
Proyecto Fin de Carrera

Rendering Ocean Wave Simulations

Autor

Javier Delgado Aylagas

Director: Jeppe Revall Frisvad
Ponente: Dr. Diego Gutiérrez Pérez

Escuela de Ingeniería y Arquitectura
2013

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Resumen

Este proyecto ha sido desarrollado en el departamento DTU Compute de la
Universidad Técnica de Dinamarca durante un intercambio Erasmus.

El objetivo de este proyecto es construir un entorno de renderizado para el simu-
lador oceánico desarrollado en el departamento DTU Compute de la Universidad
Técnica de Dinamarca [EKBL09]. Dicho simulador permite generar olas oceá-
nicas con una gran variedad de con�guraciones almacenándolas en diferentes
formatos de �chero.

Este proyecto utilizará dicho simulador y permitirá importar dichas simulaciones
y renderizarlas proporcionando un aspecto realista al agua generada. Para ello
se transforman las simulaciones al formato OBJ utilizando Matlab para que
pueda ser leído por el entorno de renderizado.

Posteriormente, se generará una salida visible de las olas generadas en el si-
mulador, y es aquí donde se implementarán y aplicarán diferentes técnicas de
renderizado para obtener un aspecto lo más realista posible. Esta parte se basa
en su mayor parte en raytracing [App68], aunque se combina con otras propie-
dades como photon mapping para mejorar el aspecto del agua. Este apartado
ha sido desarrollado en su totalidad sobre C++.

Además, se incluirán como resultados diferentes simulaciones, tanto de imágenes
como de vídeos, siendo una de las simulaciones proporcionada por la empresa
Force Technology con sede en Kongens Lyngby (Dinamarca).

Finalmente, se analizarán las limitaciones del proyecto y se plantearán mejoras
para que pueda ser continuado en el futuro.

ii

Agradecimientos

En primer lugar, quiero agradecer a mi supervisor Jeppe Revall Frisvad por toda
su ayuda a lo largo del de desarrollo de este proyecto y también por facilitarme
el entorno de trabajo, que ha simpli�cado considerablemente la implementación
de la aplicación, y también a Diego Gutiérrez por sus comentarios para poder
escribir esta memoria y por hacer de ponente para este proyecto.

En segundo lugar, quiero agradecer a Allan P. Engsig-Karup por haberme facili-
tado el simulador y también toda su ayuda para poder utilizarlo correctamente,
al igual que a Stefan Lemvig Glimberg, sin cuya ayuda no podría haber utilizado
dicho simulador.

También quiero agradecer al departamento DTU Compute el permitirme ha-
ber desarrollado mi proyecto, y especialmente a J. Andreas Bærentzen junto
con Jeppe Revall Frisvad por sus comentarios y ayuda proporcionada en las
reuniones semanales que se realizaron durante todo el desarrollo.

Por otra parte, también quiero agradecer a Diego Gutiérrez sus comentarios
para poder escribir esta memoria y por hacer de ponente para este proyecto.

También quiero agradecer a la compañía Force Technology con sede en Kongens
Lyngby su interés en este proyecto y su participación proporcionando algunos
de sus modelos y simulaciones.

Por último, quiero agradecer tanto a la Univesidad de Zaragoza como a la Uni-
versidad Técnica de Dinamarca el haberme permitido desarrollar este proyecto
durante mi estancia Erasmus en Dinamarca.

iv

Índice general

Resumen i

Agradecimientos iii

1. Introducción 1

1.1. Resultados esperados . 2

1.2. Estructura del documento . 3

2. El proceso de renderizado 5

2.1. El simulador . 6

2.1.1. Convirtiendo de binario a OBJ 6

2.2. El entorno de renderizado . 8

2.2.1. La ecuación de render . 8

2.2.2. Raytracing . 8

2.2.3. Materiales . 9

2.2.4. El sol y el cielo . 10

2.3. Adaptación del entorno al simulador 11

2.4. Producción de vídeo . 12

2.5. Diagrama de clases . 13

3. Sombreado 15

3.1. Lambertian . 16

3.2. Sombreador transparente . 17

3.3. Photon mapping . 18

3.4. Absorción . 20

3.5. Modelo de re�exión de Phong . 22

3.6. Comentarios �nales . 24

vi ÍNDICE GENERAL

4. Resultados 27

4.1. Ola lineal . 27
4.2. Ola no lineal . 29
4.3. Simulación de la empresa Force Technology 30
4.4. Comentarios . 31

5. Conclusiones 33

5.1. Limitaciones y mejoras futuras 34
5.2. Conclusiones personales . 35
5.3. Desarrollo del proyecto . 35

Bibliografía 37

A. Resultados adicionales 39

B. Versión de la memoria en inglés 43

Índice de �guras

1.1. Ejemplo del resultado de la ejecución 3

2.1. Proceso cubierto por este proyecto 6

2.2. Salida de Matlab visualizada en JPG 7

2.3. Diagrama de la dispersión en el cielo 10

2.4. Diagrama de visualización de las modi�caciones 11

2.5. Diagrama de clases del entorno de renderizado 13

3.1. Lambertian BRDF . 16

3.2. Agua renderizada como Lambertian 17

3.3. Ecuaciones de Fresnel . 18

3.4. Diagrama de la re�exión y refracción 18

3.5. Formación de cáusticas . 19

3.6. Estimación de la radiancia . 20

viii ÍNDICE DE FIGURAS

3.7. Photon mapping . 21

3.8. Absorción en el agua . 22

3.9. Ecuación de la re�exión de Phong 23

3.10. Re�exión de Phong . 23

3.11. Causticas y absorción . 24

3.12. Diagrama de clases de los sombreadores 25

4.1. Tiempos observados para una ola lineal 28

4.2. Visualización de la ola lineal . 28

4.3. Tiempo para la ola no lineal . 29

4.4. Visualización del ejemplo de ola no lineal 30

4.5. Visualización de la simulación de Force Technology 31

4.6. Tiempo de la simulación de Force Technology 31

4.7. Renderizado de la simulación de Force Technology 32

5.1. Diagrama de Gannt . 36

A.1. Visualización de la ola lineal . 40

A.2. Visualización de la ola de Whalin 41

Capítulo 1

Introducción

El agua generada por ordenador es un elemento muy utilizado hoy en día. Tiene
una gran variedad de aplicaciones, aunque su principal uso es en producciones
audiovisuales como películas o anuncios siendo también utilizada en videojuegos.
Sin embargo, también hay gran variedad de compañías que lo utilizan para
utilidades internas o simulaciones.

Este es el caso de la empresa Force Technology ubicada en Kongens Lyngby
(Dinamarca), que dispone de simuladores donde se pueden entrenar los futuros
pilotos de barcos, los cuales disponen de grandes cantidades de agua generada
por ordenador de cual desean mejorar su aspecto. Este proyecto, buscará en la
medida de lo posible mejorar la visualización de los simuladores de la citada
empresa.

El aspecto del agua puede ser muy difícil de generar, y el proceso puede dividirse
en dos partes. La primera es la geometría del agua, que debe ser actualizada en
cada fotograma. El segundo paso consiste en renderizar dicha geometría para
dotarle de un aspecto realista. Es este segundo paso el que se aprovechará de
las propiedades del agua como material para darle el acabado deseado.

En este proyecto el primer paso de los descritos anteriormente se realiza uti-
lizando el simulador desarrollado por A. P. Engsig-Karup, Morten G. Madsen
y Stefan L. Glimberg en el departamento DTU Compute de la Universidad

2 Introducción

Técnica de Dinamarca [EKBL09] [EKMG12].

El objetivo de este proyecto es dotar de un entorno de renderizado a dicho
simulador, tomando como entrada la información generada en el simulador, y
teniendo como salida imágenes PNG con la simulación renderizada de forma
realista. Además, este proceso se divide en otras dos partes. La primera parte
consiste en generar una entrada compatible con el entorno de desarollo. Para ello,
se creará una función en Matlab que genere un �chero del formato Wavefront
OBJ partiendo de los �cheros binarios devueltos por el simulador, mientras que
en la segunda parte se desarrollarán las técnicas de renderizado correspondientes.

Este proyecto estudiará las propiedades más importantes del agua y que van a
ser utilizadas en el mismo. Algunas de ellas son el color del fondo marino y su
distancia a la super�cie del agua, aunque también se tendrá en cuenta el cielo
y el entorno ya que serán re�ejados en parte por el agua.

El motor de renderizado está basado en raytracing [App68] y se completa con
photon mapping [NJC00] para poder visualizar las cáusticas en el fondo marino.
Dicho motor también ha de ser ajustado para optimizar el aspecto del agua en
función de la entrada. Además, permitirá generar secuencias de imágenes de la
misma manera que el simulador. De esta manera, también se podrán generar
vídeos utilizando software externo.

Este entorno de renderizado es el que permitirá a la empresa Force Technology,
anteriormente mencionada, a mejorar sus simuladores ya que el simulador allí
utilizado es el mismo que el que se ha utilizado en este proyecto.

Este proyecto utiliza el entorno de visualización utilizado en el curso Phisically
Based Rendering de la Universidad Técnica de Dinamarca para implementar las
diferentes técnicas.

1.1. Resultados esperados

Este proyecto tiene dos partes diferenciadas. La primera tiene que ver con el
simulador. En esta parte se explica el funcionamiento del simulador. Además,
en esta parte se explica como ha sido transformado el �chero devuelto por el
simulador en un �chero Wavefront OBJ.

La segunda parte incluye tanto los ajustes realizados al entorno para poder
tratar las simulaciones correctamente como la etapa de sombreado. Por un lado,
el entorno ha sido ajustado para proporcionar resultados más precisos y, además,

1.2 Estructura del documento 3

añade elementos como el fondo marino en caso de que este no lo proporcione
el simulador. Por otro lado, se han añadido todos los sombreadores que han
sido necesarios en el proceso, comenzando desde los más básicos hasta los más
complejos, siendo algunos de ellos combinados en el proceso.

Finalmente, la salida del proyecto en su conjunto, es un número variable de
imágenes, las cuales pueden ser combinadas para generar secuencias de vídeo
con ayuda de aplicaciones externas a este proyecto.

Un ejemplo de la salida de la aplicación se puede ver en la �gura 1.1

Figura 1.1: Ejemplo del resultado de la ejecución. En la imagen se puede apre-
ciar el fondo marino, cómo la profundidad afecta al color del agua,
y también la las causticas generadas por las olas.

1.2. Estructura del documento

El contenido del resto del documento está organizado como se detalla a conti-
nuación:

El proceso de renderizado. Este capítulo contiene toda la información rela-

4 Introducción

cionada con el simulador y el entorno de desarrollo. También explica en detalle
las funciones de conversión de formatos creadas en Matlab y los ajustes realiza-
dos al entorno de renderizado.

Sombreado. Este capitulo explica en detalle los diferentes sombreadores y téc-
nicas utilizadas en cada uno de ellos.

