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Combining MRI and clinical data to detect high relapse risk
after the first episode of psychosis
Aleix Solanes 1,2,3, Gisela Mezquida1,4,5,6, Joost Janssen5,7, Silvia Amoretti 1,4,5,8, Antonio Lobo 5,9,10, Ana González-Pinto5,11,12,13,
Celso Arango 5,7, Eduard Vieta1,5,8,14, Josefina Castro-Fornieles 1,5,8,15, Daniel Bergé3,5,16, Auria Albacete2, Eloi Giné 17,
Mara Parellada5,7, Miguel Bernardo 1,4,5,8, PEPs group (collaborators)*, Edith Pomarol-Clotet2,5,36✉ and Joaquim Radua1,2,5,18,19,36✉

Detecting patients at high relapse risk after the first episode of psychosis (HRR-FEP) could help the clinician adjust the preventive
treatment. To develop a tool to detect patients at HRR using their baseline clinical and structural MRI, we followed 227 patients with
FEP for 18–24 months and applied MRIPredict. We previously optimized the MRI-based machine-learning parameters (combining
unmodulated and modulated gray and white matter and using voxel-based ensemble) in two independent datasets. Patients
estimated to be at HRR-FEP showed a substantially increased risk of relapse (hazard ratio= 4.58, P < 0.05). Accuracy was poorer
when we only used clinical or MRI data. We thus show the potential of combining clinical and MRI data to detect which individuals
are more likely to relapse, who may benefit from increased frequency of visits, and which are unlikely, who may be currently
receiving unnecessary prophylactic treatments. We also provide an updated version of the MRIPredict software.
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INTRODUCTION
The discovery of associations between magnetic resonance
imaging (MRI) measures and mental disorders1 led to an initial
enthusiasm about finding MRI-based biomarkers, but we have
failed so far. However, new machine-learning methods have
reopened the possibility of creating MRI-based tools that, while far
from perfect biomarkers, could still help the clinicians2. These
tools could help the clinicians diagnose, predict the response to
treatment, or estimate the risk of a bad outcome, adjusting the
overall intervention accordingly.
Up to the moment, most MRI-based machine-learning studies

have aimed to classify the individuals (e.g., patient vs. control, or
between two diagnoses), and some other research has been
devoted to creating models that estimate the risk of a bad
outcome. For instance, many studies have investigated whether it
is possible to use clinical data3, MRI data4, or their combination5 to
detect healthy individuals at high risk for psychosis. These studies
have reported higher transition rates to psychosis in individuals
that are males, have brief limited intermittent psychotic symp-
toms, or show reduced cortical gray matter6,7.
Conversely, very little research has focused on detecting those

patients with first episode of psychosis (FEP) at high relapse risk
(HRR). This lack of research is striking because FEP represents one
of the main challenges for mental health8. Without an appropriate
differential diagnosis and early intervention, clinical development
after FEP can lead to a chronic condition9. Detecting subjects at

HRR is crucial since relapse puts their psychosocial recovery at risk,
raises the chance of treatment resistance, and has been linked to
higher direct and indirect social and economic costs10. A few
studies have created models to estimate this risk based on clinical
data11,12, using variables such as the presence of manic and
negative symptoms13–15, the diagnosis12,15, or cannabis use11,16,17.
Fewer studies have created models to estimate the risk of
outcomes other than relapse (e.g., the severity of future
symptoms) based on brain MRI data18,19, using volumetric brain
changes during the first year20 or voxel/surface-based data18. And
to our knowledge, no studies have attempted to create MRI-based
relapse risk-estimation models.
This lack of research is unfortunate, given that a structural MRI-

based tool able to detect FEP-HRR would be clinically valuable and
feasible. It would be valuable because even if the accuracy of the
HRR-FEP detection was modest, it could help the clinician adjust the
follow-up and treatment of the patients as deemed beneficial21. It
would be feasible since individuals with a FEP may undergo an MRI
to discard organic brain pathology, so that the structural MRI
required for this tool would serve both. This better clinical
management would reduce the number of relapse-related hospita-
lizations in patients at HRR-FEP and exclude patients at low relapse
risk from therapies unnecessary for them. Therefore, it would
improve the quality of life of individuals with a FEP and reduce the
burden on National Health System expenditure.
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The current study investigated whether structural MRI might
help detect patients at HRR-FEP. To this end, we created an HRR-
FEP detection tool. Additionally, we report how we previously
optimized the MRI-based machine-learning parameters, using two
independent datasets to avoid data leakage or over-complexity
(see clarification later). We also freely provide the updated MRI-
based machine-learning software to allow other groups to
develop their own detection models and a website (see “Available
resources”) that estimates HRR-FEP quickly to help other groups
independently replicate our model’s accuracy assessment.

