ias Universidad
i Zaragoza

Proyecto Fin de Carrera

Rendering Ocean Wave Simulations

Autor

Javier Delgado Aylagas

Director: Jeppe Revall Frisvad
Ponente: Dr. Diego Gutiérrez Pérez

Escuela de Ingenieria y Arquitectura
2013

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Resumen

Este proyecto ha sido desarrollado en el departamento DTU Compute de la
Universidad Técnica de Dinamarca durante un intercambio Erasmus.

El objetivo de este proyecto es construir un entorno de renderizado para el simu-
lador oceédnico desarrollado en el departamento DTU Compute de la Universidad
Técnica de Dinamarca [EKBL09|. Dicho simulador permite generar olas oceé-
nicas con una gran variedad de configuraciones almacenandolas en diferentes
formatos de fichero.

Este proyecto utilizara dicho simulador y permitird importar dichas simulaciones
y renderizarlas proporcionando un aspecto realista al agua generada. Para ello
se transforman las simulaciones al formato OBJ utilizando Matlab para que
pueda ser leido por el entorno de renderizado.

Posteriormente, se generard una salida visible de las olas generadas en el si-
mulador, y es aqui donde se implementaran y aplicaran diferentes técnicas de
renderizado para obtener un aspecto lo mas realista posible. Esta parte se basa
en su mayor parte en raytracing [App68|, aunque se combina con otras propie-
dades como photon mapping para mejorar el aspecto del agua. Este apartado
ha sido desarrollado en su totalidad sobre C++.

Ademas, se incluirdn como resultados diferentes simulaciones, tanto de imagenes
como de videos, siendo una de las simulaciones proporcionada por la empresa
Force Technology con sede en Kongens Lyngby (Dinamarca).

Finalmente, se analizardn las limitaciones del proyecto y se plantearan mejoras
para que pueda ser continuado en el futuro.

Agradecimientos

En primer lugar, quiero agradecer a mi supervisor Jeppe Revall Frisvad por toda
su ayuda a lo largo del de desarrollo de este proyecto y también por facilitarme
el entorno de trabajo, que ha simplificado considerablemente la implementacién
de la aplicacién, y también a Diego Gutiérrez por sus comentarios para poder
escribir esta memoria y por hacer de ponente para este proyecto.

En segundo lugar, quiero agradecer a Allan P. Engsig-Karup por haberme facili-
tado el simulador y también toda su ayuda para poder utilizarlo correctamente,
al igual que a Stefan Lemvig Glimberg, sin cuya ayuda no podria haber utilizado
dicho simulador.

También quiero agradecer al departamento DTU Compute el permitirme ha-
ber desarrollado mi proyecto, y especialmente a J. Andreas Barentzen junto
con Jeppe Revall Frisvad por sus comentarios y ayuda proporcionada en las
reuniones semanales que se realizaron durante todo el desarrollo.

Por otra parte, también quiero agradecer a Diego Gutiérrez sus comentarios
para poder escribir esta memoria y por hacer de ponente para este proyecto.

También quiero agradecer a la compania Force Technology con sede en Kongens
Lyngby su interés en este proyecto y su participaciéon proporcionando algunos
de sus modelos y simulaciones.

Por dltimo, quiero agradecer tanto a la Univesidad de Zaragoza como a la Uni-
versidad Técnica de Dinamarca el haberme permitido desarrollar este proyecto
durante mi estancia Erasmus en Dinamarca.

Indice general

[Resumenl I
|Agradecimientos| 111
1. Introducciénl 1
[1.1. Resultados esperados|. 2
IL.2. Estructura del documentolo 3

2. El proceso de renderizado| 5
2.1. Elsimulador oo o 6
2.1.1. Convirtiendo de binarioa OBJ| 6

2.2. El entorno de renderizadolo 8
2.2.1. Laecuacion derenderl 8

2.2.2. Raytracing| oo 8

2.23. Materiales|. oo oo 9

2.24. Elsolyelcielo 10

[2.3. Adaptaciéon del entorno al simulador|00 11
2.4. Produccién de videolo 0oL 12
2.5. Diagrama declases| 13
3. Sombreadol 15
BI _Tambertianlo 16
13-2. Sombreador transparente|o 17
8-3. Photon mapping| Lo 18
3.4. Absorcionl 20
13-5. Modelo de reflexién de Phong|o 0o 22

vi iINDICE GENERAL

p.1. Limitaciones y mejoras futuras|
p.2. Conclusiones personales|
-3 Desarrollo del proyecto]. o v v i i

IB. Version de la memoria en inglés|

27
27
29
30
31

33
34
35
35

37

39

43

Indice de figuras

|I1.1. Ejemplo del resultado de la ejecucién|. 3
[2.1. Proceso cubierto por este proyecto] 6
2.2. Salida de Matlab visualizada en JPG|. 7
[2.3. Diagrama de la dispersion en el cielof 10
2.4. Diagrama de visualizacion de las modificaciones|. 11
[2.5. Diagrama de clases del entorno de renderizado| 13
B _Tambertian BRDFl 16
13.2. Agua renderizada como Lambertian| 17
B.3. Ecuaciones de Fresnell 18
13.4. Diagrama de la reflexion y refraccion| oL 18
B.5. Formacién de causticas|.o o000 19

viii

iINDICE DE FIGURAS

8.7. Photon mapping| oo 21
3.8. Absorcibnenelagual oo L 22
8.9. Ecuacion de la reflexion de Phong| o000 23
13.10. Reflexion de Phong| oo 0oL 23
13.11. Causticas y absorcion| 24
13.12. Diagrama de clases de los sombreadores| 25
K4.1. Tiempos observados para una ola lineal| 28
4.2. Visualizacion de la ola lipeall. 28
i4.3. Tiempo para laolanolinealf. 29
.4, Visualizacion del ejemplo de ola no lineal| 30
4.5. Visualizacion de la simulacion de Force Technology| 31
4.6. Tiempo de la simulacion de Force Technology| 31
l4.7. Renderizado de la simulacion de Force Technology| 32
9.1. Diagrama de Gannt|, 36
IA.1l. Visualizacién de la ola lipeall.o 40

CAPITULO 1

Introduccién

El agua generada por ordenador es un elemento muy utilizado hoy en dia. Tiene
una gran variedad de aplicaciones, aunque su principal uso es en producciones
audiovisuales como peliculas o anuncios siendo también utilizada en videojuegos.
Sin embargo, también hay gran variedad de companias que lo utilizan para
utilidades internas o simulaciones.

Este es el caso de la empresa Force Technology ubicada en Kongens Lyngby
(Dinamarca), que dispone de simuladores donde se pueden entrenar los futuros
pilotos de barcos, los cuales disponen de grandes cantidades de agua generada
por ordenador de cual desean mejorar su aspecto. Este proyecto, buscara en la
medida de lo posible mejorar la visualizaciéon de los simuladores de la citada
enipresa.

El aspecto del agua puede ser muy dificil de generar, y el proceso puede dividirse
en dos partes. La primera es la geometria del agua, que debe ser actualizada en
cada fotograma. El segundo paso consiste en renderizar dicha geometria para
dotarle de un aspecto realista. Es este segundo paso el que se aprovechara de
las propiedades del agua como material para darle el acabado deseado.

En este proyecto el primer paso de los descritos anteriormente se realiza uti-
lizando el simulador desarrollado por A. P. Engsig-Karup, Morten G. Madsen
y Stefan L. Glimberg en el departamento DTU Compute de la Universidad

2 Introduccién

Técnica de Dinamarca [EKBL09| [EKMG12].

El objetivo de este proyecto es dotar de un entorno de renderizado a dicho
simulador, tomando como entrada la informacién generada en el simulador, y
teniendo como salida imagenes PNG con la simulacién renderizada de forma
realista. Ademas, este proceso se divide en otras dos partes. La primera parte
consiste en generar una entrada compatible con el entorno de desarollo. Para ello,
se creard una funciéon en Matlab que genere un fichero del formato Wavefront
OBJ partiendo de los ficheros binarios devueltos por el simulador, mientras que
en la segunda parte se desarrollaran las técnicas de renderizado correspondientes.

Este proyecto estudiara las propiedades més importantes del agua y que van a
ser utilizadas en el mismo. Algunas de ellas son el color del fondo marino y su
distancia a la superficie del agua, aunque también se tendra en cuenta el cielo
y el entorno ya que seran reflejados en parte por el agua.

El motor de renderizado esta basado en raytracing [App68| y se completa con
photon mapping [NJCO00] para poder visualizar las causticas en el fondo marino.
Dicho motor también ha de ser ajustado para optimizar el aspecto del agua en
funcion de la entrada. Ademas, permitird generar secuencias de imagenes de la
misma manera que el simulador. De esta manera, también se podréan generar
videos utilizando software externo.

Este entorno de renderizado es el que permitira a la empresa Force Technology,
anteriormente mencionada, a mejorar sus simuladores ya que el simulador alli
utilizado es el mismo que el que se ha utilizado en este proyecto.

Este proyecto utiliza el entorno de visualizacion utilizado en el curso Phisically
Based Rendering de la Universidad Técnica de Dinamarca para implementar las
diferentes técnicas.

1.1. Resultados esperados

Este proyecto tiene dos partes diferenciadas. La primera tiene que ver con el
simulador. En esta parte se explica el funcionamiento del simulador. Ademas,
en esta parte se explica como ha sido transformado el fichero devuelto por el
simulador en un fichero Wavefront OBJ.

La segunda parte incluye tanto los ajustes realizados al entorno para poder
tratar las simulaciones correctamente como la etapa de sombreado. Por un lado,
el entorno ha sido ajustado para proporcionar resultados mas precisos y, ademas,

1.2 Estructura del documento 3

anade elementos como el fondo marino en caso de que este no lo proporcione
el simulador. Por otro lado, se han anadido todos los sombreadores que han
sido necesarios en el proceso, comenzando desde los méas basicos hasta los mas
complejos, siendo algunos de ellos combinados en el proceso.

Finalmente, la salida del proyecto en su conjunto, es un niimero variable de
imé&genes, las cuales pueden ser combinadas para generar secuencias de video

con ayuda de aplicaciones externas a este proyecto.

Un ejemplo de la salida de la aplicacién se puede ver en la figura

Figura 1.1: Ejemplo del resultado de la ejecucion. En la imagen se puede apre-
ciar el fondo marino, cémo la profundidad afecta al color del agua,
y también la las causticas generadas por las olas.

1.2. Estructura del documento

El contenido del resto del documento esta organizado como se detalla a conti-
nuacion:

El proceso de renderizado. Este capitulo contiene toda la informacién rela-

4 Introduccién

cionada con el simulador y el entorno de desarrollo. También explica en detalle
las funciones de conversion de formatos creadas en Matlab y los ajustes realiza-
dos al entorno de renderizado.

Sombreado. Este capitulo explica en detalle los diferentes sombreadores y téc-
nicas utilizadas en cada uno de ellos.

Resultados. Esta seccion detalla la informacién de rendimiento de diferentes
simulaciones. Para ello se han utilizado dos simulaciones que daran lugar a dos
posibles videos, y otra procedente de una simulacién realizada por la empresa
Force Technology y que sera renderizada en este capitulo.

Conclusiones. Finalmente, en este capitulo se explican las conclusiones y po-
sibles desarrollos futuros de la aplicacién.