Resultados. Esta sección detalla la información de rendimiento de diferentes
simulaciones. Para ello se han utilizado dos simulaciones que darán lugar a dos
posibles vídeos, y otra procedente de una simulación realizada por la empresa
Force Technology y que será renderizada en este capítulo.

Conclusiones. Finalmente, en este capítulo se explican las conclusiones y po-
sibles desarrollos futuros de la aplicación.

Capítulo 2

El proceso de renderizado

El agua es un elemento habitualmente crítico allá donde se utiliza, ya sea en
videojuegos o películas, pero su nivel de detalle mejora enormemente el realismo
de una escena. Además, es un problema computacionalmente complejo, y por
tanto, es muy difícil de obtener en tiempo real [JL04] [Kry05]. Por esa razón,
este proyecto se va a centrar en obtener una apariencia del agua realista dejando
el hacerlo en tiempo real para futuros desarrollos.

Este capítulo explica como ha sido organizado el trabajo en el proyecto. En
primer lugar, el simulador genera matrices de puntos exportadas como �cheros
binarios. Después, estos �cheros se han de transformar al formato Wavefront
OBJ. Este paso se realiza en Matlab. Finalmente, los �cheros OBJ se importan
en el entorno de renderizado, el cual, utilizado según se detalla en el siguiente
capítulo, generará los �cheros de imagen.

El proceso completo que se cubre en este proyecto se puede ver en la �gura 2.1.

En este capítulo se va obviar el proceso de sombreado, ya que, debido a su
extensión, será explicado en un capítulo especí�co.

6 El proceso de renderizado

Figura 2.1: Proceso cubierto por este proyecto

2.1. El simulador

Esta sección pretende situar al lector en el contexto del proyecto, cuyo objetivo
es crear un entorno de renderizado para el simulador desarrollado por A. P.
Engsig-Karup, Morten G. Madsen y Stefan L. Glimberg en el departamento
DTU Compute de la Universidad Técnica de Dinamarca [EKBL09] [EKMG12].

El simulador utilizado ha sido desarrollado en FORTRAN y se utiliza sobre
máquinas UNIX. Consta de dos versiones, una para CPU y otra para GPU. En
este proyecto la versión utilizada ha sido la de CPU.

Este simulador es el mismo que utiliza la empresa Force Technology en sus ins-
talaciones, de manera que sus modelos serán compatibles y el entorno podría
ser utilizado en sus instalaciones. De esta manera, en el capítulo 4 se ha utili-
zado una de las simulaciones generadas por Force Technology utilizando dicho
simulador junto con uno de los modelos de barcos de los que disponen.

Al utilizar el simulador, hay una gran cantidad de parámetros que se propor-
cionan en un �chero de entrada y que permiten generar una gran variedad de
resultados. Algunos de ellos tienen que ver con el tiempo de la simulación y
también el tiempo entre dos fotogramas de una misma secuencia. En este caso,
la frecuencia deseada es de 25 fotogramas por segundo, que es la utilizada en la
mayoría de televisores actuales.

2.1.1. Convirtiendo de binario a OBJ

La salida del simulador dispone de dos diferentes formatos que se eligen en el
�chero mencionado anteriormente. Los dos formatos posibles son en ASCII o
en binario. Para este proyecto se ha elegido la salida en formato binario. Este
�chero contiene la información de todos los vértices de la matriz y también su
energía, que se utiliza dentro del simulador para poder continuar la secuencia,
pero en este proyecto de desechará.

2.1 El simulador 7

El siguiente paso es convertir estas matrices al mencionado �chero OBJ para ha-
cerlas compatibles con el entorno de renderizado. Este paso se realiza utilizando
Matlab.

La función de conversión carga todos los archivos que hay en el directorio actual
y que sigan el formato especi�cado, que en este caso es �EP_xxxxx.bin� ya que es
el nombre por defecto que devuelve el simulador. Entre otras cosas, el conversor
también añade las líneas que van a determinar el grupo al que pertenece el
objeto y también su material. El �chero de materiales se llama ��ow.mtl� y el
material asignado deberá estar contenido en este �chero. Este �chero contiene
los valores ambiental, difuso y especular del material, así como el valor �illum�
que determinará el sombreador a utilizar en el entorno de renderizado. En este
caso, el material a utilizar será �seawater� para las matrices que representan el
agua.

La función de Matlab desde el primer momento se encarga de convertir todos
los �cheros que se encuentren con el formato explicado anteriormente, ya que se
necesitarán más adelante en el contexto del proyecto. El nombre de los �cheros
sigue el mismo nombre por defecto que anteriormente, de manera que los �cheros
�EP_xxxxx.bin� se transforman en �EP_xxxxx.bin.obj�.

Figura 2.2: En esta �gura se puede ver la geometría de una de las mallas del
simulador visualizada en Maltab. La representación está realiza-
da en unidades genéricas de longitud. El color de la malla está
determinado por su magnitud en el eje Z.

Además, se ha incluido una función que dibuja la malla en Matlab para com-
probar la corrección del mismo. Un ejemplo de esta visualización en Matlab se

8 El proceso de renderizado

puede ver en la �gura 2.2.

2.2. El entorno de renderizado

Esta sección detalla en qué consiste el entorno de renderizado facilitado por
el departamento DTU Compute. Este entorno tiene algunas funciones básicas
implementadas, aunque su parte principal, que son los sombreadores, no están
implementados. Todas las referencias al entorno de rendering que se encuen-
tren fuera de esta sección han tenido que ser implementadas, mientras que las
funciones que ya estaban incluídas se detallan a continuación.

2.2.1. La ecuación de render

En primer lugar, es necesario de�nir en qué consiste el proceso de renderizado.
Renderizar el es proceso de generar una imagen mediante el cálculo de de la
iluminación de una escena en tres dimensiones. Para determinar la iluminación
en cada punto de la escena se utiliza la ecuación de render [Kaj86a]:

L(x, ωo) = Le(x, ωo) +
∫
Ω
fr(x, ωi, ωo)Li(x, ωi) (ωi · n) dωi

El resultado de la ecucación es la radiancia L(x,ωo), la cual viene determinada en
función de la posición x y la dirección ωo, y es el resultado de sumar la radiancia
emitida por la super�cie Le(x,ωo) y la radiancia indicente L(x,ωi) en el punto
x procedente de todas las direcciones, donde ωi es la dirección de incidencia. El
término (n •ωi) representa la atenuación según el ángulo de incidencia y el tér-
mino fr(x, ωi, ωo) representa el BRDF (Bidirectional Re�ectance Distribution
Function) en el punto x que determina la forma en la que es re�ejada la luz en
la super�cie.

2.2.2. Raytracing

Este proyecto utiliza un entorno de renderizado basado en raytracing [App68].
Como crear un raytracer desde cero llevaría más tiempo que el propio proyecto,
se ha proporcionado el utilizado en la asignatura Phisically Based Rendering
del departamento DTU Compute, el cual contiene algunas funciones básicas ya
implementadas aunque no incluye ningún sombreador entre otras cosas.

2.2 El entorno de renderizado 9

La técnica de raytracing consiste en la emisión de rayos desde la cámara a través
de cada uno de los píxels de la imagen. Cuando los rayos encuentran un objeto,
si éste tiene propiedades de re�exión o refracción, se trazarán dichos rayos desde
este nuevo punto, y se continuará haciendo recursivamente con cada intersección
con un nuevo objeto. Además, se trazará un rayo hacia la fuente de luz, el cual,
si no atraviesa ningún otro objeto, será sombreado calculando la cantidad de
luz recibida y su ángulo, además de con los valores de re�exión y refracción,
mientras que si el rayo atraviesa algún objeto, el valor se calculará solamente
con los valores de re�exión y refracción al estar en sombra.

En este proyecto, se ha establecido la cantidad máxima de divisiones de rayos
en 10. A partir de ese valor, se aplicará path tracing. Lo que hace esta técnica
es seguir los rebotes de uno posibles caminos en vez de hacerlo de todos, lo
que hace que pueda aparecer ruido en las imágenes, aunque el proceso será más
rapido a partir de ese punto. Para ello, se calculará un valor aleatorio para elegir
o bien el rayo re�ejado, o bien el refractado. El proceso se ha con�gurado para
que termine después de 20 rebotes.

Entre las utilidades que incluye el entorno de renderizado cabe mencionar la
de importar �cheros OBJ y guardar imágenes PNG de los resultados que serán
utilizadas en este proyecto. Además, el entorno utiliza internamente una estruc-
tura de árbol BSP (Binary Space Partition) [SS92] para almacenar la geometría
en memoria.

Dentro del entorno, el usuario puede mover la cámara con el ratón, guardar y
cargar la vista y la posición de la cámara e incrementar o decrementar el número
de rayos por píxel que serán utilizados. Además, aunque el proyecto permite
utilizar cualquier número de luces, solo se va a utilizar una luz direccional que
representará el sol.

Además, el entorno también controla diferentes tipos de visualización, cuyos
sombreadores están inicialmente vacíos, como solo iluminación directa, oclusión
ambiental, path tracing o photon mapping, aunque no todos se van a utilizar
en este proyecto. Además, aunque todas estas técnicas se pueden implementar
en el entorno, hay que saber antes de nada cuales serán utilizadas y desechar el
resto para no implementarlas innecesariamente.

2.2.3. Materiales

El entorno también incluye un �chero de materiales llamado �media.mpml�. Si
en el �chero ��ow.mtl� descrito anteriormente se encuentra algún material coin-
cidente, se aplicarán las propiedades descritas en ambos �cheros. En contreto,

10 El proceso de renderizado

este �chero contiene un material �seawater� que incluye más propiedades sobre
el agua. En este �chero también se podría incluir nuevos tipos de agua ya que
los diferentes océanos tienen ligeras variaciones en su aspecto.

2.2.4. El sol y el cielo

Habitualmente, las escenas generadas por ordenador suelen ser en entornos ce-
rrados, sin embargo, este proyecto genera una escena al aire libre, de manera
que en lugar de usar un color de fondo para todo el cielo, se va a añadir un
método para calcular los colores del cielo. Además, este color también afectará
al aspecto del agua al ser re�ejado por ella.

Un modelo muy utilizado hoy en día, y que además es computacionalmente
asequible, es modelo de Preetham, Peter Shirley y Brian Smits de la Universidad
de Utah [PSS99]. Este modelo simpli�ca enormemente los cálculos para obtener
la luz atmosférica que alcanza cada punto de la escena y aporta un gran realismo
a la misma. El modelo utiliza las coordenadas reales de la Tierra, así como la
fecha y la hora.

El modelo simpli�ca los cálculos necesarios debidos a la dispersión de la luz
en la atmósfera teniendo en cuenta que en la dirección que mira el observador
pueden llegar rayos que han sido re�ejados en distintos puntos de la atmósfera.
Un ejemplo se puede ver en la �gura 2.3. Además el modelo simpli�ca algunos
parámetros de la atmósfera que habitualmente son desconocidos o muy di�ciles
de calcular.

Figura 2.3: Diagrama de la dispersión en el cielo.

