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Abstract— The tools for spectrally analyzing heart rate
variability (HRV) has in recent years grown considerably,
with emphasis on the handling of time-varying conditions
and confounding factors. Time–frequency analysis holds
since long an important position in HRV analysis, however,
this technique cannot alone handle a mean heart rate or
a respiratory frequency which vary over time. Overlap-
ping frequency bands represents another critical condition
which needs to be dealt with to produce accurate spectral
measurements. The present survey offers a comprehensive
account of techniques designed to handle such conditions
and factors by providing a brief description of the main
principles of the different methods. Several methods derive
from a mathematical/statistical model, suggesting that the
model can be used to simulate data used for performance
evaluation. The inclusion of a respiratory signal, whether
measured or derived, is another feature of many recent
methods, e.g., used to guide the decomposition of the HRV
signal so that signals related as well as unrelated to respira-
tion can be analyzed. It is concluded that the development
of new approaches to handling time-varying scenarios are
warranted, as is benchmarking of performance evaluated in
technical as well as in physiological/clinical terms.

Index Terms— heart rate variability, time-varying analy-
sis, confounding factors, spectral analysis, redefinition of
frequency bands, respiration-guided decomposition

I. INTRODUCTION

Research on heart rate variability (HRV) has over the years
expanded to become a genuinely multidisciplinary area which
today includes a wide range of engineering aspects as well as
innumerable physiological and clinical applications. In spite of
the expansion, the basis of HRV analysis remains as modest as
it was in the very first studies published some 50 years ago,
namely an RR interval series obtained from the single-lead
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ECG. The simple, noninvasive recording procedure is likely
one of several reasons why HRV analysis has gained such
widespread popularity.

By analyzing the ever-present beat-to-beat changes in heart
rate, the complex interaction between the parasympathetic
and sympathetic branches of the autonomic nervous system
(ANS) on the sinoatrial node can be assessed indirectly. In
healthy subjects, the instantaneous heart rate represents the
net effect of the neural output of the two branches, causing
the heart rate to adjust itself to the subject’s current situation;
heart rate is decreased by parasympathetic stimulation and
increased by sympathetic stimulation. Impaired interaction
between the two branches is often reflected by a reduced HRV
associated with cardiovascular risk factors and disease states,
including hypertension, heart failure, diabetes, and obesity [1].
However, the relevance of HRV analysis goes far beyond the
understanding of somatic conditions as its popularity in social,
psychological, and behavioral research has grown considerably
in recent years for the purpose of assessing, e.g., mental stress,
cognitive performance, fitness and sports performance [2], [3].

The information carried by the RR interval series need to be
translated to a set of indices reflecting, among other physiolog-
ical mechanisms, the interaction between the parasympathetic
and sympathetic branches—a translation problem which has
received much attention in the realm of engineering. The
simplest approach to HRV analysis is to compute univariate
statistical dispersion measures of the RR interval series. Since
such measures are blind to the rhythmical variation in heart
rate, power spectral analysis was introduced at an early stage
of the history of HRV analysis [4]–[7], later to become the
preferred approach in clinical studies. Since the RR interval
series is sampled at irregular time instants, equidistant resam-
pling has to be performed to allow proper interpretation of
the power spectrum, unless the spectral method is designed to
handle irregularity [8]. By computing the power of different
frequency bands (very low frequency, VLF, 0.0033–0.04 Hz;
low frequency, LF, 0.04–0.15 Hz; high frequency, HF, 0.15–
0.40 Hz), information on the ANS can be inferred. For
example, it has been shown that the HF band mainly reflects
efferent vagal activity due to respiratory activity since total
vagal blockade essentially cancels the power of this band [6],
[7], [9]. On the other hand, the LF band is influenced by
both parasympathetic and sympathetic activity, making its
interpretation more complicated. The interpretation of the VLF
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band involves additional mechanisms related to long-term reg-
ulation, e.g., thermoregulation. However, correct interpretation
of the VLF band calls for stationary, long-term recordings,
which are very difficult to obtain.

The relevance of spectral analysis is not only related to
whether a frequency band reflects a certain dynamic of the
ANS, but also whether the RR interval series can be treated as
a stationary process—an assumption implicit to power spectral
analysis. In practice, this assumption rarely holds, and less
so as the ECG recording becomes increasingly longer [10].
Rather than employing a statistical test on stationarity [11],
[12], the relevance of spectral analysis is often, though
not always, judged from the context in which the ECG is
recorded. Time–frequency analysis is the preferred approach
when recordings made under nonstationary conditions are to
be analyzed, e.g., physical activity and autonomic response
to provocation including deep breathing, exercise stress test-
ing, ambulatory monitoring, Valsalva maneuver, and head-up
tilt [13]–[15].

An entire ecosystem of indices has grown up aiming to pro-
vide information on the nonlinear dynamics of RR intervals,
which makes it possible to capture information of physiolog-
ical and diagnostic significance. Long-range correlation and
fractal analysis, short-term complexity, entropy and regularity,
nonlinear dynamical systems and chaotic behavior, as well as
many other aspects have been explored [16]–[18].

A number of confounding factors of electrophysiological
and mechanical origin influencing the RR interval series render
the assessment of HRV complicated, irrespective of whether
linear or nonlinear techniques are used. The following factors
have been treated to various extents in the literature:
• presence of occasional ectopic beats,
• influence of a time-varying mean heart rate,
• aliasing at low mean heart rates,
• respiration and frequency band definitions,
• overlapping frequency bands, and
• non-neural and mechanical mechanisms, including atrial

stretching due to respiration and cardiolocomotor cou-
pling.

Of these factors, handling of occasional ectopic beats has
received by far the most attention, whereas handling of the
other factors have been addressed in few studies and then
usually in combination with time–frequency analysis.

Numerous technical reviews and surveys have been pub-
lished covering aspects of HRV analysis with different empha-
sis: historical perspective [19], [20], mainstream analysis [21]–
[30], spectral and time–frequency analysis [1], [14], [15], and
nonlinear dynamics analysis [16], [17]. The main motiva-
tion behind the present survey is to provide an account of
methods developed for spectral HRV analysis in time-varying
conditions, often characterized as nonstationary, and how the
above-mentioned confounding factors are handled largely by
model-based approaches—a survey which so far is missing.
To substantiate the presentation, the main principles of the
different models and methods particularly developed for HRV
analysis are briefly described. Significant inspiration is drawn
from the block diagram in Fig. 1 consisting of two main
blocks: a simple, conceptual model for RR interval generation

and the main signal processing methods which together form
HRV analysis. The sinoatrial node model is assumed to have
a mathematical structure well suited to propel the design of
signal processing methods. The other blocks of the conceptual
model are treated as black boxes whose output are to be
inferred from the RR intervals. Respiratory information is
either measured by a dedicated sensor or derived from the
ECG, e.g., [31]–[38]. This type of modeling has helped
provide significant knowledge on the nature of HRV, conveyed
by a variety of indices characterizing ANS activity. However,
as knowledge on the interaction between the ANS and the
cardiovascular system becomes more advanced, the modeling
may turn out too simplistic, calling for further development to
agree with the well-known aphorism that “models should be
made as simple as possible, but not simpler”.

Mathematical modeling of the sinoatrial node can take place
at the cellular level, then accounting for ionic propagation
mechanisms in cardiac tissue [39], [40]; however, such low-
level modeling is ill-suited as a springboard for developing
signal processing methods and therefore not considered here.
Neither are the many techniques for time–frequency analysis
considered here, the interested reader is referred to, e.g., [14],
[15], [41], for further information.

The survey is organized as follows. Section II describes
sinoatrial node models suitable for simulation as well as for de-
veloping heart rhythm representations (Section III) and meth-
ods for correction of occasional ectopic beats (Section IV).
Section V deals with spectral analysis in time-varying condi-
tions, notably redefinition of the HF band using respiratory
information and handling of spurious spectral components
observed during exercise stress testing. Sections VI and VII
deal with time–frequency based parameter estimation and
signal decomposition, respectively, where both techniques are
guided by respiration. Finally, Section VIII discusses different
approaches to improving HRV spectral analysis.

II. MODELING OF THE SINOATRIAL NODE

Different models have been proposed for generating vari-
ability in heart rate, either by accounting for certain charac-
teristics of physiological relevance or using a statistical law
whose relevance is assessed by how well the model output fits
real data. Depending on model flexibility, various time-varying
conditions can be handled, including changes in mean heart
rate, HRV spectrum, and short- and long-term behavior. The
output of a sinoatrial node model is a series of event times at
which the node fires off an electrical impulse,

t0, t1, . . . , tM ,

or, alternatively, a series of interevent intervals, i.e., a series
of modeled RR intervals,

rk = tk − tk−1, k = 1, 2, . . . ,M. (1)

The first event is assumed to occur at time t0 = 0, which also
defines the onset of the observation interval.

In this section, three models are described with a counterpart
in signal processing in the sense that the parameters can be
estimated using either statistical or deterministic inference.

This article has been accepted for publication in IEEE Reviews in Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/RBME.2022.3220636

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on December 01,2022 at 11:25:43 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2022 3

ECG-derived 
respiration

Sinoatrial 
node

Respiratory 
system

PNS

SNS

Other, non-
neural

mechanisms

Heart rhythm 
representation

Ectopic
beat

correction

Decomposition 
guided by 
respiration

Time–
frequency 
analysis

Conceptual model for RR interval generation HRV analysis

+
Autonomic 

Nervous System

Fig. 1. A simple, conceptual model for RR interval generation and the main signal processing blocks of HRV analysis. RR interval generation is
here synonymous to a mathematical model of the sinoatrial node which outputs a series of the event times. The activities of the shaded blocks play
an important role in HRV analysis and interpretation, though they are not subject to mathematical modeling. QRS detection and beat classification
are here considered part of heart rhythm representation, information which is used for ECG-derived respiration (dashed arrow)

; their description is beyond the scope of the present survey.
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Fig. 2. The integral pulse frequency modulation (IPFM) model, with the
input function m0 + m(t) that modulates the variability of interevent
intervals, resulting in the event series t0, t1, . . .

