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Abstract
In this paper we study Butson Hadamard matrices, and codes over finite rings coming from
thesematrices in logarithmic form, calledBH-codes.We introduce a newmorphismofButson
Hadamard matrices through a generalized Gray map on the matrices in logarithmic form,
which is comparable to the morphism given in a recent note of Ó Catháin and Swartz. That is,
we show how, if given a ButsonHadamardmatrix over the kth roots of unity, we can construct
a larger Butsonmatrix over the �th roots of unity for any � dividing k, provided that any prime
p dividing k also divides �. We prove that a Zps -additive code with p a prime number is
isomorphic as a group to a BH-code over Zps and the image of this BH-code under the Gray
map is a BH-code over Zp (binary Hadamard code for p = 2). Further, we investigate the
inherent propelinear structure of these codes (and their images) when the Butson matrix is
cocyclic. Some structural properties of these codes are studied and examples are provided.
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1 Introduction

Let n and k be positive integers, and ζk = exp (2π
√−1/k) be a complex kth root of unity.

We write 〈ζk〉 = {ζ j
k }0≤ j≤k−1. Let Zk be the ring of integers modulo k with k > 1, and
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denote by Z
n
k the set of n-tuples over Zk . We use bold notation x = [x1, . . . , xn] ∈ Z

n
k to

denote vectors (or codewords) in Z
n
k . We denote the set of n × n matrices with entries in a

set X by Mn(X).

1.1 Butson Hadamardmatrices

Let H be a matrix of order n with complex entries of modulus 1. If the rows of H are
pairwise orthogonal under the Hermitian inner product, then H is a Hadamard matrix. The
termHadamardmatrix ismore commonly used in the literature to refer to the special casewith
entries in {±1}. In this paper, such a matrix will be call a real Hadamard matrix. A Butson
Hadamard (or simply Butson) matrix of order n and phase k is a matrix H ∈ Mn(〈ζk〉)
such that H H∗ = nIn , where In denotes the identity matrix of order n and H∗ denotes
the conjugate transpose of H . We write BH(n, k) for the set of such matrices. The simplest
examples of Butson matrices are the Fourier matrices Fn = [ζ (i−1)( j−1)

n ]n
i, j=1 ∈ BH(n, n).

Real Hadamardmatrices of order n, as they are usually defined, are the elements of BH(n, 2).
The phase and orthogonality of a matrix H ∈ BH(n, k) is preserved by multiplication on
the left or right by an n × n monomial matrix with non-zero entries in the set of kth roots
of unity. The action of pairs (P, Q) of such monomial matrices on Mn(〈ζk〉) is defined by
H(P, Q) = P H Q∗, and this action is an equivalence operation. If H(P, Q) = H ′, then H
and H ′ are said to be equivalent. If H = H ′, then (P, Q) is an automorphism of H .

A Butson matrix H ∈ BH(n, k) is conveniently represented in logarithmic form, that is,
the matrix H = [ζ ϕi, j

k ]n
i, j=1 is represented by the matrix L(H) = [ϕi, j mod k]n

i, j=1 with
the convention that Li, j ∈ Zk for all i, j ∈ {1, . . . , n}.
Example 1 The following is a matrix H ∈ BH(4, 8), displayed in logarithmic form

L(H) =

⎡
⎢⎢⎣
0 0 0 0
0 2 4 6
0 4 0 4
0 6 4 2

⎤
⎥⎥⎦

Observe that the matrix above is in dephased form, that is, its first row and column are all
0. Every matrix can be dephased by using equivalence operations. Throughout this paper all
matrices are assumed to be dephased.

Example 2 Let p be a prime number. If L(D) = [xyT ]x,y∈Zn
p
then D ∈ BH(pn, p). In fact

D is the n-fold Kronecker product of the Fourier matrix of order p. When p = 2 this is the
well known Sylvester Hadamard matrix of order 2n .

Butson matrices have been subject to a considerable increase in interest recently for a
variety of reasons. For example, for any n, the set BH(n, k) is non-empty for some k, (the
Fourier matrix with k = n for example), but real Hadamard matrices exist when n > 2 only
if n ≡ 0 mod 4, and this condition is famously not yet known to be sufficient. A Butson
morphism [10] is a map BH(n, k) → BH(m, �). This motivates the study of Butson matrices
even if real Hadamard matrices are the primary interest. In Sect. 3 we construct an explicit
morphism BH(n, k) → BH(nm, k/m) where k = pe1

1 · · · pet
t and m = pe1−1

1 · · · pet −1
t ,

matching the parameters of the morphism discovered by Ó Catháin and Swartz in [7]. This
requires a generalization of the well known Gray map which we define in Sect. 3, and as a
consequence certain minimum distance properties of the corresponding codes are controlled.
But the applications of Butson matrices in applied sciences most strongly motivate their
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study. The rows of any H ∈ BH(n, k) scaled by a factor of 1/
√

n is an orthonormal basis
of Cn . In any set of mutually unbiased bases (MUBs) which includes the standard basis,
all other bases are necessarily of this form, i.e., the matrix such that the rows are the basis
vectors is Hadamard (but not necessarily Butson). MUBs have important applications in
quantum physics, such as yielding optimal schemes of orthogonal quantum measurement
(see e.g., [2]). Butson matrices also have applications in coding theory. One application is
in the construction of propelinear codes, as we discuss in the next section. Another is in the
construction of Hermitian self-orthogonal codes over the finite field of order 4, which in turn
are used to construct quantum codes, see [4, 5].

1.2 BH-codes and propelinear codes

Interest in studying codes over finite rings increased significantly after it was proved in [13]
that certain notorious non-linear binary codes (such as the Preparata codes or the Kerdock
codes), which had some of the properties of linear codes were, in fact, the images of linear
codes over Z4 under a non-linear map (the Gray map). Codes constructed from Butson
matrices [12, 21, 22, 24] are a particular type of codes over a finite ring. A code over
Zk (or Zk-code) of length n is a nonempty subset C of Zn

k . The elements of C are called
codewords. The Hamming weight of a vector x ∈ Zk , denoted by wtH (x), is the number of
nonzero coordinates of x. The Hamming distance between two vectors x, y ∈ Z

n
k , denoted

by dH (x, y) = wtH (x − y), is the number of coordinates in which they differ. Given a
minimum Hamming distance d = minx,y∈C,x �=y dH (x, y) for a code C of length n, we say
C is a (n, |C |, d) code. Other distances functions are used, for instance, the Lee distance
between two vectors x, y ∈ Z

n
k is dL(x, y) = wtL(x − y) where the Lee weight of a vector

z = [z1, . . . , zn] ∈ Z
n
k is wtL(z) = ∑n

i=1 wtL(zi ) with wtL(zi ) = min{zi , k − zi }.
Definition 1 Let H ∈ BH(n, k). We denote by FH the Zk-code of length n consisting of the
rows of L(H), and we denote by CH theZk-code defined as CH = ∪α∈Zk (FH +α1)where 1
denotes the all-one vector (and α1 the all-α vector). The code CH over Zk is called a Butson
Hadamard code (briefly, BH-code).