Este modelo también incluía parte de su estructura en el entorno de renderizado
facilitado para realizar este proyecto, aunque se han tenido que realizar pequeños

2.3 Adaptación del entorno al simulador 11

ajustes. Para este proyecto, la fecha elegida ha sido un día de otoño a las 12.00 y
se ha localizado en Dinamarca. Estos valores pueden ser modi�cados en cualquier
momento en el entorno de renderizado.

2.3. Adaptación del entorno al simulador

Aunque el entorno de renderizado permite importar objetos en formato OBJ,
es necesario realizar algunos ajustes para su correcta visualización. Por ello,
después de cargar el objeto correspondiente en memoria, se realizan los siguientes
cambios sobre el mismo.

El simulador, por defecto, no incluye el fondo marino, y dado que es impor-
tante para la visualización, se ha procedido a incluirlo dentro del entorno de
renderizado. De esta manera, se colocará un cuadrilátero inclinado por debajo
de la malla de agua. Esta opción no es del todo precisa y por eso lo deseable
es obtener el fondo marino directamente del simulador. De hecho, las últimas
versiones del simulador ya lo generan por defecto.

Con la actual con�guración, la luz podría llegar al fondo marino sin pasar por
la super�cie. Este fenómeno se puede apreciar en detalle en la �gura 2.4.

Para arreglar esta cuestión, se ha creado una caja que rodee tanto el agua como
el fondo marino, creando algo similar a una piscina. Esta caja debe abarcar
desde el punto más alto de la ola hasta el punto más bajo del fondo marino.

Figura 2.4: Este diagrama muestra por qué es necesario cubrir los laterales del
agua. Si no existiesen el agua alcanzaría el fondo marino sin pasar
por la super�cie. Al añadir estos cuadriláteros sigue habiendo una
anomalía, ya que la escena será más oscura en los bordes, pero el
resultado será mucho más preciso que anteriormente.

Usando este método, todavía hay un efecto indeseado, ya que al acercarse a las

12 El proceso de renderizado

esquinas, el aspecto del agua será más oscuro al llegar menos rayos al fondo
marino dependiendo del punto y del ángulo del sol. Además, el lado que mira
directamente al sol acumulará una cierta cantidad de fotones que no le corres-
pondería (Esto será detallado más adelante en el apartado de photon mapping).
Este efecto puede ser mejorado creando mallas más grandes o creando playas
suaves en la intersección entre el fondo marino y la super�cie del agua.

Finalmente, se ha añadido un plano que representa el suelo. Este suelo se ha
colocado más abajo de lo que le correspondería de manera que el agua esta-
ría �otando. Esto se ha hecho para que la visualización del horizonte sea mas
coherente a como es en realidad, aunque esto crea una sombra en el suelo. Es-
te fenómeno también se puede evitar creando mallas más grandes como se ha
explicado anteriormente.

2.4. Producción de vídeo

La producción de vídeo se gestiona utilizando la línea de comandos al ejecutar la
aplicación. En estos argumentos se de�ne cual es la primera y la última iteración
a renderizar, y también el periodo de tiempo entre cada una de ellas.

Si el número de la primera iteración es menor que el último, se procederá a
un renderizado en cadena, tomando progresivamente las diferentes simulacio-
nes hasta que termine la última. El nombre de las imágenes resultantes será
�EP_xxxxx.bin.obj.png� siguendo el mismo formato que en todos los pasos an-
teriores.

Para poder crear una escena de vídeo, hay que ejecutar el programa, colocar
la cámara en el lugar deseado, y posteriormente, pulsar �4� y �R� para comen-
zar el renderizado. Durante el proceso, se almacenarán en disco los fotogramas
renderizados, sin embargo, la visualización de la escena en la aplicación no se
actualizará hasta que se haya terminado el último fotograma.

Finalmente, para poder montar las imágenes y generar secuencias de vídeo,
es necesario utilizar una aplicación externa como podría ser Windows Movie
Maker.

2.5 Diagrama de clases 13

2.5. Diagrama de clases

Esta sección muestra un diagrama de clases simpli�cado del entorno de renderi-
zado. En dicho diagrama se han coloreado de verde todas las clases modi�cadas
en este proyecto, aunque la que ha sufrido la mayoría de los cambios ha sido
la clase RenderEngine. El diagrama de clases se puede ver en la �gura 2.5. En
este diagrama se han simpli�cado los sombreadores dejandolos como una única
clase, aunque este diagrama se desglosará en el capítulo 3 que trata sobre todos
los sombreadores implementados.

Figura 2.5: Diagrama de clases del entorno de renderizado.

14 El proceso de renderizado

Capítulo 3

Sombreado

Este capítulo explica todas las propiedades que afectan al aspecto del agua, por
ello, es importante saber qué técnicas permiten representar dichas propiedades.
A su vez, también se explican las di�cultades encontradas.

El término que se usa en el ámbito internacional es shading, que en este do-
cumento se ha traducido como proceso de sombreado, aunque no se re�ere a
las sombras generadas por los objetos como tal, sino al proceso de calcular la
iluminación que incide sobre cada punto de la geometría.

A continuación se explican los diferentes sombreadores utilizados, siendo algunos
de ellos implementados unos sobre otros hasta completar todas las propiedades
que afectarán al aspecto del agua. Todas las técnicas descritas en este capítulo
se han implementado sobre el entorno de rendering explicado en el capítulo
anterior[Lew93] [Kaj86b].

En cuanto a los materiales, sus propiedades están de�nidas en el �chero ��ow.mtl�.
En este �chero se han de�nido los materiales que van a ser utilizados en todo el
proyecto, pero es posible de�nir tantos nuevos materiales como se desee.

16 Sombreado

3.1. Lambertian

Este sombreador es el más sencillo que se va a utilizar en este proyecto, pero es
necesario para, entre otras cosas, el fondo marino.

El sombreador se utiliza para materiales que tienen una super�cie puramente
difusa. En este caso, la cantidad de luz re�ejada por la geometría depende única-
mente del ángulo entre la luz y la normal del objeto en el punto donde incide la
luz. El BRDF (Bidirectional re�ectance distribution function) se puede apreciar
en la �gura 3.1.

Figura 3.1: Lambertian BRDF

La formula que determina el color para este tipo de super�cies es la siguiente:

Lo = (ω • n) ∗ C ∗ V ∗ IL

Para calcular la cantidad de luz en ese punto Lo, se calcula el producto escalar
entre la dirección ω del rayo y la normal n de la geometría en ese punto, a lo
que hay que añadir el color C y la intensidad de la luz IL. El parámetro V se
utiliza para determinar si el punto se encuentra al alcance la luz o no, por lo
que será 1 si está en ese caso, y 0 si está en una región de sombra.

A modo de ejemplo, la escena se ha renderizado utilizando este material para el
agua. El resultado se puede ver en la �gura 3.2.

3.2 Sombreador transparente 17

Figura 3.2: Agua renderizada utilizando el sombreador Lambertian

3.2. Sombreador transparente

Este sombreador está construído independientemente del anterior, y se ha crea-
do para poder visualizar materiales transparentes, y sirve como primera apro-
ximación para poder renderizar el agua, ya que los siguientes sombreadores se
implementarán sobre este.

Para ello, se han tenido que implementar las ecuaciones de Fresnel. Estas ecua-
ciones sirven para determinar la re�ectividad del medio en cada uno de sus
puntos, dependiendo de los índices de refracción y el ángulo de entrada. La re-
�ectividad R determinará la cantidad de luz re�ejada mientras que la restante
(1-R) será refractada [Ska06]. Las ecuaciones de Fresnel se pueden ver en la
�gura 3.3, donde ya han sido simpli�cadas utilizando la ley de Snell, la cual
relaciona los diferentes índices de refracción con los ángulos de entrada y de
refracción en el medio.

Posteriormente, este sombreador traza dos rayos, el re�ejado y el refractado, tal
y como se ha mencionado en la introducción de este capítulo, siendo combinados
en función de la re�ectividad obtenida [JB02]. El diagrama de los rayos re�ejado

18 Sombreado

Figura 3.3: Ecuaciones de Fresnel para calcular la cantidad de luz re�ejada y
refractada.

y refractado se puede ver en la �gura 3.4.

Figura 3.4: Este diagrama muestra los rayos re�ejado y refractado, que son
usados en éste y otros sombreadores.

3.3. Photon mapping

En este proyecto, uno de los aspectos que se ha tenido en cuenta desde el primer
momento ha sido el fondo marino, que afectará signi�cativamente al aspecto del
agua, y una de las formas en las que afectará al aspecto del agua es debido a
las causticas que se puedan formar en el fondo.

Sin embargo, raytracing es un algoritmo que no encuentra una solución óptima
para algunas características muy concretas, como son las cáusticas. Ello es de-

3.3 Photon mapping 19

bido a que al trazar los rayos desde la cámara, y despues de sucesivos rebotes,
el rayo termina en la luz de la escena. De esta manera, hay muchos caminos que
la luz en una escena real está recorriendo, pero que no son apreciables al usar
este método. Concretamente, las cáusticas aparecen al converger la luz después
de atravesar super�cies refractivas, y se necesita de una técnica más potente
para poder visualizarlas. En la �gura 3.5 se puede ver cómo se producen las
cáusticas.

Figura 3.5: Esta �gura muestra la formación de cáusticas a través de un objeto
transparente.

Por ello, se ha utilizado la técnica de Photon mapping para, en caso de que
existan, poder obtener las causticas que se puedan formar [NJC00]. Este método
consiste en emitir fotones (partículas indivisibles de energía) desde la fuente de
luz, y seguir su camino por la geometría hasta que encuentren una super�cie
donde se puedan almacenar.

Photon mapping es un algoritmo que consta de dos pasadas. En la primera, se
emite una serie de fotones desde la fuente de luz y se calculan sus rebotes hasta
que alcanzan una super�cie difusa donde se puedan almacenar. En el caso de
tener varias opciones como re�exión o refracción, se elige aleatoriamente una de
ellas. Una vez terminado el proceso, se obtiene un mapa de fotones. Finalmente,
se realiza una estimación de la energía almacenada para determinar la cantidad
de luz sobre la super�cie difusa en función de la cantidad de fotones en un área
determinada. En la �gura 3.6 se puede ver la ecuación para estimar la radiancia,
que es una aproximación a la ecuación de render.

Este método, en lugar de dividir un fotón en varios caminos, elige aleatoriamente

20 Sombreado

Figura 3.6: Esta �gura muestra la ecuación para la estimación de la radiancia,
que es una aproximación a la ecuación de render.

uno de ellos, de manera que el método es más preciso según se aumenta la
cantidad de fotones emitidos, lo que, por otra parte, lo hace más lento. De esta
manera, al incrementar el valor, será más probable que los diferentes caminos
sean tomados por los diferentes fotones haciéndolo así más preciso.

La formación de las causticas dependerá de la forma de las olas y también de
la distancia desde la super�cie hasta el fondo, ya que solo se formarán donde
converjan una gran cantidad de fotones.