Clearly, the models can be used for simulating RR interval
series, of particular value when testing and evaluating perfor-
mance. In such cases, the model parameters are either chosen
based on a priori information or inferred from real data.

A. IPFM modeling

The time-invariant integral pulse frequency modulation
(IPFM) model is by far the most popular model for generating
an event series, probably explained by its simplicity and yet
physiological relevance, see, e.g., [42]–[64]. The model input
is composed of a DC level m0, defining the repetition rate of
events, and a modulating, zero-centered signal m(t), defining
the variability of interevent intervals. An event is generated
at tk when the integral of the input reaches the threshold R,∫ tk

tk−1

(m0 +m(τ))dτ = R, k = 1, . . . ,M. (2)

The integrator is then reset to zero, the integration is repeated,
a new event is generated, and so on, see Fig. 2.

In physiological terms, m(t) determines the variability in
heart rate as modulated by autonomic activity on the sinoatrial
node, the integrator output y(t) corresponds to charging of the
membrane potential of a sinoatrial pacemaker cell. By setting
m0 = 1, the expression in (2) becomes∫ tk

t0=0

1 +m(τ)

T
dτ = k, k = 1, . . . ,M, (3)

where R has been renamed to T as it now represents the
mean interevent interval. Since the variability is much smaller
relative to the mean heart rate, m(t) is assumed to satisfy
|m(t)| � 1.

The modulating signal m(t) has been defined as a weighted
sum of two sinusoids, representing the sympathetic and para-
sympathetic respiratory oscillators. The two weights are ei-
ther set to fixed values [50], [55], or given a time-varying
structure [63]. The sinusoidal definition of m(t) has been
employed for testing different rhythm representations and
spectral analysis techniques [44], [45], [50], [52], [55], [59].
A more realistic approach is to estimate m(t), e.g., using
the heart timing representation of RR intervals described in
Section III-A, accompanied by estimation of the parameters of
a linear, stochastic model like the autoregressive (AR) model.
By feeding the identified model with white, Gaussian noise, its
output exhibits the same spectral characteristics as the estimate
m̂(t) and therefore can serve as m(t) [50], [61], [62].

When the input 1+m(t) is defined by white, Gaussian noise,
the IPFM model loses some of its physiological relevance.
Nonetheless, this case deserves attention as it constitutes
the basis of history-dependent point process modeling, see
Section II-C. The integrator output is given by

y(t) = t+ w(t), (4)

where w(t) is integrated white noise with variance σ2
m. The

output y(t) is known as a Wiener process with positive drift.
The time required for y(t) to reach T for the first time
is a random variable r described by the inverse Gaussian
probability density function (PDF) [65],

p(r;µ, λ) =

√
λ

2πr3
exp

[
−λ(r − µ)2

2µ2r

]
, (5)

whose mean µ and shape λ > 0 can be expressed in terms of
the parameters defining m(t) and T ,

µ = T, λ =
T 2

σ2
m

. (6)
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The resulting event series is a renewal process where the
interevent intervals are statistically independent and identically
distributed. Such a process is history-independent and cannot
account for the effect of sympathetic and parasympathetic
input to the sinoatrial node which is known to last for several
RR intervals.

A major limitation of the time-invariant IPFM model is
that a fixed T implies a constant heart rate. Since this is
unrealistic in HRV applications where the heart rate changes
over time, e.g., during exercise stress testing, the time-varying
IPFM model should be considered [66], [67], meaning that

T → T (t).

B. Filtered-noise modeling

Another approach to modeling RR intervals is to filter white,
Gaussian noise using a linear, time-invariant system, so that
the spectral characteristics of the output series of interevent
intervals resemble those of real data. Thus, in contrast to
the IPFM model, this approach does not pretend to mimic
sinoatrial node physiology. While the filtered-noise model has
been much less considered for simulation purposes [68], even
so, its relevance is demonstrated by the many studies in which
this model represents the basis of HRV spectral analysis. The
time-invariant AR model, introduced for HRV analysis in [69],
is the most popular, defined by

rk = −a1rk−1 − · · · − aprk−p + vk, (7)

where vk is white noise with variance σ2
v . Since white noise by

definition is zero-mean, the mean interevent interval T needs
to be added to rk to produce realistic data and become the
interevent interval defined in (1). The variance σ2

v must be
chosen such that the variance of rk is much smaller than T .
The coefficients a1, . . . , ap, the model order p, and T is either
predetermined or estimated from data.

A bimodal, Gaussian power spectrum has been proposed
to model RR intervals, where one Gaussian accounts for
respiratory sinus arrhythmia and another for baroreflex reg-
ulation [70]. This model may indeed be approximated by (7)
since the two Gaussians can largely be modeled by a fourth-
order AR model, where the proximity of the poles to the unit
circle determines the width of the Gaussian-like bells.

In the time-varying version of the AR model, a1, . . . , ap,
and T are replaced by their time-varying counterparts
a1,k, . . . , ap,k, and Tk. By analogy with the time-invariant
AR model, the time-varying model has mainly served as the
basis for time–frequency analysis [13], [14], [71]–[75]. An
exception is the time-varying autoregressive, moving average
(ARMA) model proposed for simulation [76]: the dominant
frequencies and the powers defining the LF and HF compo-
nents are controlled by varying the locations of the poles and
the zeros according to some predefined pattern. For exam-
ple, piecewise linear functions were used to model changes
observed during exercise stress testing and music-induced
emotions. It should be noted that filtered-noise modeling can
be used to simulate RR intervals as well as heart rate.

C. History-dependent point process modeling

A point process is a stochastic model of the next event
time tk+1 given that the history, i.e., the previous event times
t0, . . . , tk, is known. This process can be defined in several
ways of which one straightforward is to specify the PDF of
the next interevent interval. In the pioneering study [77], a
point process model was proposed for HRV analysis, where
the choice of PDF was inspired by the IPFM model and
the associated inverse Gaussian PDF. History-dependence is
introduced by modeling the mean as an autoregression of the
p previous interevent intervals, cf. (7),

µRR = µ(Hk,a) = a0 +

p∑
i=1

airk−i+1, (8)

where Hk = (rk−p+1, . . . , rk) is the event history and the
vector a contains the p + 1 regression parameters. Thus, the
PDF of the next interevent interval t− tk is given by

p(t−tk;µ(Hk,a), λ) =√
λ

2π(t− tk)3
exp

[
−λ(t− tk − µ(Hk,a))2

2µ2(Hk,a)(t− tk)

]
, (9)

where t > tk. The related standard deviation is given by

σRR =

√
µ3(Hk,a)

λ
. (10)

Note that the scalar p denotes model order whereas the
function p(·) denotes a PDF.

Although the model parameters (a, λ) do not depend explic-
itly on time, suggesting that the interevent intervals represent
a stationary process, parameter estimation can be performed
locally to produce time-varying estimates which account for
nonstationarity [77]. Consequently, when simulating RR inter-
vals using (8) and (9), (a, λ) can be held fixed or made to vary
over time according to some predefined pattern. The model
order p has been treated as fixed over time, determined from
real data using the Akaike information criterion in combination
with a statistical goodness-of-fit test.

In contrast to the IPFM and filtered-noise models, the PDF
in (9), modeling RR intervals, is easily modified to model
heart rate using the random variable s and the following
transformation of t [77],

s =
c

t− tk
, (11)

where c = 60 s/min converts interval to rate, expressed in
events per minute. The resulting PDF is given by

p(s;µ(Hk,a), λ) =

√
c−1λ

2πs
exp

[
−λ(1− c−1µ(Hk,a)s)2

2c−1µ2(Hk,a)s

]
(12)

and the related mean and standard deviation by

µHR = c

(
1

µ (Hk,a)
+

1

λ

)
, (13)

σHR =

√
2µ(Hk,a) + λ

µ(Hk,a)c−2λ2
, (14)
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respectively.
Just because the inverse Gaussian model originates from the

IPFM model (when fed with white, Gaussian noise) does not
necessarily make it physiologically relevant for simulation of
RR intervals and heart rate. To shed light on its relevance, the
inverse Gaussian model was therefore compared to the Gaus-
sian, lognormal, and gamma models, all four models defined
by time-varying parameters [78]. Using the Kolmogorov–
Smirnov test, the inverse Gaussian model was found to provide
the overall best goodness-of-fit to data recorded during a
pharmacological autonomic blockade protocol.

III. MODEL-BASED HEART RHYTHM REPRESENTATIONS

The interval tachogram dIT(k), i.e., rk, and the inverse
interval tachogram dIIT(k), i.e., the instantaneous heart rate,
are classical representations of heart rhythm. While these HRV
signals have been used extensively in time domain analysis of
HRV, they suffer from the disadvantage of being functions
of k, not of t, and therefore ill-suited for spectral analysis. To
allow the results to be expressed in hertz, as well as to facilitate
joint analysis of heart rate and other physiological signals,
dIT(k) and dIIT(k) are transformed into their continuous-time
counterparts known as the interval function dIF(t) and the in-
verse interval function dIIF(t), respectively. Using interpolation
between the samples positioned at the event times tk, an evenly
sampled signal is obtained at the desired rate [24]. Other useful
representations include the event series dE(t), defined as a sum
of delta functions positioned at the event times, and its lowpass
filtered version dLE(t).

While these six heart rhythm representations are intuitive,
none is derived from a sinoatrial node model. In this section,
two time-varying representations are described, both based on
the IPFM model, namely the heart timing signal and a set
of signals derived from the history-dependent point process
model. The former signal is derived by deterministic reason-
ing, whereas the latter set of signals by statistical inference.