Example 3 Given H ∈ BH(4, 8) of Example 1. Then

FH = {[0, 0, 0, 0], [0, 2, 4, 6], [0, 4, 0, 4], [0, 6, 4, 2]},

CH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, 0, 0, 0], [0, 2, 4, 6], [0, 4, 0, 4], [0, 6, 4, 2],
[1, 1, 1, 1], [1, 3, 5, 7], [1, 5, 1, 5], [1, 7, 5, 3],
[2, 2, 2, 2], [2, 4, 6, 0], [2, 6, 2, 6], [2, 0, 6, 4],
[3, 3, 3, 3], [3, 5, 7, 1], [3, 7, 3, 7], [3, 1, 7, 5],
[4, 4, 4, 4], [4, 6, 0, 2], [4, 0, 4, 0], [4, 2, 0, 6],
[5, 5, 5, 5], [5, 7, 1, 3], [5, 1, 5, 1], [5, 3, 1, 7],
[6, 6, 6, 6], [6, 0, 2, 4], [6, 2, 6, 2], [6, 4, 2, 0],
[7, 7, 7, 7], [7, 1, 3, 5], [7, 3, 7, 3], [7, 5, 3, 1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Remark 1 The BH-code associated to D ∈ BH(pn, p), defined in Example 2, is in fact first
order p-ary Reed-Muller code, Rp(1, n − 1) (see [20, p. 373]).

Assuming the Hamming metric, any isometry of Zn
k is given by a coordinate permutation

π and n permutations σ1, . . . , σn of Zk . We denote by Aut(Zn
k ) the group of all isometries

of Zn
k :

Aut(Zn
k ) = {(σ, π) : σ = (σ1, . . . , σn)with σi ∈ SymZk, π ∈ Sn}
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where SymZk and Sn denote, respectively, the symmetric group of permutations on Zk and
on the set {1, . . . , n}. The action of (σ, π) is defined as

(σ, π)(v) = σ(π(v)) for any v ∈ Z
n
k ,

and the group operation in Aut(Zn
k ) is the composition

(σ, π) ◦ (σ ′, π ′) = ((σ1 ◦ σ ′
π−1(1), . . . , σn ◦ σ ′

π−1(n)
), π ◦ π ′)

for all (σ, π), (σ ′, π ′) ∈ Aut(Zn
k ). Observe that this is a wreath product.

Definition 2 A code C of length n over Zk has a propelinear structure if for any codeword
x ∈ C there exist πx ∈ Sn and σx = (σx,1, . . . , σx,n) with σx,i ∈ SymZk satisfying:

(i) (σx, πx)(C) = C and (σx, πx)(0) = x,
(ii) if y ∈ C and z = (σx, πx)(y), then (σz, πz) = (σx, πx) ◦ (σy, πy).

The propelinear structure was introduced in [25] for binary codes, and it was generalized in
[3] for q-ary codes, i.e., codes over the finite field Fq where q is a prime power.

For a code C ⊆ Z
n
k , we denote by Aut(C) the group of all isometries of Zn

k fixing the
code C and we call it the automorphism group of the code C . The action of Aut(C) preserves
the Hamming metric. A code C over Zk is called transitive if Aut(C) acts transitively on its
codewords, i.e., the code satisfies the property (i) of the above definition.

Assuming that C has a propelinear structure then a binary operation � can be defined as

x�y = (σx, πx)(y) for any x, y ∈ C .

Therefore, (C, �) is a group,which is not abelian in general. This group structure is compatible
with the Hamming distance, that is, dH (x�u, x�v) = dH (u, v)where u, v ∈ Z

n
k . The vector 0

is always a codeword where π0 = I dn is the identity coordinate permutation and σ0,i = I dk

is the identity permutation on Zk for all i ∈ {1, . . . , n}. Hence, 0 is the identity element in C
and πx−1 = π−1

x and σx−1,i = σ−1
x,πx(i)

for all x ∈ C and for all i ∈ {1, . . . , n}. We call (C, �)

a propelinear code. Henceforth we use C instead of (C, �) if there is no confusion.

Definition 3 A full propelinear code is a propelinear code C such that for every a ∈ C ,
σa(x) = a + x and πa has no fixed coordinate when a �= α1 for α ∈ Zk . Otherwise,
πa = I dn . Here, a + x is the ordinary vector addition of a and x.

Remark 2 Every linear code is propelinear but not necessarily full. The linear code {(0, 0, 0),
(0, 1, 1), (1, 0, 1), (1, 1, 0)} generated by

G2 =
(
0 1 1
1 0 1

)

is propelinear with group structure Z2 × Z2 but not full propelinear since the unique per-
mutations that move all coordinates have order 3, which do not divide the size of the code.
Moreover, the linear code generated by

Gr =

⎛
⎜⎜⎜⎝

0 · · · 0 1 1 · · · 1

Gr−1

0
...

0

Gr−1

⎞
⎟⎟⎟⎠

is a simplex code (see [15, pp. 30–31]) which is not full propelinear. Indeed, if it will be
full propelinear, there would exist a permutation whose order would be a multiple of an odd
number, but the size of the code is a power of two.
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A Butson Hadamard code, which is also full propelinear, is called a Butson Hadamard
full propelinear code (briefly, BHFP-code). In the binary case, we have the Hadamard full
propelinear codes, they were introduced in [26] and their equivalence with Hadamard groups
was proven. In the q-ary case, the generalized Hadamard full propelinear codes were intro-
duced in [1]. Their existence is shown to be equivalent to the existence of central relative
(n, q, n, n/q)-difference sets.

Propelinear codes are a topic of increasing interest in algebraic coding theory. The primary
reason for this is that they offer one of the main benefits of linear codes, which is that they
can be entirely described by a few generating codewords and group relations. However as
the codes are not necessarily linear, they are not subject to all of the same minimum distance
constraints as linear codes with the same number of codewords. Some propelinear codes
may outperform comparable linear codes by having a larger minimum distance than any
linear code of the same size, or by having more codewords than any linear code with a given
minimum distance [1, 13]. In this paper we extend the work of the authors in [1] and describe
the connection between cocyclic Butson Hadamard matrices and BHFP-codes.

2 Constructing Butson Hadamardmatrices and related codes

Throughout this paper we study BH-codes over Zk . We have already introduced the Lee and
Hamming distance between vectors x and y. We define other useful distance functions here.
While it may seem arbitrary at first, it will be useful for determining the Hamming distance
between codewords constructed via the generalized Gray map that we discuss in Sect. 3.
Initially, let k = ps for a prime p. The weight function wt∗(x) with x ∈ Zps is defined by

wt∗(x) =
⎧⎨
⎩

(p − 1)ps−2 x �= cps−1 mod ps, c ∈ {0, . . . , p − 1}
ps−1 x = cps−1 mod ps, c ∈ {1, . . . , p − 1}
0 x = 0 mod ps

For p = s = 2, this is the Lee weight. The corresponding distance d∗ on Z
n
ps is defined

as follows:

d∗(x, y) =
n∑

i=1

wt∗(yi − xi ), (1)

where x = [x1, . . . , xn] and y = [y1, . . . , yn] in Z
n
ps . More generally, let k = mps for m

coprime to p. Any x ∈ Zk may be written uniquely in the form x = aps +bm mod k where
0 ≤ a ≤ m − 1 and 0 ≤ b ≤ ps − 1. Define the weight function wt†(x) on Zk by

wt†(x) =
{
wt∗(b) a = 0
ps−1 a �= 0.