Como se ha explicado anteriormente, el entorno de renderizado incluye una
opción para visualizar el resultado de photon mapping, aunque el sombreador
ha tenido que ser implementado (si no se hace, el visualizador simplemente no
muestra nada). El motivo de la elección de Photon mapping para visualizar las
cáusticas se debe a que este algoritmo está construido sobre raytracing, que es
la técnica principal de este proyecto.

Este método estará activado siempre que al renderizar se utilice el visor número
�4� en el entorno de desarrollo. El número de fotones se puede ajustar en la
aplicación, así como el número de fotones usados en la estimación. En este
proyecto, estos valores son 7.500.000 fotones y 200 para la estimación.

En la �gura 3.7 se pueden ver tanto el mapa de fotones como el resultado de
aplicar photon mapping al agua transperente.

3.4. Absorción

El siguiente efecto que se va a utilizar tiene que ver con la profundidad del agua.
De esta manera, el agua será mas oscura cuanto más profunda sea, llegándose
a un punto en el que el fondo marino no llegue a ser visible.

En este sombreador, se planteó la posibilidad de utilizar scattering [GSMA08]
[DGJ08]. Esta técnica lo que haría sería re�ejar o refractar el rayo en diferentes
puntos dentro de un volumen. A esta acción se le denomina evento de scattering,

3.4 Absorción 21

Figura 3.7: Izquierda: Visualización de los mapas de fotones. Derecha: Resul-
tado del renderizado utilizando un sombreador transparente com-
binado con photon mapping. Las cáusticas se pueden ver perfec-
tamente en el fondo marino.

y se producirían cuando se encuentre una partícula dentro del volúmen. Sin
embargo, aunque en este proyecto se trabaje con �uídos, estos no pertenecen
a un volúmen, si no que se realiza utilizando diferentes super�cies las cuales
forman una geometría cerrada, de manera que se optó por descartar esta técnica.
Además, utilizar scattering hubiera supuesto un tiempo de renderizado mucho
mayor debido a los múltiples eventos que ocurrirían dentro del volúmen.

En su lugar, se va a aplicar absorción. El término de absorción es la probabilidad
de que la luz sea absorbida por el medio que está atravesando. En este caso, lo
que se hace es trazar un rayo en la dirección de refracción y se mide la distancia
desde la super�cie hasta el fondo, siguiendo la dirección de dicho rayo. De esta
manera, se puede aplicar el coe�ciente de absorción en función de la longitud
del rayo [EC05]. Este sombreador forma parte de una nueva clase, sin embargo,
se utiliza sobre el de materiales transparentes al cuál se le añade el término de
absorción. La �gura 3.8 muestra la escena usando absorción de manera aislada
(sin photon mapping).

Es a partir de este punto donde adquiere sentido la �piscina� que se ha creado
envolviendo a los objetos, ya que la única manera de que entre luz en el fondo
es atravesando la super�cie. Además, este sombreador se ha construido sobre el
transparente, ya que el termino de absorción se aplica sobre dicho sombreador.
De esta manera, la cantidad de luz que llega al fondo es muy pequeña, y a partir

22 Sombreado

Figura 3.8: Esta �gura muestra como el color del agua es afectado por la ab-
sorción. En la parte izquierda de la imagen se puede ver como la
profundidad es menos y el color resultante es mas claro. En la par-
te derecha, sin embargo, el color es más oscuro debido a que el
agua es más profunda.

de este punto casi toda la luz que alcance el fondo será a través de fotones, cuyas
causticas serán visibles desde el exterior si la absorción lo permite.

3.5. Modelo de re�exión de Phong

Por último, para contribuir un poco más al aspecto del agua, se ha implemen-
tado el modelo de re�exión Phong, que no ha de ser confundido el modelo de
sombreado de Phong. Este modelo contribuye a la re�exión del agua, que re�e-
jará la luz del sol cuando el ojo, la super�cie del agua, y el sol, estén en el mismo
plano [Pho75]. La ecuación para aplicar la re�exión de Phong se encuentra en
la �gura 3.9.

Esta ecuación solo aplica la componente especular de la luz, debido a que la
iluminación directa ya se ha calculado anteriormente. De esta manera se consigue

3.5 Modelo de re�exión de Phong 23

Figura 3.9: Esta �gura muestra la ecuación de la re�exión de Phong.

que se re�eje el sol en la super�cie del agua en caso de que la cámara esté en
el lugar apropiado. De esta manera, la luz re�ejada Lr será la componente
especular ks del objeto, multiplicado por el factor cos(α)s, donde s es el brillo
y α es el coseno del ángulo entre el vector que une el punto de la geometría
con la cámara y el vector normalizado del rayo re�ejado, la luz emitida Li y el
coseno del ángulo θ, que es el ángulo formado por el vector que une el punto de
la geometría con la cámara y la normal del la geometría.

La �gura 3.10 muestra la escena utilizando la re�exión de Phong junto con el
resto de propiedades descritas hasta el momento.

Figura 3.10: Esta �gura muestra como el sol es re�ejado en la super�cie del
agua usando la re�exión de Phong.

24 Sombreado

3.6. Comentarios �nales

Como se ha explicado anteriormente, en la versión �nal de la aplicación el usua-
rio puede elegir entre los diferente sombreadores, y esto se hace en el �chero
��ow.mtl�. Dentro de este �chero es donde elige el sombreador de�niendo el
valor �illum� apropiado. En este caso, para el agua se ha utilizado el valor 15.
Este sombreador combina absorción, photon mapping y re�exión de Phong. Este
sombreador ha sido utilizado, por ejemplo, en la �gura 3.11.

Otro sombreador utilizado es el transparente, aunque este sólo se ha utilizado
en los ejemplos. En este caso el valor �illum� tiene que ser 4 y también utiliza
photon mapping. Este sombreador ha sido utilizado en la imagen de la derecha
de la �gura 3.7.

Por último, el sombreador difuso ha sido utilizado como ejemplo para el agua en
la �gura 3.2 aunque ha sido utilizado para el fondo marino en todas las demás
imágenes.

Además, el modelo del cielo y el sol se ha utilizado en todas las imágenes y no
está vinculado a los sombreadores.

Figura 3.11: Esta �gura muestra las cáusticas y absorción en el agua

3.6 Comentarios �nales 25

El diagrama de clases con la estructura de todos los sombreadores se pueden ver
en la �gura 3.12. Como se ha explicado anteriormente, el entorno incluía una es-
tructura básica de algunos sombreadores, aunque ninguno estaba implementado.
En el diagrama se han señalado en color verde los sombreadores implementados,
en los cuales se ha incluído el método shade que se hereda desde el sombreador
más básico Shader.h.

Figura 3.12: Diagrama de clases de los sombreadores

26 Sombreado

Capítulo 4

Resultados

Una vez que se ha terminado la implementación, se han llevado a cabo varias
simulaciones cuyo objetivo es estudiar el tiempo consumido y generar secuencias
de vídeo. Dos de los ejemplos se han con�gurado para generar dos secuencias
de vídeo, mientras que otra se ha realizado con el objetivo de obtener una sola
imagen aunque con mucho más nivel de detalle.

Para llevar a cabo las simulaciones, se ha determinado la frecuencia en 25 imá-
genes por segundo que es la que se usa actualmente en las televisiones europeas.
De esta manera, hay que con�gurar el simulador para obtener un fotograma
cada 0.04 segundos. En el caso de las simulaciones para una sola imagen, se ha
utilizado más de un rayo por píxel, que es una opción que, como se ha explicado
anteriormente, viene implementada en el entorno de renderizado.

4.1. Ola lineal

Esta simulación da como resultado una ola en dos dimensiones, de manera que
para transformar a 3 dimensiones, simplemente se ha extendido en la dimen-
sión restante. Al ser una ola en solamente dos dimensiones, se espera que sea
computacionalmente sencilla. Esta simulación va a generar una secuencia de 600
fotogramas y creará un vídeo de 24 segundos. La �gura 4.1 muestra el tiempo

28 Resultados

requerido por cada uno de los procesos y también el tiempo medio por fotogra-
ma. En este caso, el tamaño de la malla que forma el agua es de 259 x 2 vértices
en cada dirección.

Figura 4.1: Esta tabla muestra los tiempos para el ejemplo de una ola lineal

En este caso, la simulación ha durado 0,3 segundos por cada fotograma, de
manera de que el tiempo total ha sido de 3 minutos.

El tiempo de conversión también ha sido signi�cativo, aunque este proceso ha
sido mucho más rápido. En este caso el tiempo ha sido de 0,07 segundos por
cada fotograma, mientras que el tiempo total ha sido de 42 segundos.

La geometría se puede ver en la �gura 4.2 tanto como se ve en Matlab como des-
pués de renderizada. Las salidas de esta simulación también han sido utilizadas
en otras partes de la memoria.

Figura 4.2: La imagen de la izquierda representa la geometría de la malla vi-
sualizada en Matlab, cuyo color es determinado por la coordenada
Z. La imagen de la derecha es la visualización de la misma malla,
ésta vez visualizada después de renderizar.

4.2 Ola no lineal 29

Finalmente, el tiempo de renderizado ha sido de unos 8 minutos de media, de
manera que el tiempo para los 600 fotogramas ha sido de unas 83 horas. En
el apéndice A se pueden ver algunos de los fotogramas pertenecientes a esta
secuencia.

4.2. Ola no lineal

Esta simulación genera una ola en 3 dimensiones y consta nuevamente de 600
fotogramas que representarán 24 segundos de vídeo. En este caso, al ser una
simulación en 3 dimensiones, se espera que la simulación sea más lenta que en
el caso anterior. La �gura 4.3 muestra los tiempos obtenidos en los tres pasos
que requiere el proceso. En este caso, el tamaño de la malla que forma el agua
es de 259 x 19 vértices en cada dirección.

Figura 4.3: Esta tabla muestra los tiempos obtenidos para el ejemplo de la ola
no lineal.

En este caso, la conversión también ha sido más lenta que anteriormente debido
al mayor número de vértices que procesar, aunque este paso ha sido nuevamente
el más sencillo de los tres.

Finalmente, el renderizado de la secuencia ha tardado una media de 3,5 minutos
por fotograma siendo el tiempo total de 35 horas. En este caso, el tiempo de una
sola imagen ha tomado entre 180 segundos para el caso mejor y 380 segundos
para el caso peor.

Aunque esta ola es una ola en 3D, en la visualización después de renderizar es
muy di�cil de apreciar ya que avanza en una sola dirección, sin embargo, como
se puede ver en la �gura 4.4, en la visualización en Matlab se pueden observar
sus diferencias. En el apéndice A se pueden ver algunos de los fotogramas
pertenecientes a esta secuencia.

30 Resultados

Figura 4.4: La imagen de la izquierda representa la geometría de la malla vi-
sualizada en Matlab, cuyo color es determinado por la coordenada
Z. La imagen de la derecha es la visualización de la misma malla,
ésta vez visualizada después de renderizar.