A. The heart timing signal
The modulating signal m(t) of the IPFM model can be

retrieved from the beat event times t0, . . . , tM [50], using the
following reformulation of (3) as the basis:∫ tk

0

m(τ)dτ = kT − tk, k = 1, . . . ,M. (15)

Clearly, the integral of m(t) equals the deviation between the
expected beat event time kT (“metronome time”) and the beat
event time tk. This deviation serves as the definition of the
irregularly sampled heart timing signal dHT(tk),

dHT(tk) , kT − tk, (16)

which can be generalized to any time t by

dHT(t) = κ(t)T − t =

∫ t

0

m(τ)dτ, (17)

where the function κ(t) is defined by

κ(t) =
1

T

∫ t

0

(1 +m(τ))dτ, (18)

and κ(tk) = k. Since m(t) and dHT(t) are linearly related by
an integral, an estimator of m(t) is obtained by

m̂(t) =
∂dHT(t)

∂t
, (19)

where ‘estimator’ bears no relation to statistical inference.
The computation of dHT(tk) in (16) requires that the mean

RR interval is estimated by T̂ = (tM − t0)/M . More-
over, to facilitate the differentiation in (19), the samples
dHT(t0), . . . , dHT(tM ) are interpolated and resampled to a
fixed rate. While dHT(t) depends on the location of the
observation interval [t0, tM ] because dHT(0) = dHT(tM ) = 0
is always satisfied, m̂(t) does not since this dependence is
eliminated by differentiation.

For a time-varying threshold T (t), the estimator m̂(t) is
derived based on the observation that the integrand of (3)
describes the instantaneous heart rate,

dHR(t) =
1 +m(t)

T (t)
. (20)

Since dHR(t) is not observable, it can be approximated either
by an estimate of κ(t) in (18) obtained by interpolation of
data pairs [tk, k] followed by differentiation of κ(t) [24]. The
expression in (20) can be decomposed into mean heart rate
dmHR(t) and heart rate variability dHRV(t),

dmHR(t) =
1

T (t)
, dHRV(t) =

m(t)

T (t)
, (21)

where dmHR(t) is characterized by much lower frequencies
than dHRV(t). Hence, dmHR(t) can be retrieved by lowpass
filtering of dHR(t). Since T (t) is inversely related to dmHR(t),
the time-varying version of dHT(tk) in (16) becomes

dHT(tk) =
k

dmHR(tk)
− tk. (22)

Finally, estimation of m(t) is accomplished by either perform-
ing the differentiation in (19) or using the following expression
which results from reorganizing (20) [79]:

m̂(t) = d̃HR(t)T̃ (t)− 1

=
d̃HR(t)− d̃mHR(t)

d̃mHR(t)
=
d̃HRV(t)

d̃mHR(t)
, (23)

where˜ indicates that the signal is obtained from the approx-
imated dHR(t). Thus, m̂(t) is simply given by the ratio of
a signal reflecting heart rate variability to a signal reflecting
mean heart rate, obtained by lowpass filtering of dIIF(t).

The importance of using (23) in time-varying conditions is
illustrated by the simulation example in Fig. 3, with changes
typically observed during exercise stress testing [79]. Using
the smoothed pseudo Wigner–Ville distribution (SPWVD) [80]
for time–frequency analysis, Fig. 3(a) displays the SPWVD of
m(t) dominated by an LF component held constant at 0.1 Hz
and an HF component varying between 0.35 Hz and 0.5 Hz;
both components have powers mimicking the variation in real
data. Figures 3(b)–(c) display the SPWVDs of m̂(t) obtained
with (19) and (23), respectively. Comparing Figs. 3(a) and (b),
it is obvious that the intensities of both components differ
considerably, particularly at the onset, about 600 s, and the end
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Fig. 3. Estimation of m(t) under time-varying conditions. The
smoothed pseudo Wigner–Ville distribution computed for (a) a simu-
lated, two-component modulation function m(t) with a constant LF
component and a time-varying HF component; m̂(t) is obtained by
equations (b) (19) and (c) (23). (d) The percentage spectral power error
of the HF component obtained by (19) (grey line) and (23) (black line).
The estimated signals were obtained by interpolation and resampling to
4 Hz. Reprinted from [79] with permission.

of the observation interval. On the other hand, the SPWVDs
displayed in Figs. 3(a) and (c) are in close agreement, thus
highlighting the importance of assuming the time-varying
IPFM model when analyzing time-varying data. The error
made when estimating the power of the HF component is
displayed in Fig. 3(d) for the two estimators: the error is
essentially zero for the time-varying estimator.

Considering instead the pulse frequency modulation model,
also related to the IPFM model, it can be shown that the
modulating part of the interval tachogram dIT(k) is influenced
by the mean interevent interval T (t) in a way similar to the
heart timing signal [71].

B. The history-dependent point process signals
The meaning of heart rhythm representation in point process

modeling is not as unequivocal as in IPFM modeling since four
indices, µRR, σRR, µHR, and σHR, rather than one, m(t), convey

rhythm information. Of these four indices, the time-varying
variant of µHR is often used for spectral analysis [77], and,
therefore, it may be viewed as an equivalent to (1 +m(t))/T .
To compute these indices, estimates of the model parameters a
and λ first need to be obtained from the observed RR intervals
and then substituted into the respective defining equations.

Maximum likelihood estimation is the standard technique
for finding the parameter values of a statistical model. The
estimator is given by

[â, λ̂] = arg max
a,λ

log p(t0, . . . , tM ;a, λ), (24)

where the joint PDF log p(t0, . . . , tM ;a, λ) becomes the log-
likelihood function when evaluated for the event times ob-
served in the interval [t0, tM ]. Assuming that the RR intervals
rk = tk−tk−1 are statistically independent, i.e., rk is a renewal
process, the joint PDF simplifies to

p(t0, . . . , tM ;a, λ) =

M∏
k=1

p(rk;a, λ), (25)

where p(rk;a, λ) is the inverse Gaussian PDF in (9). Due to
the introduction of history dependence, cf. (8), the maximiza-
tion of the log-likelihood function in (24) has to be performed
numerically using, e.g., the Newton–Raphson method.

Since this approach yields a description of the entire ob-
servation interval by four scalar estimates, i.e., µ̂RR, σ̂RR,
µ̂HR, and σ̂HR, a sliding window approach was introduced to
produce time-varying (local) estimates µ̂RR(t), σ̂RR(t), µ̂HR(t),
and σ̂HR(t) based on the RR intervals in the fixed-length win-
dow [t−∆t, t] [77]. The structure of the local log-likelihood
function is essentially the same as that of the global one in
(24), with the difference that the function accounts for an
observation interval whose boundaries are not defined by event
times. Another difference is that an exponentially decaying
weighting function, defined by the parameter α, is introduced
to assign more weight to the more recent RR intervals.

The goodness-of-fit of the point process model to the
RR intervals can be evaluated by analyzing the conditional
intensity function, specifying how the present depends on the
past in a point process [81], together with a statistical test
such as the Kolmogorov–Smirnov test [82]. The goodness-of-
fit information is useful when trying to improve the structure
of the model, but also for determining the model order p, the
window length ∆t, and the exponential decay α—parameters
which are not part of the above-mentioned maximum likeli-
hood estimation [77].

Adaptive filtering has also been proposed for estimating the
parameters in continuous time. The filter, having a recursive
structure, is defined by a set of equations resembling those
defining the well-known Kalman filter [83]. It remains to be
shown which of the estimation techniques is to be preferred.

Figure 4 displays the autoregressive power spectra obtained
during rest and upright postures when µ̂HR(t) and the inverse
interval function dIIF(t) is used. Clearly, the spectra are
expected to differ since they are based on different rhythm
representations: dIIF(t) accounts for HRV as a whole, whereas
µ̂HR(t) and σ̂HR(t) account for distinctly different aspects.
However, the differences can to some extent be explained by

This article has been accepted for publication in IEEE Reviews in Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/RBME.2022.3220636

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on December 01,2022 at 11:25:43 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2022 7

Fig. 4. Autoregressive spectral analysis of µ̂HR(t) (solid line) during
rest and upright posture, compared to the spectrum of dIIF(t) (dashed
line) resampled at a rate of 3 Hz. The upper/lower left diagrams display
the power spectra for 0–0.5 Hz, whereas the upper/lower right diagrams
display the power spectra for 0.5–1.5 Hz, referred to as the very high
frequency (VHF) band. Reprinted from [77] with permission.

considerations of bandwidth and model order selection. Before
computing the power spectrum, dIIF(t) needs to be lowpass
filtered, using a cutoff frequency well below half the mean
heart rate, so that aliasing is avoided in the interpolated and
resampled signal [24]. On the other hand, no such filtering was
done before the power spectrum of µ̂HR(t) was computed, and,
therefore, the frequency components exceeding half the mean
heart rate are aliased. Concerning model order selection, it is
well-known that a larger bandwidth implies a higher model
order to model the spectral peaks adequately [24]. Therefore,
considering that the bandwidth of µ̂HR(t) is much larger than
that of dIIF(t), the same model order implies lower spectral
peaks using µ̂HR(t) than for dIIF(t).

IV. MODEL-BASED ECTOPIC BEAT CORRECTION

The presence of ectopic beats perturbs the impulse pattern
initiated by the sinoatrial node, thus disqualifying the RR
intervals adjacent to an ectopic beat for HRV analysis. In
such cases, the autonomic modulation of the sinoatrial node
is temporarily lost and instead an ectopic focus initiates the
next beat prematurely. The location of the ectopic focus gives
rise to different types of perturbation: a beat of ventricular
origin inhibits the next sinus beat so that a compensatory
pause is introduced after the ectopic beat, whereas a beat
of supraventricular origin or a retrograde beat discharges the
sinoatrial node ahead of schedule (“resetting beat”) and causes
the following sinus beat to also occur ahead of schedule.

Ectopic beats must be dealt with before spectral analysis can
be performed; if not, spurious frequencies will appear. Differ-

ent techniques have been proposed to correct for occasional ec-
topic beats, whereas frequent ectopic beats perturb the rhythm
to such an extent that the entire series has to be excluded from
further analysis. While the majority of correction techniques
do not rely on a model, but rather perform either deletion,
interpolation, or filtering, see, e.g. [84]–[91], a number of
model-based techniques have been proposed, described in the
following, which all originate from the IPFM model though
their respective structures differ quite considerably.