METHODS
See Fig. 1 for a view of the overall steps of the study. This study
complies with the Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis (TRIPOD,
see checklist in the Supplement).

Participants
The cohort included 227 adolescents/adults with a FEP from 7
different hospitals in Spain, including a previous multicenter
study22,23, prospectively followed for two years. We invited all
patients who met the inclusion criteria during the recruitment
periods to join the study. We estimated the sample size based on a
previous meta-analysis24, in which the relapse rate at two years was
around 37%. With this estimation, the overall sample size to detect a
hazard ratio (HR)= 2 between patients at HRR-FEP and patients at
low relapse risk had to be 190 according to R package powerSurvEpi
(https://CRAN.R-project.org/package=powerSurvEpi). We included
20% more to compensate for potential early drop-outs. The mean
age was 24.2 years (SD 7.4), and there were 78 females (34.4%) (Table
1). The sample included both young adolescents (12–14 years, n= 6)
and late adolescents/adults (15–59, n= 221); as detailed later, to
ensure that the estimation of the model accuracy is not confounded
by mixing young adolescents with old adolescents/adults, we

Predic�on of age

Predic�on of schizophrenia

Detec�on of HRR-FEP

Baseline data acquisi�on

•Structural MRI
•N=128 pa�ents with 
schizophrenia

•N=127 healthy individuals

MRI pre-processing

•Visual inspec�on
•Gray & white ma�er 
segmenta�on

•MNI normaliza�on

Test of MRI-based ML 
parameters 

•Addi�on of features
•Varying smoothing kernels
•Varying subsampling
•Ensemble methods

Predic�on models

•Remove effects sex and age
•Logis�c LASSO regression
•Outcome: Schizophrenia 
diagnosis

•Independent variables: MRI voxel 
values

Baseline data acquisi�on

•Structural MRI
•N=120 healthy individuals

MRI pre-processing

•Visual inspec�on
•Gray & white ma�er 
segmenta�on

•MNI normaliza�on

Test of MRI-based ML 
parameters 

•Addi�on of features
•Varying smoothing kernels
•Varying subsampling
•Ensemble methods

Predic�on models

•Remove effects sex
•Gaussian LASSO regression
•Outcome: Age
•Independent variables: MRI voxel
values

Baseline data acquisi�on

•Structural MRI
•Clinical variables (PANSS, CGI-S,
etc.)

•N=227 pa�ents with FEP
•7 different sites

MRI pre-processing

•Visual inspec�on
•Gray & white ma�er 
segmenta�on

•MNI normaliza�on
•Addi�on of features
•Subsampling and smoothing
•Voxel-level ensemble

Follow-up

•Followed un�l relapse or for 18-
24 months

Predic�on models

•Remove effects of site, sex and
age

•Cox LASSO regression followed by
group assigna�on (HR>1 vs HR<1)

•Outcome: Risk group (HRR-FEP
vs. low relapse risk)

•Independent variables: MRI voxel
values + Clinical data

Fig. 1 Main study steps. Overall steps followed in this study.

Table 1. Description of the cohort (n= 227).

Age 24.2 (7.4)

Sex: female 78 (34.4%)

Familiar psychiatric history 110 (58.2%)

Affective* 54 (28.6%)

Suicide* 3 (1.4%)

Affective psychosis 48 (21.1%)

Baseline diagnosis

Schizophrenia 78 (34.4%)

Bipolar disorder 41 (18.1%)

Schizoaffective disorder 12 (5.3%)

Substance-induced psychosis 10 (4.4%)

Major depressive disorder 5 (2.2%)

Other** 81 (35.7%)

Positive and Negative Syndrome Scale (PANSS) 71.2 (SD 24.4)

Positive scale 17.6 (SD 7.9)

Negative scale 18.2 (SD 8.5)

General psychopathology scale 35.9 (SD 12.7)

Global Assessment of Functioning scale (GAF) 50.5 (SD 19.7)

Clinical Global Impression scale (CGI-S) 4.4 (SD 1.1)

Young Mania Rating Scale (YMRS) 7.9 (SD 10.2)

Montgomery Asberg Depression rating scale (MADRS) 0.2 (SD 9.9)

Long-acting injectable antipsychotic 15 (6.6%)