4.3. Simulación de la empresa Force Technology

La siguiente simulación es cortesía de la empresa Force Technology, que se ha
encargado de su simulación, de manera que se procederá solo a su transformación
y renderizado. La simulación consiste en la estela dejada por un barco en la
super�cie del agua. El barco no tiene casco pero no es necesario para visualizar
el aspecto del agua.

Las mallas utilizadas en esta sección han sido creadas utilizando el mismo si-
mulador, aunque para poder obtener la información de esta simulación ha sido
necesario realizar cambios menores en la función de Matlab. La simulación pro-
porcionada se muestra en la �gura 4.5 tal cual se visualiza en Matlab.

Como esta simulación representa solamente un fotograma, se ha con�gurado
a 9 rayos por pixel para evitar el aliasing y obtener una imagen mucho más
nítida. Los tiempos obtenidos para esta simulación se muestran en la �gura 4.6,
mientras que el resultado del renderizado se puede ver en la �gura 4.7.

4.4 Comentarios 31

Figura 4.5: En esta �gura se puede ver la geometría de una de las mallas del
simulador visualizada en Maltab. La representación está realiza-
da en unidades genéricas de longitud. El color de la malla está
determinado por su magnitud en el eje Z.

Figura 4.6: Esta tabla muestra los tiempos obtenidos para renderizar la simu-
lación proporcionada por Force Technology.

4.4. Comentarios

A lo largo de las simulaciones, ha sido necesario ajustar ciertos parámetros
internos del entorno de renderizado para obtener resultados más precisos. Estos
ajustes se han realizado para todas las simulaciones ejecutadas.

Una modi�cación ha consistido en escalar el sistema en el eje Z, debido a que en
la mayoría de los casos, las olas no hubieran sido perceptibles. Además, también
se ha modi�cado un parámetro que afecta al tamaño de la escena, el cual escala
las distancias sin escalar la geometría, lo cual afecta a la absorción y a los fotones
emitidos.

32 Resultados

Figura 4.7: Renderizado de la simulación proporcionada por Force Technology

Como conclusión de este capítulo, cabe decir que las simulaciones han sido tan
precisas y realistas como se esperaba, aunque no tan rápidas.

Capítulo 5

Conclusiones

Este proyecto ha desarrollado un completo entorno de renderizado para utilizar
combinado junto con el simulador Ocean Wave [EKBL09] y que permite crear
imágenes y vídeos del océano de una forma realista y precisa.

Este entorno de renderizado utiliza diferentes técnicas que, combinadas, per-
miten al usuario generar agua realísticamente, y además, añade sombreadores
complementarios para renderizar de forma sencilla cualquier otro objeto que
acompañe a la escena.

Además, como se ha visto en el capítulo de resultados, se puede importar cual-
quier tipo de escena siempre que sea compatible con el formato Wavefront OBJ.
Además, con las funciones creadas en Matlab, se puede transformar fácilmente
cualquier escena creada en el simulador a este formato, incluyendo la escena
facilitada por Force Technology, cuyo formato era parecido aunque no igual que
el simulador utilizado en este proyecto debido a sus diferentes versiones. Sin
embargo, aunque el resultado ha sido muy preciso, éste no ha sido tan rápido
como se hubiese deseado.

34 Conclusiones

5.1. Limitaciones y mejoras futuras

Esta sección explica algunas limitaciones de este proyecto y diferentes formas
de resolverlas.

Una gran limitación es el hecho de que la cámara no se puede mover a lo largo
de un vídeo. La cámara se puede mover antes de empezar el proceso de rende-
rizado para colocarla en el lugar deseado, sin embargo, en cuanto se empieza a
renderizar el primer fotograma, la cámara ha de permanecer quieta hasta que
termine el último.

La principal función del simulador es generar super�cies de mar abierto, de
manera que no se pueden incluir objetos que puedan afectar al aspecto del
agua. Debido a que los objetos que rodean el agua tienen un gran impacto en
su aspecto, sería una buena opción incluir este tipo de objetos en el futuro. Sin
embargo, en el caso de que se introdujeran objetos de esta manera, se perdería
coherencia con el simulador, ya que el simulador no habría tenido en cuenta
su interacción con el agua. De esta manera, la única forma de tener objetos
que mantengan la coherencia con el agua, sería incluirlos directamente en el
simulador.

Como se ha comentado en secciones anteriores, algunas sombras son causadas
debido a los límites laterales que se han creado alrededor de la super�cie del
agua. Aunque esta solución es mejor que no tener nada, no es del todo preciso,
de manera que una solución puede ser crear suaves playas en los límites de la
super�cie.

Además, en esta aplicación, cada ejecución de renderizado es diferente y no
se puede automatizar para lanzar diferentes ejecuciones. Esto quiere decir, que
para cada ejecución hay que recon�gurar la posición de la cámara y ajustar
parámetros interiormente para obtener un resultado preciso. Sin embargo , con
las herramientas que tiene actualmente el entorno, sí que sería posible crear una
secuencia de ejecuciones internamente, aunque previamente habría que guardar
las posiciones de la cámara y dichos parámetros, para que al ejecutar, se puedan
encadenar los diferentes procesos de renderizado.

Otra solución que iría mucho mas allá sería utilizar un �chero de entrada de la
misma manera que hace el simulador, en el cual se puedan determinar todos los
valores requeridos para cada proceso.

Por último, como se ha mencionado anteriormente, el renderizado ha sido más
lento de los esperado. En el caso del simulador, existe una versión para GPU
que es más rápida que la utilizada en este proyecto. Siguiendo la misma idea,

5.2 Conclusiones personales 35

algunos sombreadores se pueden mover de la CPU a la GPU como es el caso de
re�exión y refracción.

5.2. Conclusiones personales

Gracias a este proyecto, he aprendido a como gestionar grandes proyectos tal y
como se hace en realidad, y a organizarlos y gestionarlos según lo plani�cado.

Este proyecto también ha supuesto un reto para mí porque desde el primer
momento tuve que trabajar con un entorno de desarrollo muy grande, y antes de
empezar a implementar todo lo necesario para este proyecto, tuve que aprender
como estaba gestionado en su conjunto. Y gracias a ello, también he mejorado
mi conocimiento en grá�cos por ordenador y técnicas de renderizado.

Finalmente, el haber desarrollado este proyecto durante mi estancia en Dina-
marca me ha permitido aprender como funcionan los departamentos fuera de la
Universidad de Zaragoza.

5.3. Desarrollo del proyecto

Este proyecto ha tenido una duración de 7 meses. Los primeros 5 meses han
concentrado el mayor esfuerzo, y durante este periodo, ha habido reuniones se-
manales en el grupo de grá�cos del departamento DTU Compute para evaluar
los progresos de los estudiantes que estábamos realizando algún proyecto. Ade-
más, en los momentos más importantes, también han tenido lugar reuniones
privadas para mejorar ciertos aspectos del proyecto.

Por otra parte, al principio del proyecto hubo una reunión con la empresa Force
Technology con sede en Kongens Lyngby, Dinamarca. Los temas tratados fueron
la idoneidad de este proyecto para poder utilizar el desarrollo en sus instalacio-
nes. Además se comprometieron a facilitar alguno de sus modelos para utilizar
en este proyecto, el cual se puede ver en el capítulo 4.

A continuación se puede ver el diagrama de Gannt que describe la evolución de
este proyecto.

36 Conclusiones

Figura 5.1: Diagrama de Gannt del proyecto

Bibliografía

[App68] Arthur Appel. Some techniques for shading machine renderings of
solids. In Proceedings of the April 30�May 2, 1968, spring joint
computer conference, AFIPS '68 (Spring), pages 37�45, New York,
NY, USA, 1968. ACM.

[DGJ08] Srinivasa Narasimhan Diego Gutierrez, Henrik Wann Jensen and
Wojciech Jarosz. Scattering. 2008.

[EC05] Xavier Pueyo Francisco J. Seron François X. Sillion Eva Cerezo, Fre-
deric Pérez. A survey on participating media rendering techniques.
2005.

[EKBL09] A. P. Engsig-Karup, H. B. Bingham, and O. Lindberg. An e�cient
�exible-order model for 3d nonlinear water waves. J. Comput. Phys.,
228(6):2100�2118, April 2009.

[EKMG12] A. P. Engsig-Karup, Morten G. Madsen, and Stefan L. Glimberg. A
massively parallel gpu-accelerated model for analysis of fully nonli-
near free surface waves. International Journal for Numerical Met-
hods in Fluids, 70(1):20�36, 2012.

[GSMA08] Diego Gutierrez, Francisco Seron, Adolfo Muñoz, and Oscar Anson.
Visualizing underwater ocean optics. Computer Graphics Forum
(Proc. of EUROGRAPHICS), 27(2):547�556, 2008.

[JB02] Henrik Wann Jensen and Juan Buhler. A rapid hierarchical ren-
dering technique for translucent materials. ACM Trans. Graph.,
21(3):576�581, July 2002.

38 BIBLIOGRAFÍA

[JL04] Claes Johanson and Calle Lejdfors. Real-time water rendering. Lund
University, 2004.

[Kaj86a] James T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143�150, August 1986.

[Kaj86b] James T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143�150, August 1986.

[Kry05] Yuri Kryachko. Using vertex texture displacement for realistic water
rendering, volume 2. 2005.

[Lew93] Robert R. Lewis. Making shaders more physically plausible. Tech-
nical report, Vancouver, BC, Canada, Canada, 1993.

[NJC00] Henrik Wann Jensen Niels Jørgen Christensen. A practical guide to
global illumination using photon maps. 2000.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures.
Commun. ACM, 18(6):311�317, June 1975.

[PSS99] A. J. Preetham, Peter Shirley, and Brian Smits. A practical analytic
model for daylight. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, SIGGRAPH '99,
pages 91�100, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[Ska06] Johannes Skaar. Fresnel equations and the refractive index of active
media. Phys. Rev. E, 73:026605, Feb 2006.

[SS92] Kelvin Sung and Peter Shirley. Graphics gems iii. chapter Ray tra-
cing with the BSP tree, pages 271�274. Academic Press Professional,
Inc., San Diego, CA, USA, 1992.

Apéndice A

Resultados adicionales

Esta sección contiene algunos fotogramas de los resultados obtenidos en el ca-
pítulo 4. La primera secuencia pertenece al ejemplo de la ola lineal, mientras
que la segunda pertence al ejemplo de Whalin.

40 Resultados adicionales

Figura A.1: Esta �gura incluye algunos fotogramas pertenecientes a la secuen-
cia de la ola lineal descrita en el capítulo 4

41

Figura A.2: Esta �gura incluye algunos fotogramas pertenecientes a la secuen-
cia de la ola de Shalin descrita en el capítulo 4

42 Resultados adicionales

Apéndice B

Versión de la memoria en

inglés

En este anexo se incluye la versión en inglés de la memoria, que ha sido entregada
en la Universidad Técnica de Dinamarca.

