000120103 001__ 120103
000120103 005__ 20240319081022.0
000120103 0247_ $$2doi$$a10.3390/math10183367
000120103 0248_ $$2sideral$$a130377
000120103 037__ $$aART-2022-130377
000120103 041__ $$aeng
000120103 100__ $$aCalvo-Gallego, José Luis
000120103 245__ $$aThe Correlation between Bone Density and Mechanical Variables in Bone Remodelling Models: Insights from a Case Study Corresponding to the Femur of a Healthy Adult
000120103 260__ $$c2022
000120103 5060_ $$aAccess copy available to the general public$$fUnrestricted
000120103 5203_ $$aBone remodelling models (BRM) are often used to estimate the density distribution in bones from the loads they are subjected to. BRM define a relationship between a certain variable measuring the mechanical stimulus at each bone site and either the local density or the local variation of density. This agrees with the Mechanostat Theory, which establishes that overloaded bones increase their density, while disused bones tend to decrease their density. Many variables have been proposed as mechanical stimuli, with stress or strain energy density (SED) being some of the most common. Yet, no compelling reason has been given to justify the choice of any of these variables. This work proposes a set of variables derived from the local stress and strain tensors as candidates for mechanical stimuli; then, this work correlates them to the density in the femur of one individual. The stress and strain tensors were obtained from a FE model and the density was obtained from a CT-scan, both belonging to the same individual. The variables that best correlate with density are the stresses. Strains are quite uniform across the femur and very poorly correlated with density, as is the SED, which is, therefore, not a good variable to measure the mechanical stimulus.
000120103 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000120103 590__ $$a2.4$$b2022
000120103 592__ $$a0.446$$b2022
000120103 591__ $$aMATHEMATICS$$b23 / 329 = 0.07$$c2022$$dQ1$$eT1
000120103 593__ $$aComputer Science (miscellaneous)$$c2022$$dQ2
000120103 593__ $$aMathematics (miscellaneous)$$c2022$$dQ2
000120103 593__ $$aEngineering (miscellaneous)$$c2022$$dQ2
000120103 594__ $$a3.5$$b2022
000120103 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000120103 700__ $$aGutiérrez-Millán, Fernando
000120103 700__ $$aOjeda, Joaquín
000120103 700__ $$0(orcid)0000-0002-2901-4188$$aPérez, María Ángeles$$uUniversidad de Zaragoza
000120103 700__ $$aMartínez-Reina, Javier
000120103 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000120103 773__ $$g10, 18 (2022), 3367 [29 pp.]$$pMathematics (Basel)$$tMathematics$$x2227-7390
000120103 8564_ $$s2744541$$uhttps://zaguan.unizar.es/record/120103/files/texto_completo.pdf$$yVersión publicada
000120103 8564_ $$s2729138$$uhttps://zaguan.unizar.es/record/120103/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000120103 909CO $$ooai:zaguan.unizar.es:120103$$particulos$$pdriver
000120103 951__ $$a2024-03-18-16:17:26
000120103 980__ $$aARTICLE