*Familiar affective history included diagnoses such as bipolar disorder or
MDD. Familiar suicide history included consummated attempts.
**Other baseline diagnoses included brief psychotic disorder, schizophreni-
form disorder, delusional disorder, and psychotic disorder not otherwise
specified.
Data are presented as mean (SD) or number (%).
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repeated the validation of the model after excluding young
adolescents.
We defined relapses as exacerbations of symptoms during at

least one week with at least one of eight PANSS items (P1, P2, P3,
N1, N4, N6, G5, and G9) scoring above 3 (mild)25. On the contrary,
remission was defined as scoring <3 in all eight PANSS items. We
only considered relapse after at least 6 months of remission.
We detail the inclusion/exclusion criteria and a more detailed

description of the cohort in the Supplement. The ethical
committees of all hospitals had approved the study, conducted
according to the Declaration of Helsinki. Furthermore, all
participants and parents/legal guardians for adolescents under
16 had given written informed consent.

Collection and processing of baseline structural MRI data
We acquired a high-resolution structural image from each
participant with a T1-weighted gradient-echo sequence with
different devices (see Supplement for details). We used a voxel-
based morphometry (VBM) pre-processing pipeline because we
have previously found higher accuracy using VBM data26 (see
Supplement for details).

Removal of the effects of the site
The effects of the site (e.g., differences in MRI data due to using
different devices) might increase noise and confound the analyses.
To remove them, we used a recently developed method to control
for batch effects named ComBat, as several studies have shown its
superiority to simply adding “site” as a covariate in the linear
models27,28. We found the ComBat parameters (i.e., the MRI
differences between sites) using the processed images from
exclusively the training set (i.e., we did not use the test set to find
the parameters). We then removed the effects of the site from the
processed images of both the training and the test sets using
these parameters. We must highlight again that the effects of the
site were estimated only using individuals from the training set
(i.e., not a single piece of information from the test set), thus
preventing any information leak. We have previously modified the
ComBat functions to allow this separate estimation and applica-
tion of the ComBat parameters28.
We also controlled the effects of the site when estimating the

model’s accuracy (see details later), which is important because
the effects of the site might bias the accuracy even when
researchers attempted to remove them during the creation of the
machine-learning model29.

Optimization of MRI-based machine-learning parameters
We optimized the MRI-based machine-learning parameters using
two independent datasets. Our main reason for using indepen-
dent datasets was to avoid any data leakage. We reasoned that if
we used the same cohort to optimize the machine-learning
parameters and create the risk-estimation model, we could end up
validating this model in patients we had previously used to
optimize the parameters (based on the best relapse risk
estimations). We acknowledge that one strategy to prevent such
data leakage would be optimizing the parameters separately for
each fold via within-fold cross-validation using the training sets
exclusively. However, such a strategy could result in different MRI
parameters for the different folds, creating over-complexity in the
model. Rather, we looked for general MRI settings that would be
stable not only for the different folds but for different predictions
or studies.
One dataset included 120 healthy individuals30, and we used

their MRI data to predict a continuous variable (their age). The
other dataset included 255 individuals, half of them with a
schizophrenia diagnosis26,30,31, and we used their MRI data to
predict a binary variable (whether they had received the

schizophrenia diagnosis or not). See the Supplement for details.
The creation of machine-learning models was analog to the one
described later.
We defined the default settings as unmodulated gray matter

images, smoothed with a kernel of σ= 4mm (corresponding to
FWHM= 9.5mm) and a voxel size of 3 × 3 × 3mm3. We tested
whether the accuracy of MRI-based machine-learning models
depended on: the addition of features (gray and white matter
images, modulated and unmodulated images as they convey
complementary volumetric information30, global gray matter
volume and global brain volume, and the midline abnormalities
cavum septum pellucidum and absence of adhesion interthala-
mica, previously reported as good predictors in FEP31,32), the size of
the smoothing kernels (from σ= 2 to 6mm, corresponding to
FWHM ≈ 5.3–15.8 mm, i.e., encompassing the usual widths of
standard neuroimaging software) since the previous literature
differs in the optimal kernel size18,26, or the use of ensemble
methods. Ensemble learning methods seek better prediction
performance and robustness by combining the predictions of
different models. We used two ensemble methods: (a) we
resampled the subjects with replacement 18 times and repeated
the creation of the risk-estimation model with each of the 18
resampled datasets, and (b) we selected half of the brain 18 times
(i.e., dividing the brain in different angles) and repeated the
creation of the risk-estimation model with each of the 18 half
brains. Any of these two ensemble methods resulted in 18 risk-
estimation models, which we applied to the test set, resulting in 18
risk estimations per patient. Finally, we calculated the mean of the
18 risk estimations to obtain a single risk-estimation per patient.
On another note, we tested two approaches to reduce the

