000120130 001__ 120130 000120130 005__ 20240319081025.0 000120130 0247_ $$2doi$$a10.1016/j.jclepro.2022.134038 000120130 0248_ $$2sideral$$a130922 000120130 037__ $$aART-2022-130922 000120130 041__ $$aeng 000120130 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza 000120130 245__ $$aLimits on the integration of power to gas with blast furnace ironmaking 000120130 260__ $$c2022 000120130 5060_ $$aAccess copy available to the general public$$fUnrestricted 000120130 5203_ $$aThis article compares 16 Power to Gas integrations for blast furnace ironmaking by using 17 key performance indicators. The study includes 4 types of PtG (PtH2, PtSNG using pure CO2, PtSNG using treated BFG, and PtSNG using BFG), two types of blast furnaces (air-blown and oxygen) and two types of fossil replacement (coal or coke). The blast furnaces are modelled using the Rist diagram, validated with literature data (<2% deviation). For most cases, the decrease in total CO2 emissions is around 150–215 kgCO2/tHM per MW/(tHM/h) of electrolysis. The energy penalty (in terms of electricity consumption) was found to be mostly independent on the size of the PtG plant, but greatly dependent on the type of integration (10.1–20.6 MJ/kgCO2). If significant CO2 reductions are aimed, self-sufficiency in electricity consumption will not be achieved. In practice, the maximum PtG capacity to install is limited by the decrease in the flame temperature. In this context, the PtSNG integration consuming treated BFG, applied to OBF for coal replacement, provides the best results. Assuming a 500 tHM/h blast furnace, the PtG capacity of this concept could be as large as 490 MW and avoid up to 21% of the CO2 emissions. 000120130 536__ $$9info:eu-repo/grantAgreement/EC/H2020/887077/EU/Decarbonisation of carbon-intensive industries (Iron and Steel Industries) through Power to gas and Oxy-fuel combustion/DISIPO$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 887077-DISIPO 000120130 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000120130 590__ $$a11.1$$b2022 000120130 592__ $$a1.981$$b2022 000120130 591__ $$aENGINEERING, ENVIRONMENTAL$$b8 / 55 = 0.145$$c2022$$dQ1$$eT1 000120130 593__ $$aEnvironmental Science (miscellaneous)$$c2022$$dQ1 000120130 591__ $$aGREEN & SUSTAINABLE SCIENCE & TECHNOLOGY$$b8 / 46 = 0.174$$c2022$$dQ1$$eT1 000120130 593__ $$aStrategy and Management$$c2022$$dQ1 000120130 591__ $$aENVIRONMENTAL SCIENCES$$b22 / 275 = 0.08$$c2022$$dQ1$$eT1 000120130 593__ $$aRenewable Energy, Sustainability and the Environment$$c2022$$dQ1 000120130 593__ $$aIndustrial and Manufacturing Engineering$$c2022$$dQ1 000120130 594__ $$a18.5$$b2022 000120130 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000120130 700__ $$aNakagaki, Takao 000120130 700__ $$aKataoka, Ryoma 000120130 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi. 000120130 773__ $$g374 (2022), 134038 [14 pp.]$$pJ. clean. prod.$$tJournal of Cleaner Production$$x0959-6526 000120130 8564_ $$s10018386$$uhttps://zaguan.unizar.es/record/120130/files/texto_completo.pdf$$yVersión publicada 000120130 8564_ $$s2557863$$uhttps://zaguan.unizar.es/record/120130/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000120130 909CO $$ooai:zaguan.unizar.es:120130$$particulos$$pdriver 000120130 951__ $$a2024-03-18-16:41:07 000120130 980__ $$aARTICLE