CAPITULO 2

El proceso de renderizado

El agua es un elemento habitualmente critico alldA donde se utiliza, ya sea en
videojuegos o peliculas, pero su nivel de detalle mejora enormemente el realismo
de una escena. Ademaés, es un problema computacionalmente complejo, y por
tanto, es muy dificil de obtener en tiempo real [JLO4] [Kry05]. Por esa razon,
este proyecto se va a centrar en obtener una apariencia del agua realista dejando
el hacerlo en tiempo real para futuros desarrollos.

Este capitulo explica como ha sido organizado el trabajo en el proyecto. En
primer lugar, el simulador genera matrices de puntos exportadas como ficheros
binarios. Después, estos ficheros se han de transformar al formato Wavefront
OBJ. Este paso se realiza en Matlab. Finalmente, los ficheros OBJ se importan
en el entorno de renderizado, el cual, utilizado segin se detalla en el siguiente
capitulo, generara los ficheros de imagen.

El proceso completo que se cubre en este proyecto se puede ver en la figura

En este capitulo se va obviar el proceso de sombreado, ya que, debido a su
extension, serd explicado en un capitulo especifico.

6 El proceso de renderizado

Input . simulator —» Binary file__,. | Matlab | _ 5pjje . | Rendering |
parameters v conversor framework — - PNG file

Figura 2.1: Proceso cubierto por este proyecto

2.1. El simulador

Esta seccién pretende situar al lector en el contexto del proyecto, cuyo objetivo
es crear un entorno de renderizado para el simulador desarrollado por A. P.
Engsig-Karup, Morten G. Madsen y Stefan L. Glimberg en el departamento
DTU Compute de la Universidad Técnica de Dinamarca [EKBL09| [EKMG12].

El simulador utilizado ha sido desarrollado en FORTRAN vy se utiliza sobre
méquinas UNIX. Consta de dos versiones, una para CPU y otra para GPU. En
este proyecto la version utilizada ha sido la de CPU.

Este simulador es el mismo que utiliza la empresa Force Technology en sus ins-
talaciones, de manera que sus modelos seran compatibles y el entorno podria
ser utilizado en sus instalaciones. De esta manera, en el capitulo [se ha utili-
zado una de las simulaciones generadas por Force Technology utilizando dicho
simulador junto con uno de los modelos de barcos de los que disponen.

Al utilizar el simulador, hay una gran cantidad de pardmetros que se propor-
cionan en un fichero de entrada y que permiten generar una gran variedad de
resultados. Algunos de ellos tienen que ver con el tiempo de la simulacién y
también el tiempo entre dos fotogramas de una misma secuencia. En este caso,
la frecuencia deseada es de 25 fotogramas por segundo, que es la utilizada en la
mayoria de televisores actuales.

2.1.1. Convirtiendo de binario a OBJ

La salida del simulador dispone de dos diferentes formatos que se eligen en el
fichero mencionado anteriormente. Los dos formatos posibles son en ASCII o
en binario. Para este proyecto se ha elegido la salida en formato binario. Este
fichero contiene la informacién de todos los vértices de la matriz y también su
energia, que se utiliza dentro del simulador para poder continuar la secuencia,
pero en este proyecto de desechara.

2.1 El simulador 7

El siguiente paso es convertir estas matrices al mencionado fichero OBJ para ha-
cerlas compatibles con el entorno de renderizado. Este paso se realiza utilizando
Matlab.

La funcién de conversién carga todos los archivos que hay en el directorio actual
y que sigan el formato especificado, que en este caso es “EP _xxxxx.bin” ya que es
el nombre por defecto que devuelve el simulador. Entre otras cosas, el conversor
también anade las lineas que van a determinar el grupo al que pertenece el
objeto y también su material. El fichero de materiales se llama “flow.mtl” y el
material asignado debera estar contenido en este fichero. Este fichero contiene
los valores ambiental, difuso y especular del material, asi como el valor “illum”
que determinara el sombreador a utilizar en el entorno de renderizado. En este
caso, el material a utilizar sera “seawater” para las matrices que representan el
agua.

La funcién de Matlab desde el primer momento se encarga de convertir todos
los ficheros que se encuentren con el formato explicado anteriormente, ya que se
necesitaran mas adelante en el contexto del proyecto. El nombre de los ficheros
sigue el mismo nombre por defecto que anteriormente, de manera que los ficheros
“EP _xxxxx.bin” se transforman en “EP _xxxxx.bin.obj”.

Figura 2.2: En esta figura se puede ver la geometria de una de las mallas del
simulador visualizada en Maltab. La representaciéon esté realiza-
da en unidades genéricas de longitud. El color de la malla esta
determinado por su magnitud en el eje Z.

Ademas, se ha incluido una funcién que dibuja la malla en Matlab para com-
probar la correccién del mismo. Un ejemplo de esta visualizaciéon en Matlab se

8 El proceso de renderizado

puede ver en la figura [2.2]

2.2. El entorno de renderizado

Esta seccion detalla en qué consiste el entorno de renderizado facilitado por
el departamento DTU Compute. Este entorno tiene algunas funciones béasicas
implementadas, aunque su parte principal, que son los sombreadores, no estan
implementados. Todas las referencias al entorno de rendering que se encuen-
tren fuera de esta seccién han tenido que ser implementadas, mientras que las
funciones que ya estaban incluidas se detallan a continuacion.

2.2.1. La ecuacion de render

En primer lugar, es necesario definir en qué consiste el proceso de renderizado.
Renderizar el es proceso de generar una imagen mediante el célculo de de la
iluminacién de una escena en tres dimensiones. Para determinar la iluminacién
en cada punto de la escena se utiliza la ecuacion de render [Kaj86a]:

L(x, wo) = Le(x, wo) + [q fr(x, wi, wo) Li(x, wi) (wi - n) dw;

El resultado de la ecucacion es la radiancia L(z,w,), la cual viene determinada en
funcién de la posicién z y la direccion w,, y es el resultado de sumar la radiancia
emitida por la superficie L. (z,w,) y la radiancia indicente L(z,w;) en el punto
z procedente de todas las direcciones, donde w; es la direccién de incidencia. El
término (n e w;) representa la atenuacion segun el angulo de incidencia y el tér-
mino f,(x, w;, w,) representa el BRDF (Bidirectional Reflectance Distribution
Function) en el punto z que determina la forma en la que es reflejada la luz en
la superficie.

2.2.2. Raytracing

Este proyecto utiliza un entorno de renderizado basado en raytracing [App68].
Como crear un raytracer desde cero llevaria mas tiempo que el propio proyecto,
se ha proporcionado el utilizado en la asignatura Phisically Based Rendering
del departamento DTU Compute, el cual contiene algunas funciones bésicas ya
implementadas aunque no incluye ningin sombreador entre otras cosas.

2.2 El entorno de renderizado 9

La técnica de raytracing consiste en la emisién de rayos desde la cAmara a través
de cada uno de los pixels de la imagen. Cuando los rayos encuentran un objeto,
si éste tiene propiedades de reflexion o refraccion, se trazaran dichos rayos desde
este nuevo punto, y se continuara haciendo recursivamente con cada interseccién
con un nuevo objeto. Ademas, se trazara un rayo hacia la fuente de luz, el cual,
si no atraviesa ningin otro objeto, serd sombreado calculando la cantidad de
luz recibida y su angulo, ademas de con los valores de reflexion y refraccion,
mientras que si el rayo atraviesa algin objeto, el valor se calculard solamente
con los valores de reflexion y refraccion al estar en sombra.

En este proyecto, se ha establecido la cantidad maxima de divisiones de rayos
en 10. A partir de ese valor, se aplicara path tracing. Lo que hace esta técnica
es seguir los rebotes de uno posibles caminos en vez de hacerlo de todos, lo
que hace que pueda aparecer ruido en las imégenes, aunque el proceso serd més
rapido a partir de ese punto. Para ello, se calculara un valor aleatorio para elegir
o bien el rayo reflejado, o bien el refractado. El proceso se ha configurado para
que termine después de 20 rebotes.

Entre las utilidades que incluye el entorno de renderizado cabe mencionar la
de importar ficheros OBJ y guardar imagenes PNG de los resultados que seran
utilizadas en este proyecto. Ademas, el entorno utiliza internamente una estruc-
tura de arbol BSP (Binary Space Partition) [SS92] para almacenar la geometria
en memoria.

Dentro del entorno, el usuario puede mover la cAmara con el raton, guardar y
cargar la vista y la posicion de la cAmara e incrementar o decrementar el nimero
de rayos por pixel que seran utilizados. Ademés, aunque el proyecto permite
utilizar cualquier nimero de luces, solo se va a utilizar una luz direccional que
representaré el sol.

Ademas, el entorno también controla diferentes tipos de visualizacién, cuyos
sombreadores estén inicialmente vacios, como solo iluminacién directa, oclusién
ambiental, path tracing o photon mapping, aunque no todos se van a utilizar
en este proyecto. Ademas, aunque todas estas técnicas se pueden implementar
en el entorno, hay que saber antes de nada cuales serén utilizadas y desechar el
resto para no implementarlas innecesariamente.

2.2.3. Materiales

El entorno también incluye un fichero de materiales llamado “media.mpml”. Si
en el fichero “flow.mtl” descrito anteriormente se encuentra algin material coin-
cidente, se aplicaran las propiedades descritas en ambos ficheros. En contreto,

10 El proceso de renderizado

este fichero contiene un material “seawater” que incluye més propiedades sobre
el agua. En este fichero también se podria incluir nuevos tipos de agua ya que
los diferentes océanos tienen ligeras variaciones en su aspecto.

2.2.4. El sol y el cielo

Habitualmente, las escenas generadas por ordenador suelen ser en entornos ce-
rrados, sin embargo, este proyecto genera una escena al aire libre, de manera
que en lugar de usar un color de fondo para todo el cielo, se va a afiadir un
método para calcular los colores del cielo. Ademas, este color también afectara
al aspecto del agua al ser reflejado por ella.

Un modelo muy utilizado hoy en dia, y que ademads es computacionalmente
asequible, es modelo de Preetham, Peter Shirley y Brian Smits de la Universidad
de Utah [PSS99]. Este modelo simplifica enormemente los célculos para obtener
la luz atmosférica que alcanza cada punto de la escena y aporta un gran realismo
a la misma. El modelo utiliza las coordenadas reales de la Tierra, asi como la
fecha y la hora.

El modelo simplifica los céalculos necesarios debidos a la dispersion de la luz
en la atmosfera teniendo en cuenta que en la direcciéon que mira el observador
pueden llegar rayos que han sido reflejados en distintos puntos de la atmosfera.
Un ejemplo se puede ver en la figura Ademas el modelo simplifica algunos

parametros de la atmosfera que habitualmente son desconocidos o muy dificiles
de calcular.

Directional light

N
O
\)

Figura 2.3: Diagrama de la dispersién en el cielo.

Este modelo también incluia parte de su estructura en el entorno de renderizado
facilitado para realizar este proyecto, aunque se han tenido que realizar pequenos

2.3 Adaptacion del entorno al simulador 11

ajustes. Para este proyecto, la fecha elegida ha sido un dia de otofio a las 12.00 y
se ha localizado en Dinamarca. Estos valores pueden ser modificados en cualquier
momento en el entorno de renderizado.

2.3. Adaptacién del entorno al simulador

Aunque el entorno de renderizado permite importar objetos en formato OBJ,
es necesario realizar algunos ajustes para su correcta visualizacién. Por ello,
después de cargar el objeto correspondiente en memoria, se realizan los siguientes
cambios sobre el mismo.

