000120012 001__ 120012
000120012 005__ 20240319081002.0
000120012 0247_ $$2doi$$a10.1016/j.est.2022.105771
000120012 0248_ $$2sideral$$a130842
000120012 037__ $$aART-2022-130842
000120012 041__ $$aeng
000120012 100__ $$aPascual, S.$$uUniversidad de Zaragoza
000120012 245__ $$aOperation maps in calcium looping thermochemical energy storage for concentrating solar power plants
000120012 260__ $$c2022
000120012 5060_ $$aAccess copy available to the general public$$fUnrestricted
000120012 5203_ $$aCalcium Looping (CaL) process used as thermochemical energy storage system in concentrating solar plants has been extensively investigated in the last decade and the first large-scale pilot plants are now under construction. Existing research focuses on improving global efficiencies under steady-state and single modes of operation: energy storage or energy retrieval. However, TCES systems will operate under different operation points to adapt the load of its reactors to the solar availability and the energy demand from the power cycle. A thorough analysis of the operation modes provides an extremely large number of potential situations to operate the system. In this study, operation maps which maximize thermal energy availability and energy storage efficiency are defined. Furthermore, a novel approach for the management of partially carbonated solids is examined to reduce the circulation of inert material in the system based on preliminary experimental results which allows for a partial separation of carbonated solids. Two threshold scenarios are analysed: (i) no solids separation as considered in most CaL TCES studies and (ii) ideal total solids separation. The aims of this work are to set methodological criteria to define the optimal operation map and to assess the effect of partially carbonated solids separation on the energy penalties and equipment size. The inclusion of a solid separation stage leads to a maximum increase of energy storage efficiency of 26 % and a size reduction between 53 and 74 % of those heat exchangers affected by solids streams.
000120012 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T46-20R$$9info:eu-repo/grantAgreement/EC/H2020/727348/EU/SOlar Calcium-looping integRAtion for Thermo-Chemical Energy Storage/SOCRATCES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 727348-SOCRATCES$$9info:eu-repo/grantAgreement/ES/MCIU/FPU17-03902
000120012 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000120012 590__ $$a9.4$$b2022
000120012 592__ $$a1.456$$b2022
000120012 591__ $$aENERGY & FUELS$$b19 / 119 = 0.16$$c2022$$dQ1$$eT1
000120012 593__ $$aElectrical and Electronic Engineering$$c2022$$dQ1
000120012 593__ $$aRenewable Energy, Sustainability and the Environment$$c2022$$dQ1
000120012 593__ $$aEnergy Engineering and Power Technology$$c2022$$dQ1
000120012 594__ $$a10.3$$b2022
000120012 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000120012 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, P.$$uUniversidad de Zaragoza
000120012 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L.M.$$uUniversidad de Zaragoza
000120012 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000120012 773__ $$g55 (2022), 105771 [13 pp.]$$pJ. energy storage$$tJournal of Energy Storage$$x2352-152X
000120012 8564_ $$s2846752$$uhttps://zaguan.unizar.es/record/120012/files/texto_completo.pdf$$yVersión publicada
000120012 8564_ $$s2573331$$uhttps://zaguan.unizar.es/record/120012/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000120012 909CO $$ooai:zaguan.unizar.es:120012$$particulos$$pdriver
000120012 951__ $$a2024-03-18-14:16:10
000120012 980__ $$aARTICLE