Beat classification involving morphologic information is
assumed to be performed before HRV analysis, providing
information on whether a detected event is a normal beat, an
ectopic beat, or false, e.g., a T-wave, noise, or motion artifacts;
if false, the event is removed from the RR interval series.

A. Correction based on the lowpass filtered event series

An early work on model-based correction explored the idea
of replacing an ectopic beat with an imaginary normal beat
whose event time deviates the least from the rhythm implied
by the IPFM model [92]. Beat replacement operates under the
constraint that the ectopic beat must be followed by a complete
compensatory pause. Other types of ectopic beats cannot be
handled, e.g., those which reset the SA node.

The lowpass filtered event series, defined by

dLE(t) = h(t) ∗
M∑
k=0

δ(t− tk), (26)

plays an important role since it has been shown that dLE(t)
approximates 1 + m(t), i.e., the integrand in (2), provided
that |m(t)| � 1 [24], [93]; h(t) is the impulse response of
an ideal lowpass filter with a cutoff frequency of 1/2T Hz.
Consequently, as long as the event series is accounted for by
the IPFM model, i.e., without any ectopic beat, the integral of
dLE(t) is approximately constant for all k since

T =

∫ tk

tk−1

(1 +m(t))dt ≈
∫ tk

tk−1

dLE(t)dt = T (tk). (27)

Since this integral does not hold for an event series with an
ectopic beat at tke , the replacement strategy is to find that tke
which deviates the least from the rhythm implied by the IPFM
model. Accordingly, tke relates to an imaginary normal beat
instead of an ectopic beat. The replacement strategy is defined
by minimization of the variance:

t̂ke = arg min
tke−1<tke<tke+1

M∑
k=1

(
T (tke)− T̄

)2
, (28)

where T̄ is the mean of Tk. It should be noted that dLE(t)
has to be recomputed for different values of tke , cf. (26), and,
consequently, the integral in (27) that defines T (tk).

Since this approach is constrained to only handle a prema-
ture ectopic beat followed by a complete compensatory pause,
subsequent work has dealt with how to handle other types of
ectopic beats.
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B. Correction based on the heart timing signal

Another approach is to modify dHT(tk) in (16) so that
normal beats following an ectopic beat at te (tke < te <
tke+1) are related to a compensated time basis (k + s)T
instead of kT [94]; in contrast to the methods described in
Sections IV-A and IV-D, tke here represents a normal beat.
As a result, correction applies also to an ectopic beat not
followed by a complete compensatory pause. In this approach,
the ectopic beat is not indexed by k as it is not replaced by a
normal beat. Thus, the modified dHT(tk) is defined by

dHT(tk) =

{
kT − tk, k = 1, . . . , ke;
(k + s)T − tk, k = ke + 1, . . . ,M,

(29)

where the unknown parameter s represents a jump in the
resetting of the IPFM model.

A key step to facilitate the estimation of s is to generalize
the IPFM model so that the index k is replaced by the indexing
function κ(t), which when sampled at tk equals

κ(tk) =

{
k, k = 1, . . . , ke;
k + s, k = ke + 1, . . . ,M.

(30)

Then, s can be estimated by extending κ(t) forward in
time using the event times preceding the ectopic beat, i.e.,
(t0, 0), . . . , (tke , ke) and extending κ(t) + s backward in time
using the event times following the ectopic beat (tke+1, ke+1),
. . . , (tM ,M) so that the two extended functions overlap. The
forward extension introduces a new event time t̂fke+1 under
the assumption that the sinus rhythm continues after tke , and,
similarly, the backward extension introduces a new time t̂bke
(< t̂fke+1) under the assumption that the sinus rhythm precedes
tke+1; for details on extension by extrapolation, see [94].
Using the least squares criterion, the estimator of s is

ŝ =
1

t̂fke+1 − t̂bke

∫ t̂fke+1

t̂bke

(
κ̂f (t)− κ̂b(t)

)
dt, (31)

i.e., the area enclosed by the forward and backward extended
functions κ̂f (t) and κ̂b(t) within the overlap, normalized by
the duration of the overlap, see Fig. 5. A value of s close to
one indicates that the event at te is likely a premature ectopic
beat followed by a compensatory pause, whereas a value close
to zero indicates that the event is likely an artifact.

Before the modified heart timing signal can be computed,
the estimator of T has to be modified so that it accounts for ŝ,

T̂ =
tM − t0
M + ŝ

. (32)

C. Simplified correction based on the heart timing signal

Because of the extrapolation required to compute (31),
the correction based on dHT(tk) is computationally rather
demanding. Therefore, a simplified correction was developed
building on the observation that an ectopic beat shifts the event
times of the following normal beats by a certain time δ [95].
Then, an alternative formulation of dHT(tk) is given by

dHT(tk) =

{
kT − tk, k = 1, . . . , ke;
kT − tk + δ, k = ke + 1, . . . ,M.

(33)

ke+1

ke+2

ke

ke

–1

ke–2
tke–2 tke–1 tke+1 tke+1 tke+2tke tke

Time (s)

b f

κ̂f (t)

κ̂b(t)

Fig. 5. Ectopic beat correction based on dHT(tk). Forward exten-
sion of the indexing function κ̂f (t) using the event times (t0, 0),
. . . , (tke , ke) and backward extension of κ̂b(t) using the event times
(tke+1, ke + 1), . . . , (tM ,M); κ̂f (t) and κ̂b(t) are extended until
they overlap in time. The least squares estimator of s computes the
shaded area, normalized by the duration of the overlap, cf. (31).

The time shift δ can be derived by studying the interval from
tke to tke+1−δ, where the latter event time relates to a normal
beat had an ectopic beat not occurred. Then, the integral
defining the IPFM model for the normal beats at tke and tke+1

can be decomposed as follows:∫ tke+1

tke

(1 +m(τ))dτ =∫ tfke+1=tke+1−δ

tke

(1 +m(τ))dτ︸ ︷︷ ︸
=T

+

∫ tke+1

tke+1−δ
(1 +m(τ))dτ,

where evaluation of the first integral yields the following
expression of δ:

δ = tke+1 − tke − T +

∫ tke+1−δ

tke

m(τ)dτ. (34)

To make this expression practicable, m(t) can be approxi-
mated by a constant during the ectopic beat (defining the first-
order estimator of δ), by a linear change during the ectopic
beat (defining the second-order estimator of δ), and so on. The
general N -th order estimator of δ is given by [95]

δ̂N =

N+1∑
l=0

(−1)l
(
N + 1

l

)
tke+1−l, N = 1, 2, . . . (35)

In analogy with (32), the estimator of T is modified to account
for δ̂N , given by

T̂ =
tM − t0 − δ̂N

M
. (36)

By comparing the results obtained by spectral analysis, the
power of the LF and HF bands were found to be almost identi-
cal for the corrections based on (29) and (33) using δ̂1, with the
difference that the latter type of correction is computationally
much more efficient [95].
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D. Correction based on point process modeling

The history-dependent point process model has been suc-
cessfully adopted for ectopic beat correction by exploring the
assumption that RR intervals in sinus rhythm can be modeled
by a time-varying inverse Gaussian PDF [96]. Similar to the
correction method described in Sec. IV-A, an ectopic beat is
replaced by an imaginary normal beat, but with the difference
that the event time is determined by assessing to what extent
the event time fits the model. Again, beat replacement operates
under the constraint that the ectopic beat must be followed by
a complete compensatory pause.

The starting point of the correction is the two PDFs de-
scribing the RR intervals adjacent to the ectopic beat at tke .
By maximizing the product of these two PDFs,

t̂ke = arg max
tke−1<τ<tke+1

p(τ − tke−1; µ̂(Hke−1,ake−1), λke−1)

· p(tke+1 − τ ; µ̂(Hke(τ),ake), λke), (37)

the most probable event time t̂ke of an imaginary normal beat
is determined, thus replacing tke in the corrected series of
event times. The mean of the PDF of the RR interval preceding
the ectopic beat is given by

µ̂(Hke−1,ake−1) = â0,ke−1 +

p∑
i=1

âi,ke−1(tke−i − tke−1−i),

(38)

where the regression parameters ai,ke−1 are estimated us-
ing the p event times preceding the ectopic beat, i.e.,
tke−p, . . . , tke−1. The mean of the PDF of the RR interval
following the ectopic beat accounts for that the event time τ
is shifted and given by

µ̂(Hke(τ),ake) = â0,ke + â1,ke(τ − tke−1)

+

p∑
i=2

âi,ke(tke−i+1 − tke−i). (39)

The regression parameters ai,ke are estimated from a slightly
different series of event times which includes the event time
τ subject to estimation, i.e., tke−p+1, . . . , tke−1, τ . The shape
parameters λke−1 and λke in (37) can be estimated using the
event time series Hke−1 and Hke(τ), respectively. Another,
simpler approach is to first estimate λke−1 and then setting
λ̂ke = λ̂ke−1 [96]. The maximization in (37) is performed
numerically using, e.g., the Newton–Raphson algorithm.

Before the corrected series can be accepted, the probability
describing how well the model fits several RR intervals preced-
ing and following the ectopic beat at tke has to be evaluated.
The corrected series is accepted only if the probability exceeds,
with a certain margin, the probability associated with the
original, uncorrected series.

V. TIME–FREQUENCY ANALYSIS OF HRV IN
TIME-VARYING CONDITIONS

The standard, fixed definitions of the HRV frequency bands
are inappropriate in conditions when the respiratory frequency
varies considerably over time, e.g., during exercise stress
testing. This issue may be addressed by redefining the HF

band on the basis of respiratory frequency and mean heart
rate. Another issue arising in time-varying conditions relates
to spurious, aliased spectral components sometimes observed
during exercise stress testing. While time–frequency analysis
serves as the backbone to handle these issues, additional
methods are needed to ensure adequate interpretation, most
of them heuristic in nature and therefore without relation to
the previously described models.