El simulador, por defecto, no incluye el fondo marino, y dado que es impor-
tante para la visualizacién, se ha procedido a incluirlo dentro del entorno de
renderizado. De esta manera, se colocard un cuadrilatero inclinado por debajo
de la malla de agua. Esta opcién no es del todo precisa y por eso lo deseable
es obtener el fondo marino directamente del simulador. De hecho, las ultimas
versiones del simulador ya lo generan por defecto.

Con la actual configuracién, la luz podria llegar al fondo marino sin pasar por
la superficie. Este fenomeno se puede apreciar en detalle en la figura

Para arreglar esta cuestion, se ha creado una caja que rodee tanto el agua como

el fondo marino, creando algo similar a una piscina. Esta caja debe abarcar
desde el punto més alto de la ola hasta el punto méas bajo del fondo marino.

Directional light

Anomaly

Figura 2.4: Este diagrama muestra por qué es necesario cubrir los laterales del
agua. Si no existiesen el agua alcanzaria el fondo marino sin pasar
por la superficie. Al anadir estos cuadrilateros sigue habiendo una
anomalia, ya que la escena serd méas oscura en los bordes, pero el
resultado serd mucho mas preciso que anteriormente.

Usando este método, todavia hay un efecto indeseado, ya que al acercarse a las

12 El proceso de renderizado

esquinas, el aspecto del agua serd mas oscuro al llegar menos rayos al fondo
marino dependiendo del punto y del angulo del sol. Ademaés, el lado que mira
directamente al sol acumulara una cierta cantidad de fotones que no le corres-
ponderia (Esto serd detallado més adelante en el apartado de photon mapping).
Este efecto puede ser mejorado creando mallas méas grandes o creando playas
suaves en la interseccion entre el fondo marino y la superficie del agua.

Finalmente, se ha anadido un plano que representa el suelo. Este suelo se ha
colocado mas abajo de lo que le corresponderia de manera que el agua esta-
ria flotando. Esto se ha hecho para que la visualizacion del horizonte sea mas
coherente a como es en realidad, aunque esto crea una sombra en el suelo. Es-
te fenémeno también se puede evitar creando mallas mas grandes como se ha
explicado anteriormente.

2.4. Producciéon de video

La produccién de video se gestiona utilizando la linea de comandos al ejecutar la
aplicacién. En estos argumentos se define cual es la primera y la dltima iteraciéon
a renderizar, y también el periodo de tiempo entre cada una de ellas.

Si el niumero de la primera iteracién es menor que el ultimo, se procederé a
un renderizado en cadena, tomando progresivamente las diferentes simulacio-
nes hasta que termine la tltima. El nombre de las imagenes resultantes sera
“EP _xxxxx.bin.obj.png” siguendo el mismo formato que en todos los pasos an-
teriores.

Para poder crear una escena de video, hay que ejecutar el programa, colocar
la cAmara en el lugar deseado, y posteriormente, pulsar “4” y “R” para comen-
zar el renderizado. Durante el proceso, se almacenarin en disco los fotogramas
renderizados, sin embargo, la visualizacién de la escena en la aplicacién no se
actualizard hasta que se haya terminado el dltimo fotograma.

Finalmente, para poder montar las iméigenes y generar secuencias de video,
es necesario utilizar una aplicaciéon externa como podria ser Windows Movie
Maker.

2.5 Diagrama de clases 13

2.5. Diagrama de clases

Esta seccion muestra un diagrama de clases simplificado del entorno de renderi-
zado. En dicho diagrama se han coloreado de verde todas las clases modificadas
en este proyecto, aunque la que ha sufrido la mayoria de los cambios ha sido
la clase RenderEngine. El diagrama de clases se puede ver en la figura En
este diagrama se han simplificado los sombreadores dejandolos como una tnica
clase, aunque este diagrama se desglosara en el capitulo [3]que trata sobre todos
los sombreadores implementados.

RenderEngine

+ load_files()
+ load_rectangles()
+ init_tracer()

<<uses>> <<uses=>

+ raytrace ()
<<uses=> Scene
Tracer
+ load_mesh() B
+ add_rect()
<eusesr T casess +add_mesh()
+ add_plane() Camera
PhotonCaustics RayCaster + set_shader()
+ shade() SHADERS +set()
I + get_ray()
Raytracer _ <cusess tet
Obj_Load
+trace_reflected()
R +trace_refracted() + load()

+get_ior_out() + read_mtl_library()°

<<usess>
<euses>>

PathTracer
e BspTree
<ausess>
ParticleTracer
+ build_maps() Fresnel 0Obj3D
Light + compute_pixel()
samples + trace_particle() + fresnel_R() + intersect()
shadows - fresnel_r_p() + transform()
ri— - fresnel_r_s()
PhotonMap
+ sample()
+ emit() TriMesh Plane
+ intersect()
+ intersect() + intersect()
+ transform() + transform()
Directional SunSKy
Rectangles
+ sample() + init()
+ emit() - calculateSunColor()

Figura 2.5: Diagrama de clases del entorno de renderizado.

14

El proceso de renderizado

CAPITULO 3

Sombreado

Este capitulo explica todas las propiedades que afectan al aspecto del agua, por
ello, es importante saber qué técnicas permiten representar dichas propiedades.
A su vez, también se explican las dificultades encontradas.

El término que se usa en el ambito internacional es shading, que en este do-
cumento se ha traducido como proceso de sombreado, aunque no se refiere a
las sombras generadas por los objetos como tal, sino al proceso de calcular la
iluminacién que incide sobre cada punto de la geometria.

A continuacién se explican los diferentes sombreadores utilizados, siendo algunos
de ellos implementados unos sobre otros hasta completar todas las propiedades
que afectaran al aspecto del agua. Todas las técnicas descritas en este capitulo
se han implementado sobre el entorno de rendering explicado en el capitulo
anterior[Lew93| [Kaj86b].

En cuanto a los materiales, sus propiedades estéan definidas en el fichero “flow.mtl”.
En este fichero se han definido los materiales que van a ser utilizados en todo el
proyecto, pero es posible definir tantos nuevos materiales como se desee.

16 Sombreado

3.1. Lambertian

Este sombreador es el més sencillo que se va a utilizar en este proyecto, pero es
necesario para, entre otras cosas, el fondo marino.

El sombreador se utiliza para materiales que tienen una superficie puramente
difusa. En este caso, la cantidad de luz reflejada por la geometria depende tinica-
mente del 4ngulo entre la luz y la normal del objeto en el punto donde incide la
luz. El BRDF (Bidirectional reflectance distribution function) se puede apreciar
en la figura

Incident ray

Figura 3.1: Lambertian BRDF

La formula que determina el color para este tipo de superficies es la siguiente:

Lo=(wen)xCxVxIp

Para calcular la cantidad de luz en ese punto L,, se calcula el producto escalar
entre la direcciéon w del rayo y la normal n de la geometria en ese punto, a lo
que hay que anadir el color C' y la intensidad de la luz I;. El pardmetro V se
utiliza para determinar si el punto se encuentra al alcance la luz o no, por lo
que serd 1 si estad en ese caso, y 0 si estd en una regién de sombra.

A modo de ejemplo, la escena se ha renderizado utilizando este material para el
agua. El resultado se puede ver en la figura

3.2 Sombreador transparente 17

Figura 3.2: Agua renderizada utilizando el sombreador Lambertian

3.2. Sombreador transparente

Este sombreador esté construido independientemente del anterior, y se ha crea-
do para poder visualizar materiales transparentes, y sirve como primera apro-
ximacién para poder renderizar el agua, ya que los siguientes sombreadores se
implementaran sobre este.

Para ello, se han tenido que implementar las ecuaciones de Fresnel. Estas ecua-
ciones sirven para determinar la reflectividad del medio en cada uno de sus
puntos, dependiendo de los indices de refraccion y el dngulo de entrada. La re-
flectividad R determinara la cantidad de luz reflejada mientras que la restante
(1-R) sera refractada [Ska06]. Las ecuaciones de Fresnel se pueden ver en la
figura [3.3] donde ya han sido simplificadas utilizando la ley de Snell, la cual
relaciona los diferentes indices de refraccion con los angulos de entrada y de
refraccion en el medio.

Posteriormente, este sombreador traza dos rayos, el reflejado y el refractado, tal
y como se ha mencionado en la introduccion de este capitulo, siendo combinados
en funcién de la reflectividad obtenida [JB02]. El diagrama de los rayos reflejado

18 Sombreado

2
nycost; —nay[1 — (;—‘; sin Bi)

nycost+ ngyf1 — (m sin ei)2

n

2 2
nl\/l - (:—%sinﬁi) — ngcost;

R, = = .

ni\fl - (%si.nﬁ-.) + ngcosb;

Figura 3.3: Ecuaciones de Fresnel para calcular la cantidad de luz reflejada y
refractada.

[}

L~

y refractado se puede ver en la figura

Incident ray Reflected ray

Figura 3.4: Este diagrama muestra los rayos reflejado y refractado, que son
usados en éste y otros sombreadores.

3.3. Photon mapping

En este proyecto, uno de los aspectos que se ha tenido en cuenta desde el primer
momento ha sido el fondo marino, que afectara significativamente al aspecto del
agua, y una de las formas en las que afectard al aspecto del agua es debido a
las causticas que se puedan formar en el fondo.

Sin embargo, raytracing es un algoritmo que no encuentra una solucién 6ptima
, ray
para algunas caracteristicas muy concretas, como son las causticas. Ello es de-

3.3 Photon mapping 19

bido a que al trazar los rayos desde la camara, y despues de sucesivos rebotes,
el rayo termina en la luz de la escena. De esta manera, hay muchos caminos que
la luz en una escena real esta recorriendo, pero que no son apreciables al usar
este método. Concretamente, las cidusticas aparecen al converger la luz después
de atravesar superficies refractivas, y se necesita de una técnica més potente
para poder visualizarlas. En la figura [3.5] se puede ver como se producen las
causticas.

Refractive
object

Caustic

Figura 3.5: Esta figura muestra la formacion de causticas a través de un objeto
transparente.

Por ello, se ha utilizado la técnica de Photon mapping para, en caso de que
existan, poder obtener las causticas que se puedan formar [N.JC00]. Este método
consiste en emitir fotones (particulas indivisibles de energia) desde la fuente de
luz, y seguir su camino por la geometria hasta que encuentren una superficie
donde se puedan almacenar.

Photon mapping es un algoritmo que consta de dos pasadas. En la primera, se
emite una serie de fotones desde la fuente de luz y se calculan sus rebotes hasta
que alcanzan una superficie difusa donde se puedan almacenar. En el caso de
tener varias opciones como reflexion o refraccion, se elige aleatoriamente una de
ellas. Una vez terminado el proceso, se obtiene un mapa de fotones. Finalmente,
se realiza una estimacién de la energia almacenada para determinar la cantidad
de luz sobre la superficie difusa en funcién de la cantidad de fotones en un area
determinada. En la figura [3.6]se puede ver la ecuacion para estimar la radiancia,
que es una aproximacioén a la ecuacién de render.

Este método, en lugar de dividir un fotén en varios caminos, elige aleatoriamente

20 Sombreado

B B L AdL(x.T)
Lx.&) = L(x.@)+ > f,(x.w;,.w)%

PEAA

Figura 3.6: Esta figura muestra la ecuacién para la estimacién de la radiancia,
que es una aproximacion a la ecuacién de render.

uno de ellos, de manera que el método es mas preciso segiin se aumenta la
cantidad de fotones emitidos, lo que, por otra parte, lo hace més lento. De esta
manera, al incrementar el valor, serd méas probable que los diferentes caminos
sean tomados por los diferentes fotones haciéndolo asi méas preciso.