computational cost: applying additional subsampling
(6 × 6 × 6mm3 or 12 × 12 × 12mm3, instead of 3 × 3 × 3mm3)
and limiting the analyses to statistically significant voxels
(P < 0.05 uncorrected at the univariate analysis).
We defined the accuracy of the age predictions as the mean

absolute error (MAE) between the predicted and the actual age
and the accuracy of the diagnostic predictions as the proportion
of correct predictions. Finally, we assessed whether differences in
accuracy between the analysis using a given parameter and the
reference analysis (unmodulated gray matter smoothed with
σ= 4mm) were statistically significant by conducting a paired-
sample Wilcoxon test of the absolute errors of the two analyses.

Creation and validation of the HRR-FEP detection tool
We used a cross-validation scheme to create the tool using a set of
patients and validate it using a new set of patients. Specifically, we
randomly divided the overall cohort into ten groups or “folds” trying
to preserve a similar number of relapses in each fold. First, we
created the model using data from individuals from folds 2 to 10 (the
“training set”), and we estimated the relapse risk of individuals from
fold 1 (the “test set”) (Fig. 2). We then created the model using data
from individuals from folds 1 and 3–10, and we estimated the relapse
risk of individuals from fold 2. And so on. Therefore, we could
estimate the relapse risk of all individuals, but we never used the
same individuals for training and validating the model.
The creation of the HRR-FEP models in the training set consisted

of fitting a multiple regression. The dependent variable was the
time to relapse. The independent variables were the clinical data
(including the items from the symptom scales PANSS, GAF,
MADRS, YMRS, the diagnosis, and whether the patient was taking
long-acting injectable antipsychotic treatment) and the voxel
values of the pre-processed MRI. Before conducting the regres-
sion, we removed the effects of age and sex from the training MRI
data with standard linear models. We must highlight once more
that the effects of age and sex were estimated only using
individuals from the training set (i.e., not a single information from
the test set), thus preventing any information leak. We also scaled
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the clinical variables to the [0-1] range to have a distribution like
the MRI voxels. To avoid overfitting, we used a “lasso” regression,
which automatically selects a few regressors by penalizing the
sum of the absolute value of the coefficients and has been proven
to be able to deal with high-dimensional data and still achieve
high-performance models33. A regularization parameter defines
the amount of penalization, ranging from null (no penalization, as
in a standard regression) to infinity (maximum penalization). This
regularization parameter is automatedly selected by the algorithm
via internal cross-validation within the training set. We chose the
lasso regression algorithm for its good performance26, simplicity,
and adequacy for survival analyses. All these previous steps
estimated using the training set were applied later to the test set
to validate the performance of the model.
In other words, we found a risk-estimation model using the

patients of the training set exclusively, and afterward, we applied
the model to the patients of the test set to estimate their risk of
relapse. To estimate a patient’s risk, we multiplied each coefficient
of the lasso model (see Table 3) by the value of the variable in the
patient and added the results. If the sum was >0 (corresponding
to a HR > 1), we considered that the patient was at HRR-FEP.
Conversely, if the sum was ≤0 (corresponding to HR ≤ 1), we
considered the patient at low relapse risk.
To test whether individuals estimated to be at HRR-FEP had

statistically more relapses than individuals at low relapse risk, we
used the “multisite.accuracy” package29, which considers the site’s
residual effects when estimating the accuracy. Specifically, we
conducted a mixed-effects Cox proportional hazards regression
(https://CRAN.R-project.org/package=coxme). The dependent
variable was the time to relapse. The independent variable was
the estimated risk group (HRR-FEP vs. low relapse risk), and the
site was a random factor of no interest.

To rule out whether the model’s accuracy could mainly depend
on MRI data or clinical data, we also created HRR-FEP detection
tools exclusively based on MRI data or clinical data. Also, for
descriptive purposes, we mapped the brain regions univariately
associated with increased or decreased relapse risk after the FEP
using standard survival analyses (see Supplement).
We conducted the analyses with our freely available graphical

software MRIPredict (which we have updated for this work), based
on the “glmnet” package for R (https://glmnet.stanford.edu/).