A. Respiration and HF band redefinition

The power of the HF band (0.15–0.4 Hz) is considered a
measure of efferent vagal activity mainly due to respiratory
activity, a consideration that builds on the assumption that the
respiratory frequency is contained in this band. However, the
use of a fixed HF band is inadequate, e.g., in situations of
physical activity and autonomic provocation and in children
and pregnant women, when the respiratory frequency very
well can exceed 0.4 Hz. Conversely, the respiratory frequency
may subceed 0.15 Hz during sleep and relaxation, clearly
leading to inadequate measurements when using fixed LF and
HF bands. This problem may be addressed using the signal
decomposition techniques described in Section VII.

Several approaches have been proposed to handle the draw-
backs of a fixed HF band, all having in common that a
respiratory signal r(t), whether measured from a dedicated
sensor or ECG-derived, is used to redefine the HF band.
Irrespective of approach, the HF band must be upper bounded
by half the mean heart rate due to the sampling theorem.
In those extreme occasions when the respiratory frequency
exceeds half the mean heart rate, aliasing components will
appear at frequencies below half the mean heart rate [8];
Section V-B provides insight into how to mitigate this problem.

An early approach to redefining the standard HF band was
to simply increase the upper limit to 0.60 Hz to ensure that the
respiratory frequency always remained within the band [97].
However, a broadened HF band increases the risk of including
spurious spectral peaks which in turn leads to HF power
measurements suggesting increased parasympathetic activity.
Another early approach was to center the HF band to a fixed
respiratory frequency, determined either by a metronome [98]
or derived from the power spectrum Sd(F ) of d(t) [99], [100].
Once determined, the HF band was held fixed throughout
the recording. However, deriving the respiratory frequency
from Sd(F ) is highly susceptible to errors due to phantom
peaks [32], broadband respiration, and reduced respiratory
sinus arrhythmia. Therefore, modern methods for ECG-derived
respiration explore beat morphology which is much more
robust.

In more recent studies, the HF band ΩHF(t) is redefined on
the basis of a time-varying respiratory frequency Fr(t) and
related limits defined by ∆l(t) and ∆u(t),

ΩHF(t) ≡ [Fr(t)−∆l(t), Fr(t) + ∆u(t)] . (40)

Based on the time–frequency distribution of an airflow signal,
Fr(t) was determined by finding the location of the largest
peak of each time slice, which, together with the assump-
tion of a fixed bandwidth, i.e., ∆l(t) = ∆u(t) = ∆, defined
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Fig. 6. The SPWVD of an HRV signal obtained during exercise stress
testing (lasting until 600 s) and recovery, highlighting how the HF band is
redefined based on the respiratory frequency. Half the mean heart rate is
plotted with a solid black line, the respiratory-related, time-varying limits
of the HF band with dashed lines, and the standard, fixed limits of the
LF and HF bands with dotted lines.

ΩHF(t) [101], [102]. Based on the scalogram of a plethys-
mographic signal, Fr(t) was also determined by finding the
location of the largest peak of each time slice, whereas ∆l(t)
and ∆u(t) were determined by finding the locations of the two
minima immediately surrounding the largest peak [103]. Un-
fortunately, such a definition tends to produce an ΩHF(t) which
varies considerably from slice to slice, thus warranting a more
robust method. This may be achieved by computing the sample
Pearson correlation coefficient between Sr(F ) and Sd(F ) in a
small interval around Fr(t) (determined from the location of
the largest peak in Sr(F )), then increasing the interval limits
until the correlation coefficient falls below a certain threshold
when the limits are designated as ΩHF(t) [104]. While the
method was originally developed for stationary conditions, it
can be easily extended to nonstationary conditions.

Preventive measures must be taken to avoid that the rede-
fined HF band overlaps with the LF band, e.g., by requiring
that Fr(t)−∆l(t) > 0.15 Hz [79], [105], or by simply setting
the upper limit of the LF band to Fr(t) − ∆l(t) [104]. The
preventive measures refer to situations when the respiratory
frequency Fr(t) is low, then resulting in a lower limit of the
HF band which is below 0.15 Hz.

Figure 6 illustrates how the spectral content of an HRV
signal, obtained during exercise stress testing and recovery,
varies over time. The respiratory frequency exceeds the upper
limit of the standard, fixed HF band from about 400 s to 700 s,
and, consequently, tracking the power of this HF band yields
an inaccurate description of parasympathetic activity. By re-
defining the HF band based on respiratory frequency [101],
[102], the power of the redefined HF band is found to decrease
during exercise, thus reflecting parasympathetic withdrawal,
accompanied by an increase during recovery.

Rather than explicitly relating the HF band limits to Fr(t)
as in (40), ΩHF(t) may be based on the local coupling
between d(t) and r(t). While Fr(t) may still be used, it
plays a subordinate role in indicating the region of interest
for subsequent spectral analysis. One statistical approach to

determining ΩHF(t) is based on time–frequency coherence
which measures the strength of the local coupling between
d(t) and r(t), defined by [106]

γdr(t, F ) =
|Sdr(t, F )|√

Sd(t, F )Sr(t, F )
, (41)

where Sdr(t, F ) denotes the time-dependent cross-spectrum
between d(t) and r(t), and Sd(t, F ) and Sr(t, F ) denote the
time-dependent power spectra of d(t) and r(t), respectively.
Since this measure is well suited for finding regions in the
time–frequency domain where d(t) and r(t) exhibit similar
instantaneous frequencies, it has been proposed for redefining
the HF band [107]. The computation of Sdr(t, F ), Sd(t, F ),
and Sr(t, F ) needs to be made with caution to ensure that
γdr(t, F ) is bounded between 0 and 1. This applies particularly
to the kernel function chosen to weight the ambiguity function
(reflecting the uncertainty in time and frequency) to suppress
undesired cross-terms [15], [107]. To find regions of coherence
in γdr(t, F ), hypothesis testing is performed on a point-by-
point basis by comparing γdr(t, F ) to a threshold γTH(t, F ;α),

ΩHF(t) ≡ {γdr(r, F ) > γTH(t, F ;α)}. (42)

The null hypothesis H0, stating that d(t) and r(t) are uncor-
related at a certain point in the time–frequency domain, is
rejected at the significance level α whenever the inequality
in (42) is fulfilled. For this particular significance level, the
threshold γTH(t, F ;α) is determined by computing γdr(t, F )
for several realizations of surrogate signals without local
coupling; the surrogate signals can be white noise or have
properties similar to the original signals [108]. Using this
approach, the resulting HF band may contain discontinuities
(“gaps”) in time as well as in frequency.

B. Spurious spectral components during exercise
During exercise stress testing, performed either by pedaling

a bicycle ergometer or running on a treadmill, the interpreta-
tion of the HRV spectrum is complicated by the appearance
of a spurious locomotor-related component centered at the
pedaling or running stride frequency Fl(t). This component
is observed during a maximal graded bicycle ergometer stress
test, particularly at higher workloads when the locomotor–
heart rate coupling (synchronization) is accentuated [109]. The
coupling may be explained as a consequence of heart rate
entrainment by locomotor rhythms due to interaction [110].
Another explanation is related to the projection of the cardiac
electrical vector onto different leads: at higher workloads, the
direction of the vector is increasingly coupled to Fl(t) causing
the QRS morphology to change in rhythmical fashion [111].
As a result, the event times produced by the QRS detector ex-
hibit slight jittering which in the HRV spectrum is manifested
as a component at Fl(t). The presence of this component is
illustrated by Fig. 7 where the time–frequency distribution of
an HRV signal, obtained during exercise stress testing and
recovery, is displayed.

When the spurious component at Fl(t) exceeds half the
mean heart rate FmHR(t), an aliased component is introduced
in the HRV spectrum that may overlap with the LF or the
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the HF band are indicated with dashed lines, and the standard, fixed
limits of the LF and HF bands with dotted lines. No aliased component
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Fig. 8. Schematic illustration of the aliasing introduced by the pedal-
ing/stride frequency Fl and its harmonic at 2Fl; the aliased components
appear at FAC1 and FAC2. For clarity, time-dependence is omitted.

HF band [112]. When the pedaling/stride frequency varies
during exercise stress testing, additional aliased components
may be introduced which, together with the autonomic HRV
components of interest, form a pattern difficult to disentangle.

Figure 8 illustrates schematically how aliasing is introduced
by Fl(t) and its harmonic at 2Fl(t) when Fl(t) > FmHR(t)/2;
the two aliased components appear at the frequencies FAC1(t)
and FAC2(t). Figure 9 shows the time–frequency distribution
of an HRV signal of a subject running on a treadmill at
fixed frequency. The HF band ΩHF(t) and the bands related
to the aliased components, denoted ΩAC1(t) and ΩAC2(t), are
superimposed on the time–frequency distribution. The aliasing
bands are centered at FmHR(t)−Fl(t) and −FmHR(t)+2Fl(t),
in both cases assumed to have a bandwidth of 0.125 Hz.

When Fl(t) subceeds FmHR(t)/2, no aliased component is
present. While Fl(t) itself may cause problems, it is typically
much higher than Fr(t), and, therefore, its influence on the
HF band is negligible unless an extended HF band is used.