La formacién de las causticas dependera de la forma de las olas y también de
la distancia desde la superficie hasta el fondo, ya que solo se formaran donde
converjan una gran cantidad de fotones.

Como se ha explicado anteriormente, el entorno de renderizado incluye una
opcién para visualizar el resultado de photon mapping, aunque el sombreador
ha tenido que ser implementado (si no se hace, el visualizador simplemente no
muestra nada). El motivo de la eleccién de Photon mapping para visualizar las
causticas se debe a que este algoritmo esta construido sobre raytracing, que es
la técnica principal de este proyecto.

Este método estara activado siempre que al renderizar se utilice el visor niimero
“4” en el entorno de desarrollo. El numero de fotones se puede ajustar en la
aplicacion, asi como el nimero de fotones usados en la estimacion. En este
proyecto, estos valores son 7.500.000 fotones y 200 para la estimacién.

En la figura se pueden ver tanto el mapa de fotones como el resultado de
aplicar photon mapping al agua transperente.

3.4. Absorcion

El siguiente efecto que se va a utilizar tiene que ver con la profundidad del agua.
De esta manera, el agua serd mas oscura cuanto mas profunda sea, llegandose
a un punto en el que el fondo marino no llegue a ser visible.

En este sombreador, se planteo la posibilidad de utilizar scattering [GSMAOS]|
[DGJ08|. Esta técnica lo que haria seria reflejar o refractar el rayo en diferentes
puntos dentro de un volumen. A esta accién se le denomina evento de scattering,

3.4 Absorcién 21

Figura 3.7: Izquierda: Visualizacion de los mapas de fotones. Derecha: Resul-
tado del renderizado utilizando un sombreador transparente com-
binado con photon mapping. Las causticas se pueden ver perfec-
tamente en el fondo marino.

y se producirian cuando se encuentre una particula dentro del volimen. Sin
embargo, aunque en este proyecto se trabaje con fluidos, estos no pertenecen
a un volumen, si no que se realiza utilizando diferentes superficies las cuales
forman una geometria cerrada, de manera que se opté por descartar esta técnica.
Ademés, utilizar scattering hubiera supuesto un tiempo de renderizado mucho
mayor debido a los miiltiples eventos que ocurririan dentro del volimen.

En su lugar, se va a aplicar absorcién. El término de absorcién es la probabilidad
de que la luz sea absorbida por el medio que esta atravesando. En este caso, lo
que se hace es trazar un rayo en la direccion de refracciéon y se mide la distancia
desde la superficie hasta el fondo, siguiendo la direccion de dicho rayo. De esta
manera, se puede aplicar el coeficiente de absorciéon en funcién de la longitud
del rayo [ECO05]. Este sombreador forma parte de una nueva clase, sin embargo,
se utiliza sobre el de materiales transparentes al cudl se le anade el término de
absorcion. La figura [3.8 muestra la escena usando absorcion de manera aislada
(sin photon mapping).

Es a partir de este punto donde adquiere sentido la “piscina” que se ha creado
envolviendo a los objetos, ya que la tinica manera de que entre luz en el fondo
es atravesando la superficie. Ademas, este sombreador se ha construido sobre el
transparente, ya que el termino de absorcién se aplica sobre dicho sombreador.
De esta manera, la cantidad de luz que llega al fondo es muy pequena, y a partir

22 Sombreado

Figura 3.8: Esta figura muestra como el color del agua es afectado por la ab-
sorcion. En la parte izquierda de la imagen se puede ver como la
profundidad es menos y el color resultante es mas claro. En la par-
te derecha, sin embargo, el color es mas oscuro debido a que el
agua es mas profunda.

de este punto casi toda la luz que alcance el fondo seré a través de fotones, cuyas
causticas serén visibles desde el exterior si la absorcién lo permite.

3.5. Modelo de reflexién de Phong

Por ultimo, para contribuir un poco mas al aspecto del agua, se ha implemen-
tado el modelo de reflexién Phong, que no ha de ser confundido el modelo de
sombreado de Phong. Este modelo contribuye a la reflexiéon del agua, que refle-
jara la luz del sol cuando el ojo, la superficie del agua, y el sol, estén en el mismo
plano [Pho75]. La ecuacion para aplicar la reflexion de Phong se encuentra en
la figura

Esta ecuacion solo aplica la componente especular de la luz, debido a que la
iluminacién directa ya se ha calculado anteriormente. De esta manera se consigue

3.5 Modelo de reflexion de Phong 23

L, = kscos’a L;cos@

Figura 3.9: Esta figura muestra la ecuacion de la reflexion de Phong.

que se refleje el sol en la superficie del agua en caso de que la cAmara esté en
el lugar apropiado. De esta manera, la luz reflejada L, serd la componente
especular kg del objeto, multiplicado por el factor cos(«)®, donde s es el brillo
y « es el coseno del angulo entre el vector que une el punto de la geometria
con la cadmara y el vector normalizado del rayo reflejado, la luz emitida L; y el
coseno del angulo 6, que es el angulo formado por el vector que une el punto de
la geometria con la caAmara y la normal del la geometria.

La figura [3.10] muestra la escena utilizando la reflexion de Phong junto con el
resto de propiedades descritas hasta el momento.

Figura 3.10: Esta figura muestra como el sol es reflejado en la superficie del
agua usando la reflexion de Phong.

24 Sombreado

3.6. Comentarios finales

Como se ha explicado anteriormente, en la versiéon final de la aplicacion el usua-
rio puede elegir entre los diferente sombreadores, y esto se hace en el fichero
“flow.mtl”. Dentro de este fichero es donde elige el sombreador definiendo el
valor “illum” apropiado. En este caso, para el agua se ha utilizado el valor 15.
Este sombreador combina absorcion, photon mapping y reflexion de Phong. Este
sombreador ha sido utilizado, por ejemplo, en la figura [3.11

Otro sombreador utilizado es el transparente, aunque este sélo se ha utilizado
en los ejemplos. En este caso el valor “illum” tiene que ser 4 y también utiliza
photon mapping. Este sombreador ha sido utilizado en la imagen de la derecha

de la figura

Por ultimo, el sombreador difuso ha sido utilizado como ejemplo para el agua en
la figura aunque ha sido utilizado para el fondo marino en todas las demas
imégenes.

Ademés, el modelo del cielo y el sol se ha utilizado en todas las imagenes y no
esta vinculado a los sombreadores.

Figura 3.11: Esta figura muestra las causticas y absorcion en el agua

3.6 Comentarios finales 25

El diagrama de clases con la estructura de todos los sombreadores se pueden ver
en la figura [3.12] Como se ha explicado anteriormente, el entorno incluia una es-
tructura bésica de algunos sombreadores, aunque ninguno estaba implementado.
En el diagrama se han senalado en color verde los sombreadores implementados,
en los cuales se ha incluido el método shade que se hereda desde el sombreador
més bésico Shader.h.

Shader
+ shade()
L I
Mirror Emmision
max_depth
+ shade() + shade()
T - get_emission()
Reflectance
+ shade()

- get_diffuse()

|

Volume Textured
scene_scale texs
+ shade() + shade()

Figura 3.12: Diagrama de clases de los sombreadores

26

Sombreado

CAPITULO 4

Resultados

Una vez que se ha terminado la implementacién, se han llevado a cabo varias
simulaciones cuyo objetivo es estudiar el tiempo consumido y generar secuencias
de video. Dos de los ejemplos se han configurado para generar dos secuencias
de video, mientras que otra se ha realizado con el objetivo de obtener una sola
imagen aunque con mucho maés nivel de detalle.

Para llevar a cabo las simulaciones, se ha determinado la frecuencia en 25 imé-
genes por segundo que es la que se usa actualmente en las televisiones europeas.
De esta manera, hay que configurar el simulador para obtener un fotograma
cada 0.04 segundos. En el caso de las simulaciones para una sola imagen, se ha
utilizado mas de un rayo por pixel, que es una opcién que, como se ha explicado
anteriormente, viene implementada en el entorno de renderizado.

4.1. Ola lineal

Esta simulacién da como resultado una ola en dos dimensiones, de manera que
para transformar a 3 dimensiones, simplemente se ha extendido en la dimen-
sion restante. Al ser una ola en solamente dos dimensiones, se espera que sea
computacionalmente sencilla. Esta simulacién va a generar una secuencia de 600
fotogramas y creard un video de 24 segundos. La figura muestra el tiempo

28 Resultados

requerido por cada uno de los procesos y también el tiempo medio por fotogra-
ma. En este caso, el tamano de la malla que forma el agua es de 259 x 2 vértices
en cada direccién.

LINEAR 600 frames Average
Simulation 3 minutes 0,3 seconds
Conversion 42 seconds | 0,07 seconds
Rendering 83,3 hours 8,3 minutes

Figura 4.1: Esta tabla muestra los tiempos para el ejemplo de una ola lineal

En este caso, la simulacion ha durado 0,3 segundos por cada fotograma, de
manera de que el tiempo total ha sido de 3 minutos.

El tiempo de conversién también ha sido significativo, aunque este proceso ha
sido mucho méas rapido. En este caso el tiempo ha sido de 0,07 segundos por
cada fotograma, mientras que el tiempo total ha sido de 42 segundos.

La geometria se puede ver en la figura [£.2]tanto como se ve en Matlab como des-
pués de renderizada. Las salidas de esta simulacién también han sido utilizadas
en otras partes de la memoria.

Figura 4.2: La imagen de la izquierda representa la geometria de la malla vi-
sualizada en Matlab, cuyo color es determinado por la coordenada
Z. La imagen de la derecha es la visualizacion de la misma malla,
ésta vez visualizada después de renderizar.

4.2 Ola no lineal 29

Finalmente, el tiempo de renderizado ha sido de unos 8 minutos de media, de
manera que el tiempo para los 600 fotogramas ha sido de unas 83 horas. En
el apéndice [A] se pueden ver algunos de los fotogramas pertenecientes a esta
secuencia.

4.2. Ola no lineal

Esta simulacién genera una ola en 3 dimensiones y consta nuevamente de 600
fotogramas que representarédn 24 segundos de video. En este caso, al ser una
simulaciéon en 3 dimensiones, se espera que la simulacién sea mas lenta que en
el caso anterior. La figura [4.3] muestra los tiempos obtenidos en los tres pasos
que requiere el proceso. En este caso, el tamafio de la malla que forma el agua
es de 259 x 19 vértices en cada direccién.

NON LINEAR | 600 frames Average
Simulation 110 minutes | 11 seconds
Conversion 5,5 minutes | 0,55 seconds
Rendering 35,6 hours 3,5 minutes

Figura 4.3: Esta tabla muestra los tiempos obtenidos para el ejemplo de la ola
no lineal.

En este caso, la conversiéon también ha sido mas lenta que anteriormente debido
al mayor ntmero de vértices que procesar, aunque este paso ha sido nuevamente
el més sencillo de los tres.

Finalmente, el renderizado de la secuencia ha tardado una media de 3,5 minutos
por fotograma siendo el tiempo total de 35 horas. En este caso, el tiempo de una
sola imagen ha tomado entre 180 segundos para el caso mejor y 380 segundos
para el caso peor.