Available resources
Groups interested in conducting similar analyses can download
our free graphical-user-interface MRIPredict software at https://
www.mripredict.com/.
We encourage independent groups to replicate our model’s

accuracy assessment. To help them, we provide a website-based
version of the tool (https://www.mripredict.com/hrr-fep/) that
quickly estimates the HRR-FEP of an individual. For the website,
we fitted a model using the whole cohort and selected the
coefficients with an absolute value ≥0.05 (see Supplement); its risk
estimations seem perfect (all relapses are in HRR-FEP individuals).
However, this accuracy is inflated because it uses the same
individuals for training and testing; we obtained a more reliable
accuracy estimation with cross-validation (see next). In addition,
we only offer this tool to support replication by other researchers;
the tool estimations must be considered experimental.

RESULTS
Cohort description
There were 16 relapses, representing a 9.4% relapse rate at
24 months. Note that while the number of relapses was limited,
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Fig. 2 MRIPredict flowchart. Creation of the high relapse risk after the first episode of psychosis (HRR-FEP) detection tool.
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it still yielded enough statistical power to detect meaningful
differences in relapse risk between groups (e.g., using the R
package powerSurvEpi, we estimated that we had 70%/80%/
90% power to detect a HR= 4.3/5.7/9.5). The median time from
scan to relapse (in patients who had a relapse during the follow-
up) was 7.4 months, and the median time from scan to the last
follow-up visit (in patients with no relapse during the follow-up)
was 23.7 months. We detected no statistically significant
differences in relapse risk between affective and non-affective
psychosis or between diagnoses, except increased risk in
patients with a schizoaffective disorder diagnosis (HR= 3.6,
P= 0.046).

Optimal MRI-based machine-learning parameters
When optimizing the MRI-based machine-learning parameters,
we found that adding gray and white matter images,
unmodulated modulated images, and the use of a voxel-level
ensemble improved the accuracy (Table 2). Conversely, using
subject-level ensemble worsened the accuracy. The other
varying parameters did not influence accuracy. We thus
selected the addition of gray and white matter images,
unmodulated and modulated images, and the use of a voxel-
level ensemble for the HRR-FEP analyses. We also chose triple
subsampling because it makes all calculations substantially less
computationally expensive.

Table 2. Optimization of MRI-based machine-learning parameters.

Adjustment Age predictions Diagnostic predictions

MAE Absolute
P value(a)

Relative
P value(b)

Accuracy Absolute
P value(a)

Relative
P value(b)

Addition of features No (reference) 7.4 years <0.001 – 70.8% <0.001 –

+white matter and modulated images 6.2 years <0.001 0.006 68.6% <0.001 0.039

+ global volumes 7.4 years <0.001 n.s. 70.8% <0.001 n.s.

+midline abnormalities – – – 70.7% <0.001 n.s.

<0.001

Varying smoothing
kernel width

σ= 2mm 7.8 years <0.001 n.s. 68.9% <0.001 n.s.

σ= 3mm 7.2 years <0.001 n.s. 69.4% <0.001 n.s.

σ= 4mm (reference) 7.4 years <0.001 – 70.8% <0.001 –

σ= 5mm 7.5 years <0.001 n.s. 71.2% <0.001 n.s.

σ= 6mm 7.5 years <0.001 n.s. 70.8% <0.001 n.s.

<0.001

Subsampling Single (reference) 7.4 years <0.001 – 70.8% <0.001 –

Double subsampling 7.5 years <0.001 n.s. 70.6% <0.001 n.s.

Triple subsampling 7.3 years <0.001 n.s. 70.3% <0.001 n.s.

Only statistically significant 7.4 years <0.001 n.s. 71.0% <0.001 n.s.

<0.001

Ensemble No (reference) 7.4 years <0.001 – 70.8% <0.001 –

Subjects 8.5 years <0.001 <0.001 64.4% <0.001 0.001

Voxels (half brains) 7.1 years <0.001 0.002 73.2% <0.001 0.034

<0.001

Optimal parameters +white matter and modulated images,
triple subsampling, the ensemble
of voxels

6.3 years <0.001 <0.001 74.4% <0.001 0.043

MAE mean absolute error.
(a) Wilcoxon test comparing the predictions obtained with these settings with the predictions obtained with a null model (i.e., predicting that all individuals
have the average age of the sample for age predictions, or to flipping a coin for diagnostic predictions).
(b) Wilcoxon test comparing the predictions obtained with these setting with the predictions obtained with the reference settings (unmodulated gray matter
smoothed with σ= 4mm and no subsampling or ensemble).