When information on pedaling/stride frequency and mean
heart rate indicates the presence of one or several aliased
components, a correction technique can be applied when
computing the HF power [111]. The correction is activated as
soon as ΩA(t), A ∈ {AC1,AC2, . . .}, overlaps with ΩHF(t),
where ‘ACn’ stands for the n:th aliased component. The
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Fig. 9. The SPWVD of an HRV signal obtained during exercise stress
testing when pedaling is performed (a) with increasing workload and
(b) without workload during recovery, illustrating how the frequency
bands, whether related to autonomic function or aliasing, change over
time. During certain periods, ΩHF(t) (solid lines) overlap with ΩAC1(t)
(dashed lines) and/or ΩAC2(t) (dotted lines).

degree of overlap is defined by

oHF,A(t) =
ΩHF,A(t)

ΩA(t)
, 0 ≤ oHF,A(t) ≤ 1, (43)

where ΩHF,A(t) is the bandwidth of the overlap; thus,
oHF,A(t) = 0 indicates no overlap. The correction depends on
the relative power of ΩHF(t) and ΩA(t), meaning that more
correction is applied when the aliased components become
more dominant. The relative power is defined by

αHF,A(t) =
PA(t)

PHF(t) + PA(t)
, 0 ≤ αHF,A(t) < 1. (44)

To ensure that αHF,A(t) is a smooth function, a running
average ᾱHF,A(t) is used, updated as long as oHF,A(t) = 0,
but extrapolated by holding fixed the most recent update of
ᾱHF,A(t) whenever oHF,A(t) > 0. The corrected HF power
P̃HF(t) is obtained by subtracting PA(t), scaled by oHF,A(t)
and ᾱHF,A(t), from the original HF power PHF(t). For the case
with two aliased components, P̃HF(t) is given by

P̃HF(t) = PHF(t)− oHF,AC1(t)ᾱHF,AC1(t)PAC1(t)

− oHF,AC2(t)ᾱHF,AC2(t)PAC2(t). (45)

By holding fixed the most recent update of ᾱHF,A(t) whenever
oHF,A(t) > 0, the HRV signal is implicitly assumed to be short-
term stationary during the overlap period.

Figure 10 illustrates the correction technique for a situation
in which aliasing caused by Fl(t) appears during a limited
time period, leading to overestimation of PHF(t). Following
the correction in (45), P̃HF(t) decreases to values similar to
those observed before and after the aliasing period.
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Fig. 10. Illustration of HF power correction using (45). (a) The un-
corrected HF power PHF(t) (dashed line), the power of the aliased
component PAC2(t) (solid line), and the corrected HF power P̃HF(t)
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overlap oHF,AC2(t) (dashed line) and the running average ᾱHF,AC2(t)
(solid line). The vertical dashed lines indicate onset and end of the
overlap during which ᾱHF,AC2(t) is held fixed.

VI. TIME–FREQUENCY BASED PARAMETER ESTIMATION
GUIDED BY RESPIRATION

Rather than redefining the standard HF band to account
for respiration, a model-based approach to inferring informa-
tion on the LF and HF components may constitute a better
alternative, especially when respiration is considered. Such
an approach could then output time-varying estimates of the
frequency and the power of each component. A signal-plus-
noise model has been proposed with a structure particularly
suitable for analysis of data recorded during exercise stress
testing [102]. The model is based on the assumption that the
analytic HRV signal dA(n) of the general, discrete-time HRV
signal d(n), obtained after interpolation and resampling at rate
Fs, is composed of two complex exponentials, i.e., sinusoids,
accounting for the dominant frequencies of the LF and HF
bands [102], [113],

dA(n) = ALFe
ωLFn +AHFe

ωHF(n)n + vA(n), (46)

where ALF and AHF are amplitudes and ωLF = 2πfLF
and ωHF(n) = 2πfHF(n) are discrete-time frequencies. The
exercise-induced changes in respiratory frequency are modeled
by fHF(n) = 2αn+ β, i.e., increasing linearly with workload
until peak exercise and then decreasing linearly during re-
covery; the variation in respiratory frequency is defined by
2α [114], [115]. The analytic noise vA(n) is assumed to be
white, accounting for QRS jitter and modeling inaccuracies.

Reformulating the model in terms of autocorrelation condi-
tions the model for non-parametric time–frequency analysis,
with windowing as an important ingredient. Assuming a
rectangular window for time smoothing, defined by the width
2N −1, and an exponential window for frequency smoothing,
defined by the decay γ, the instantaneous autocorrelation

function of dA(n) is given by [102]

rd(n, k) = e−γ|k|
(
|ALF|2eωLF2k + |AHF|2u(k)eωHF(n)2k

)
+ cross-term + rv(n, k), (47)

where
u(k) =

1

2N − 1

sin(2π2α(2N − 1)k)

sin(2π2αk)
.

Thus, due to time smoothing, the amplitude and bandwidth of
the HF component become dependent on α and N . By proper
selection of N , however, the cross-term can be reduced.

Then, based on (47), a general model is given by

rd(n, k) =

I(n)∑
i=1

Ci(n)eξi(n)k+ωi(n)k + w(n, k), (48)

where Ci(n) is an amplitude, ξi(n) a damping factor, and
w(n, k) accounts for rv(n, k) and the cross-term. The number
of components I(n) can change over time to reflect the
presence of multiple HRV-related components in the LF and
HF bands as well as the pedaling component.

In the absence of noise, Ci(n), ξi(n), and ωi(n) can be
estimated using a suboptimal least squares technique in which
the zeros of the L-th order prediction error filter

Bn(z) = 1 + b(n, 1)z−1 + · · ·+ b(n,L)z−L

are located at zi(n) = e(ξi(n)+ωi(n))k, i = 1, . . . , L, where L
can simply be set to the rank of Rd(n) [102]. The coefficients
b(n, i), forming the column vector b(n), are obtained by the
linear prediction equation Rd(n)b(n) = rd(n), where Rd(n)
is the sample autocorrelation matrix and rd(n) the sample
autocorrelation vector, both computed from the observed sig-
nal dA(n). Then, for each zi(n), the related frequency and
damping factor are obtained by ω̂i(n) = Im(ln zi(n)) and
ξ̂i(n) = Re(ln zi(n)), respectively, whereas Ĉi(n) is obtained
using a least squares approach to solving the linear system of
equations that results from inserting ξ̂i(n) and ω̂i(n) in (48).
The power and frequency of a component are given by

P̂i(n) =
|Ĉi(n)|√

2
, F̂i(n) =

1

2

ω̂i(n)

2π
Fs, (49)

where Fs is the sampling rate of the HRV signal.
Respiratory information is introduced by forcing the HF

component zHF(n) to ω̂HF(n) = 2πfr(n) and ξ̂HF(n) to a
function of the rate of variation in fr(n), given by the time-
varying estimator 2α̂(n) = fr(n)−fr(n−1) [102]; d(n) and
fr(n) are assumed to be sampled at the same rate. To account
for the assumption that zHF(n) is known and the presence of
noise, the following constrained least squares criterion should
be minimized with respect to b(n):

J(n) = ‖Rd(n)b(n)−rd(n)‖2 +λ(bT (n)zHF(n)+1), (50)

where zHF(n) = [z−1HF (n), z−2HF (n), . . . , z−PHF (n)]T and λ is a
Lagrangian multiplier. The LF component zLF(n) is identified
as the frequency ω̂i with the largest power in the LF band.

Nonparametric time–frequency analysis suffers from a
time-varying frequency resolution and an unwanted time-
varying amplitude term that influence the HF power estimate.
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Fig. 11. The frequencies f̂LF(n) and f̂HF(n) (top row, plotted after
multiplication with Fs to produce natural frequencies) and P̂HF(n)
(bottom row) computed for zHF(n) determined (a) without and (b) with
use of fr(n). An extended HF band from 0.15 Hz to half the mean heart
rate is assumed. Peak exercise is marked with a dashed line.

However, using the time-variant rectangular window length
2N(n)− 1 = κ/2α̂(n), where κ is a constant, the frequency
resolution becomes time-invariant. Moreover, the unwanted
influence on the HF power estimate can be avoided using the
following time-varying window:

g(n, l) =
2ρ(n)

ρ2(n) + (2πl)2
,

where ρ(n) = η/(4|α̂(n)|) and η is a constant.
Figure 11 displays the dominant frequencies f̂LF(n) and

f̂HF(n) and the power of the HF component P̂HF(n) for an
HRV signal obtained during exercise stress testing. The param-
eters were estimated both without and with inclusion of fr(n),
using unconstrained and constrained least squares estimation,
respectively. Clearly, the inclusion of fr(n), defined at all
times, results in lower variability in f̂HF(n) and, as a result,
P̂HF(n) becomes smoother.

Even if this approach accounts for respiration, it can still
be influenced by spurious components when the spectral bands
overlap. If so, the correction in (45) should be considered.

VII. SIGNAL DECOMPOSITION GUIDED BY RESPIRATION

In certain situations, decomposition of the HRV signal is
warranted so that the respiration-related fluctuations can be
removed from the HRV signal so that the signals both related
and unrelated to respiration can be analyzed. For example, it
has been shown that the effects of mental stress are better
reflected in HRV indices derived from the decomposed HRV
signal than from the original signal [116], [117]. Another
situation calling for decomposition is when the LF and HF
bands overlap, ultimately leading to entrainment when the two
components merge into one. Such overlapping occurs during,
e.g., rosary prayer and yoga [118] and wakefulness, slow-
wave and REM sleep [119]. If not handled properly through
decomposition, the power of the LF band will be significantly
overestimated [105].

The methods described in this section focus on the following
decomposition of the general, discrete-time HRV signal d(n):

d(n) = dr(n) + dur(n), n = 0, . . . , N − 1, (51)

where dr(n) accounts for respiratory influence on the heart
rate and dur(n) is the residual signal. The decomposition is
usually done in two steps: first the signal with respiration-
related fluctuations d̂r(n; r(n)) is estimated and then the
residual signal is computed,

d̂ur(n) = d(n)− d̂r(n; r(n)), (52)

where the respiratory signal r(n) is needed to find d̂r(n; r(n))
as indicated by the functional dependence. Neither dr(n) nor
dur(n) have to be described by a mathematical model to be
useful for decomposition.

In the following, d(n) and r(n) are assumed to be mean-
corrected and r(n) bandpass filtered so that frequencies out-
side the interval defined by the lower limit of the LF band and
the upper limit of the HF band are suppressed.