The corresponding distance d† on Zn
mps is defined as follows:

d†(x, y) =
n∑

i=1

wt†(yi − xi ), (2)

where x = [x1, . . . , xn] and y = [y1, . . . , yn] in Z
n
mps .

Given H ∈ BH(n, k), recall that FH is the Zk-code of length n consisting of the rows
of L(H), and CH = ∪α∈Zk (FH + α1). In the sequel, we recall some results concerning
distances of these codes.
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Lemma 3.1 of [19] establishes a necessary condition for the sum of roots of unity of
order k = ps to vanish. Concretely, if

∑k−1
i=0 αiζ

i
k = 0 with

∑k−1
i=0 αi = n where αi are

non-negative integers and αi > 0 for some positive i then

αi ≤
{

n
p i = hps−1 where h ∈ {0, . . . , p − 1}

n
p − 1 Otherwise.

As a consequence, n − n
p is an upper bound for the minimum Hamming distance of

FH when k = ps (since if x, y ∈ L(H), then
∑

ζ
xi −yi
k = 0). Furthermore, the minimum

Hamming distance of both codes, FH and CH , are the same in this case.
In [22, 24], the authors prove that if n = psm and k = ps then the minimum Hamming

distance of FH is n − n
p and the minimum Lee distance is given by

dL =
{

2m+s−2, p = 2
ps(m+1)−2

4 (p2 − 1), p > 2 prime;

where H is the Butson matrix of Theorem 1 and m = t1−1 for t1 > 0 and t2 = · · · = ts = 0.
Finally, Theorem 5.4 of [12] claims that for any pair (n, k) such that BH(n, k) �= ∅, if

H ∈ BH(n, k) then the code obtained by deleting the first coordinate in FH has parameters
(n − 1, n, γ n) meeting the Plotkin bound over Frobenius rings where γ is the average
homogeneous weight over Zk .

2.1 A Fourier type construction and simplex codes

Throughout this section we assume that s is a positive integer, t1, t2, . . . , ts are non-negative
integers with t1 ≥ 1 and p is a prime. In what follows, we describe a method to construct
Butson matrices of order n = pst1+(s−1)t2+(s−2)t3+···+ts−s and phase k = ps . The matrix
At1,t2,...,ts , where pi−1 denotes the all-pi−1 vector, is defined recursively according to the
following algorithm, where initially, (t ′1, t ′2, . . . , t ′s) = (1, 0, . . . , 0) and A1,0,...,0 = [0].
for i=1 until s do

while t ′i < ti do
A ← At ′1,...,t ′s
t ′i ← t ′i + 1

At ′1,...,t ′s ← Ai =
[

A A . . . A
0 · pi−1 1 · pi−1 . . . (ps−i+1 − 1) · pi−1

]

end while
end for

By construction, it is clear that At1,t2,...,ts is a (t1 + t2 + . . . + ts) × (pst1+(s−1)t2+...+ts−s)

matrix. This is a generalization of the construction of [22] as we will point out in Corollary
1.

Example 4 For p = 2 and s = 3. We have A1,1,0 =
[
0 0 0 0
0 2 4 6

]
and A1,1,1 =

⎡
⎣
0 0 0 0 0 0 0 0
0 2 4 6 0 2 4 6
0 0 0 0 4 4 4 4

⎤
⎦ .

Given x ∈ Z
n
k , the order of x is the smallest positive integer m such that mx = 0 over Zk .
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Lemma 1 Let k = ps and ui = [ 0 · pi−1, 1 · pi−1, . . . , (ps−i+1 − 1) · pi−1 ] ∈ Z
ps−i+1

ps

where 1 ≤ i ≤ s. Then

–
ps−i+1−1∑

j=0

ζ
j pi−1

k = 0, for all 1 ≤ i ≤ s.

– The order of ui is ps−i+1.
– If gcd(m, ps−i+1) = 1 then the vectors mui and ui have the same entries but in a different

order, in general.
– If gcd(m, ps−i+1) = ph then the vectors mui and m

ph ui+h have the same entries but in

a different order, in general.

Proof The first two points are straightforward. For the third, we have to take into account that
the map f (x) = mx is a bijection in Zps−i+1 and this identity

(
m · x mod ps−i+1

)
pi−1

mod ps = m · x · pi−1 mod ps . The fourth is similar. ��

Theorem 1 Let n = pst1+(s−1)t2+...+ts−s and L(H) be the n × n matrix whose rows are
the n possible linear combinations (with coefficients in Zps ) of the rows of At1,t2,...,ts . Then,
H ∈ BH(n, ps).

Proof By construction, the difference between two distinct rows of L(H) is a linear com-
bination (with coefficients in Zps ) of the rows of At1,t2,...,ts . Hence, it is a row of L(H). It
follows that the inner product of two distinct rows of H is a row sum of H . Therefore, proving
H H∗ = nIn reduces to proving that every row sum of H is 0. For the rows of H correspond-
ing tomultiples of the rows of At1,t2,...,ts , this holds as a consequence of Lemma 1. Finally, the
proof for the rows of H corresponding to a linear combination of the rows of At1,t2,...,ts is by
a simple induction. First observe that a linear combination of rows of A1,0,...,0 = [0] clearly
sums to zero. Now assume that the claim holds for A = At1,t2,...,ts . It follows immediately

that any linear combination of the rows of

[
A A . . . A

0 · pi−1 1 · pi−1 . . . (ps−i+1 − 1) · pi−1

]
also

sums to zero. ��

We provide some examples of Butson matrices coming from Theorem 1.

Example 5 Let p = 2 and s = 3. For t1 = 1, t2 = 1, t3 = 0 then L(H) is the matrix given
in Example 1. For t1 = 1, t2 = 1, t3 = 1 then H ∈ BH(8, 8) where

L(H) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 2 4 6 0 2 4 6
0 4 0 4 0 4 0 4
0 6 4 2 0 6 4 2
0 0 0 0 4 4 4 4
0 2 4 6 4 6 0 2
0 4 0 4 4 0 4 0
0 6 4 2 4 2 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Remark 3 Let L(H) be the matrix of Example 5 for t1 = 1, t2 = 1, t3 = 1. Then L(H) =
L(F2 ⊗ F4) where we have used that F2 ⊗ F4 ∈ BH(8, 8) by means of ζ2 = ζ 4

8 and ζ4 = ζ 2
8 .