Rendering Ocean Wave
Simulations

Javier Delgado Aylagas

Kongens Lyngby 2013

IMM-B.Sc-2013

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-B.Sc-2013

Summary

The goal of this thesis is to build a rendering framework for the Ocean Wave
simulator developed at DTU Compute [EKBL09]. In addition, the goal of this
thesis also covers the rendering of the water meshes generated by the mentioned
simulator using real water properties having realistic water as a result.

This project contais two separated parts. The �rst one covers the conversion of
the �les generated from the simulator to Wavefront OBJ �les which can be used
using di�erent modelling tools.

The second part deals with the rendering part, which cover di�erent rendering
techniques that have been added together in order to obtain a realistic result.
The technique is based in raytracing, altough more techniques have been used
to obtain a more realistic and accurate result.

ii

Preface

This thesis was prepared at the DTU Compute department at the Technical
University of Denmark in ful�lment of the requirements for acquiring an B.Sc.
at the University of Zaragoza in the context of an Erasmus exchange.

The thesis implements a framework to the Ocean Wave simulator developed by
Allan P. Engsig-Karup [EKBL09] at DTU Compute Department. This simulator
has two versions, one for CPU and one for GPU. This project has been developed
using the �rst one, which has been developed in Fortran.

The Ocean Wave simulator is a tool that allows the generation of water meshes
using a high variety of properties. The output of this simulator is a binary �le
containing all the information to generate a 3D mesh.

The thesis consists of di�erent methods which generate Wavefront OBJ �les
and a visualization and rendering framework in which di�erent shaders will be
implemented using real water properties. In this project, di�erent shaders and
rendering techniques are going to be combined in order to obtain realistic water.

The application under this thesis has been set up to import correctly every
possible mesh generated by the simulator and it can be improved using newer
or more complex techniques allowing future developments.

iv

Lyngby, 05-Septiembre-2013-2013

Javier Delgado Aylagas

Acknowledgements

I would like to thank my supervisor Jeppe Revall Frisvad for his support during
all the development of this thesis, but also for providing the rendering frame-
work, which has considerably simpli�ed the technical implementation of the
prototype.

I would also like to thank Allan P. Engsig-Karup for providing the ocean wave
simulator, which is one of the most important parts of this project. And I
would like to thank Stefan Lemvig Glimberg and also Allan P. Engsig-Karup
their support with the simulator execution.

I would also like to thank DTU-Compute for hosting this project and specically
J. Andreas Bærentzen for providing, together with Jeppe Revall Frisvad, weekly
feedback throughout the entire working process.

I thank you also the company Force Technology their interest in this project
and also their involvement in it providing some of their simulations.

Finally, I would like to thank both the Technical University of Denmark and
the University of Zaragoza for allowing me to stay in Denmark where I have
developed this thesis.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Expected outcomes . 2
1.2 Document structure . 2

2 The rendering pipeline 5

2.1 The simulator . 6
2.1.1 Converting the output to a Wavefront OBJ �le 6

2.2 The rendering framework . 7
2.2.1 Adaptation of the framework to the simulator input . . . 8
2.2.2 Video production . 9

3 Shading 11

3.1 Lambertian re�ectance . 12
3.2 Transparent shader . 12
3.3 Photon mapping . 13
3.4 Absorption . 14
3.5 Phong re�ection model . 15
3.6 Other properties . 16
3.7 Final comments . 17

4 Results 19

4.1 Linear travelling Wave . 20
4.2 Whalin's experiment . 20

viii CONTENTS

4.3 Newmann Kelvin . 22
4.4 Comments . 23

5 Conclusions 25

5.1 Limitations and future improvements 26
5.2 Personal conclusions . 27
5.3 Project development . 27

Bibliography 29

List of Figures

1.1 Example of the result of the execution 3

2.1 Pipeline of this project . 6

2.2 Matlab output seen as a PNG �le 7

2.3 Diagram of the visualization modi�cations 8

3.1 Lambertian BRDF . 12

3.2 Water rendered as Lambertian 13

3.3 Diagram of re�ection and refraction 14

3.4 Photon maps . 15

3.5 Absorption inside water . 16

3.6 Phong re�ection . 17

3.7 Caustics and absorption . 18

4.1 Time for Linear Travelling Wave 20

x LIST OF FIGURES

4.2 Visualization of the Linear Travelling Wave 21

4.3 Time for the Whalin Wave . 21

4.4 Visualization for the Whalin Wave 22

4.5 Visualization of the simulation provided by Force Technology in-
side Matlab . 23

4.6 Time of the Simulation provided by Force Technology 23

4.7 Render of the simulation provided by Force Technology 24

5.1 Gannt diagram . 28

Chapter 1

Introduction

Computer generated water is a very used element nowadays. It is being used in
a lot of applications but it is mainly used in video generation for �lms or adverts,
and for computer games, but also a lot of companies need water rendering for
investigation and also for simulations.

Water can be very di�cult to render, and the proccess can be separated in two
steps. The �rst one is the water geometry which must be updated every frame
if we don not want completely calm water. The second step is the rendering of
the geometry and it will handle with the water properties as a material.

In this project, the �rst step is performed by a simulator developed by A. P.
Engsig-Karup, Morten G. Madsen and Stefan L. Glimberg at the Department
of Informatics and Mathematical Modeling [EKBL09][EKMG12].

The aim of this project is to provide a rendering framework which takes as input
the ocean wave simulations generated by the mentioned simulator. This frame-
work will have realistic water appearance as output in a process that requires
two steps. First of all, it has to deal with the compatibily between the simula-
tor and the rendering framework, and the second step deals with the techniques
used to obtain realistic water.

This project will study the most important water properties which are going

2 Introduction

to be used to obtain realistic water. Some of them are the sea�oor colour and
its distance to the water surface, but also the sky and environment which also
a�ect its aspect as they are re�ected by the water.

The render engine is based in raytracing and it is completed with photon map-
ping as water is known to generate caustics in the sea�oor. The render engine
will be also set up in order to show the generated correctly, and it will also allow
the user to generate sequences of frames as well as the simulator does, so ocean
water meshes can be generated massively to produce video sequences.

This project uses a visualization framework used in the course Phisically Based
Rendering to implement di�erent techniques. In this project, only some of them
have been implemented but it has been extended in other many ways.

1.1 Expected outcomes

The project has got two separate parts. The �rst one deals with the simulator.
In this part, the main parameters of the simulator input �le will be explained. In
addition, this part covers the transformation from a binary �le generated with
the simulator and its conversion to a Wavefront OBJ �le which is the input of
the render engine. This step is performed using Matlab.

The second part covers the adjustments made to the render engine but also the
shading step, which is the main purpose of this project. On the one hand, the
framework has been modi�ed and completed in order to get the most accurate
results. Also, it may add missing meshes such as the sea�oor in the case that
it is not provided by the simulator. On the other hand, di�erent shaders have
been used in the proccess adding complexity starting from a simple transparent
shader and completing it until the �nal one.

Finally, the outcome of the project as a whole, is a variable number of pictures,
which can be combined to generate video �les using third party applications.

An example of the output image �le can be seen in the �gure 1.1.

1.2 Document structure

The content of the rest of the document is organized as follows:

1.2 Document structure 3

Figure 1.1: Example of the result of the execution. The sea�oor can be appre-
ciated, and also the depth of the water and the caustics generated
by the waves.

Rendering. This chapter contains all the information related with the simu-
lator and the rendering framework. It explains the main parameters used for
the water, but also how are the meshes converted into Wavefront OBJ �les and
what has been changed in the framework to open the simulator �les correclty.

Shading. This chapter explains in detail the di�erent implemented shaders and
the techniques used in all of them.

Results. This section analyzes the execution time of the render and also shows
the aspect of the di�erent simulations both in Matlab and after the rendering
step.

Conclusions. This chapter details the conclusions of the project, but also its
limitations and future improvements to continue its development.

4 Introduction

Chapter 2

The rendering pipeline

Water surfaces are very common in video games and �lms, and it is usually
a critical element and its level of detail will improve the realism of any scene.
In addition, it is usually a very hard computational problem so that it is still
di�cult to render real-time water [JL04][Kry05]. For that reason, this project
will try to compute realistic water with short rendering time leaving real time
rendering to the future.

This chapter explains how has been the work organized. First of all, the simu-
lator generates water meshes exported as binary �les. Afterwards, these binary
�les should be transformed into Wavefront OBJ �les. This step is performed
using Matlab functions. Finally, the object �les are imported into the rendering
framework which, used as it is explained in the next chapter, will output PNG
image �les.

The complete pipeline that is covered by this project is shown in the �gure 2.1.

6 The rendering pipeline

Figure 2.1: Pipeline of this project

2.1 The simulator

This section will situate the context of the project, which aim is to create a
rendering framework for the Ocean Wave simulator developed by A. P. Engsig-
Karup, Morten G. Madsen and Stefan L. Glimberg at the Department of Infor-
matics and Mathematical Modeling [EKBL09][EKMG12].

The simulator has been developed using FORTRAN and it runs under UNIX
machines. The simulator has got CPU and GPU versions. In this project, the
used version has been the CPU one.

When using the simulator, a lot of parameters can be used to perform di�erent
kinds of waves. Some of them have to do with the timing between steps. As the
desired frequency to obtain a good quality video is 25 frames per second, these
parameters should be adjusted properly. Also, we should use the maximum time
value which will determine the length of the video. The parameters used for
this project are only examples but the rendering framework will handle every
possible output.

2.1.1 Converting the output to a Wavefront OBJ �le

The output of the simulator has got two di�erent formats and they can be
chosen in the simulator input �le. The mesh can be exported as a text �le or a
as a binary �le. In this project the binary format has been chosen. It contains
the vertex coordinates but also its energy, which is required if the user wants to
continue with the simulation from that poing, but it is not used in this project.

The next immediate step is to convert these �les into wavefront object �les to
make them readable by the rendering framework. This step is performed using
Matlab.

The Matlab conversion function loads all the �les in the current directory which
follow the format �EP_xxxxx.bin� which is the simulator default naming and

2.2 The rendering framework 7

converts them into Wavefront OBJ �les. Among other things, it also adds some
lines to group the objects but it also sets the material �le used for the geometry.
The default material �le is ��ow.mtl�. This �le contains the specular, di�use
and ambient values of the material, but also also the illumination value. The
illumination value is the parameter that will determine the shader used in the
framework. This value will be changed in the context of this project to show
di�erent shaders.

The chosen function deals with many input �les from the beginning as it is
required for this project. A PNG output from the Matlab function is not nec-
cessary but it has been used to check correctness before going further with the
next steps in the pipeline. The mentioned image �le looks as it is shown in the
�gure 2.2.

Figure 2.2: This the aspect of the mesh visualized inside Matlab

2.2 The rendering framework

This project uses a rendering framework based on raytracing [App68]. As the
time to build a framework from scratch would take a lot of time, the raytracer
has been provided to use in this project. It has been provided by Jeppe Revall
Frisvad and it is used in the course Physically based rendering at the DTU
Compute Department. It contais the main properties of a raytracer in which
the di�erent shaders will be implemented. It allows to import Wavefront OBJ
�les and it uses a BSP (Binary Space Partition) tree [SS92] to store the geometry

8 The rendering pipeline

in memory.

