000120162 001__ 120162 000120162 005__ 20240319081008.0 000120162 0247_ $$2doi$$a10.1016/j.cep.2022.109198 000120162 0248_ $$2sideral$$a131040 000120162 037__ $$aART-2022-131040 000120162 041__ $$aeng 000120162 100__ $$aPanariello, L. 000120162 245__ $$aMicrowave-assisted flow synthesis of multicore iron oxide nanoparticles 000120162 260__ $$c2022 000120162 5060_ $$aAccess copy available to the general public$$fUnrestricted 000120162 5203_ $$aCoprecipitation is by far the most common synthesis method for iron oxide nanoparticles (IONPs). However, reproducibility and scalability represent a major challenge. Therefore, innovative processes for scalable production of IONPs are highly sought after. Here, we explored the combination of microwave heating with a flow reactor producing IONPs through coprecipitation. The synthesis was initially studied in a well-characterised microwave-heated flow system, enabling the synthesis of multicore IONPs, with control over both the single core size and the multicore hydrodynamic diameter. The effect of residence time and microwave power was investigated, enabling the synthesis of multicore nanostructures with hydrodynamic diameter between ∼35 and 70 nm, with single core size of 3–5 nm. Compared to particles produced under conventional heating, similar single core sizes were observed, though with smaller hydrodynamic diameters. The process comprised of the initial IONP coprecipitation followed by the addition of the stabiliser (citric acid and dextran). The ability of precisely controlling the stabiliser addition time (distinctive of flow reactors), contributed to the synthesis reproducibility. Finally, scale-up by increasing the reactor length and using a different microwave cavity was demonstrated, producing particles of similar structure as those from the small scale system, with a throughput of 3.3 g/h. 000120162 536__ $$9info:eu-repo/grantAgreement/EC/H2020/721290/EU/European Training Network for Continuous Sonication and Microwave Reactors/COSMIC$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 721290-COSMIC 000120162 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000120162 590__ $$a4.3$$b2022 000120162 592__ $$a0.744$$b2022 000120162 591__ $$aENGINEERING, CHEMICAL$$b45 / 141 = 0.319$$c2022$$dQ2$$eT1 000120162 591__ $$aENERGY & FUELS$$b64 / 119 = 0.538$$c2022$$dQ3$$eT2 000120162 593__ $$aIndustrial and Manufacturing Engineering$$c2022$$dQ1 000120162 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1 000120162 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1 000120162 593__ $$aProcess Chemistry and Technology$$c2022$$dQ2 000120162 593__ $$aEnergy Engineering and Power Technology$$c2022$$dQ2 000120162 594__ $$a6.7$$b2022 000120162 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000120162 700__ $$aBesenhard, M.O. 000120162 700__ $$aDamilos, S. 000120162 700__ $$aSergides, A. 000120162 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza 000120162 700__ $$0(orcid)0000-0002-2966-9088$$aIrusta, S.$$uUniversidad de Zaragoza 000120162 700__ $$aTang, J. 000120162 700__ $$aThanh, Nguyen Thi Kim 000120162 700__ $$aGavriilidis, A. 000120162 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química 000120162 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente 000120162 773__ $$g182 (2022), 109198 [8 p.]$$pChem. eng. process.$$tCHEMICAL ENGINEERING AND PROCESSING$$x0255-2701 000120162 8564_ $$s4193636$$uhttps://zaguan.unizar.es/record/120162/files/texto_completo.pdf$$yVersión publicada 000120162 8564_ $$s2626555$$uhttps://zaguan.unizar.es/record/120162/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000120162 909CO $$ooai:zaguan.unizar.es:120162$$particulos$$pdriver 000120162 951__ $$a2024-03-18-14:54:02 000120162 980__ $$aARTICLE