In general we have the following.
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Proposition 1 Let n = pst1+(s−1)t2+...+ts−s and L(H) be the n × n matrix of Theorem 1.
Then, H is equivalent to

(Fp)
ts ⊗ (Fp2)

ts−1 ⊗ . . . ⊗ (Fps−1)t2 ⊗ (Fps )t1−1

where Fps− j denotes the Fourier matrix of order ps− j embedded in BH(ps− j , ps) using that

ζps− j = ζ
p j

ps , and (M)r denotes the r-fold Kronecker product of the matrix M.

Proof The proof is by induction. The case t1, t2, . . . , ts = 1, 0, . . . , 0 is trivial, so consider
the case t1 = 2 and t2 = . . . = ts = 0. It is clear that L(H) = L(Fps ) since A2,0...,0 =[
0 0 · · · 0
0 1 · · · ps − 1

]
. For the next step of the induction, we assume that ti+1 = . . . = ts = 0

and L(H) = L((Fps−(i−1) )t ′i ⊗ (Fps−(i−1) )ti−1 ⊗ . . . ⊗ (Fps−1)t2 ⊗ (Fps )t1−1). Now, we
have to distinguish two possibilities:

– t ′i < ti ; then let t ′i ← t ′i +1 and ti+1 = . . . = ts = 0.All the possible linear combinations

of the rows of At1,...,ti−1,t ′i +1,0...,0 are the rows of B = L(Fps−(i−1) ⊗ H).
– t ′i = ti ; then take ti+1 = 1 with ti+2 = . . . = ts = 0. Proceeding in a similar way, the

result holds.

��
It is clear now that this construction is not new, in the sense that it does not produce any

Butson matrices not already known. However this perspective gives us new insights into the
related BH-codes.

Remark 4 For t1 �= 0, t2 = . . . = ts = 0 and p = 2, the code generated with the rows of
At1,0,...,0 is a Zps -simplex code of type α (see [22, Definition 4.1]). Furthermore, this code
is self-orthogonal if s = 2.

Corollary 1 A simplex code of type α over Z2s of length 2sm (see [22]) and the code whose
codewords are the rows of L((F2s )m) are the same. Therefore the cocyclic matrix Mψ ∈
BH(2sm, 2s) of [22, Theorem 5.1, ii)] is equivalent to (F2s )m. Similarly, when p > 2 prime,
the analogous classifying result for the cocyclic matrix in BH(psm, ps) of [24, Proposition
3.1, ii)] holds.

Proof Attending to the Remark above, a simplex code of type α over Z2s of length n = 2st1

is exactly the code FH where H is the n × n matrix of Theorem 1. Applying Proposition 1,
the results follows. ��

The classifying result above follows also as a consequence of [21, Theorem 13].
A nonempty subset C of Zn

ps is a Zps -additive code if it is a subgroup of Zn
ps (i.e., a Zps -

module). Clearly, given a Zps -additive code, C, of length n there exist some non-negative
integers t1, . . . , ts such that C is isomorphic (as an abelian group) to Zt1

ps ×Z
t2
ps−1 × . . .×Z

ts
p .

Thus, C is said to be of type (n; t1, . . . , ts). Note that |C| = pst1 p(s−1)t2 . . . pts since there
are t1 (generators) codewords of order ps , t2 of order ps−1 and so on.

Remark 5 Let t1, . . . , ts be non-negative integers and taking A1,0,...,0 = [1] instead of [0], the
method described at the beginning of this section provides At1,t2,...,ts as a generator matrix for
a Zps -additive code of type (n; t1, . . . , ts) where n = pst1+(s−1)t2+...+ts−s . The description
of recursive constructions of these matrices are in [11, 16, 17] for p = 2. The case p �= 2
has been studied in [27]. We will denote the codes associated to these matrices by Ht1,...,ts .
Let us point out that H0,t2,...,ts ⊂ H1,t2,...,ts .
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Now, we establish the following result.

Theorem 2 For t1 > 0, every Ht1,...,ts is a B H-code where the Butson Hadamard matrix is
a Kronecker product of Fourier matrices.

Proof Let CH be the BH-code associated to H of Theorem 1. It is clear that CH is equivalent
to Ht1,...,ts . Now, the result follows from Proposition 1. ��

The following is an example of a BH-code which is not additive.

Example 6 Let H ∈ BH(8, 4) with

L(H) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 1 3 0 2 3 1 2
0 3 2 1 0 3 2 1
0 0 1 1 2 2 3 3
0 2 0 2 0 2 0 2
0 3 3 2 2 1 1 0
0 1 2 3 0 1 2 3
0 2 1 3 2 0 3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

CH is not Z22 -additive since the double of the second row is not a codeword.

Now,we can state that the class of BH-codes encompasses strictly the class ofZps -additive
BH-codes.

3 A Butsonmorphism via generalized Graymap

The Gray map is a function from Z4 to Z
2
2 which is typically used to form binary codes

from Z4-codes. In what follows, we introduce a generalized Gray map �p from Zps to

Z
ps−1

p , and extend this to a yet more general function �p from Zmps to Z
ps−1

mp . For k =
pe1
1 · · · pet

t , and � = p1 · · · pt the composition�pt · · · �p1 is a function fromZk toZ
k/�
� . From

this function we construct a morphism BH(n, k) → BH(nk/�, �). Although our morphism
matches the parameters of Ó Catháin and Swartz’s morphism in [7], our construction is
completly different. One advantage of this construction from our point of view is that we
can control the minimum distance of the BH-codes corresponding to the obtained matrices.
Where x = [x1, . . . , xn] ∈ Z

n
k and ϕ is any function with domain Zk , we will write ϕ(x) =

[ϕ(x1), . . . , ϕ(xn)]. Further, we write ϕ(C) = {ϕ(c) : c ∈ C} where C ⊆ Z
n
k .

We consider the elements of Zs−1
p to be ordered in increasing lexicographic order. We

denote by D the element of BH(ps−1, p) defined in Example 2 and label the rows of L(D)

in the order 0, 1, . . . , ps−1 − 1. Let [L(D)]i denote the row of L(D) labeled by i . Then we

let �p : Zps → Z
ps−1

p be the map defined by

�p(x) = [L(D)]b + a1, x = aps−1 + b.

Let us observe that for p = 2, �p is the well-known Carlet’s map [6] and for p > 2, �p is
of type ϕ given in [27]. For what remains of this section we write � = �p for brevity unless
there is some confusion.
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Proposition 2 [27] The entrywise application of � is an isometric embedding of (Zn
ps , d∗)

into (Z
ps−1n
p , dH ). Furthermore, if C is a code with parameters (n, M, d) over Zps , then the

image code C = �(C) is a code with parameters (ps−1n, M, d) over Zp.

Lemma 2 Let x, y ∈ Zps . Then �(x − y) = �(x) − �(y) + α1 where α ∈ {0, p − 1}.
Proof Let x = a1 ps−1 + b1 and y = a2 ps−1 + b2. Then

x − y =
{

(a1 − a2)ps−1 + (b1 − b2), if b1 ≥ b2
(a1 − a2 − 1)ps−1 + (b1 − b2), if b1 < b2.