Inside the rendering framework, the user is allowed to move the camera using
the mouse, save and load camera positions and views, save images as bitmaps
or increment or decrement the number of rays per pixels to increase accuracy
and reduce aliasing, among others.

The framework also handles di�erent views that show di�erent e�ects such as
refelectance, direct lighting only, ambient occlusion, path tracing, photong map
caustics and others. In this project only path tracing and photon map caustics
will be used. The essential properties of these techniques are included in the
framework altough they were not implemented. For this reason, �rst of all it is
needed to check which techniques �t better in the context of the project and only
those will be implemented. All the techniques mentioned outside this section
have been implemented during the project development.

2.2.1 Adaptation of the framework to the simulator input

The �rst versions of the simulator do not generate a sea�oor, which is required
by the de�nition of this project. In this case, a plain rectangle will be located
under the geometry to act as a sea�oor. As this option is not accurate because
the sea�oor a�ects the motion of the waves, the last versions of the simulator
generate automatically a correct sea�oor.

In addition, as the light can reach the geometry from every point, it could reach
the sea�oor without going through the water as it is shown in the �gure 2.3.

Figure 2.3: This diagram shows why a bounding box is needed. If there is
no bounding box, the light can reach the sea�oor without going
through the water. With a bounding box there is still an anomaly,
because the corners may be in shadow.

To solve this issue, a bounding box has to be placed in the four sides of the

2.2 The rendering framework 9

water mesh, and it must cover, at least, the height from the sea�oor to the
water surface. A plane has also been included as a �oor of the visualization
environment.

By using a bounding box, there is an undesired e�ect, which is that depending
in the angle of the sun, there will be a small shadow inside the water caused by
the walls of the box. These shadows may a�ect more than one wall depending on
the inclination angle of the sun Moreover, the opposite wall will also accumulate
photons as it is exposed directly to the sun light. This issue can be improved
by making bigger meshes or having a smooth transition of the sea�oor avoiding
the use of walls.

The meshes are not centered in the ground plane because this helps the viewer
to visualize the environment as it is easier to see part of the sky. This also
creates a shadow in the ground plane. This issues can be avoided with in�nite
or very big water meshes.

2.2.2 Video production

The video production is handled using command line arguments. In these ar-
guments the user has to de�ne the number of the �rst and the last epoch to
proccess but also the space between epochs which is de�ned in the simulator
input. The �le names are handled automatically as the binary �les are always
named as �EP_xxxxx.bin� and the object �les are named �EP_xxxxx.bin.obj�.

As long as the number of the last epoch is higher than the �rst one, the
framework will produce a sequence of �les which are the frames for the video.
The naming of the images follow the same pattern and they will be named
�EP_xxxxx.bin.obj.png�. The video has to be mounted outside the framework
using all the generated �les.

10 The rendering pipeline

Chapter 3

Shading

This chapter covers the main properties that a�ect the aspect of water. It
explains why are they important and which are techniques used to deal with
those properties and it also explains the di�culties encountered. It explains the
steps followed to build a complete shader for the project.

The �rst shaders have built separatedly while the �nal one uses most of the
properties of the previous ones. In addition, other complementary properties
have been used such as the sun and sky colour [Lew93][Kaj86].

The framework can handle any number of lights, although in this project only
one directional light which will represent the sun.

In addition, some of the implemented shaders use a path tracing technique. This
is the case of the transparent shader among others. [PH04]

As it was explained in the previous section, the main properties of the materials
are de�ned in a material �le (extension mtl). That �le contains more than one
material and all of them can be used in this project, but it is also possible to
de�ne new materials. Complementary to the mentioned material �le, there is
another �le called �media.mpml�, which has been also provided with the frame-
work. This �le contains more information about some materials. One of those
materials is seawater and we are going to use it in this project. As water colour

12 Shading

is di�erent depending from one ocean to another, more kinds of water could also
be de�ned in this �le.

3.1 Lambertian re�ectance

This shader is the most basic one that has been used in the project, but it is
neccessary as it is used for the sea�oor.

Lambertian re�ectance is the property that de�nes a pure di�use surface. The
amount of light returned by the geometry depends only on the angle between the
light respect the geometry normal and it does not depend on the eye position.
The Lambertian BRDF (Bidirectional re�ectance distribution function) can be
seen in �gure 3.1. As an example, the scene has been rendered using this shader
for the water. The result can be seen in �gure 3.2.

Figure 3.1: Lambertian BRDF

3.2 Transparent shader

In order to use this shader correctly, the fresnel equations have been used to
calculate the refractive index. The fresnel equations calculate the re�ectance,
which is the amount of energy re�ected while The rest of the energy (1-R)
is refracted. Using this equations, the re�ectance will vary depending on the
incident angle and the index of refraction of both mediums and for small angles,
there might be only re�ected light [Ska06].

3.3 Photon mapping 13

Figure 3.2: Water rendered as Lambertian

Once the re�ectance is calculated, this shader traces 2 rays: the re�ected one and
the refracted one, and they are combined depending on the refractive index that
has been explained before [JB02]. The diagram of the re�ected and refracted
rays can be appreciated in �gure 3.3. In addition, the framework uses a variable
which sets the maximum number of recursions of the algorithm [PH04].

3.3 Photon mapping

In this project, we are using a sea�oor which will a�ect the aspect of the water
in di�erent ways. One of that ways will be the caustics produced by the waves
which will be seen in the sea�oor.

As caustics are going to a�ect the aspect of water signi�cantly, photon map-
ping has been implemented in this project [NJC00]. The photons may produce
caustics depending on the shape of the wave but also depending on the distance
from the sea�oor to the sea surface.

As we have explained before, the framework allows the use of photon mapping

14 Shading

Figure 3.3: This diagram shows the re�ected and refracted rays, which are
used in some of the shaders.

altought it must be implemented. In addition, there is an option to visualize
the photon maps. These photon maps and the whole scene using a transparent
shader with caustics are shown in the �gure 3.4.

The number of used photons can be set in the framework, and also the number
of photons used in the estimation. In this project, these values have been set to
7500000 photons and 200 of them used for the estimate.

3.4 Absorption

The next e�ect that we are going to use has to do with the depth of the water.
The darkness of the water will increase with its depth. This phenomenon is
called absorption.

This shader was projected to be a volume shader, but as the meshes returned
by the simulator are not volumes, this idea is not applicable. Instead, this
shader calculates the distance from the water surface to the sea�oor in order to
calculate the quantity of energy absorbed. The distance is calculated using the
direction of the refracted ray from the water surface so it will be longer or equal
than the perpendicular distance from the water surface to the sea�oor. [EC05]

Figure 3.5 shows the scene using absorption but no photon mapping in this
case.

At this point the reader has to realize that the used shader is not the transparent

3.5 Phong re�ection model 15

Figure 3.4: Left: Visualization of the photon maps. Right: Render of the
scene using a transparent shader with photon mapping. The caus-
tics can be appreciated at the sea�oor

one anymore. Now is where the bounding box makes sense, because the only
way in which can be light is inside the water is through the surface. In other
words, the light that reach the sea bottom is because of the photons that have
crossed the water. Afterwards, the light inside the water may not reach the
surface again due to absorption, which will determine the �nal aspect of the
water.

3.5 Phong re�ection model

In order to include another property to the simulator, the phong re�ection
model has been used to re�ect the sun. This model is not the Phong shading
model. Its contibution is only the re�ection of the directional light and it will
be appreciated only if the eye, the water surface and the sun are situated in the
same plane [Pho75].

Figure 3.6 shows the scene using with phong re�ection added to the rest of
properties.

16 Shading

Figure 3.5: This �gure shows how the colour of water is a�ected by absorption.
In the left side the depth is lower and the result colour is lighter
because of the seawater colour. In the right side of the scene, the
colout is darker because the depth is higher.

3.6 Other properties

This section explains some other minor properties that have been used along
the project.

Sun and sky

The sky is also important as it is, either completely, or almost part of it, re�ected
by the water. The chosen model for the day light is the one developed by A.
J. Preetham, Peter Shirley and Brian Smits at the University of Utah [PSS99].
This model uses real coordinates of the Earth but also the desired date and
time.

For this project, the chosen date is a day in autumn at 12.00 and it has been
located in Denmark. These values can be changed at any time in the framework.

3.7 Final comments 17

Figure 3.6: This �gure shows how is the sun re�ected in the water surface
because of phong re�ection.

Antialiasing

In order to make the result more accurate and avoid e�ects as aliasing, most of
the generated images have been rendered using multisampling. The framework
allows the generation of more than one ray per pixel and it has been used in
this project. However, as the rendering time increases very fast, the maximum
number of rays per pixel used is 9. For video generation, as it is needed to
render a high quantity of frames, only one ray per pixel has been used.

3.7 Final comments

As it has been explained before, in the �nal version the user can choose between
di�erent shaders. This is handled in the �le ��ow.mtl� and the material used
for the water is �seawater�. Inside this �le, there is a value called �illum� which
determines the shader that is going to be used in the renders. By default, this
value is set to �15�, which is the shader used for ocean water. This shader uses
absorption, photon mapping and phong re�ecion. This shader has been used,

18 Shading

for example, in �gure 3.7.

Other used shader is the transparent one, which can be chosen changing the
illumination value to �4�. This shader uses a basic transparent shader with
photon mapping. This shader has been used in the right image in �gure 3.4.

Finally, the lambertian shader has been used for the ocean water in �gure 3.2
and it has been used for the sea�oor in all the renders.

In addition, the sun and sky model has been used in all the renders as it is not
a�ected by any of the shaders.

The whole pipeline that the user must follow can be checked in chapter 2

Figure 3.7: This �gure shows the caustics and absorption.

Chapter 4

Results

Once the implementation has been completed, three simulations have been run
in order to study the time consumption. Two of the results shown here come
from renders that have been con�gured to be a video sequence. The other one
has been performed for a single image.

This has been done because usually the mesh is plane in the �rst frame, and as
the time increases, the variations in the meshes are higher and it a�ects to the
render time. The time frequency for all the simulations is 25 frames per second,
which is the standard for european televisions. This means that the step time
is 0.04 seconds.

All the simulations and renders have been performed in my personal laptop.
The render times will be lower using a more powerful computer. In addition, in
the cases of video sequences, the obtained times have been performed using only
one ray per pixel. For more rays per pixel than one, the time is approximately
multiplied by the number of rays per pixel. In the case that the render is focused
in one single image, the number of rays have been set to 9 in order to get more
accurate and nicer images.

20 Results

4.1 Linear travelling Wave

This simulation uses only linear techniques to obtain the simulations, so it is
expected to be computationally easy. The simulation will generate a sequence
of 600 meshes and it will represent a 24 seconds video with a frequency of 25
frames per second. Figure 4.1 shows the time of all the performed steps.

