000119968 001__ 119968
000119968 005__ 20240319081023.0
000119968 0247_ $$2doi$$a10.1016/j.jssc.2022.123476
000119968 0248_ $$2sideral$$a130725
000119968 037__ $$aART-2022-130725
000119968 041__ $$aeng
000119968 100__ $$0(orcid)0000-0002-6087-7467$$aOrús, Pablo
000119968 245__ $$aSuperconducting W-C nanopillars fabricated by Ga+ focused ion beam induced deposition
000119968 260__ $$c2022
000119968 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119968 5203_ $$aGa+ Focused Ion Beam Induced Deposition (FIBID) is a highly flexible, single-step nanopatterning technique that makes use of a focused beam of Ga+ ions to locally induce the decomposition of a gaseous precursor material. In combination with the W(CO)6 precursor, Ga+ FIBID is known to yield a W–C compound that is superconducting below 4.7 K. While most reports on Ga+ FIBID-grown W–C focus on in-plane patterning, we demonstrate here that growth along the vertical direction may also be achieved by successively stacking a series of individual patterns that get deposited on top of each other. The nanopillars obtained following this procedure reach up to 10 μm in height, and have an aspect ratio of around 50. They exhibit a 68% of metallic W in terms of atomic content, higher than the 40% detected in their in-plane counterparts, while maintaining the superconducting properties. This approach also opens up the possibility of tuning their height and growth angle with respect to the substrate, exhibiting potential applicability in the design of 3D superconducting devices.
000119968 536__ $$9info:eu-repo/grantAgreement/ES/CSIC/PIE-202060E187$$9info:eu-repo/grantAgreement/ES/CSIC/PTI-001$$9info:eu-repo/grantAgreement/ES/DGA/E13-20R$$9info:eu-repo/grantAgreement/EC/H2020/892427/EU/Focused Ion Beam fabrication of superconducting scanning Probes/FIBsuperProbes$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 892427-FIBsuperProbes$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2020-112914RB-I00
000119968 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000119968 590__ $$a3.3$$b2022
000119968 592__ $$a0.58$$b2022
000119968 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b13 / 42 = 0.31$$c2022$$dQ2$$eT1
000119968 591__ $$aCHEMISTRY, PHYSICAL$$b88 / 161 = 0.547$$c2022$$dQ3$$eT2
000119968 593__ $$aCeramics and Composites$$c2022$$dQ2
000119968 593__ $$aCondensed Matter Physics$$c2022$$dQ2
000119968 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ2
000119968 593__ $$aInorganic Chemistry$$c2022$$dQ2
000119968 593__ $$aMaterials Chemistry$$c2022$$dQ2
000119968 593__ $$aElectronic, Optical and Magnetic Materials$$c2022$$dQ2
000119968 594__ $$a5.6$$b2022
000119968 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119968 700__ $$aSigloch, Fabian
000119968 700__ $$0(orcid)0000-0002-4123-487X$$aSangiao, Soraya$$uUniversidad de Zaragoza
000119968 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, José María$$uUniversidad de Zaragoza
000119968 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000119968 773__ $$g315 (2022), 123476 [7 pp.]$$pJ. solid state chem.$$tJOURNAL OF SOLID STATE CHEMISTRY$$x0022-4596
000119968 8564_ $$s2423238$$uhttps://zaguan.unizar.es/record/119968/files/texto_completo.pdf$$yVersión publicada
000119968 8564_ $$s2678253$$uhttps://zaguan.unizar.es/record/119968/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119968 909CO $$ooai:zaguan.unizar.es:119968$$particulos$$pdriver
000119968 951__ $$a2024-03-18-16:28:36
000119968 980__ $$aARTICLE