Further, by the linearity of the inner product vwT and the definition L(D) = [vwT ]v,w∈Zn
p

it follows that �(b1 − b2 mod ps−1) = [L(D)]b1−b2 = [L(D)]b1 − [L(D)]b2 = �(b1) −
�(b2). Thus �(x − y) = �(x) − �(y) + α1 where α = 0 if b1 ≥ b2, and α = p − 1
otherwise. ��

Given H ∈ Mn(〈ζps 〉), we write L(H�) for the entrywise application of � to
⎡
⎢⎢⎢⎢⎢⎣

L(H)

L(H) + J
L(H) + 2J

...

L(H) + (ps−1 − 1)J

⎤
⎥⎥⎥⎥⎥⎦

where J denotes the n × n matrix of all ones. Then H� is the corresponding matrix in
Mnps−1(〈ζp〉).
Theorem 3 If H ∈ BH(n, ps), then H� ∈ BH(nps−1, p).

Proof Observe that H� is Butson Hadamard over 〈ζp〉 if, for all i �= j , the sequence of
differences [L(H�)]i,l − [L(H�)] j,l , 0 ≤ l ≤ n · ps−1 − 1 contains each element of
Zp equally often. First note that for all i �= j , the sequence of differences [L(H)]i,l −
[L(H)] j,l , 0 ≤ l ≤ n − 1 contains each element of the form aps−1 equally often for

a = 0, . . . , p − 1. This is a consequence of ζ
aps−1

k being a pth root of unity. By Lemma 2, if
x − y = aps−1 then �(x − y) = �(x)−�(y). Since�(aps−1) = a1 for a ∈ Zp , it follows
that if the set of differences [L(H)]i,l − [L(H)] j,l contains m repetitions of each element
of the form aps−1, then the set of corresponding differences in [L(H�)]i,l − [L(H�)] j,l

contains mps−1 repetitions of each element of Zp . Finally, if x − y �≡ 0 mod ps−1, then
�(x) − �(y) = �(x − y) + α1 for some α, where x − y = aps−1 + b and b �= 0. Thus
�(x − y) = a1 + [L(D)]b which contains every element of Zp exactly ps−2-times, and so
too does �(x) − �(y). ��
Corollary 2 The image of any BH-code over Zps of length n by � is a BH-code over Zp of
length n · ps−1 and minimum Hamming distance dH = nps−2(p − 1).

Remark 6 Let us point out that Theorem 1 of [11] is a particular case of Corollary 2 (when
the BH-code is of type Ht1,...,ts and p = 2).

Proposition 3 Any BH-code CH of length n overZps has minimum distance d∗ = nps−2(p−
1).
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Proof First note that BH(n, p) = GH(p, n/p) where GH(p, n/p) denotes the set of gener-
alized Hadamard matrices of order n over Fp (see [9, Lemma 2.2]). Thus, CH� = �(CH ) is
a generalized Hadamard code as well since H� ∈ BH(ps−1n, p). The minimum Hamming
distance of these codes is well known to be nps−2(p − 1). The fact that � is an isometric
embedding (Proposition 2) concludes the proof. ��

Now let k = mps where p does not divide m and recall that every element x ∈ Zk can be
written uniquely as x = aps + bm mod k for some 0 ≤ a ≤ m − 1 and 0 ≤ b ≤ ps − 1.
Then let

�p(aps + bm) = m�p(b) + ap1

define a map Zk → Z
ps−1

mp .

Proposition 4 The entrywise application of �p is an isometric embedding of (Zn
mps , d†) into

(Z
ps−1n
mp , dH ). Furthermore, if C is a code with parameters (n, M, d) over Zmps , then the

image code C = �p(C) is a code with parameters (ps−1n, M, d) over Zmp.

Proof This follows from a straightforward extension of Proposition 2. ��
Given H ∈ Mn(〈ζk〉) where k = psm, we write L(H�p ) for the entrywise application

of �p to
⎡
⎢⎢⎢⎢⎢⎣

L(H)

L(H) + m J
L(H) + 2m J

...

L(H) + (ps−1 − 1)m J

⎤
⎥⎥⎥⎥⎥⎦

.

Then H�p is the corresponding matrix in Mnps−1(〈ζpm〉). We will devote the rest of this
section to a proof of the following.

Theorem 4 If H ∈ BH(n, k) where k = psm, then H�p ∈ BH(nps−1, pm).

Repeated application of �p for all primes p dividing k gives the following.

Corollary 3 If H ∈ BH(n, k) where k = ps1
1 · · · psr

r , then H� ∈ BH(nk/�, �) where � =
p1 · · · pr , and � = �p1 · · · �pr .

Before we can prove Theorem 4, we will need to establish some preliminary results.
Hereafter we fix a prime p and let � = �p and � = �p .

Lemma 3 For all 0 ≤ x, y < k = mps, �(x − y) = �(x) − �(y) + mα1 where α ∈
{0, p − 1}.
Proof Let x = aps +bm and y = cps +dm. Observe that�(x−y) = (a−c)p1+m�(b−d).
By Lemma 2, �(b − d) = �(b) − �(d) + α1 where α ∈ {0, p − 1}. The result follows. ��

Lemma 4 Let z �= f ps−1 for any 0 ≤ f ≤ mp − 1. Then
∑ps−1

i=1 ω�(z)i = 0 where ω is a

primitive kth root of unity. Otherwise, �(z) = f 1, and
∑ps−1

i=1 ω�(z)i = ps−1ω f .
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Proof First suppose that z �= f ps−1. Observe that�(z) = m[L(D)] j +α1 for someα ∈ Zpm

and j �= 0. Then
∑ps−1−1

i=0 ω�(z)i = ∑ps−1

i=1 ω[L(D)] j,i +α = ωα
∑ps−1−1

i=0 ω[L(D)] j,i = 0.
Now suppose that z = f ps−1. Then f = gm + hp mod mp where 0 ≤ g ≤ p − 1

and 0 ≤ h ≤ m − 1. Thus f ps−1 = hps + gmps−1 mod psm. It follows that �(z) =
hp1 + m�(gps−1) = hp1 + gm1 = f 1. ��
Corollary 4 If x = f ps−1 and y �= 0 mod ps−1, then �(x−y) = �(x)−�(y)+m(p−1)1.
Consequently, for any multiset X of elements of Zk such that x ∈ X only if x = f ps−1,and

for any y �= 0 mod ps−1, then
∑

x
∑ps−1

i=1 ω�(x−y)i = 0.

Proof Since x = f ps−1, by Lemma 4 we have �(x) = f 1. Since y = cps + dm �=
0 mod ps−1, by Lemma 4 we have

∑ps−1

i=1 ω�(y)i = 0. Complex conjugation is a field

automorphism so it follows too that
∑ps−1

i=1 ω−�(y)i = 0. It follows fromLemma 3 that�(x −
y) = �(x)−�(y)+m(p−1)1, and so

∑ps−1

i=1 ω�(x−y)i = ω f +m(p−1) ∑ps−1

i=1 ω−�(y)i = 0.
��

We will require the following result of Lam and Leung.