Aunque esta ola es una ola en 3D, en la visualizaciéon después de renderizar es
muy dificil de apreciar ya que avanza en una sola direccion, sin embargo, como
se puede ver en la figura [£.4] en la visualizacion en Matlab se pueden observar
sus diferencias. En el apéndice [A] se pueden ver algunos de los fotogramas
pertenecientes a esta secuencia.

30 Resultados

Figura 4.4: La imagen de la izquierda representa la geometria de la malla vi-
sualizada en Matlab, cuyo color es determinado por la coordenada
Z. La imagen de la derecha es la visualizacion de la misma malla,
ésta vez visualizada después de renderizar.

4.3. Simulaciéon de la empresa Force Technology

La siguiente simulacion es cortesia de la empresa Force Technology, que se ha
encargado de su simulacién, de manera que se procedera solo a su transformacién
y renderizado. La simulacién consiste en la estela dejada por un barco en la
superficie del agua. El barco no tiene casco pero no es necesario para visualizar
el aspecto del agua.

Las mallas utilizadas en esta seccién han sido creadas utilizando el mismo si-
mulador, aunque para poder obtener la informacién de esta simulacion ha sido
necesario realizar cambios menores en la funciéon de Matlab. La simulacion pro-
porcionada se muestra en la figura tal cual se visualiza en Matlab.

Como esta simulacién representa solamente un fotograma, se ha configurado
a 9 rayos por pixel para evitar el aliasing y obtener una imagen mucho més
nitida. Los tiempos obtenidos para esta simulacién se muestran en la figura [4.6]
mientras que el resultado del renderizado se puede ver en la figura [£.7]

4.4 Comentarios 31

Figura 4.5: En esta figura se puede ver la geometria de una de las mallas del
simulador visualizada en Maltab. La representaciéon esta realiza-
da en unidades genéricas de longitud. El color de la malla esta
determinado por su magnitud en el eje Z.

FORCE 1 frame — 9 rays per pixel| Average (ray)
Simulation - -
Conversion 16 seconds -
Rendering 53 minutes 5,8 minutes

Figura 4.6: Esta tabla muestra los tiempos obtenidos para renderizar la simu-
lacién proporcionada por Force Technology.

4.4. Comentarios

A lo largo de las simulaciones, ha sido necesario ajustar ciertos pardmetros
internos del entorno de renderizado para obtener resultados méas precisos. Estos
ajustes se han realizado para todas las simulaciones ejecutadas.

Una modificacién ha consistido en escalar el sistema en el eje Z, debido a que en
la mayoria de los casos, las olas no hubieran sido perceptibles. Ademaés, también
se ha modificado un parametro que afecta al tamano de la escena, el cual escala
las distancias sin escalar la geometria, lo cual afecta a la absorcion y a los fotones
emitidos.

32 Resultados

Figura 4.7: Renderizado de la simulacion proporcionada por Force Technology

Como conclusion de este capitulo, cabe decir que las simulaciones han sido tan
precisas y realistas como se esperaba, aunque no tan ripidas.

CAPITULO 5

Conclusiones

Este proyecto ha desarrollado un completo entorno de renderizado para utilizar
combinado junto con el simulador Ocean Wave [EKBL09] y que permite crear
imagenes y videos del océano de una forma realista y precisa.

Este entorno de renderizado utiliza diferentes técnicas que, combinadas, per-
miten al usuario generar agua realisticamente, y ademas, anade sombreadores
complementarios para renderizar de forma sencilla cualquier otro objeto que
acompane a la escena.

Ademas, como se ha visto en el capitulo de resultados, se puede importar cual-
quier tipo de escena siempre que sea compatible con el formato Wavefront OBJ.
Ademas, con las funciones creadas en Matlab, se puede transformar facilmente
cualquier escena creada en el simulador a este formato, incluyendo la escena
facilitada por Force Technology, cuyo formato era parecido aunque no igual que
el simulador utilizado en este proyecto debido a sus diferentes versiones. Sin
embargo, aunque el resultado ha sido muy preciso, éste no ha sido tan rapido
como se hubiese deseado.

34 Conclusiones

5.1. Limitaciones y mejoras futuras

Esta seccién explica algunas limitaciones de este proyecto y diferentes formas
de resolverlas.

Una gran limitacion es el hecho de que la cdmara no se puede mover a lo largo
de un video. La cAmara se puede mover antes de empezar el proceso de rende-
rizado para colocarla en el lugar deseado, sin embargo, en cuanto se empieza a
renderizar el primer fotograma, la cAmara ha de permanecer quieta hasta que
termine el dltimo.

La principal funcion del simulador es generar superficies de mar abierto, de
manera que no se pueden incluir objetos que puedan afectar al aspecto del
agua. Debido a que los objetos que rodean el agua tienen un gran impacto en
su aspecto, seria una buena opcién incluir este tipo de objetos en el futuro. Sin
embargo, en el caso de que se introdujeran objetos de esta manera, se perderia
coherencia con el simulador, ya que el simulador no habria tenido en cuenta
su interaccién con el agua. De esta manera, la tinica forma de tener objetos
que mantengan la coherencia con el agua, seria incluirlos directamente en el
simulador.

Como se ha comentado en secciones anteriores, algunas sombras son causadas
debido a los limites laterales que se han creado alrededor de la superficie del
agua. Aunque esta solucién es mejor que no tener nada, no es del todo preciso,
de manera que una solucién puede ser crear suaves playas en los limites de la
superficie.

Ademas, en esta aplicacion, cada ejecucion de renderizado es diferente y no
se puede automatizar para lanzar diferentes ejecuciones. Esto quiere decir, que
para cada ejecuciéon hay que reconfigurar la posicién de la camara y ajustar
parametros interiormente para obtener un resultado preciso. Sin embargo , con
las herramientas que tiene actualmente el entorno, si que seria posible crear una
secuencia de ejecuciones internamente, aunque previamente habria que guardar
las posiciones de la caAmara y dichos parametros, para que al ejecutar, se puedan
encadenar los diferentes procesos de renderizado.

Otra solucién que irfa mucho mas alla seria utilizar un fichero de entrada de la
misma manera que hace el simulador, en el cual se puedan determinar todos los
valores requeridos para cada proceso.

Por dltimo, como se ha mencionado anteriormente, el renderizado ha sido mas
lento de los esperado. En el caso del simulador, existe una version para GPU
que es més rapida que la utilizada en este proyecto. Siguiendo la misma idea,

5.2 Conclusiones personales 35

algunos sombreadores se pueden mover de la CPU a la GPU como es el caso de
reflexion y refraccion.

5.2. Conclusiones personales

Gracias a este proyecto, he aprendido a como gestionar grandes proyectos tal y
como se hace en realidad, y a organizarlos y gestionarlos segin lo planificado.

Este proyecto también ha supuesto un reto para mi porque desde el primer
momento tuve que trabajar con un entorno de desarrollo muy grande, y antes de
empezar a implementar todo lo necesario para este proyecto, tuve que aprender
como estaba gestionado en su conjunto. Y gracias a ello, también he mejorado
mi conocimiento en gréficos por ordenador y técnicas de renderizado.

Finalmente, el haber desarrollado este proyecto durante mi estancia en Dina-
marca me ha permitido aprender como funcionan los departamentos fuera de la
Universidad de Zaragoza.

5.3. Desarrollo del proyecto

Este proyecto ha tenido una duracién de 7 meses. Los primeros 5 meses han
concentrado el mayor esfuerzo, y durante este periodo, ha habido reuniones se-
manales en el grupo de graficos del departamento DTU Compute para evaluar
los progresos de los estudiantes que estabamos realizando algin proyecto. Ade-
mas, en los momentos mas importantes, también han tenido lugar reuniones
privadas para mejorar ciertos aspectos del proyecto.

Por otra parte, al principio del proyecto hubo una reunién con la empresa Force
Technology con sede en Kongens Lyngby, Dinamarca. Los temas tratados fueron
la idoneidad de este proyecto para poder utilizar el desarrollo en sus instalacio-
nes. Ademads se comprometieron a facilitar alguno de sus modelos para utilizar
en este proyecto, el cual se puede ver en el capitulo []

A continuacion se puede ver el diagrama de Gannt que describe la evolucion de
este proyecto.

Conclusiones

36

Name

January | February

March

April

T.,___m<

June

Lc;.

August

_mm_uﬁm_ﬂcmq

Milestone List

Study literature

Study and test the simulator

‘Generate mesh chains with the simulator
Last day using the simulator
Implementation of the studied methods
Test of the tool

Tool is finished

‘Generate new simulations for the Thesis
Write Thesis

Check Thesis

Deadline

¢

Diagrama de Gannt del proyecto

Figura 5.1

Bibliografia

[App68]

[DGJOS]

[ECO5]

[EKBLO09]

[EKMG12]

[GSMAOg]

[IB02|

Arthur Appel. Some techniques for shading machine renderings of
solids. In Proceedings of the April 30-May 2, 1968, spring joint
computer conference, AFIPS ’68 (Spring), pages 37-45, New York,
NY, USA, 1968. ACM.

Srinivasa Narasimhan Diego Gutierrez, Henrik Wann Jensen and
Wojciech Jarosz. Scattering. 2008.

Xavier Pueyo Francisco J. Seron Francois X. Sillion Eva Cerezo, Fre-
deric Pérez. A survey on participating media rendering techniques.
2005.

A. P. Engsig-Karup, H. B. Bingham, and O. Lindberg. An efficient
flexible-order model for 3d nonlinear water waves. J. Comput. Phys.,
228(6):2100-2118, April 2009.

A. P. Engsig-Karup, Morten G. Madsen, and Stefan L. Glimberg. A
massively parallel gpu-accelerated model for analysis of fully nonli-
near free surface waves. International Journal for Numerical Met-
hods in Fluids, 70(1):20-36, 2012.

Diego Gutierrez, Francisco Seron, Adolfo Mufioz, and Oscar Anson.
Visualizing underwater ocean optics. Computer Graphics Forum
(Proc. of EUROGRAPHICS), 27(2):547-556, 2008.

Henrik Wann Jensen and Juan Buhler. A rapid hierarchical ren-
dering technique for translucent materials. ACM Trans. Graph.,
21(3):576-581, July 2002.

38

BIBLIOGRAFIA

[JL04]

[Kaj86a]

[Kaj86b]

[Kry05]

[Lew93]

[NJCO0]

[PhoT5]

[PSS99]

[Ska06]

SS92

Claes Johanson and Calle Lejdfors. Real-time water rendering. Lund
University, 2004.

James T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143-150, August 1986.

James T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143-150, August 1986.

Yuri Kryachko. Using vertex texture displacement for realistic water
rendering, volume 2. 2005.

Robert R. Lewis. Making shaders more physically plausible. Tech-
nical report, Vancouver, BC, Canada, Canada, 1993.

Henrik Wann Jensen Niels Jgrgen Christensen. A practical guide to
global illumination using photon maps. 2000.

Bui Tuong Phong. Illumination for computer generated pictures.
Commun. ACM, 18(6):311-317, June 1975.

A. J. Preetham, Peter Shirley, and Brian Smits. A practical analytic
model for daylight. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, SIGGRAPH 99,
pages 91-100, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

Johannes Skaar. Fresnel equations and the refractive index of active
media. Phys. Rev. E, 73:026605, Feb 2006.

Kelvin Sung and Peter Shirley. Graphics gems iii. chapter Ray tra-
cing with the BSP tree, pages 271-274. Academic Press Professional,
Inc., San Diego, CA, USA, 1992.

