000120244 001__ 120244
000120244 005__ 20240319081026.0
000120244 0247_ $$2doi$$a10.3390/nano12172900
000120244 0248_ $$2sideral$$a131200
000120244 037__ $$aART-2022-131200
000120244 041__ $$aeng
000120244 100__ $$aRupérez, David$$uUniversidad de Zaragoza
000120244 245__ $$aMechanochemically Scaled-Up Alpha Cyclodextrin Nanosponges: Their Safety and Effectiveness as Ethylene Scavenger
000120244 260__ $$c2022
000120244 5060_ $$aAccess copy available to the general public$$fUnrestricted
000120244 5203_ $$aAiming at the development of a greener ethylene removal alternative, the goal of this study was to scale up and ensure the safety of α-cyclodextrin nanosponges (α-CD-NS) for further use as ethylene scavengers. The solvent-free synthesis of α-CD-NS was successfully scaled up using α-cyclodextrin and N,N′-carbonyldiimidazole as cross-linkers (1:4 molar ratio) by means of mechanical alloying using a PM 100 ball mill by focusing on varying the rotation frequency, as determined by FTIR-ATR, X-ray diffraction, and TGA. α-CD-NS washing optimization was performed in water by monitoring the imidazole concentration in the washing solution through the validation of a fast and sensitive HPLC-DAD method. After 6 h at 40 °C, all imidazole was extracted, allowing a faster and less energy-dependent extraction. α-CD-NS absorbent capacity and porosity were also evaluated through BET isotherms and ethylene absorption experiments using α-CD-NS and commercially available absorbents (zeolite and bentonite) were performed by means of gas chromatography (GC) coupled to a flame ionization detector (FID). With a 93 µL h−1 kgadsorbent−1 ethylene removal capacity, α-CD-NS revealed the best ethylene scavenging activity when compared to the other absorbents, opening the doors for a safer, innovative, and eco-friendlier ethylene removal active packaging.
000120244 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-097805-B-I00
000120244 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000120244 590__ $$a5.3$$b2022
000120244 592__ $$a0.811$$b2022
000120244 591__ $$aPHYSICS, APPLIED$$b39 / 160 = 0.244$$c2022$$dQ1$$eT1
000120244 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000120244 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b51 / 107 = 0.477$$c2022$$dQ2$$eT2
000120244 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ2
000120244 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b58 / 178 = 0.326$$c2022$$dQ2$$eT1
000120244 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b110 / 343 = 0.321$$c2022$$dQ2$$eT1
000120244 594__ $$a7.4$$b2022
000120244 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000120244 700__ $$aGracia-Vallés, Nicolás$$uUniversidad de Zaragoza
000120244 700__ $$aClavero, Eva
000120244 700__ $$0(orcid)0000-0001-7143-8905$$aSilva, Filomena
000120244 700__ $$0(orcid)0000-0003-2685-5739$$aNerín, Cristina$$uUniversidad de Zaragoza
000120244 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000120244 773__ $$g12, 17 (2022), 2900 [16 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000120244 8564_ $$s3628266$$uhttps://zaguan.unizar.es/record/120244/files/texto_completo.pdf$$yVersión publicada
000120244 8564_ $$s2763623$$uhttps://zaguan.unizar.es/record/120244/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000120244 909CO $$ooai:zaguan.unizar.es:120244$$particulos$$pdriver
000120244 951__ $$a2024-03-18-16:43:44
000120244 980__ $$aARTICLE