Figure 4.1: This table shows the time for the Linear Travelling Wave example

In this case, the simulation has taken 0.3 seconds per frame so the total time has
been 3 minutes for the whole sequence. The conversion time is also signi�cant,
but this step is faster than the others. In this case, the conversion time has
taken an average of 0.07 seconds per frame, making a total of 42 seconds for all
the images.

The mesh visualized in Matlab and the render result can be seen in �gure 4.2
although the outputs of this simulation have been also used in the previous
chapters of this document.

Finally, the rendering step has taken 8.3 minutes per frame, making a total of
83 hours for the whole sequence. The size of the meshes used in this example is
259 x 2.

4.2 Whalin's experiment

Robert W. Whalin, Ph.D., P.E. is Associate Dean and Professor of Civil Engi-
neering College of Science, Engineering, and Technology, Jackson State Univer-
sity. This simulation uses some of the data gathered in the Whalin's experiment
1.

1http://coastalhazardscenter.org/people/robert-w-whalin

4.2 Whalin's experiment 21

Figure 4.2: Visualization of the Linear Travelling Wave inside Matlab and
after the rendering

This simulation will generate again a sequence of 600 meshes and it will represent
a 24 seconds video with a frequency of 25 frames per second. Figure 4.3 shows
the time of all the performed steps and also the time at di�erent points of the
simulation. In this case, the size of the mesh is also bigger than in the previous
one.

Figure 4.3: This table shows the time for the Whalin Wave example

In this case, the conversion time has been higher than the previous simulation
as the water mesh is bigger, but this step has been again the easiest to compute.

Finally, the render time has been 3.5 minutes per frame, making a total of 35
hours for the total of 600 frames. Figure 4.4 shows the mesh visualized inside
Matlab and also the �nal render. The mesh size in this example is 259 x 19.

22 Results

Figure 4.4: Visualization for the Whalin Wave inside Matlab and after ren-
dering

4.3 Newmann Kelvin

The next simulation has been courtesy of Force Technology. It includes a water
surface as well as a ship hull. The ship has no deck but it is not needed for the
example.

The provided meshes have been gerenated using the same simulator and also a
ship model from the company. The provided information aspect in Matlab is
shown in �gure 4.5.

This simulation uses a format quite di�erent to the previously used. With the
meshes �les there has also been included a Matlab �le to read them, but they
have to be adjusted to be coherent with the rendering framework input. In
that way the previous conversion function has been rede�ned for this precise
example. The new output includes two meshes inside one �le, the �rst one is
the water mesh and the second one is the ship hull.

As this simulation represents only one frame, it has been rendered using 9 rays
per pixel. The �le conversion and rendering time can be checked in �gure 4.5.

The resulting render is �gure 4.7

4.4 Comments 23

Figure 4.5: Aspect of the simulation provided by Force Technology as it is
seen inside Matlab

Figure 4.6: Time of the Simulation provided by Force Technology

4.4 Comments

For every simulation, some adjustements have been needed in the framework to
get better images. These changes have been done to all the renders.

One modi�cation is that the Z coordinate of the meshes has been scaled because
in the original mesh, the variations of Z were hardly visible. Moreover, there
is a parameter that a�ects the absorption and caustics terms which scales the
distances but not the mesh. This means that, altough the mesh is the same, it
will represent deeper or less deeper water.

As a conclusion for this chapter, the simulations have been as accurate and
realistic, but not as faster as expected. One possible way to make simulations
faster is to carefully adjust the mesh size so that it is still accurate but without

24 Results

Figure 4.7: Render of the simulation provided by Force Technology

unneded polygons.

Chapter 5

Conclusions

This project has developed a complete framework to use combined with the
Ocean Wave Simulator [EKBL09] starting from a raytracer. This framework
combines many di�erent techniques that allow the user to render realistic water
using di�erent techniques that have been combined together and it also provides
simple shaders so that external objects can be added to the framework using
the material �le. In the one hand, the developed render framework is a very
powerful application because it could also be used with any other mesh and it
will render it as water because all the needed objects are added inside. In the
other hand, although the result is accurate and realistic although it has been
slower than expected.

This project has also developed a Matlab conversor which produce OBJ �les
that can be used also in any other 3D software so its capabilities go beyond the
aim of this project. In addition, there is an extra Matlab �le that has been used
to export the �les provided by Force Technology and which has been used in
chapter 4.

26 Conclusions

5.1 Limitations and future improvements

This section will explain some of the known limitations of the rendering frame-
work and some future improvements.

The main limitation of the framework is that the camera cannot be moved
during the rendering. It can be moved anywhere before starting rendering so it
works good for pictures, but for videos the camera is in the same place until the
video has �nished its rendering.

The simulator main function is to generate open sea meshes. This means that
no environment is handled in the simulator. As the environment a�ects to the
water aspect signi�cantly it would be a good option to include it in future im-
provements. But, even in the case that a environment is added to the rendering
enviroment, it would not be physically coherent because the water meshes would
not interactuate with the terrain. The only way to be totally physically coher-
ent would be to include the environment in the simulator and export the whole
scene in the binary �le.

As it has been commented in previous sections, some shadows are caused by
the bounding box. Altough this solution is better than no having anything, the
aspect is not so accurate near the bounds.

Moreover, in this project it is very di�cult to programme a sequence of renders.
For example, if the user wants di�erent renders of di�erent meshes or the same
one from di�erent points of view, it has to be set up manually and generate
them one by one. Although the framework has functions to save and load
camera coordinates or object �les, it should be done inside the code.

Other limitation is that the simulator has an output of one or two meshes in one
�le. The �rst mesh is, of course, the water surface mesh and the second one may
be the sea�oor in the case that it exists. However, usually these two meshes do
not intersect each other. If they intersected, for example �nishing in a beach, the
problem of the shadow near the walls could be solver automatically. In addition,
if the simulator allowed to import object �les into it, it would generate coherent
waves intersecting with, for example, terrain, solving one issue that has been
explained earlier in this chapter.

Finally, as it has been commented previously, the rendering step has been slower
than expected. The simulations and renderings have run over my personal
laptop, and altough more powerful machines could be used, future developments
should go further. As the simulator has a newer version that runs on GPU, that
version could be used instead of the CPU one. In addition, following the same

5.2 Personal conclusions 27

idea, some shaders could be moved from the CPU to the GPU too. This would
be the case of re�ection and refracion.

5.2 Personal conclusions

With this project, I have learned a lot of how projects are developed in the real
world, how are they organized and how are they scheduled.

This project has been also a challenge because I had to work with a very big
framework which I have had to learn before starting to improve it. Thanks to
it, I have also improved my knowledge on computer graphics and rendering.

In addition, having developed this project during my exchange stay in Denmark
has shown me how the departments outside the University of Zaragoza work.

5.3 Project development

The project has had a duration of seven months. The �rst �ve months have
had the hardest work and there have been weekly meetings with the graphics
group of the DTU Compute department. Also some private meetings have been
neccesary in order to get the project in the correct way.

There had also been an extra meeting with the company Force Technology
located in Kongens Lyngby, Denmark. The dealt topics were the suitability
of the simulator and the framework to be used in the boat simulators of the
company and the availability of use some of their boat models. Finally, there
were no further meetings as this project was not meant to be real time water
rendering altough they provided one of their own simulations combined with a
ship which have been used in chapter 4.

This is the Gannt diagram that describes the evolution of this project.

28 Conclusions

Figure 5.1: Gannt diagram

Bibliography

[App68] Arthur Appel. Some techniques for shading machine renderings of
solids. In Proceedings of the April 30�May 2, 1968, spring joint

computer conference, AFIPS '68 (Spring), pages 37�45, New York,
NY, USA, 1968. ACM.

[EC05] Xavier Pueyo Francisco J. Seron François X. Sillion Eva Cerezo,
Frederic Pérez. A survey on participating media rendering tech-
niques. 2005.

[EKBL09] A. P. Engsig-Karup, H. B. Bingham, and O. Lindberg. An e�cient
�exible-order model for 3d nonlinear water waves. J. Comput. Phys.,
228(6):2100�2118, April 2009.

[EKMG12] A. P. Engsig-Karup, Morten G. Madsen, and Stefan L. Glimberg. A
massively parallel gpu-accelerated model for analysis of fully nonlin-
ear free surface waves. International Journal for Numerical Methods

in Fluids, 70(1):20�36, 2012.

[JB02] Henrik Wann Jensen and Juan Buhler. A rapid hierarchical ren-
dering technique for translucent materials. ACM Trans. Graph.,
21(3):576�581, July 2002.

[JL04] Claes Johanson and Calle Lejdfors. Real-time water rendering. Lund
University, 2004.

[Kaj86] James T. Kajiya. The rendering equation. SIGGRAPH Comput.

Graph., 20(4):143�150, August 1986.

[Kry05] Yuri Kryachko. Using vertex texture displacement for realistic water

rendering, volume 2. 2005.

30 BIBLIOGRAPHY

[Lew93] Robert R. Lewis. Making shaders more physically plausible. Tech-
nical report, Vancouver, BC, Canada, Canada, 1993.

[NJC00] Henrik Wann Jensen Niels Jørgen Christensen. A practical guide to
global illumination using photon maps. 2000.

[PH04] Matt Pharr and Greg Humphreys. Physically Based Rendering:

From Theory to Implementation. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures.
Commun. ACM, 18(6):311�317, June 1975.

[PSS99] A. J. Preetham, Peter Shirley, and Brian Smits. A practical analytic
model for daylight. In Proceedings of the 26th annual conference

on Computer graphics and interactive techniques, SIGGRAPH '99,
pages 91�100, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[Ska06] Johannes Skaar. Fresnel equations and the refractive index of active
media. Phys. Rev. E, 73:026605, Feb 2006.

[SS92] Kelvin Sung and Peter Shirley. Graphics gems iii. chapter Ray trac-
ing with the BSP tree, pages 271�274. Academic Press Professional,
Inc., San Diego, CA, USA, 1992.

	Resumen
	Agradecimientos
	Índice general
	1 Introducción
	1.1 Resultados esperados
	1.2 Estructura del documento

	2 El proceso de renderizado
	2.1 El simulador
	2.1.1 Convirtiendo de binario a OBJ

	2.2 El entorno de renderizado
	2.2.1 La ecuación de render
	2.2.2 Raytracing
	2.2.3 Materiales
	2.2.4 El sol y el cielo

	2.3 Adaptación del entorno al simulador
	2.4 Producción de vídeo
	2.5 Diagrama de clases

	3 Sombreado
	3.1 Lambertian
	3.2 Sombreador transparente
	3.3 Photon mapping
	3.4 Absorción
	3.5 Modelo de reflexión de Phong
	3.6 Comentarios finales

	4 Resultados
	4.1 Ola lineal
	4.2 Ola no lineal
	4.3 Simulación de la empresa Force Technology
	4.4 Comentarios

	5 Conclusiones
	5.1 Limitaciones y mejoras futuras
	5.2 Conclusiones personales
	5.3 Desarrollo del proyecto

	Bibliografía
	A Resultados adicionales
	B Versión de la memoria en inglés