APENDICE A

Resultados adicionales

Esta seccion contiene algunos fotogramas de los resultados obtenidos en el ca-
pitulo La primera secuencia pertenece al ejemplo de la ola lineal, mientras
que la segunda pertence al ejemplo de Whalin.

40 Resultados adicionales

Figura A.1: Esta figura incluye algunos fotogramas pertenecientes a la secuen-
cia de la ola lineal descrita en el capitulo E|

4

fury

Figura A.2: Esta figura incluye algunos fotogramas pertenecientes a la secuen-
cia de la ola de Shalin descrita en el capitulo F_Il

42

Resultados adicionales

APENDICE B

Version de la memoria en
inglés

En este anexo se incluye la versién en inglés de la memoria, que ha sido entregada
en la Universidad Técnica de Dinamarca.

Rendering Ocean Wave
Simulations

Javier Delgado Aylagas

DTU

Kongens Lyngby 2013
IMM-B.Sc-2013

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk IMM-B.S5c-2013

Summary

The goal of this thesis is to build a rendering framework for the Ocean Wave
simulator developed at DTU Compute [EKBLO09]. In addition, the goal of this
thesis also covers the rendering of the water meshes generated by the mentioned
simulator using real water properties having realistic water as a result.

This project contais two separated parts. The first one covers the conversion of
the files generated from the simulator to Wavefront OB files which can be used
using different modelling tools.

The second part deals with the rendering part, which cover different rendering
techniques that have been added together in order to obtain a realistic result.
The technique is based in raytracing, altough more techniques have been used
to obtain a more realistic and accurate result.

Preface

This thesis was prepared at the DTU Compute department at the Technical
University of Denmark in fulfilment of the requirements for acquiring an B.Sc.
at the University of Zaragoza in the context of an Erasmus exchange.

The thesis implements a framework to the Ocean Wave simulator developed by
Allan P. Engsig-Karup [EKBL09] at DTU Compute Department. This simulator
has two versions, one for CPU and one for GPU. This project has been developed
using the first one, which has been developed in Fortran.

The Ocean Wave simulator is a tool that allows the generation of water meshes
using a high variety of properties. The output of this simulator is a binary file
containing all the information to generate a 3D mesh.

The thesis consists of different methods which generate Wavefront OBJ files
and a visualization and rendering framework in which different shaders will be
implemented using real water properties. In this project, different shaders and
rendering techniques are going to be combined in order to obtain realistic water.

The application under this thesis has been set up to import correctly every
possible mesh generated by the simulator and it can be improved using newer
or more complex techniques allowing future developments.

Lyngby, 05-Septiembre-2013-2013

Javier Delgado Aylagas

Acknowledgements

I would like to thank my supervisor Jeppe Revall Frisvad for his support during
all the development of this thesis, but also for providing the rendering frame-
work, which has considerably simplified the technical implementation of the
prototype.

T would also like to thank Allan P. Engsig-Karup for providing the ocean wave
simulator, which is one of the most important parts of this project. And I
would like to thank Stefan Lemvig Glimberg and also Allan P. Engsig-Karup
their support with the simulator execution.

I would also like to thank DTU-Compute for hosting this project and specically
J. Andreas Baerentzen for providing, together with Jeppe Revall Frisvad, weekly
feedback throughout the entire working process.

I thank you also the company Force Technology their interest in this project
and also their involvement in it providing some of their simulations.

Finally, I would like to thank both the Technical University of Denmark and
the University of Zaragoza for allowing me to stay in Denmark where I have
developed this thesis.

Contents

Summary

Preface

Acknowledgements

1

Introduction
1.1 Expected outcomes Lo
1.2 Document structure

The rendering pipeline

2.1 Thesimulator
2.1.1 Converting the output to a Wavefront OBJ file

2.2 The rendering framework L.
2.2.1 Adaptation of the framework to the simulator input
2.2.2 Videoproduction

Shading

3.1 Lambertian reflectance o oL
3.2 Transparent shader L.
3.3 Photon mapping L
3.4 Absorption
3.5 Phong reflection model oo oL
3.6 Other properties
3.7 Final comments

Results
4.1 Linear travelling Wave
4.2 Whalin’s experiment Lo

iii

N DN

NelNo RN e N« IV

11

12
13
14
15
16
17

viii CONTENTS
4.3 Newmann Kelvin 22
44 Comments i i e e e e e e 23

5 Conclusions 25
5.1 Limitations and future improvements 26
5.2 Personal conclusions 27
5.3 Project development 27

Bibliography 29

List of Figures

1.1

21

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

Example of the result of the execution 3
Pipeline of this project 6
Matlab output seen as a PNGfile. 7
Diagram of the visualization modifications 8
Lambertian BRDF oo oL 12
Water rendered as Lambertian 13
Diagram of reflection and refraction 14
Photonmaps L 15
Absorption inside water 16
Phong reflection oo oo Lo 17
Caustics and absorption 18

Time for Linear Travelling Wave 20

LIST OF FIGURES

4.2

4.3

4.4

4.5

4.6

4.7

5.1

Visualization of the Linear Travelling Wave 21
Time for the Whalin Wave 21
Visualization for the Whalin Wave 22

Visualization of the simulation provided by Force Technology in-

side Matlabo 23
Time of the Simulation provided by Force Technology 23
Render of the simulation provided by Force Technology 24

Gannt diagram 28

CHAPTER 1

Introduction

Computer generated water is a very used element nowadays. It is being used in
a lot of applications but it is mainly used in video generation for films or adverts,
and for computer games, but also a lot of companies need water rendering for
investigation and also for simulations.

Water can be very difficult to render, and the proccess can be separated in two
steps. The first one is the water geometry which must be updated every frame
if we don not want completely calm water. The second step is the rendering of
the geometry and it will handle with the water properties as a material.

In this project, the first step is performed by a simulator developed by A. P.
Engsig-Karup, Morten G. Madsen and Stefan L. Glimberg at the Department
of Informatics and Mathematical Modeling [EKBLO9|]|[EKMG12].

The aim of this project is to provide a rendering framework which takes as input
the ocean wave simulations generated by the mentioned simulator. This frame-
work will have realistic water appearance as output in a process that requires
two steps. First of all, it has to deal with the compatibily between the simula-
tor and the rendering framework, and the second step deals with the techniques
used to obtain realistic water.

This project will study the most important water properties which are going

2 Introduction

to be used to obtain realistic water. Some of them are the seafloor colour and
its distance to the water surface, but also the sky and environment which also
affect its aspect as they are reflected by the water.

The render engine is based in raytracing and it is completed with photon map-
ping as water is known to generate caustics in the seafloor. The render engine
will be also set up in order to show the generated correctly, and it will also allow
the user to generate sequences of frames as well as the simulator does, so ocean
water meshes can be generated massively to produce video sequences.

This project uses a visualization framework used in the course Phisically Based
Rendering to implement different techniques. In this project, only some of them
have been implemented but it has been extended in other many ways.

1.1 Expected outcomes

The project has got two separate parts. The first one deals with the simulator.
In this part, the main parameters of the simulator input file will be explained. In
addition, this part covers the transformation from a binary file generated with
the simulator and its conversion to a Wavefront OBJ file which is the input of
the render engine. This step is performed using Matlab.

The second part covers the adjustments made to the render engine but also the
shading step, which is the main purpose of this project. On the one hand, the
framework has been modified and completed in order to get the most accurate
results. Also, it may add missing meshes such as the seafloor in the case that
it is not provided by the simulator. On the other hand, different shaders have
been used in the proccess adding complexity starting from a simple transparent
shader and completing it until the final one.

Finally, the outcome of the project as a whole, is a variable number of pictures,
which can be combined to generate video files using third party applications.

An example of the output image file can be seen in the figure 1.1.

1.2 Document structure

The content of the rest of the document is organized as follows:

1.2 Document structure 3

Figure 1.1: Example of the result of the execution. The seafloor can be appre-
ciated, and also the depth of the water and the caustics generated
by the waves.

Rendering. This chapter contains all the information related with the simu-
lator and the rendering framework. It explains the main parameters used for
the water, but also how are the meshes converted into Wavefront OBJ files and
what has been changed in the framework to open the simulator files correclty.

Shading. This chapter explains in detail the different implemented shaders and
the techniques used in all of them.

Results. This section analyzes the execution time of the render and also shows
the aspect of the different simulations both in Matlab and after the rendering
step.

Conclusions. This chapter details the conclusions of the project, but also its
limitations and future improvements to continue its development.

Introduction

CHAPTER 2

The rendering pipeline

Water surfaces are very common in video games and films, and it is usually
a critical element and its level of detail will improve the realism of any scene.
In addition, it is usually a very hard computational problem so that it is still
difficult to render real-time water [JLO4|[Kry05]. For that reason, this project
will try to compute realistic water with short rendering time leaving real time
rendering to the future.

This chapter explains how has been the work organized. First of all, the simu-
lator generates water meshes exported as binary files. Afterwards, these binary
files should be transformed into Wavefront OBJ files. This step is performed
using Matlab functions. Finally, the object files are imported into the rendering
framework which, used as it is explained in the next chapter, will output PNG
image files.

The complete pipeline that is covered by this project is shown in the figure 2.1.

6 The rendering pipeline

Input | simulator |—» Binary file__,. | Matlab | _ opyfije , | Rendering i
parameters conversor framework — - PNG file

Figure 2.1: Pipeline of this project

2.1 The simulator

This section will situate the context of the project, which aim is to create a
rendering framework for the Ocean Wave simulator developed by A. P. Engsig-
Karup, Morten G. Madsen and Stefan L. Glimberg at the Department of Infor-
matics and Mathematical Modeling [EKBLO9|[EKMG12].

The simulator has been developed using FORTRAN and it runs under UNIX
machines. The simulator has got CPU and GPU versions. In this project, the
used version has been the CPU one.

When using the simulator, a lot of parameters can be used to perform different
kinds of waves. Some of them have to do with the timing between steps. As the
desired frequency to obtain a good quality video is 25 frames per second, these
parameters should be adjusted properly. Also, we should use the maximum time
value which will determine the length of the video. The parameters used for
this project are only examples but the rendering framework will handle every
possible output.

2.1.1 Converting the output to a Wavefront OBJ file

The output of the simulator has got two different formats and they can be
chosen in the simulator input file. The mesh can be exported as a text file or a
as a binary file. In this project the binary format has been chosen. It contains
the vertex coordinates but also its energy, which is required if the user wants to
continue with the simulation from that poing, but it is not used in this project.

The next immediate step is to convert these files into wavefront object files to
make them readable by the rendering framework. This step is performed using
Matlab.

The Matlab conversion function loads all the files in the current directory which
follow the format “EP _xxxxx.bin” which is the simulator default naming and

2.2 The rendering framework 7

converts them into Wavefront OBJ files. Among other things, it also adds some
lines to group the objects but it also sets the material file used for the geometry.
The default material file is “flow.mt]”. This file contains the specular, diffuse
and ambient values of the material, but also also the illumination value. The
illumination value is the parameter that will determine the shader used in the
framework. This value will be changed in the context of this project to show
different shaders.

The chosen function deals with many input files from the beginning as it is
required for this project. A PNG output from the Matlab function is not nec-
cessary but it has been used to check correctness before going further with the
next steps in the pipeline. The mentioned image file looks as it is shown in the
figure 2.2.

0.05 .
0.04 .-
0.03 .
0.02-f-
0.01-.

