/119946/files/texto_completo.pdf$$yVersión publicada
000119946 8564_ $$s1859523$$uhttps://zaguan.unizar.es/record/119946/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119946 909CO $$ooai:zaguan.unizar.es:119946$$particulos$$pdriver
000119946 951__ $$a2025-04-22-12:01:40
000119946 980__ $$aARTICLE