Fig. 3 Observed relapses depending on estimated risk group.
Kaplan–Meier curves of the observed relapse in patients estimated
to be at high relapse risk after the first episode of psychosis (HRR-
FEP) vs. patients at low relapse risk.
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HRR-FEP detection
The Cox regression of the time to relapse comparing patients
estimated to be at HRR-FEP vs. low relapse risk was clinically
relevant (HR= 4.58, i.e., HRR-FEP patients had five times more risk
to relapse) and had a (borderline) statistical significance (HR 95%
confidence interval= 1.01–20.74, Z= 1.98, P= 0.048, Fig. 3). The
results were identical when we excluded young adolescents (i.e.,
12–14-years-old). In the 114 individuals estimated to be at HRR-
FEP, there were 13 relapses, representing a 14.8% relapse rate at
24 months. Conversely, there were only three relapses in the 113
individuals estimated to not be at HRR-FEP, representing a 2.9%
relapse rate at 24 months. Using the R package powerSurvEpi, we
estimated that the power to detect a HR= 4.58 with 16 relapses is
72%. The variables automatedly selected by the lasso regression
to create the HRR-FEP detection tool were the diagnosis of
schizoaffective disorder, the lack of difficulty in abstract thinking
and poor impulse control, and the increase or decrease of
unmodulated and modulated gray and white matter in several
brain regions. Table 3 details the specific brain regions and clinical

variables detected in the descriptive univariate analysis and the
machine-learning model. We report the entire machine-learning
model in the Supplement.
The HRR-FEP detection tools exclusively using MRI data or solely

based on clinical variables failed to detect patients at HRR-FEP.

DISCUSSION
In this work, we created an MRI-based machine-learning tool to
detect those patients at HRR-FEP using a cohort of 227 individuals
with a FEP. The model showed to detect HRR-FEP successfully. The
hazard of relapse was 4.5 larger in individuals estimated to be at
HRR-FEP than in low relapse risk individuals (14.8% vs. 2.9%
relapse rate at 2 years), and we estimated the power to detect
such a hazard ratio of 4.5 with 16 relapses is 72%.
The study thus achieved the aim of creating a tool that may

provide valuable information to the mental health professional.
Ideally, the clinician could input the tool with a few MRI and clinical
data to know if the patient is estimated to be at HRR-FEP or not,

Table 3. Descriptive univariate analysis and machine-learning estimators of high relapse risk after the first episode of psychosis (HRR-FEP).

Descriptive univariate analysis Machine learning

Clinical variables

Schizoaffective disorder HR= 3.6, P= 0.046 β=+0.24

↓ Poor rapport (PANSS N3) – β=−0.01

↓ Difficulty in abstract thinking (PANSS N5) HR= 0.6, P= 0.044 β=−0.074

↓ Conceptual disorganization (PANSS P2) – β=−0.01

↓ Poor attention (PANSS G11) – β=−0.04

↑ Age in years HR= 1.1, P= 0.008 –

↑ Long-acting injectable antipsychotic – β= 0.01

Gray matter increase

↑ R Postcentral – Unm, [54, −6, 24], β=+0.93

Gray matter decrease

↓ R middle temporal – Unm, [66, −6, −12], β=−0.43

↓ R inferior frontal/precentral – Unm, [30, 6, 36], β=−0.21
Mod, [42, 6, 36], β=−0.18

↓ R middle frontal – Unm, [30, 42, 36], β=−0.20

↓ R/L rectus Unm, [−6, 30, −36], z=−2.6 Mod, [6, 30, −24], β=−0.17
Unm, [6, 30, −24], β=−0.15

