000120086 001__ 120086
000120086 005__ 20240319081018.0
000120086 0247_ $$2doi$$a10.1016/j.fuel.2022.125143
000120086 0248_ $$2sideral$$a130837
000120086 037__ $$aART-2022-130837
000120086 041__ $$aeng
000120086 100__ $$0(orcid)0000-0002-7767-3057$$aMarrodán, Lorena$$uUniversidad de Zaragoza
000120086 245__ $$aAn experimental and modeling study of acetylene-dimethyl ether mixtures oxidation at high-pressure
000120086 260__ $$c2022
000120086 5060_ $$aAccess copy available to the general public$$fUnrestricted
000120086 5203_ $$aThe oxidation of acetylene (as soot precursor) and dimethyl ether (DME, as a promising fuel additive) mixtures has been analyzed in a tubular flow reactor, under high-pressure conditions (20, 40 and 60 bar), in the 450–1050 K temperature range. The effect of varying the air excess ratio (λ≈0.7, 1 and 20) and the percentage of DME with respect to acetylene (10 and 40%) has been analyzed from both experimental and modeling points of view. The addition of DME modifies the composition of the radical pool, increasing the production of OH radicals which cause a shift in the onset temperature for C2H2 conversion to lower temperatures; the higher the amount of DME, the lower the temperature. The presence of DME favors the oxidation of C2H2 towards products such as CO and CO2, eliminating carbon from the paths that lead to the formation of soot. On the other hand, in the presence of C2H2, DME begins to be consumed at temperatures higher than those required for the high-pressure oxidation of neat DME, around 175–200 K more. Consequently, the negative temperature coefficient (NTC) region characteristic of this compound at low temperatures is not observed under those conditions. However, an additional analysis of the influence of DME inlet concentration (at 20 bar and λ=1) indicates that, if the amount of DME in the mixture is increased to 500 ppm and more (700 or 1000 ppm), the reaction pathways responsible for this high DME reactivity at low temperatures become more relevant and the NTC region can now be observed.
000120086 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/RTI2018-098856-B-I00
000120086 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000120086 590__ $$a7.4$$b2022
000120086 592__ $$a1.38$$b2022
000120086 591__ $$aENGINEERING, CHEMICAL$$b19 / 141 = 0.135$$c2022$$dQ1$$eT1
000120086 591__ $$aENERGY & FUELS$$b32 / 119 = 0.269$$c2022$$dQ2$$eT1
000120086 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000120086 593__ $$aOrganic Chemistry$$c2022$$dQ1
000120086 593__ $$aFuel Technology$$c2022$$dQ1
000120086 593__ $$aEnergy Engineering and Power Technology$$c2022$$dQ1
000120086 594__ $$a12.2$$b2022
000120086 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000120086 700__ $$0(orcid)0000-0001-5426-6486$$aMillera, Ángela$$uUniversidad de Zaragoza
000120086 700__ $$0(orcid)0000-0002-5420-0943$$aBilbao, Rafael$$uUniversidad de Zaragoza
000120086 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, María U.$$uUniversidad de Zaragoza
000120086 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000120086 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000120086 773__ $$g327 (2022), 125143 [8 pp.]$$pFuel$$tFuel$$x0016-2361
000120086 8564_ $$s1200858$$uhttps://zaguan.unizar.es/record/120086/files/texto_completo.pdf$$yVersión publicada
000120086 8564_ $$s2598318$$uhttps://zaguan.unizar.es/record/120086/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000120086 909CO $$ooai:zaguan.unizar.es:120086$$particulos$$pdriver
000120086 951__ $$a2024-03-18-15:54:31
000120086 980__ $$aARTICLE