A. Linear filtering
A popular approach to decomposition builds on the assump-

tion that dr(n) is related to r(n) through a p-th order, linear,
time-invariant filter with impulse response h(n) [116], [117],
[120]. With matrix representation, the decomposition can be
expressed as

d = R1h + dur, (53)

where

R1 =


r(p) r(p− 1) · · · r(0)

r(p+ 1) r(p) · · · r(1)
...

...
. . .

...
r(N − 1) r(N − 2) · · · r(N − 1− p)

 (54)

is a convolution matrix and

h =
[
h(0) h(1) · · · h(p)

]T
,

dur =
[
dur(p) dur(p+ 1) · · · dur(N − 1)

]T
,

d =
[
d(p) d(p+ 1) · · · d(N − 1)

]T
.

The filter order p may be chosen using an information criterion
such as Akaike’s, however, the filter order should also account
for a sufficiently low respiratory frequency [121].

The optimal least squares filter coefficients h are obtained
by minimizing ‖dur‖2 = ‖d−R1h‖2, resulting in the well-
known estimator [122]

ĥ = (RT
1 R1)−1RT

1 d. (55)

The respiration-related HRV signal is obtained by the orthog-
onal projection

d̂r = R1ĥ = R1(RT
1 R1)−1RT

1 d, (56)

where P1 = R1(RT
1 R1)−1RT

1 is a projection matrix. Thus,
the residual signal is obtained by

d̂ur = d− d̂r. (57)

Least mean squares adaptive filtering for estimating dur(n)
falls within the realm of linear filtering, though time-varying,
with r(n) serving as the reference signal [123], [124]. The
order of the finite impulse response filter and the adaptation
constant constitute the crucial design parameters. In a later
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study, it has been demonstrated that initial smoothing of d(n)
and r(n) is crucial to make this technique work [117].

A potential disadvantage with the linear filtering approach is
that it operates independently of whether the cardiorespiratory
coupling is significant or not. By conditioning filtering on
the presence of cardiorespiratory coupling, this disadvantage
may be addressed [120]. The coupling can be assessed us-
ing Granger’s causality test, determining whether knowledge
about past samples of r(n) improves the prediction of d(n),
supported by a statistical significance test [120], [125]. Al-
ternatively, assessment can build on the assumption that a
bivariate AR model describes the interaction between d(n) and
r(n) [62]; coupling is then assessed using cross entropy which
involves the variance of d(n) and the variance of the residuals
of the regression between d(n) and the history of r(n) [126].
Other approaches to assessing cardiorespiratory coupling in-
clude phase synchronization [127]–[129] and causality-related
decomposition using transfer entropy techniques [130], [131].

B. Orthogonal subspace projection
Orthogonal projection of d(n) onto the subspace spanned

by r(n) can also be considered without explicitly referring
to filtering and least squares estimation [121], see also [62].
Although the matrix defining the subspace in these two studies
differs from R1 as the order of the columns is reverted,

R2 =


r(0) r(1) · · · r(p)
r(1) r(2) · · · r(p+ 1)

...
...

. . .
...

r(N − p− 1) r(N − p) · · · r(N − 1)

 , (58)

the projection matrix P2 associated with R2 is identical to P1

since R2 = R1J, where J is the reversal matrix. Thus,
although not previously noted in the literature, the decomposi-
tion based on R2, described in [62], [121], is identical to the
decomposition based on R1, described in [116], [117], [120].
Figure 12 illustrates the signal decomposition, resulting in
d̂ur(n) which largely lacks the oscillations due to respiration.

Rather than constructing R2 directly from r(n), a multi-
scale approach has been proposed in which R2 is con-
structed from the detail coefficients of wavelet analysis, using
the Daubechies-4 wavelet at five different scales [117], see
also [132]. The wavelet-based matrix is then given by

R3 =
[
w1,p · · · w1,1 w2,p · · · w2,1 · · · w5,1

]
, (59)

where

wl,n =
[
wl(n) wl(n+ 1) · · · wl(n+N − 1)

]T
,

and wl(n) is the l-th detail scale of r(n).

C. Smoothed extended Kalman filtering
A more advanced approach to decomposing d(n) is based

on a model which resembles the time-varying autoregressive,
moving average model with exogenous input, involving d(n),
r(n), and dur(n) [68]. The approach differs from those
leading up to orthogonal subspace projection as it is statistical
in nature. The HRV signal d(n) is modeled by a sum of
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Fig. 12. Signal decomposition using orthogonal subspace projection.
(a) d(n) (here given by a sampled version of m̂(t) in (19)), (b) r(n),
(c) d̂r(n; r(n)) and (d) d̂ur(n). The ECG was recorded during
relaxing audio listening [105]. The vertical scales have arbitrary units.

a respiration-related component dr(n; r(n)), a respiration-
unrelated component dur(n), and observation noise v(n),

d(n) = dr(n; r(n)) + dur(n) + v(n), (60)

where dr(n; r(n)) is a filtered version of the exogenous
input rs(n),

dr(n; r(n)) =

p∑
k=0

b(k, n)rs(n− k), (61)

and dur(n) is described by a time-varying AR model driven
by white noise e(n),

dur(n) =

q∑
k=1

a(k, n)dur(n− k) + e(n). (62)

The dominant respiratory component rs(n) is modeled by
a sinusoidal with amplitude a2r(n), fundamental frequency
θr(n; fr(n)), and phase ϕr(n),

rs(n) = a2r(n) sin(θr(n; fr(n)) + ϕr(n)). (63)

The observed respiration signal is modeled by

r(n) = rs(n) + rns(n) + vr(n), (64)

where rns(n) represents the non-sinusoidal components of
r(n) and vr(n) is white noise.

The model equations (60)–(64) can be assembled in the
following state-space representation:

x(n+ 1) = f(x(n)) + w(n),

y(n) = g(x(n)) + v(n),
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Fig. 13. Decomposition of the power spectrum of d(n) (black line)
into the spectra of d̂ur(n) and d̂r(n; r(n)) (purple and green line,
respectively), using the smoothed extended Kalman filter. The ECG was
recorded from a healthy subject during normal respiration. Reprinted
from [68] with permission.

where f(·) and g(·) are nonlinear functions. The state vector
x(n) contains the following elements: b(0, n), . . . , b(p, n),
a(1, n), . . . , a(q, n), dur(n), ar(n), θr(n; fr(n)), fr(n),
ϕr(n), and rns(n). The observation vector y(n) contains d(n)
and r(n). A simple random walk model accounts for the
variation of each element in x(n). The vectors w(n) and v(n)
represent the system and observation noise, respectively.

Once the state-space equations have been defined, the model
orders p and q are estimated and the initial values of the state
vector and noise variances determined, the smoothed extended
Kalman filter can be used to estimate x(n) [68]. Clearly, to
run the filter, numerous values need first to be determined,
most of them based on experiential knowledge.

Using the smoothed extended Kalman filter, operating both
forward and backward in time, the decomposed spectra of
d̂r(n; r(n)) and d̂ur(n) can be computed directly from â(k, n)
and b̂(k, n), respectively, see Fig. 13. The two decomposed
spectra essentially coincide with the original spectra in the LF
and HF bands, except for some overlap around 0.2 Hz.

D. Empirical mode decomposition
Empirical mode decomposition was originally used to

decompose d(n) without any involvement of r(n), see,
e.g., [133]. However, respiration-guided decomposition has
later been proposed in which d(n) is decomposed into a sum
of intrinsic mode functions ci(n) plus a residual cr(n) [134],

d(n) =

I∑
i=1

ci(n) + cr(n), (65)

where I is the number of intrinsic mode functions. To de-
termine whether d(n) and r(n) are coupled, each ci(n) is
crosscorrelated to a respiratory-derived signal rs(n) reflecting
the average slope of r(n) in each heartbeat. The signal rs(n)
is obtained by differencing r(n) at the time of successive R-
wave peaks, followed by equidistant resampling to the same

rate as that of d(n). Due to the differencing, rs(n) emphasizes
short-term variation in respiration, while low-frequency drift
unrelated to HRV is essentially filtered out.

The desired respiration-related signal dr(n) is obtained by
summing those ci(n) whose crosscorrelation with rs(n) is
statistically significant; conversely, dur(n) is obtained by sum-
ming those ci(n) not associated with statistically significance.

E. Decomposition-based HRV indices
The decomposition of d into d̂r and d̂ur opens up for the

definition of HRV indices which address limitations of existing
spectral indices. The normalized power of d̂r and d̂ur are two
simple but useful indices [121], defined by

P ′r =
d̂Tr d̂r

d̂T d̂
, P ′ur =

d̂Turd̂ur

d̂T d̂
, (66)

where P ′r mainly reflects respiratory sinus arrhythmia and
parasympathetic activity, whereas P ′ur reflects respiration-
unrelated fluctuations.

To partially address the criticism against the standard LF/HF
ratio, here denoted Rs, when used to assess sympathovagal
balance [135], [136], a decomposition-based version of this
index has been proposed [121], defined by

R =
Pur,LF

Pr,LF+HF
, (67)

where Pur,LF is the power of dur(n) in the LF band and
Pr,LF+HF is the power of dr(n) in the combined LF and HF
bands. The performance of R has been evaluated in a study
where one of the aims was to discriminate between a relax
stage and five different stress stages, defined by the modified
Trier Social Stress Test including memory tasks and emotional
stress [121]. For a data set of 46 volunteers, Fig. 14 presents
the distributions of R and Rs for the different stages. The
results show thatR differs with statistical significance between
the relax stage and four of the five stress stages, while Rs does
not differ for any of the stress stages due to that respiration
overlaps with the LF band in the relax stage [105].

The index R may assume unreasonably large values when
the cardiorespiratory coupling is weak, a limitation which can
be mitigated by normalizing R to become [134]

R′ =
Pur,LF

Pr,LF+HF + Pur,LF
. (68)

Thus, R′ resembles the standard normalized ratio where the
spectral power in the LF band is normalized with the spectral
power of the bands combined.