Lemma 5 (Corollary 3.2, [18]) If α1 + · · · + αr = 0 is a minimal vanishing sum of nth roots
of unity, then after a suitable rotation, we may assume that all αi ’s are nth

0 roots of unity
where n0 is square-free.

The sum α1 + · · · + αr = 0 is minimal if no proper subsums can be zero. A rotation in
this context is a multiplication of the sum by an nth root of unity.

Suppose that for some multiset X of elements of Zk , we have that
∑

x ωx = 0 is minimal,
and further assume that each ωx is an nth

0 root of unity for n0 square-free. Then for each

x ∈ X , x = f ps−1 for some f . Lemma 4 implies that
∑

x
∑ps−1

i=1 ω�(x)i = 0, and then

applying Corollary 4, we get that
∑

x
∑ps−1

i=1 ω�(x−y)i = 0 for all y �= 0 mod ps−1. Any
vanishing sum with terms that are not nth

0 roots of unity can only be scaled so that the terms
are all nth

0 roots of unity by some ωy where y �= 0 mod ps−1. Thus we prove the following.

Lemma 6 If
∑

x ωx = 0 is minimal, then
∑

x
∑ps−1

i=1 ω�(x)i = 0.

Proof If the terms ωx are nth
0 roots of unity then this is immediate from Lemma 4. Otherwise,

we scale by some ωy such that y �= 0 mod ps−1 so that the terms are then nth
0 roots of unity.

Then again we apply Lemma 4 and prove the original equality using Corollary 4. ��
Finally, we can prove Theorem 4.

Proof Observe that the rows of H� can be partitioned into ps−1 blocks of size n correspond-
ing to the images of the rows of L(H) + rm J for 0 ≤ r ≤ ps−1 − 1. Given H ∈ BH(n, k),
the Hermitian inner product of two distinct rows is zero. That is, for any two distinct rows
x = [x1, . . . , xn] and y = [y1, . . . , yn] of L(H), the Hermitian inner product of the corre-
sponding rows of H is of the form

n∑
i=1

ωxi −yi = 0.

We can partition this equation into minimal sums. This partition might not be unique, but any

such partition allows us to invoke Lemma 6. It follows that
∑n

i=1
∑ps−1

j=1 ω(�(xi )−�(yi )) j = 0.
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That is, distinct rows of H� from each block of n rows are pairwise orthogonal. To see that
two rows taken from distinct blocks are orthogonal, we observe that tm �= 0 mod ps−1 for
any 1 ≤ t ≤ ps−1 − 1, and so we also apply Corollary 4.

That is, distinct rows of H� from each block of n rows are pairwise orthogonal. To see
that two rows taken from distinct blocks are orthogonal, we observe that tm �= 0 mod ps−1

for any 1 ≤ t ≤ ps−1 − 1, and so we also apply Corollary 4. ��
Remark 7 The application of the map �2 to H ∈ BH(n, 4) is equivalent to a familiar mor-
phism BH(n, 4) → BH(2n, 2) of Turyn [29]. That is, for any H ∈ BH(n, 4), the Hadamard
matrix obtained from Turyn’s morphism applied to H is Hadamard equivalent to H�2 .

By Proposition 4 we know that d†(x, y) = dH (�(x),�(y)). We may also relate the
minimum Hamming distance of �(C) directly to the minimum Hamming distance of C, but
less precisely.

Proposition 5 Let H ∈ BH(n, psm) with p a prime not dividing m. Let d be the minimum
Hamming distance of CH . Then the minimum distance d ′ of �(CH ) is in the range d(p −
1)ps−2 ≤ d ′ ≤ dps−1.

Proof If xi �= yi , then ps−1 − ps−2 ≤ dH (�(xi ),�(yi )) ≤ ps−1. Hence dH (x, y)(p −
1)ps−2 ≤ dH (�(x),�(y)) ≤ dH (x, y)ps−1. ��
Remark 8 The upper bound above is attainable. For example, the code C obtained from the
Fourier matrix of order 27 has minimum distance 18. The code �(C) is a BH-code of length
243, with minimum distance 162 = 18(32).

4 Propelinear codes and cocyclic matrices

The Butson matrix given in Example 6, H , is cocyclic over Z8 and its BH-code associated
CH is not linear. Can we define a propelinear structure in CH ? Certainly, we can and this is
not an isolated situation.

Let G and U be finite groups, with U abelian, of orders n and k, respectively. A map
ψ : G × G → U such that

ψ(g, h)ψ(gh, k) = ψ(g, hk)ψ(h, k) ∀ g, h, k ∈ G (3)

is a cocycle (over G, with coefficients in U ). We may assume that ψ is normalized, i.e.,
ψ(g, 1) = ψ(1, g) = 1 for all g ∈ G. The set of all cocycles ψ : G × G → U forms an
abelian group Z2(G, U ) under pointwise multiplication.

Each cocycle ψ ∈ Z2(G, U ) is displayed as a cocyclic matrix Mψ : under some indexing
of the rows and columns by G, Mψ has entryψ(g, h) in position (g, h). For a comprehensive
background on cocyclic matrices, we refer the reader to [14].

A n ×n matrix A = (ag,h)g,h∈G is called G-invariant (or just group invariant) if agk,hk =
ag,h for all g, h, k ∈ G.

Remark 9 Every group invariant matrix with entries in U is equivalent to a cocyclic matrix.

Fixing U = 〈ζk〉. A cocycle ψ ∈ Z2(G, 〈ζk〉) is called orthogonal if, for each g �= 1 ∈
G,

∑
h∈G ψ(g, h) = 0.

Proposition 6 [14] Hψ ∈ BH(n, k) if and only if ψ ∈ Z2(G, 〈ζk〉) is orthogonal.
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Fact: A cocyclic Butson Hadamard matrix is not necessarily pairwise row and column bal-
anced.

Proposition 7 Given ψ ∈ Z2(G, 〈ζk〉) and x = ζ λ
k [ψ(g, g1), . . . , ψ(g, gn)] for a fixed

order in G = {g1 = 1, g2, . . . , gn}. Define πx ∈ Sn so that π−1
x ( j) = k where gk = gg j .

Then

1. x + πx(y) = ζ
λ+μ
k ψ(h, g) [ψ(hg, g1), . . . , ψ(hg, gn)] where + means the componen-

twise product and y = ζ
μ
k [ψ(h, g1), . . . , ψ(h, gn)].

2. πx+πx(y) = πx(πy).