↓ L superior frontal Unm, [−18, 66, −24], z=−2.8 –

↓ R medial frontal Unm, [6, 78, −12], z=−2.6 –

↓ R Angular – Unm, [30, −54, 36], β=−0.05

White matter increase

↑ R precentral – Unm, [42, 6, 36], β=+0.54

↑ L Middle frontal – Unm, [−42, 6, 36], β=+0.10

White matter decrease

↓ R middle frontal – Unm, [30, 30, 36], β= -0.86

↓ L inferior frontal – Mod, [−42, 18, 12], β=−0.73
Unm, [−42, 18, 12], β=−0.57

↓ R Cuneus – Mod, [18, −90, 12], β=−0.18

↓ R superior frontal Unm, [6, 54, 24], z= 2.9 –

↓ L corpus callosum Unm, [−18, 18, 24], z= 2.7 Unm, [−18, −30, 24], β=−0.05

↓ R corpus callosum – Mod, [6, 30, 0], β=−0.05

↓ L Middle frontal – Mod, [−30, 42, 12], β=−0.06

↓ R postcentral – Mod, [54, −6, 24], β=−0.09

L left, Mod modulate, PANSS Positive and Negative Syndrome Scale, R right, Unm unmodulated.
In the descriptive univariate analysis, we only report the peaks of MRI clusters with voxel uncorrected P value <0.005 and the clinical variables with uncorrected
P value <0.05. For the sake of simplicity, we only report here the machine-learning coefficients with an absolute value ≥0.01 for clinical variables and ≥0.05 for
MRI voxels; see the entire model in the Supplement.
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and thus adjust the prophylactic treatment. Knowing this
information early is important because currently, clinicians can
only know which patients are at HRR-FEP after several relapses.
And before that, patients at HRR-FEP may experience repeated
relapses if the prevention is too weak, while patients at low relapse
risk may experience increased adverse events if the prevention is
too strong. That said, any adjustment of the prophylactic treatment
should follow the “first, do no harm” principle because in our
cohort, most (85%) individuals estimated to be at HRR-FEP did
indeed not relapse. Not less important, the clinician could also
consider removing or reducing the prophylactic treatment in
individuals estimated to be unlikely to relapse. These patients
currently may be receiving treatments that, if the patient is truly
unlikely to relapse, may be little useful while harmful.
However, in any case, we want to highlight the need to validate

the HRR-FEP detection tool before recommending it. We have noted
previously that independent studies often fail to replicate the
accuracy reported in mental health machine-learning publications34,
and our study may not be an exception. We cannot share participant
data for privacy reasons. However, we provide the trained classifiers
online so that independent researchers can still try to replicate our
study results. This approach has been stated to be one of the most
convincing forms of replication35. However, without intending to
create hype, we also think that our work shows the potential clinical
utility of MRI-based machine-learning when understood as a source
of additional information for the psychiatrist.
We also want to highlight that this tool could be complemented

by other tools that update the relapse risk during the follow-up.
For example, we have reported for other disorders that the relapse
risk at 12 months substantially decreases in patients who have
been relapse-free for at least one year24. Thus, some patients
initially at HRR-FEP may later be at low relapse risk. Similarly,
information about changes in the first months could also likely
offer valuable information for updating the risk estimation20. In
this context, we would like to note that, as far as relapses also
depend on events that will happen during the follow-up, it is
unlikely that a machine-learning model that only uses baseline
data scan achieves high risk-estimation accuracy.
A particularity of our study is that, instead of focusing on

detecting those healthy individuals at high risk for FEP, it focuses
on detecting those FEP patients at HRR. Many studies have already
been published regarding predicting transition to psychosis, with
varied results3,4. Conversely, no studies have been conducted to
estimate HRR-FEP from MRI data to our knowledge. This lack of
research is striking because assessing the relapse risk is essential
to properly adjusting the preventive antipsychotic dose.
Our tool requires an MRI, but patients with a FEP may indeed

already undergo an MRI to discard organic brain pathology, so that
the structural MRI required for our tool would serve both. This fact
increases the feasibility of the HRR-FEP detection tool, given that for
many patients, it would only involve minor calculations on any
computer. The context is different, for instance, for the detection of
individuals with a higher risk of psychosis in the general population,
where screening detection tools should only require inputting a
small amount of available information. An example of such a
screening detection tool is the Psychosis Polyrisc Score (PSS)36, which
only asks about the presence of a few risk factors37 and has shown
feasible in a real-world digital implementation38.
Interestingly, the accuracy of HRR-FEP detection tools was

poorer when we created machine-learning models that used only
clinical data or only MRI data. Ad hoc, it may seem evident that the
more information, the better the detection. However, many
previous studies only used MRI to find biomarkers that should
surpass clinical judgment. These may include serum component
protein 4 (C4)39, polygenic related Risk Score (PRS)40, neuroana-
tomical variables18,20. Thus, poetically, we have found that, in the
fight between clinical-based and biomarker-based psychiatry,
joining efforts predicts better.