VIII. DISCUSSION

The present survey aims at highlighting the progress made
with regard to methods which by design can handle time-
varying conditions and the presence of confounding factors—
aspects which undermine the interpretation of classical spectral
analysis. Clearly, time–frequency analysis addresses the often
unrealistic assumption of stationarity implied by classical
spectral analysis. However, of central importance is also
the emergence of time-varying, nonlinear signal processing
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RRs

Fig. 14. Characterization of sympathovagal balance using the standard
LF/HF ratio Rs and the decomposition-based R, defined in (67), during
a modified Trier Social Stress Test, including a baseline relax stage
(BL), followed by stages of story telling (ST), memory task (MT), stress
anticipation (SA), video exposition (VE), and arithmetic task (AT). The
asterisk indicates p < 0.003. Reprinted from [121] with permission.

techniques to represent heart rhythm with a time-varying
mean heart rate, to correct ectopic beats, to redefine the
frequency bands, to decompose the HRV signal by making
use of a respiration signal, and more. Indeed, this development
suggests that the spectral approach is not yet down for the
count, but significant information can be extracted in the pres-
ence of rapid and transient changes or spectrally overlapping
coactivation of the two ANS branches. Hence, the ongoing
development of methods for time-varying processing is most
likely bound to continue.

A major challenge in developing methods for HRV analysis
is that the ground truth is rarely available, complicating
evaluation and comparison of performance. For example, in
ectopic beat correction, the accuracy of the estimated event
time of the replaced beat cannot be established since the
true event time by definition is unknown. In respiration-
guided signal decomposition the accuracy of d̂r(n; r(n)) and
d̂ur(n) cannot be evaluated since the ground truth is unknown.
Historically, this challenge has been addressed by evaluating
performance indirectly, e.g., by judging to what extent the
behavior of the LF and/or HF bands agree with the expected
results. With regard to signal decomposition, performance has
been evaluated indirectly in terms of statistical significance of
indices which characterize different stages of a stress test.

A complementary approach to evaluating performance is to
make use of simulated signals which exhibit characteristics
of particular relevance to the problem addressed. As noted in
Section II-A, the IPFM model has been used extensively for
simulation purposes as well as for the development of model-
based signal processing. The former aspect is exemplified by
a recent study which compares the performance of different

methods quantifying respiratory sinus arrhythmia [62]. In
that study, the modulation function m(t) was composed of
two components: one taken as a real respiration signal and
another produced by filtered white noise unrelated to respira-
tion. To use simulated data is valuable as various statistical
performance measures can be determined, however, simulated
data is an idealization—something which is particularly true
when the simulation model represents the point of departure
for developing the method to be evaluated. Therefore, it is
essential that results based on simulated data are paired with
results based on real data to demonstrate the physiological or
clinical significance.

The search for better heart rhythm representations has
essentially come to an end as most recent efforts date back to
some 10–15 years [77], [79]. Interestingly, both these studies
proposed time-varying representations based on the IPFM
model, one developed within a deterministic framework and
another within a statistical, with both representations offering
significant advantages over the classical representations. The
heart timing representation provides an expression of the
modulation function in terms of a time-varying mean heart
rate, cf. (23), requiring only a modest amount of computations
which is of the same order as the commonly used dIIF(t),
i.e., interpolation, resampling, and, possibly, linear, time-
invariant filtering. The point process representation provides
instantaneous estimates of both the mean RR interval and the
mean heart rate (and related standard deviations) as well as an
assessment of how well the model fits the observed data using
a statistical test; to gain this information, a considerably larger
amount of computations is required due to multi-parameter
optimization and model order selection. It remains to be
demonstrated which of the two frameworks is to be preferred,
thus leaving room for future research which should investigate
performance in engineering terms as well as in clinical terms.

While the analysis of rapid and transient HRV changes calls
for proper tools [1], the classical representations, not account-
ing for mean heart rate, nonetheless continue to dominate in
the literature. The model-based heart rhythm representations,
much better suited to handle transient conditions, have yet to
find their way into clinical HRV studies.

Of the processing steps described in this survey, ectopic
beat correction is likely the least critical to embrace a time-
varying formulation, the main reason being that occasional
ectopic beats are to be corrected, whereas longer segments
with frequent ectopic beats are excluded from further analysis.
This observation may explain why the model-based techniques
described in Sections IV-A to IV-C have not been extended
to handle time-varying conditions. On the other hand, such
handling is inherent to the point process method. Using
artificially corrupted RR interval series, the performance of the
point process method was compared to that of the simplified
correction based on the heart timing signal (Section IV-C): the
median of the root mean square error between the estimated
and the true event time of a missing beat was found to be
quite similar (12.1 ms and 15.7 ms, respectively) [96].

The influence of respiration, being a major confounder
in HRV analysis, can be dealt with in various ways by,
e.g., redefining the HF band by means of the respiratory
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frequency (Section V-A), performing model-based estimation
of the LF and HF components using respiratory frequency
(Section VI), and performing spectral analysis of signals
obtained by respiration-guided decomposition (Section VII).
Redefinition of the HF band based on the respiratory frequency
offers a viable solution in certain situations, while not so
when the respiration-related spectral content overlaps with
the LF band. Of the three just mentioned approaches, signal
decomposition is probably the more controversial to perform,
one reason being that “adjusting HRV measurements for
confounders that are also under autonomic control might affect
their predictive value” [137]. However, this statement should
be counterbalanced by the results presented in some of the
studies referred to in Section VII. For example, the results
in Fig. 14 show that the desired decomposed signal actually
contains information which, when used to form the index R,
can distinguish the relax stage from most of the stress stages.

It should be noted that while non-adjusted HRV indices may
have predictive value, their interpretation can be completely
misleading. For example, a high normalized LF power due
to a very low respiratory rate can certainly discriminate
between different groups of subjects but lead to the erroneous
interpretation of sympathetic dominance.

Respiration-guided decomposition has a place in the HRV
analysis toolbox, however, various aspects deserve further
investigation, for example, the relation between respiratory
signal quality and decomposition performance. In the context
of assessing ANS response to pharmacological blockade and
stress, recent results suggest that similar performance can be
achieved irrespective of whether real or ECG-derived signals
are used [37]. Regarding the quality of ECG-derived signals, it
is important to select among those lead(s) which better reflect
the respiration-modulated changes in the ECG.

Most methods proposed for respiration-guided decomposi-
tion rest on the assumption that the cardiorespiratory coupling
is always present. Since this assumption is not always valid,
it would be valuable to either establish how such methods
perform when coupling is weak, and, if warranted, modify
the method so that weak coupling is handled properly, for
example, by considering the approaches proposed in [62],
[120]. Using simulated data, a recent study investigated cardio-
respiratory coupling with regard to, e.g., the filter order p
and the phase delay between the HRV and respiratory sig-
nals [138].

Another aspect on respiration-guided decomposition re-
lates to the handling of time-varying conditions. While the
smoothed Kalman filter by design can handle such conditions,
orthogonal subspace projection is derived from the assumption
that respiration-related HRV signal dr(n; r(n)) is related to
the respiration signal r(n) through time-invariant filtering,
cf. (53), suggesting that the projection in (56) is also time-
invariant. However, it is important to realize that estimation
of dr(n; r(n)) by orthogonal projection also results in time-
varying filtering of d(n) [24]. Even so, the projection matrix
may require to be recomputed in successive windows to
deal with that the coupling between respiration and HRV
can vary over time. With the growing number of techniques
developed for estimating dr(n; r(n)) and the residual signal

dur(n), performance benchmarking is highly warranted. The
techniques used for respiration-guided decomposition may be
modified for the purpose of eliminating the HRV component
due to pedaling or running, provided that external signal
information is available on pedaling or running. Whether this
idea is feasible remains to be investigated.

Algorithmic complexity plays a role when long-term ECG
recordings are of interest to analyze, especially in light of
that certain methods tend to be computationally demanding—
an aspect which only recently has received some attention.
For example, a 50 times difference in execution time between
methods for estimating respiratory sinus arrhythmia has been
reported, where orthogonal subspace projection was found to
be one of the fastest methods [62]. Another algorithmic aspect
is the number of design parameters that need to be set before
operation: while orthogonal subspace projection involves just
one parameter, i.e., the filter order, the smoothed Kalman filter
involves a large number of parameters [68]. As the number
of parameters grows, it becomes increasingly important to
investigate to what extent performance is influenced when
using slightly different parameter settings.

While the clinical implications of time-varying HRV anal-
ysis have yet to be demonstrated in clinical trials, the signif-
icance of such analysis is well-established by several experi-
mental studies. Time-varying analysis is essential when char-
acterizing the dynamics of the autonomic response, especially
in the presence of time-varying mean heart and respiratory
rates observed in experiments with Valsalva maneuver and
cold pressure testing [139], normal and pathological sleep
screening [140], induced emotions [141], exercise testing [79],
pharmacological interventions [142], and driver drowsiness
detection [143]. Indeed, it has been shown that not only are
most signals recorded during a tilt table test nonstationary,
but so are many recorded during resting supine and standing
positions [10].

IX. CONCLUSIONS

Spectral analysis of HRV has advanced considerably from
its inception to become a smorgasbord of methods which
makes it possible to handle time-varying conditions as well
as several confounding factors and spurious components.
Nonetheless, before performing spectral analysis, the con-
ditions under which the HRV signal is acquired must be
carefully scrutinized to ensure that adequate methods are
employed. It is equally critical to account for a mean heart
rate which varies markedly over time as it is restrict the
analysis to frequencies below half the mean heart rate; if not,
the comparison of HRV spectra may turn out meaningless.
Despite the recent advancements, further research is needed on
methods which make use of information on respiration as well
as to benchmark the performance of different decomposition
techniques.
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and R. Bailón, “Methodological framework for heart rate variability
analysis during exercise: application to running and cycling stress
testing,” Med. Biol. Eng. Comput., vol. 56, pp. 781–794, 2018.

[112] R. Bailón, N. Garatachea, I. de la Iglesia, J. A. Casajús, and P. Laguna,
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