Proof 1. Observe that πx(y) = ζ
μ
k [ψ(h, gg1), . . . , ψ(h, ggn)]. Hence the i th component

of x + πx(y) is ζ
λ+μ
k ψ(g, gi )ψ(h, ggi ). Apply (3) letting (g, h, k) = (h, g, gi ) and the

result follows.
2. Let z = ζ

γ

k [ψ(�, g1), . . . , ψ(�, gn)]. From part 1 we know that x + πx(y) is a scalar
multiple of the n-tuple defined byψ(hg,−), and thus the j th component of πx+πx(y)(z) is
ψ(�, hgg j ). Now observe that the kth component ofπy(z) isψ(�, hgk). We haveπx(k) =
j where gk = gg j , and thus the j th component of πx(πy(z)) is ψ(�, hgk) = ψ(�, hgg j ).

��
Corollary 5 Let ψ ∈ Z2(G, 〈ζk〉) and Hψ ∈ BH(n, k). Then the corresponding BH-code
CHψ is a BHFP-code where x�y = x + πx(y) for all x, y ∈ CHψ .

Proof Extend the definition ofπx for the rows x of L(Hψ) to all ofCHψ by lettingπx+α1 = πx
for all α ∈ Zk . The code CHψ is propelinear by Proposition 7, and since x�y = x + πx(y)
for all x, y ∈ CHψ , the first property of Definition 3 is satisfied. Finally observe that because
πx ∈ Sn is defined so that π−1

x ( j) = k where gk = gg j , it follows that πx fixes no coordinate
when x �= α1, and πα1 = I dSn for all α ∈ Zk . ��
Remark 10 A notorious class of cocyclic Butson matrices are those that are equivalent to
group invariant matrices (if G is a cyclic group, they are called circulant Butson matrices). A
construction method based on bilinear forms on finite abelian groups is given in [8] which, in
turn, provides BHFP-codes. Furthermore, for G abelian it is known that bent functions, group
invariant generalized Hadamard matrices and abelian semiregular relative different sets are
all either equivalent to group invariant Butson matrices or to group invariant Butson matrices
with additional properties (see [28]). Characterising group invariant Butsonmatrices in terms
of BHFP codes is an open problem.

We refer the reader to [1, Section 3] for a detailed discussion on cocyclic generalized
Hadamard matrices and the corresponding generalized Hadamard full propelinear codes.
Rather than repeat this discussion, we note that the converse of Corollary 5 holds under the
assumption that anymatrix in BH(n, k) is row and column balanced. Amatrix H ∈ BH(n, p)

is necessarily balanced, and is equivalent to a generalized Hadamard matrix over the cyclic
group C p when p is prime.

Corollary 6 Let CH be a BHFP-code of length n over Zk coming from H ∈ BH(n, k), where
H is row and column balanced. Then H is cocyclic.

Proof The proof follows the proof of Proposition 4 and Corollary 2 of [1]. ��
Let H ∈ BH(n, k). We consider the following partition of its corresponding code. CH =

∪1≤α≤nCα where Cα = {[L(H)]α + λ1}λ∈Zk and [L(H)]i denotes the i-th row of L(H).
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Example 7 Let H be the Butson matrix of Example 6 since it is cocyclic over Z8. Then,

CH = C1 ∪ C2 ∪ . . . ∪ C8

can be endowed with a full propelinear structure with the following group � of permuta-
tions

πx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I x ∈ C1

(1, 2, 3, 4, 5, 6, 7, 8) x ∈ C2

(1, 3, 5, 7)(2, 4, 6, 8) x ∈ C3

(1, 4, 7, 2, 5, 8, 3, 6) x ∈ C4

(1, 5)(2, 6)(3, 7)(4, 8) x ∈ C5
(1, 6, 3, 8, 5, 2, 7, 4) x ∈ C6

(1, 7, 5, 3)(2, 8, 6, 4) x ∈ C7

(1, 8, 7, 6, 5, 4, 3, 2) x ∈ C8

CH is a BHFP-code with group structure Z8 × Z4 and � ∼= Z8. The codewords are

C1 = {[0, 0, 0, 0, 0, 0, 0, 0] + λ1},
C2 = {[0, 1, 3, 0, 2, 3, 1, 2] + λ1},
C3 = {[0, 3, 2, 1, 0, 3, 2, 1] + λ1},
C4 = {[0, 0, 1, 1, 2, 2, 3, 3] + λ1},
C5 = {[0, 2, 0, 2, 0, 2, 0, 2] + λ1},
C6 = {[0, 3, 3, 2, 2, 1, 1, 0] + λ1},
C7 = {[0, 1, 2, 3, 0, 1, 2, 3] + λ1},
C8 = {[0, 2, 1, 3, 2, 0, 3, 1] + λ1}

where λ runs through Z4, and CH is a (8, 32, 4)-code over Z4. CH has a group structure
Z8 × Z4 � 〈a, 1 | a8 = 14 = 0〉, where a = [0, 1, 3, 0, 2, 3, 1, 2].
An interesting family of BH-codes over Zps are those associated to Kronecker products of
Fourier matrices. They are denoted by Ht1,t2,...,ts (see Remark 5 and Theorem 2) and since
these matrices are cocyclic over G = Z

ts
p × Z

ts−1

p2
× . . . × Z

t2
ps−1 × Z

t1−1
ps , these codes can

be endowed with a full propelinear structure by Corollary 5 . Furthermore, for p = 2 and
s = 2 in [23], it is shown that the image ofHt1,t2 under the Gray map are in fact propelinear
codes.

Example 8 Considering H1,1,1, the Z8-additive code of length n = 8 associated to L(H) of
Example 5. Then, it can be endowed with a full propelinear structure with the following
group � of permutations � ∼= Z2 × Z4 generated by πx and πy where

x = [0, 2, 4, 6, 0, 2, 4, 6], y = [0, 0, 0, 0, 4, 4, 4, 4],
πx = (1, 4, 3, 2)(5, 8, 7, 6), πy = (1, 5)(2, 6)(3, 7)(4, 8).

The full propelinear code is a group (H1,1,1, �) ∼= Z8 × Z4 × Z2 = 〈x, y, 1 | x8 = 0, y2 =
14 = x4〉.

5 Propelinear codes via the Graymap

A natural question that arises is whether or not the generalized Gray map preserves the
property of being propelinear, or full propelinear. It is certainly true that the number of
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codewords in a BH-code C obtained from H ∈ BH(n, mps), is the same as the number of
codewords in the BH-code C ′ obtained from H� . However, in general, it is not the case that
C ′ will be an isomorphic propelinear structure. A simple example to demonstrate this arises
from the Z9-code C obtained from the trivial matrix (1) ∈ BH(1, 9), and the Z3-code �(C)

obtained from the BH(3, 3) matrix H ′ = (1)� which written in log form is

L(H ′) =
⎡
⎣
0 0 0
0 1 2
0 2 1

⎤
⎦ .

