000119966 001__ 119966
000119966 005__ 20240319081021.0
000119966 0247_ $$2doi$$a10.3390/sym14091786
000119966 0248_ $$2sideral$$a130805
000119966 037__ $$aART-2022-130805
000119966 041__ $$aeng
000119966 100__ $$aFerreira, Alessandra F. S.
000119966 245__ $$aLow Thrust Propelled Close Approach Maneuvers
000119966 260__ $$c2022
000119966 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119966 5203_ $$aThe study of orbital maneuvers in space missions is a very important problem in astrodynamics. One of the options is the use of a “gravity assisted” maneuver, which is a technique where a spacecraft passes close to a celestial body and uses the gravity of this body to change its trajectory. This approach trajectory has symmetry with respect to the periapsis line when observed from a reference frame fixed in the approached body. There is also a more complex maneuver, when the passage by the celestial body is combined with the application of propulsion, either to give extra energy to the spacecraft or to help to satisfy other constraints required by the mission, like passing by a giving point or region in space. The main object of this study is to measure the efficiency of the application of a continuous thrust combined with the “gravity assisted” maneuver. The effect of this combination is analyzed using maps that give the energy variation of the spacecraft as function of the parameters related to the maneuver. This analysis is made from the point of view of the variation of energy of the spacecraft with respect to the main body of the system. The continuous thrust is applied in the different regions of the trajectory to evaluate the effects of the locations of the thrusting arcs in the variations of energy. The effects of the variations of the direction of the thrust are also studied. This type of combined maneuver may be used to give extra energy to the spacecraft and keeping control of the trajectory during the close approach to better position the spacecraft to complete the mission.
000119966 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-20R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ESP2017-87113-R
000119966 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000119966 590__ $$a2.7$$b2022
000119966 592__ $$a0.483$$b2022
000119966 591__ $$aMULTIDISCIPLINARY SCIENCES$$b36 / 73 = 0.493$$c2022$$dQ2$$eT2
000119966 593__ $$aChemistry (miscellaneous)$$c2022$$dQ2
000119966 593__ $$aPhysics and Astronomy (miscellaneous)$$c2022$$dQ2
000119966 593__ $$aMathematics (miscellaneous)$$c2022$$dQ2
000119966 593__ $$aComputer Science (miscellaneous)$$c2022$$dQ2
000119966 594__ $$a4.9$$b2022
000119966 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119966 700__ $$0(orcid)0000-0001-5208-4494$$aElipe, Antonio$$uUniversidad de Zaragoza
000119966 700__ $$aDe Moraes, Rodolpho V.
000119966 700__ $$aPrado, Antônio F. B. A.
000119966 700__ $$aWinter, Othon C.
000119966 700__ $$aGomes, Vivian M.
000119966 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000119966 773__ $$g14, 9 (2022), 1786 [23 pp.]$$pSymmetry (Basel)$$tSymmetry$$x2073-8994
000119966 8564_ $$s15395306$$uhttps://zaguan.unizar.es/record/119966/files/texto_completo.pdf$$yVersión publicada
000119966 8564_ $$s2696777$$uhttps://zaguan.unizar.es/record/119966/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119966 909CO $$ooai:zaguan.unizar.es:119966$$particulos$$pdriver
000119966 951__ $$a2024-03-18-16:16:18
000119966 980__ $$aARTICLE