-0.01 .-
-0.02 |
-0.03 -]

0.04 ...
200

Figure 2.2: This the aspect of the mesh visualized inside Matlab

2.2 The rendering framework

This project uses a rendering framework based on raytracing [App68]. As the
time to build a framework from scratch would take a lot of time, the raytracer
has been provided to use in this project. It has been provided by Jeppe Revall
Frisvad and it is used in the course Physically based rendering at the DTU
Compute Department. It contais the main properties of a raytracer in which
the different shaders will be implemented. It allows to import Wavefront OBJ
files and it uses a BSP (Binary Space Partition) tree [SS92] to store the geometry

8 The rendering pipeline

in memory.

Inside the rendering framework, the user is allowed to move the camera using
the mouse, save and load camera positions and views, save images as bitmaps
or increment or decrement the number of rays per pixels to increase accuracy
and reduce aliasing, among others.

The framework also handles different views that show different effects such as
refelectance, direct lighting only, ambient occlusion, path tracing, photong map
caustics and others. In this project only path tracing and photon map caustics
will be used. The essential properties of these techniques are included in the
framework altough they were not implemented. For this reason, first of all it is
needed to check which techniques fit better in the context of the project and only
those will be implemented. All the techniques mentioned outside this section
have been implemented during the project development.

2.2.1 Adaptation of the framework to the simulator input

The first versions of the simulator do not generate a seafloor, which is required
by the definition of this project. In this case, a plain rectangle will be located
under the geometry to act as a seafloor. As this option is not accurate because
the seafloor affects the motion of the waves, the last versions of the simulator
generate automatically a correct seafloor.

In addition, as the light can reach the geometry from every point, it could reach
the seafloor without going through the water as it is shown in the figure 2.3.

Anomaly

Figure 2.3: This diagram shows why a bounding box is needed. If there is
no bounding box, the light can reach the seafloor without going
through the water. With a bounding box there is still an anomaly,
because the corners may be in shadow.

To solve this issue, a bounding box has to be placed in the four sides of the

2.2 The rendering framework 9

water mesh, and it must cover, at least, the height from the seafloor to the
water surface. A plane has also been included as a floor of the visualization
environment.

By using a bounding box, there is an undesired effect, which is that depending
in the angle of the sun, there will be a small shadow inside the water caused by
the walls of the box. These shadows may affect more than one wall depending on
the inclination angle of the sun Moreover, the opposite wall will also accumulate
photons as it is exposed directly to the sun light. This issue can be improved
by making bigger meshes or having a smooth transition of the seafloor avoiding
the use of walls.

The meshes are not centered in the ground plane because this helps the viewer
to visualize the environment as it is easier to see part of the sky. This also
creates a shadow in the ground plane. This issues can be avoided with infinite
or very big water meshes.

2.2.2 Video production

The video production is handled using command line arguments. In these ar-
guments the user has to define the number of the first and the last epoch to
proccess but also the space between epochs which is defined in the simulator
input. The file names are handled automatically as the binary files are always
named as “EP_xxxxx.bin” and the object files are named “EP _xxxxx.bin.obj”.

As long as the number of the last epoch is higher than the first one, the
framework will produce a sequence of files which are the frames for the video.
The naming of the images follow the same pattern and they will be named
“EP _xxxxx.bin.obj.png”. The video has to be mounted outside the framework
using all the generated files.

10

The rendering pipeline

CHAPTER 3

Shading

This chapter covers the main properties that affect the aspect of water. It
explains why are they important and which are techniques used to deal with
those properties and it also explains the difficulties encountered. It explains the
steps followed to build a complete shader for the project.

The first shaders have built separatedly while the final one uses most of the
properties of the previous ones. In addition, other complementary properties
have been used such as the sun and sky colour [Lew93][Kaj86].

The framework can handle any number of lights, although in this project only
one directional light which will represent the sun.

In addition, some of the implemented shaders use a path tracing technique. This
is the case of the transparent shader among others. [PHO04]

As it was explained in the previous section, the main properties of the materials
are defined in a material file (extension mtl). That file contains more than one
material and all of them can be used in this project, but it is also possible to
define new materials. Complementary to the mentioned material file, there is
another file called “media.mpml”, which has been also provided with the frame-
work. This file contains more information about some materials. One of those
materials is seawater and we are going to use it in this project. As water colour

12 Shading

is different depending from one ocean to another, more kinds of water could also
be defined in this file.

3.1 Lambertian reflectance

This shader is the most basic one that has been used in the project, but it is
neccessary as it is used for the seafloor.

Lambertian reflectance is the property that defines a pure diffuse surface. The
amount of light returned by the geometry depends only on the angle between the
light respect the geometry normal and it does not depend on the eye position.
The Lambertian BRDF (Bidirectional reflectance distribution function) can be
seen in figure 3.1. As an example, the scene has been rendered using this shader
for the water. The result can be seen in figure 3.2.

Incident ray

e

Figure 3.1: Lambertian BRDF

3.2 Transparent shader

In order to use this shader correctly, the fresnel equations have been used to
calculate the refractive index. The fresnel equations calculate the reflectance,
which is the amount of energy reflected while The rest of the energy (1-R)
is refracted. Using this equations, the reflectance will vary depending on the
incident angle and the index of refraction of both mediums and for small angles,
there might be only reflected light [Ska06].

3.3 Photon mapping 13

Figure 3.2: Water rendered as Lambertian

Once the reflectance is calculated, this shader traces 2 rays: the reflected one and
the refracted one, and they are combined depending on the refractive index that
has been explained before [JB02]. The diagram of the reflected and refracted
rays can be appreciated in figure 3.3. In addition, the framework uses a variable
which sets the maximum number of recursions of the algorithm [PH04].

3.3 Photon mapping

In this project, we are using a seafloor which will affect the aspect of the water
in different ways. One of that ways will be the caustics produced by the waves
which will be seen in the seafloor.

As caustics are going to affect the aspect of water significantly, photon map-
ping has been implemented in this project [NJC00]. The photons may produce
caustics depending on the shape of the wave but also depending on the distance
from the seafloor to the sea surface.

As we have explained before, the framework allows the use of photon mapping

14 Shading

Incident ray Reflected ray

Figure 3.3: This diagram shows the reflected and refracted rays, which are
used in some of the shaders.

altought it must be implemented. In addition, there is an option to visualize
the photon maps. These photon maps and the whole scene using a transparent
shader with caustics are shown in the figure 3.4.

The number of used photons can be set in the framework, and also the number
of photons used in the estimation. In this project, these values have been set to
7500000 photons and 200 of them used for the estimate.

3.4 Absorption

The next effect that we are going to use has to do with the depth of the water.
The darkness of the water will increase with its depth. This phenomenon is
called absorption.

This shader was projected to be a volume shader, but as the meshes returned
by the simulator are not volumes, this idea is not applicable. Instead, this
shader calculates the distance from the water surface to the seafloor in order to
calculate the quantity of energy absorbed. The distance is calculated using the
direction of the refracted ray from the water surface so it will be longer or equal
than the perpendicular distance from the water surface to the seafloor. [EC05]

Figure 3.5 shows the scene using absorption but no photon mapping in this
case.

At this point the reader has to realize that the used shader is not the transparent

3.5 Phong reflection model 15

Figure 3.4: Left: Visualization of the photon maps. Right: Render of the
scene using a transparent shader with photon mapping. The caus-
tics can be appreciated at the seafloor

one anymore. Now is where the bounding box makes sense, because the only
way in which can be light is inside the water is through the surface. In other
words, the light that reach the sea bottom is because of the photons that have
crossed the water. Afterwards, the light inside the water may not reach the
surface again due to absorption, which will determine the final aspect of the
water.

3.5 Phong reflection model

In order to include another property to the simulator, the phong reflection
model has been used to reflect the sun. This model is not the Phong shading
model. Its contibution is only the reflection of the directional light and it will
be appreciated only if the eye, the water surface and the sun are situated in the
same plane [Pho75].

Figure 3.6 shows the scene using with phong reflection added to the rest of
properties.

16 Shading

Figure 3.5: This figure shows how the colour of water is affected by absorption.
In the left side the depth is lower and the result colour is lighter
because of the seawater colour. In the right side of the scene, the
colout is darker because the depth is higher.

3.6 Other properties

This section explains some other minor properties that have been used along
the project.

Sun and sky

The sky is also important as it is, either completely, or almost part of it, reflected
by the water. The chosen model for the day light is the one developed by A.
J. Preetham, Peter Shirley and Brian Smits at the University of Utah [PSS99].
This model uses real coordinates of the Earth but also the desired date and
time.

For this project, the chosen date is a day in autumn at 12.00 and it has been
located in Denmark. These values can be changed at any time in the framework.

3.7 Final comments 17

Figure 3.6: This figure shows how is the sun reflected in the water surface
because of phong reflection.

Antialiasing

In order to make the result more accurate and avoid effects as aliasing, most of
the generated images have been rendered using multisampling. The framework
allows the generation of more than one ray per pixel and it has been used in
this project. However, as the rendering time increases very fast, the maximum
number of rays per pixel used is 9. For video generation, as it is needed to
render a high quantity of frames, only one ray per pixel has been used.

3.7 Final comments

As it has been explained before, in the final version the user can choose between
different shaders. This is handled in the file “flow.mt]” and the material used
for the water is “seawater”. Inside this file, there is a value called “illum” which
determines the shader that is going to be used in the renders. By default, this
value is set to “15”, which is the shader used for ocean water. This shader uses
absorption, photon mapping and phong reflecion. This shader has been used,

18 Shading

for example, in figure 3.7.
Other used shader is the transparent one, which can be chosen changing the
illumination value to “4”. This shader uses a basic transparent shader with

photon mapping. This shader has been used in the right image in figure 3.4.

Finally, the lambertian shader has been used for the ocean water in figure 3.2
and it has been used for the seafloor in all the renders.

In addition, the sun and sky model has been used in all the renders as it is not
affected by any of the shaders.

The whole pipeline that the user must follow can be checked in chapter 2

Figure 3.7: This figure shows the caustics and absorption.

CHAPTER 4

Results

Once the implementation has been completed, three simulations have been run
in order to study the time consumption. Two of the results shown here come
from renders that have been configured to be a video sequence. The other one
has been performed for a single image.

This has been done because usually the mesh is plane in the first frame, and as
the time increases, the variations in the meshes are higher and it affects to the
render time. The time frequency for all the simulations is 25 frames per second,
which is the standard for european televisions. This means that the step time
is 0.04 seconds.

All the simulations and renders have been performed in my personal laptop.
The render times will be lower using a more powerful computer. In addition, in
the cases of video sequences, the obtained times have been performed using only
one ray per pixel. For more rays per pixel than one, the time is approximately
multiplied by the number of rays per pixel. In the case that the render is focused
in one single image, the number of rays have been set to 9 in order to get more
accurate and nicer images.

20 Results

4.1 Linear travelling Wave

This simulation uses only linear techniques to obtain the simulations, so it is
expected to be computationally easy. The simulation will generate a sequence
of 600 meshes and it will represent a 24 seconds video with a frequency of 25
frames per second. Figure 4.1 shows the time of all the performed steps.

LINEAR 600 frames Average
Simulation 3 minutes 0,3 seconds
Conversion 42 seconds | 0,07 seconds
Rendering 83,3 hours 8,3 minutes

Figure 4.1: This table shows the time for the Linear Travelling Wave example

In this case, the simulation has taken 0.3 seconds per frame so the total time has
been 3 minutes for the whole sequence. The conversion time is also significant,
but this step is faster than the others. In this case, the conversion time has
taken an average of 0.07 seconds per frame, making a total of 42 seconds for all
the images.

