000120104 001__ 120104
000120104 005__ 20241125101127.0
000120104 0247_ $$2doi$$a10.1002/jbm.a.37448
000120104 0248_ $$2sideral$$a130378
000120104 037__ $$aART-2023-130378
000120104 041__ $$aeng
000120104 100__ $$0(orcid)0000-0003-1958-4432$$aAlamán-Díez, Pilar$$uUniversidad de Zaragoza
000120104 245__ $$aA bone-on-a-chip collagen hydrogel-based model using pre-differentiated adipose-derived stem cells for personalized bone tissue engineering
000120104 260__ $$c2023
000120104 5060_ $$aAccess copy available to the general public$$fUnrestricted
000120104 5203_ $$aMesenchymal stem cells have contributed to the continuous progress of tissue engineering and regenerative medicine. Adipose-derived stem cells (ADSC) possess many advantages compared to other origins including easy tissue harvesting, self-renewal potential, and fast population doubling time. As multipotent cells, they can differentiate into osteoblastic cell linages. In vitro bone models are needed to carry out an initial safety assessment in the study of novel bone regeneration therapies. We hypothesized that 3D bone-on-a-chip models containing ADSC could closely recreate the physiological bone microenvironment and promote differentiation. They represent an intermedium step between traditional 2D–in vitro and in vivo experiments facilitating the screening of therapeutic molecules while saving resources. Herein, we have differentiated ADSC for 7 and 14 days and used them to fabricate in vitro bone models by embedding the pre-differentiated cells in a 3D collagen matrix placed in a microfluidic chip. Osteogenic markers such as alkaline phosphatase activity, calcium mineralization, changes on cell morphology, and expression of specific proteins (bone sialoprotein 2, dentin matrix acidic phosphoprotein-1, and osteocalcin) were evaluated to determine cell differentiation potential and evolution. This is the first miniaturized 3D-in vitro bone model created from pre-differentiated ADSC embedded in a hydrogel collagen matrix which could be used for personalized bone tissue engineering.
000120104 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-113819RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/DPI2017-84780-C2-1-R
000120104 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000120104 590__ $$a3.9$$b2023
000120104 592__ $$a0.807$$b2023
000120104 591__ $$aENGINEERING, BIOMEDICAL$$b42 / 123 = 0.341$$c2023$$dQ2$$eT2
000120104 593__ $$aMetals and Alloys$$c2023$$dQ1
000120104 591__ $$aMATERIALS SCIENCE, BIOMATERIALS$$b27 / 53 = 0.509$$c2023$$dQ3$$eT2
000120104 593__ $$aCeramics and Composites$$c2023$$dQ2
000120104 593__ $$aBiomaterials$$c2023$$dQ2
000120104 593__ $$aBiomedical Engineering$$c2023$$dQ2
000120104 594__ $$a10.4$$b2023
000120104 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000120104 700__ $$0(orcid)0000-0001-7062-9099$$aGarcía-Gareta, Elena$$uUniversidad de Zaragoza
000120104 700__ $$0(orcid)0000-0003-3165-0156$$aArruebo, Manuel$$uUniversidad de Zaragoza
000120104 700__ $$0(orcid)0000-0002-2901-4188$$aPérez, María Ángeles$$uUniversidad de Zaragoza
000120104 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000120104 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000120104 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000120104 773__ $$g111, 1 (2023), 88-105$$pJ. Biomed. Mater. Res. Part A$$tJOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A$$x1549-3296
000120104 8564_ $$s9036787$$uhttps://zaguan.unizar.es/record/120104/files/texto_completo.pdf$$yVersión publicada
000120104 8564_ $$s2333622$$uhttps://zaguan.unizar.es/record/120104/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000120104 909CO $$ooai:zaguan.unizar.es:120104$$particulos$$pdriver
000120104 951__ $$a2024-11-22-11:58:03
000120104 980__ $$aARTICLE