000120080 001__ 120080
000120080 005__ 20240319081016.0
000120080 0247_ $$2doi$$a10.1039/d2ta06339e
000120080 0248_ $$2sideral$$a130631
000120080 037__ $$aART-2022-130631
000120080 041__ $$aeng
000120080 100__ $$aAlmansour, Faiz
000120080 245__ $$aThin film nanocomposite membranes of superglassy PIM-1 and amine-functionalised 2D fillers for gas separation
000120080 260__ $$c2022
000120080 5060_ $$aAccess copy available to the general public$$fUnrestricted
000120080 5203_ $$aLoss of free volume over time (i.e. aging) is the main hurdle towards the commercial use of super glassy polymers for gas separation membranes. Aging takes place at a much faster rate in polymeric thin films, with permeability reductions of over 50% in only a few days. In this work 2D reduced holey graphene oxide (rHGO) nanosheets containing amine groups were added into thin films of the super-glassy polymer of intrinsic microporosity PIM-1. At filler loadings of 1 wt% of rHGO-tris(4-aminophenyl)amine, the CO2 permeance after 1 year of physical aging was 846 ± 37 GPU, which remained very close to that of the fresh membrane tested right after preparation (1050 ± 70 GPU), and was double that of 1 year-aged purely PIM-1 thin film composite membranes (432 ± 4 GPU). Membranes with lower filler concentrations of 0.1 wt% showed CO2 permeance values of 604 ± 34 GPU after 1 year of aging, but they aged quite rapidly; the initial CO2 permeance values of the fresh thin film nanocomposite (TFN) membrane at filler loading of 0.1 wt% was 3351 ± 662 GPU. The aging behaviour was also investigated in several tens of micrometres thick membranes (up to 2 years) for filler loadings of 0.1 wt% and the gas separation performance showed similar tendencies to that of thin films; leading to higher CO2 permeability without sacrificing CO2/CH4 selectivity.
000120080 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/RYC2019-027060-I/AEI/10.13039/501100011033
000120080 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000120080 590__ $$a11.9$$b2022
000120080 592__ $$a3.156$$b2022
000120080 591__ $$aCHEMISTRY, PHYSICAL$$b24 / 161 = 0.149$$c2022$$dQ1$$eT1
000120080 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000120080 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b32 / 343 = 0.093$$c2022$$dQ1$$eT1
000120080 593__ $$aRenewable Energy, Sustainability and the Environment$$c2022$$dQ1
000120080 591__ $$aENERGY & FUELS$$b11 / 119 = 0.092$$c2022$$dQ1$$eT1
000120080 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ1
000120080 594__ $$a22.0$$b2022
000120080 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000120080 700__ $$aAlberto, Monica
000120080 700__ $$aFoster, Andrew B.
000120080 700__ $$aMohsenpour, Sajjad
000120080 700__ $$aBudd, Peter M.
000120080 700__ $$0(orcid)0000-0002-6905-714X$$aGorgojo, Patricia$$uUniversidad de Zaragoza
000120080 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000120080 773__ $$g10, 43 (2022), 23341-23351$$pJ. mater. chem. A$$tJournal of Materials Chemistry A$$x2050-7488
000120080 8564_ $$s1272649$$uhttps://zaguan.unizar.es/record/120080/files/texto_completo.pdf$$yVersión publicada
000120080 8564_ $$s2862636$$uhttps://zaguan.unizar.es/record/120080/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000120080 909CO $$ooai:zaguan.unizar.es:120080$$particulos$$pdriver
000120080 951__ $$a2024-03-18-15:38:59
000120080 980__ $$aARTICLE