The mesh visualized in Matlab and the render result can be seen in figure 4.2
although the outputs of this simulation have been also used in the previous
chapters of this document.

Finally, the rendering step has taken 8.3 minutes per frame, making a total of
83 hours for the whole sequence. The size of the meshes used in this example is
259 x 2.

4.2 Whalin’s experiment

Robert W. Whalin, Ph.D., P.E. is Associate Dean and Professor of Civil Engi-
neering College of Science, Engineering, and Technology, Jackson State Univer-
sity. This simulation uses some of the data gathered in the Whalin’s experiment
1

Thttp://coastalhazardscenter.org/people/robert-w-whalin

4.2 Whalin’s experiment 21

Figure 4.2: Visualization of the Linear Travelling Wave inside Matlab and
after the rendering

This simulation will generate again a sequence of 600 meshes and it will represent
a 24 seconds video with a frequency of 25 frames per second. Figure 4.3 shows
the time of all the performed steps and also the time at different points of the
simulation. In this case, the size of the mesh is also bigger than in the previous
one.

WHALIN 600 frames Average
Simulation 110 minutes | 11 seconds
Conversion 5,5 minutes | 0,55 seconds
Rendering 35,6 hours 3.5 minutes

Figure 4.3: This table shows the time for the Whalin Wave example

In this case, the conversion time has been higher than the previous simulation
as the water mesh is bigger, but this step has been again the easiest to compute.

Finally, the render time has been 3.5 minutes per frame, making a total of 35
hours for the total of 600 frames. Figure 4.4 shows the mesh visualized inside
Matlab and also the final render. The mesh size in this example is 259 x 19.

22 Results

0025

0.01

0m

ooz
200

Figure 4.4: Visualization for the Whalin Wave inside Matlab and after ren-
dering

4.3 Newmann Kelvin

The next simulation has been courtesy of Force Technology. It includes a water
surface as well as a ship hull. The ship has no deck but it is not needed for the
example.

The provided meshes have been gerenated using the same simulator and also a
ship model from the company. The provided information aspect in Matlab is
shown in figure 4.5.

This simulation uses a format quite different to the previously used. With the
meshes files there has also been included a Matlab file to read them, but they
have to be adjusted to be coherent with the rendering framework input. In
that way the previous conversion function has been redefined for this precise
example. The new output includes two meshes inside one file, the first one is
the water mesh and the second one is the ship hull.

As this simulation represents only one frame, it has been rendered using 9 rays
per pixel. The file conversion and rendering time can be checked in figure 4.5.

The resulting render is figure 4.7

4.4 Comments 23

Figure 4.5: Aspect of the simulation provided by Force Technology as it is
seen inside Matlab

NEWMANN |1 frame — 9 rays per pixel| Average (ray)
Simulation - -
Conversion 16 seconds -
Rendering 53 minutes 5,8 minutes

Figure 4.6: Time of the Simulation provided by Force Technology

4.4 Comments

For every simulation, some adjustements have been needed in the framework to
get better images. These changes have been done to all the renders.

One modification is that the Z coordinate of the meshes has been scaled because
in the original mesh, the variations of Z were hardly visible. Moreover, there
is a parameter that affects the absorption and caustics terms which scales the
distances but not the mesh. This means that, altough the mesh is the same, it
will represent deeper or less deeper water.

As a conclusion for this chapter, the simulations have been as accurate and
realistic, but not as faster as expected. One possible way to make simulations
faster is to carefully adjust the mesh size so that it is still accurate but without

24 Results

Figure 4.7: Render of the simulation provided by Force Technology

unneded polygons.

CHAPTER 5

Conclusions

This project has developed a complete framework to use combined with the
Ocean Wave Simulator [EKBL09] starting from a raytracer. This framework
combines many different techniques that allow the user to render realistic water
using different techniques that have been combined together and it also provides
simple shaders so that external objects can be added to the framework using
the material file. In the one hand, the developed render framework is a very
powerful application because it could also be used with any other mesh and it
will render it as water because all the needed objects are added inside. In the
other hand, although the result is accurate and realistic although it has been
slower than expected.

This project has also developed a Matlab conversor which produce OBJ files
that can be used also in any other 3D software so its capabilities go beyond the
aim of this project. In addition, there is an extra Matlab file that has been used
to export the files provided by Force Technology and which has been used in
chapter 4.

26 Conclusions

5.1 Limitations and future improvements

This section will explain some of the known limitations of the rendering frame-
work and some future improvements.

The main limitation of the framework is that the camera cannot be moved
during the rendering. It can be moved anywhere before starting rendering so it
works good for pictures, but for videos the camera is in the same place until the
video has finished its rendering.

The simulator main function is to generate open sea meshes. This means that
no environment is handled in the simulator. As the environment affects to the
water aspect significantly it would be a good option to include it in future im-
provements. But, even in the case that a environment is added to the rendering
enviroment, it would not be physically coherent because the water meshes would
not interactuate with the terrain. The only way to be totally physically coher-
ent would be to include the environment in the simulator and export the whole
scene in the binary file.

As it has been commented in previous sections, some shadows are caused by
the bounding box. Altough this solution is better than no having anything, the
aspect is not so accurate near the bounds.

Moreover, in this project it is very difficult to programme a sequence of renders.
For example, if the user wants different renders of different meshes or the same
one from different points of view, it has to be set up manually and generate
them one by one. Although the framework has functions to save and load
camera, coordinates or object files, it should be done inside the code.

Other limitation is that the simulator has an output of one or two meshes in one
file. The first mesh is, of course, the water surface mesh and the second one may
be the seafloor in the case that it exists. However, usually these two meshes do
not intersect each other. If they intersected, for example finishing in a beach, the
problem of the shadow near the walls could be solver automatically. In addition,
if the simulator allowed to import object files into it, it would generate coherent
waves intersecting with, for example, terrain, solving one issue that has been
explained earlier in this chapter.

Finally, as it has been commented previously, the rendering step has been slower
than expected. The simulations and renderings have run over my personal
laptop, and altough more powerful machines could be used, future developments
should go further. As the simulator has a newer version that runs on GPU, that
version could be used instead of the CPU one. In addition, following the same

5.2 Personal conclusions 27

idea, some shaders could be moved from the CPU to the GPU too. This would
be the case of reflection and refracion.

5.2 Personal conclusions

With this project, I have learned a lot of how projects are developed in the real
world, how are they organized and how are they scheduled.

This project has been also a challenge because I had to work with a very big
framework which I have had to learn before starting to improve it. Thanks to
it, I have also improved my knowledge on computer graphics and rendering.

In addition, having developed this project during my exchange stay in Denmark
has shown me how the departments outside the University of Zaragoza work.

5.3 Project development

The project has had a duration of seven months. The first five months have
had the hardest work and there have been weekly meetings with the graphics
group of the DTU Compute department. Also some private meetings have been
neccesary in order to get the project in the correct way.

There had also been an extra meeting with the company Force Technology
located in Kongens Lyngby, Denmark. The dealt topics were the suitability
of the simulator and the framework to be used in the boat simulators of the
company and the availability of use some of their boat models. Finally, there
were no further meetings as this project was not meant to be real time water
rendering altough they provided one of their own simulations combined with a
ship which have been used in chapter 4.

This is the Gannt diagram that describes the evolution of this project.

28

Conclusions

Name

January | February March Apri ‘Msy June |Ju\y

August

‘September

Milestone List
Study literature

Study and test the simulator

Generate mesh chains with the simulator
Last day using the simulator
Implementation of the studied methods
Test of the tool

Tool s finished

Generate new simulations for the Thesls
Wite Thesis

Check Thesls

Deadline

& @

&

ﬁ

Figure 5.1: Gannt diagram

L3

Bibliography

[App68]

[ECO5]

[EKBLO09]

[EKMG12|

[TB02]

[JL04]

[Kajs6]

[Kry05]

Arthur Appel. Some techniques for shading machine renderings of
solids. In Proceedings of the April 80-May 2, 1968, spring joint
computer conference, AFIPS ’68 (Spring), pages 37-45, New York,
NY, USA, 1968. ACM.

Xavier Pueyo Francisco J. Seron Frangois X. Sillion Eva Cerezo,
Frederic Pérez. A survey on participating media rendering tech-
niques. 2005.

A. P. Engsig-Karup, H. B. Bingham, and O. Lindberg. An efficient
flexible-order model for 3d nonlinear water waves. J. Comput. Phys.,
228(6):2100-2118, April 2009.

A. P. Engsig-Karup, Morten G. Madsen, and Stefan L. Glimberg. A
massively parallel gpu-accelerated model for analysis of fully nonlin-
ear free surface waves. International Journal for Numerical Methods
in Fluids, 70(1):20-36, 2012.

Henrik Wann Jensen and Juan Buhler. A rapid hierarchical ren-
dering technique for translucent materials. ACM Trans. Graph.,
21(3):576-581, July 2002.

Claes Johanson and Calle Lejdfors. Real-time water rendering. Lund
University, 2004.

James T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143-150, August 1986.

Yuri Kryachko. Using vertex texture displacement for realistic water
rendering, volume 2. 2005.

30

BIBLIOGRAPHY

[Lew93]

[NJCO0]

[PHO4|

[Pho75]

[PSS99)

[Ska06]

[SS92]

Robert R. Lewis. Making shaders more physically plausible. Tech-
nical report, Vancouver, BC, Canada, Canada, 1993.

Henrik Wann Jensen Niels Jgrgen Christensen. A practical guide to
global illumination using photon maps. 2000.

Matt Pharr and Greg Humphreys. Physically Based Rendering:
From Theory to Implementation. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004.

Bui Tuong Phong. Illumination for computer generated pictures.
Commun. ACM, 18(6):311-317, June 1975.

A. J. Preetham, Peter Shirley, and Brian Smits. A practical analytic
model for daylight. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, SIGGRAPH 99,
pages 91-100, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

Johannes Skaar. Fresnel equations and the refractive index of active
media. Phys. Rev. E, 73:026605, Feb 2006.

Kelvin Sung and Peter Shirley. Graphics gems iii. chapter Ray trac-
ing with the BSP tree, pages 271-274. Academic Press Professional,
Inc., San Diego, CA, USA, 1992.

	Resumen
	Agradecimientos
	Índice general
	1 Introducción
	1.1 Resultados esperados
	1.2 Estructura del documento

	2 El proceso de renderizado
	2.1 El simulador
	2.1.1 Convirtiendo de binario a OBJ

	2.2 El entorno de renderizado
	2.2.1 La ecuación de render
	2.2.2 Raytracing
	2.2.3 Materiales
	2.2.4 El sol y el cielo

	2.3 Adaptación del entorno al simulador
	2.4 Producción de vídeo
	2.5 Diagrama de clases

	3 Sombreado
	3.1 Lambertian
	3.2 Sombreador transparente
	3.3 Photon mapping
	3.4 Absorción
	3.5 Modelo de reflexión de Phong
	3.6 Comentarios finales

	4 Resultados
	4.1 Ola lineal
	4.2 Ola no lineal
	4.3 Simulación de la empresa Force Technology
	4.4 Comentarios

	5 Conclusiones
	5.1 Limitaciones y mejoras futuras
	5.2 Conclusiones personales
	5.3 Desarrollo del proyecto

	Bibliografía
	A Resultados adicionales
	B Versión de la memoria en inglés