One key variable selected by the lasso regression was the
diagnosis of schizoaffective disorder; this partly agrees with previous
studies reporting associations of diagnosis or manic symptoms with
increased relapse rate12,13,15. In addition, we think that in the current
debate about the validity of DSM/ICD diagnoses, it is worth noting
that diagnostic labels more than clinical scales helped predict future
relapses. That said, this debate is entirely out of the scope of this
paper. On another note, the protective effects of the difficulty in
abstract thinking and poor impulse control are intriguing. We
speculate that these symptoms may be related to latent disorder
subtypes that might be clearer in subsequent phases of the illness.
Finally, we must acknowledge that the variables showing statistical
significance in the descriptive univariate analysis (see Supplement)
were primarily different from the variables selected by the lasso
regression. However, this disagreement is expectable because the
latter only aims to predict and thus discards brain regions that do not
add much to the prediction accuracy, even if they are statistically
significant when considered alone.
Before creating the HRR-FEP detection tool, we used two

independent datasets to find the optimal parameters for VBM-
based machine learning. Finding the optimal parameters in two
different datasets keeps the main study data unseen until we
create the model for the HRR -FEP detection tool. We acknowl-
edge that the accuracy of the age predictions was lower than that
reported elsewhere41. This lower accuracy was probably related to
the limited sample size of the age prediction dataset. However, we
only aimed to compare the accuracy depending on different
parameters. We found that the optimal parameters were the
addition of gray and white matter images, the addition of
unmodulated and modulated images, and the use of voxel-level
ensemble. We encourage future studies to use these parameters.
Also, we found that even triple subsampling did not affect the
accuracy while substantially reducing computational costs.
We want to comment that, while previous work has searched

for gold biomarkers with little success, this work shows the
potential clinical use of MRI-based machine learning in risk
assessment. We speculate that such risk assessment will very
likely be far from perfect, i.e., we will not be able to know for
sure which patients will have a relapse and which will not, or
the date of the relapse. Indeed, such predictions may seem
unrealistic considering that relapses also depend on life events
and stressors after the assessment42. However, the estimation
will be clinically valuable as far as we can estimate risk with
enough accuracy to help the physician, i.e., so that the
information translates into in an effective improvement of the
care. Our study does not provide this level of accuracy yet, but
we hope to have made a step for future studies.
This work has some limitations. First, this sample does not

include the patients who did not meet the inclusion criteria or
refused to participate in the study, who may differ from those
included. It is a common limitation in many other studies. Second,
even if we included 227 patients and followed them for
18–24 months, representing one of the largest brain imaging
FEP cohorts worldwide, there were only 16 relapses. This relapse
rate is lower than those reported in some previous cohorts24,43,44.
To check whether the difference in relapse rate was due to our
relapse criteria being only based on PANSS while others also
considered hospitalizations, we retrieved hospitalizations, and the
updated relapse rate (37%) was more in agreement with previous
cohorts. However, we could not successfully repeat the analyses
with hospitalizations because this information was unavailable on
some sites. Third, the statistical significance was weak, probably
due to our cohort’s limited number of relapses. In any case, the
power to detect a hazard of relapse of 4.5 with the sample size
and the number of relapses in this study was 72%, very close to
the conventional 80% required in sample size calculations. Fourth,
more complex machine-learning algorithms, such as neural
networks, might detect more patterns than the relatively simple
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algorithms used here. However, these algorithms usually require
substantially larger cohorts, which may be challenging to achieve.
Fifth, for simplicity, we considered patients estimated to have a
HR > 1 at HRR-FEP. However, the optimal division between groups
could be at another HR threshold. Future studies evaluating the
benefits and costs of the interventions at different HR levels may
provide more insights into this question. Sixth, we could not
evaluate medication adherence, DUP, and premorbid functioning
because data was missing in some sites. Due to its established role
in relapse, the use of these variables could improve model
accuracy. Finally, we could not report statistics such as sensitivity
and specificity. We could not estimate such statistics because our
data was not binary (relapse vs. not relapse). Note that 38% of
patients did not complete the follow-up, and thus we could not
classify them as relapse or not relapse - we knew that they had not
relapsed until the last visit, but we did not know if they had
relapsed afterward. However, even if there were no follow-up
losses, we would still report the Cox regression as the primary
validation statistic because it considers whether relapses occurred
earlier or later. In contrast, binary statistics do not.
To conclude, this study might represent a step towards a

translational application of neuroimaging to mental health. Up to
now, brain imaging prediction models have mainly aimed to imitate
clinical judgment, for example, by training a support vector machine
to differentiate between patients and controls based on their brain
images45. Conversely, we combined clinical and MRI data to improve
the accuracy of a tool that, instead of finding reliable biomarkers,
aims to help the clinician, ultimately paving the way toward more
personalized medicine in mental disorders.
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