000120050 001__ 120050
000120050 005__ 20240319081009.0
000120050 0247_ $$2doi$$a10.1021/acs.jpcb.2c03300
000120050 0248_ $$2sideral$$a130898
000120050 037__ $$aART-2022-130898
000120050 041__ $$aeng
000120050 100__ $$aJurak, M.
000120050 245__ $$aCharacteristics of phospholipid–immunosuppressant–antioxidant mixed langmuir–blodgett films
000120050 260__ $$c2022
000120050 5060_ $$aAccess copy available to the general public$$fUnrestricted
000120050 5203_ $$aHemocompatibility is one of the major criteria for the successful cardiovascular applicability of novel biomaterials. In this context, monolayers of certain biomolecules can be used to improve surface biocompatibility. To this end, biocoatings incorporating a phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC), an immunosuppressant (cyclosporine A, CsA), and an antioxidant material (lauryl gallate, LG) were fabricated by depositing Langmuir films onto gold or mica substrates using the Langmuir–Blodgett (LB) technique. These LB monolayers were thoroughly characterized by means of quartz crystal microbalance (QCM), atomic force microscopy (AFM), cyclic voltammetry (CV), and contact angle (CA) measurements. The obtained results indicate that the properties of these LB films are modulated by the monolayer composition. The presence of LG in the three-component systems (DOPC–CsA–LG) increases the molecular packing and the surface coverage of the substrate, which affects the wettability of the biocoating. From the different compositions studied here, we conclude that DOPC–CsA–LG monolayers with a DOPC/CsA ratio of 1:1 and LG molar fractions of 0.50 and 0.75 exhibit improved surface biocompatible characteristics. These results open up new perspectives on our knowledge and better understanding of phenomena at the biomaterial/host interface.
000120050 536__ $$9info:eu-repo/grantAgreement/ES/DGA/LMP154-21$$9info:eu-repo/grantAgreement/ES/DGA/E31-20R
000120050 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000120050 590__ $$a3.3$$b2022
000120050 592__ $$a0.795$$b2022
000120050 591__ $$aCHEMISTRY, PHYSICAL$$b88 / 161 = 0.547$$c2022$$dQ3$$eT2
000120050 593__ $$aMaterials Chemistry$$c2022$$dQ1
000120050 593__ $$aSurfaces, Coatings and Films$$c2022$$dQ1
000120050 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ1
000120050 593__ $$aMedicine (miscellaneous)$$c2022$$dQ2
000120050 594__ $$a5.6$$b2022
000120050 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000120050 700__ $$aSzafran, K.
000120050 700__ $$0(orcid)0000-0002-4729-9578$$aCea, P.$$uUniversidad de Zaragoza
000120050 700__ $$0(orcid)0000-0001-9193-3874$$aMartín, S.$$uUniversidad de Zaragoza
000120050 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000120050 773__ $$g126, 36 (2022), 6936-6947$$pJ. phys. chem., B$$tJournal of physical chemistry. B$$x1520-6106
000120050 8564_ $$s5838744$$uhttps://zaguan.unizar.es/record/120050/files/texto_completo.pdf$$yVersión publicada
000120050 8564_ $$s3078359$$uhttps://zaguan.unizar.es/record/120050/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000120050 909CO $$ooai:zaguan.unizar.es:120050$$particulos$$pdriver
000120050 951__ $$a2024-03-18-14:56:52
000120050 980__ $$aARTICLE