The code C is clearly linear, and as a group is isomorphic to the cyclic group Z9. It is also
easily seen to be full propelinear by definition. However it is a short exercise to verify that
�(C) cannot be both full propelinear and isomorphic to a cyclic group G ∼= Z9 generated
by any single element x, no matter what the coordinate permutation πx may be. The code
�(C) does form a 2-dimensional linear code (so it is also propelinear, but not full propelinear
with x�y = x + y for all x, y ∈ �(C)), and � is a bijective map between codewords, but in
general it is not always the case that �(x�y) = �(x)�′�(y) for any operation �′, and as a
consequence� will generally not preserve a group structure. The code�(C) of this example
can also be with a full propelinear structure, but it will not be isomorphic as a group to C . It
is generated by the codewords x = [0, 1, 2], and 1, where πx = (1, 3, 2). It is isomorphic to
Z
2
3.
However, we find that for the special case �2 : Z4m → Z

2
2m , we can carefully construct

an isomorphism between the groups of codewords C and C ′ = �2(C), and determine the
group operation �′ so that (C, �) ∼= (C ′, �′). Let � = �2 hereafter.

Theorem 5 Let m be an odd positive integer, and let C ⊆ Z
n
4m be a full propelinear code.

Then the code C ′ = �(C) is full propelinear with group structure (C ′, �′) ∼= (C, �).

Proof First observe that � is a bijection from C to C ′, so we need to determine the group of
permutations for C ′ and show that � : (C, �) → (C ′, �′) is a homomorphism. We start with
the n = 1 case, so we just need to show that we can choose ρx ∈ S2 for each x ∈ Z4m so
that �(x)+ρx (�(y)) = �(x + y) for all y. We will see that ρx = (1, 2)x , i.e., ρx permutes
the two coordinates of a word in Z

2
2m or not, according to the parity of x . We adhere to the

notation of the proof of Lemma 3. Fix x = 4a+mb and let y = 4c+md where 0 ≤ b, d ≤ 3,
so x + y = 4(a + c) + m(b + d) with the value of b + d taken modulo 4. A complete proof
requires a verification that �(x) + ρx (�(y)) = �(x + y) for each pair (b, d) ∈ Z4, but for
brevity we take (b, d) = (3, 1) as an example and leave the rest to the reader. Observe that

�(x) = [2a, 2a] + m�(3) =
= [2a, 2a] + m([0, 1] + [1, 1]) = [2a + m, 2a],

�(y) = [2c, 2c] + m�(1) =
= [2c, 2c] + m([0, 1] + [0, 0]) = [2c, 2c + m],

�(x + y) = [2(a + c), 2(a + c)] + m�(0) =
= [2(a + c), 2(a + c)].

Since b = 3, x is odd, and so ρx = (1, 2). It follows that �(x) + ρx (�(y)) = �(x + y).
This verifies the 1-dimensional case.

Now suppose thatC is full propelinear of length n, and let x, y ∈ C , with x�y = x+πx(y).
Let π�(x) ∈ S2n permute the n blocks of size 2, labelled b1, . . . , bn , according to the action
of πx on a word of length n. That is, π�(x)(bi ) = b j if and only if πx(i) = j . Then
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π�(x)(�(y)) = �(πx(y)). Further, let ρi = (2i − 1, 2i) be the permutation swapping the
entries of the block bi , and write ρx = ∏n

i=1 ρ
xi
i . It follows that �(x)�′�(y) := �(x) +

ρxπ�(x)(�(y)) = �(x + πx(y)) = �(x�y). Thus � is a bijective homomorphism from
(C, �) to (C ′, �′).

It remains to verify that the permutation ρxπ�(x) = I dS2n whenever �(x) = α12n for
any α ∈ Z2m , and has no fixed coordinate otherwise. Let S = C ∩{α1n : 0 ≤ α ≤ 4m − 1}
and let X ⊂ S be the subset X = C ∩ {2α1n : 0 ≤ α ≤ 2m − 1}. Note first that �(X)

is the set X ′ = C ′ ∩ {α12n : 0 ≤ α ≤ 2m − 1}. It is clear that ρxπ�(x) = I dS2n for all
x ∈ X . Further, for any s ∈ S \ X , ρs = (1, 2)(3, 4) · · · (2n − 1, 2n), and so does not fix any
coordinate. Finally, for any codeword c ∈ C \ S, πc does not fix any coordinate of Zn

4m , and
it follows that π�(c) does not fix any coordinate of Z2n

2m . ��
Corollary 7 Let m be an odd positive integer, and let H ∈ BH(n, 4m). If the BH-code C
obtained from H is full propelinear with group structure G, then the BH-code C ′ obtained
from H� is full propelinear with group structure G ′ ∼= G.

Example 9 Let H3,0 be the BH-code associated to F4 ⊗ F4 ∈ BH(16, 4) and H3,0 be its
image by the Gray map which is known to be a non-linear code (see [11, Table 1]). H3,0 is
full propelinear, with permutation group � ∼= Z

2
4 generated by πx and πy where

x = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3],
y = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],

πx = (1, 4, 3, 2)(5, 8, 7, 6)(9, 12, 11, 10)(13, 16, 15, 14),
πy = (1, 13, 9, 5)(2, 14, 10, 6)(3, 15, 11, 7)(4, 16, 12, 8).

The corresponding permutations ρxπ�(x) and ρyπ�(y) are as follows:

ρxπ�(x) = (1, 7, 6, 4)(2, 8, 5, 3)(9, 15, 14, 12)
(10, 16, 13, 11)(17, 23, 22, 20)(18, 24, 21, 19)
(25, 31, 30, 28)(26, 32, 29, 27),

ρyπ�(y) = (1, 25, 17, 9)(2, 26, 18, 10)(3, 28, 19, 12)
(4, 27, 20, 11)(5, 29, 21, 13)(6, 30, 22, 14)
(7, 32, 23, 16)(8, 31, 24, 15).

Thus, H3,0 canbe endowedwith a full propelinear structurewith thegroup 〈ρxπ�(x), ρyπ�(y)〉
of permutations, which is non-abelian of order 32. This group contains the element (ρxπ�(x))

(ρyπ�(y))(ρxπ�(x))
−1(ρyπ�(y))

−1 = ρ1π�(1) = (1, 2)(3, 4) · · · (31, 32). The groups
(H3,0, �) ∼= (H3,0, �′) are isomorphic toZ2×Z4×Z8. Note that the linear binary Hadamard
code of size 64 has 6 generators, but we can generate a nonlinear binary Hadamard code with
the same minimum distance just from 3 generators. This improves the data storage benefits
of a linear code.

Remark 11 Even though the codes C and C ′ are isomorphic as groups according to Theorem
5, the example above shows that the underlying groups of coordinate permutations are not
necessarily isomorphic. As a simpler example, take the trivial 1-dimensional Z4 code and
its image in Z

2
2. Here, � : [0], [1], [2], [3] �→ [0, 0], [0, 1], [1, 1], [1, 0]. Both are cyclic,

generated by [1] and [0, 1] respectively, but the group of coordinate permutations of Z4

is necessarily trivial, and the group of coordinate permutations of the image is generated
by ρ[1]π[0,1] = (1, 2). More generally, if C is a BHFP-code obtained from a matrix H ∈
BH(n, 4m) with group � of coordinate permutations then by Definition 3, |�| = n, and the
group of coordinate permutations for �(C) will be of order |�′| = 2n.
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