
2022 198

Héctor Orera Hernández

Numerical methods and
accurate computations

with structured matrices

Director/es
Peña Ferrández, Juan Manuel
Delgado Gracia, Jorge



© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606



Héctor Orera Hernández

NUMERICAL METHODS AND ACCURATE
COMPUTATIONS WITH STRUCTURED MATRICES

Director/es

Peña Ferrández, Juan Manuel
Delgado Gracia, Jorge

Tesis Doctoral

Autor

2022

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Programa de Doctorado en Matemáticas y Estadística



Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es



NUMERICAL METHODS AND
ACCURATE COMPUTATIONS WITH

STRUCTURED MATRICES

Héctor Orera Hernández
Tesis doctoral en matemáticas

Universidad de Zaragoza

Directores de tesis:
Dr. D. Juan Manuel Peña Ferrández

Dr. D. Jorge Delgado Gracia





iii

This doctoral thesis is presented as a compendium of the following research articles:

[17] J. Delgado, H. Orera and J. M. Peña. Accurate computations with Laguerre matrices.
Numer. Linear Algebra Appl. 26 (2019), e2217, 10 pp.

[16] J. Delgado, H. Orera and J. M. Peña. Accurate algorithms for Bessel matrices. J. Sci.
Comput. 80 (2019), 1264-1278.

[79] H. Orera and J. M. Peña. Accurate inverses of Nekrasov Z-matrices. Linear Algebra
Appl. 574 (2019), 46-59.

[81] H. Orera and J. M. Peña. Infinity norm bounds for the inverse of Nekrasov matrices
using scaling matrices. Appl. Math. Comput. 358 (2019), 119-127.

[80] H. Orera and J. M. Peña. BR
π -tensors. Linear Algebra Appl. 581 (2019), 247-259.

[18] J. Delgado, H. Orera and J. M. Peña. Accurate bidiagonal decomposition and compu-
tations with generalized Pascal matrices. J. Comput. Appl. Math. 391 (2021), Paper
No. 113443, 10 pp.

[20] J. Delgado, H. Orera and J. M. Peña. High relative accuracy with matrices of q-integers.
Numer. Linear Algebra Appl. 28 (2021), Paper No. e2383, 20 pp.

[19] J. Delgado, H. Orera and J. M. Peña. Optimal properties of tensor product of B-bases.
Appl. Math. Lett. 121 (2021), Paper No. 107473, 5 pp.

[21] J. Delgado, H. Orera and J. M. Peña. Characterizations and accurate computations for
tridiagonal Toeplitz matrices, Linear and Multilinear Algebra (2021), Published online,
DOI: 10.1080/03081087.2021.1884180.

[82] H. Orera and J. M. Peña. Accurate determinants of some classes of matrices. Linear
Algebra Appl. 630 (2021), 1-14.

[83] H. Orera and J. M. Peña. Error bounds for linear complementarity problems of BR
π -

matrices. Comput. Appl. Math. 40 (2021), Paper No. 94, 13 pp.

The dissertation’s author has been employed under a Gobierno de Aragón predoctoral
contract from 01/08/2018 to 09/06/2019. From 10/06/2019, his predoctoral contract has
been funded by the FPU program (Ministerio de Ciencia, Innovación y Universidades),
FPU17/03769.

In addition, the author’s work has also been supported by the following research grants:

• Análisis de la representación de curvas y superficies, cálculos precisos con matrices
estructuradas y aplicaciones, PGC2018-096321-B-I00. Ministerio de Ciencia, Inno-
vación y Universidades. 01/01/2019 - 31/12/2022. PI: Juan Manuel Peña Ferrández.

• Análisis Numérico, Optimización y Aplicaciones. Gobierno de Aragón, E41_20R.
01/01/2020 - 31/12/2022. PI: Juan Manuel Peña Ferrández.





Acknowledgments

I would like to start by expressing my deepest appreciation to my thesis supervisors, Prof. Dr.
Juan Manuel Peña and Prof. Dr. Jorge Delgado, for their invaluable guidance and support
throughout the realization of this thesis. They have shared with me both their enthusiasm
for research and their vast knowledge, and they have always offered me their advice and
encouragement during my time as a doctoral student.

I wish to thank my colleagues from the Department of Applied Mathematics for providing
me with a great work environment and assisting me on this journey.

I am grateful to Professor Dr. Tomas Sauer for his hospitability and support during my
research stay at the University of Passau. I would also like to extend my thanks to all the
people at FORWISS. They made me feel at home during my time in Passau.

Finally, I cannot forget my family and friends. Their influence, love and encouragement
have been fundamental during this period. They have helped me navigate through a pandemic
while keeping the illusion of moving forward with this project. I cannot begin to express my
thanks to my parents, Jorge and Carmen, and to my brother, David, for their unconditional
support. To them, and to everyone who has shared a part of this journey with me, thank you.

v





Abstract

The main topic of this doctoral thesis is Numerical Linear Algebra, with a special emphasis
on two structured classes of matrices: totally positive matrices and M-matrices. For some
subclasses of these matrices, it is possible to develop algorithms to solve numerically to
high relative accuracy some of the most common problems in linear algebra independently
of the traditional condition number. The key to achieve accurate computations lies in the
use of a different parametrization that captures the special structure of the matrix and in the
development of adapted numerical methods that use this parametrization as input.

Nonsingular totally positive matrices admit a unique factorization as a product of bidiago-
nal nonnegative matrices called the bidiagonal decomposition [46, 47]. If this decomposition
is known accurately, it can be used to solve some linear systems of equations as well as to
compute the inverse, the eigenvalues and the singular values to high relative accuracy using
the methods developed by P. Koev [58–60]. Hence, finding a method to compute the bidi-
agonal decomposition of a nonsingular totally positive matrix to high relative accuracy gives
a parametrization to achieve high relative accuracy when solving the previously mentioned
problems. Our contribution in this area has been obtaining the bidiagonal decomposition to
high relative accuracy of collocation matrices of generalized Laguerre polynomials [17], of
collocation matrices of Bessel polynomials [16], of classes of matrices that generalize the
Pascal matrix [18] and of matrices of q-integers [20]. We have also studied the extension of
some optimal properties of collocation matrices of normalized B-bases (that are totally posi-
tive matrices). In particular, we have derived optimal properties for the collocation matrices
of the tensor product of normalized B-bases [19].

If we know the off-diagonal entries and the row sums of a nonsingular diagonally dom-
inant M-matrix to high relative accuracy, then we can compute its inverse, determinant and
singular values also to high relative accuracy. We have looked for new methods to achieve
accurate computations with more subclasses of M-matrices. We introduced a parametrization
for Nekrasov Z-matrices with positive diagonal entries that can be used to compute its inverse
and determinant to high relative accuracy [79, 82]. We also studied a class of matrices called
B-matrices that is closely related to M-matrices. We obtained a method to compute its de-
terminant to high relative accuracy as well the determinants of B-Nekrasov matrices in [82].
Based on the use of the scaling matrices that we have proposed, we developed new infin-
ity norm bounds for the inverse of a Nekrasov matrix as well as error bounds for the linear
complementarity problem when the associated matrix is Nekrasov [81]. We also developed
infinity norm bounds for the inverses of BR

π -matrices, a class that extends B-matrices, and we
applied them to derive new error bounds for the linear complementarity problem whose as-
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sociated matrix is a BR
π -matrix [83]. Some classes of matrices have been extended to a higher

order case to develop new theory for tensors. For example, the class of B-matrices was gen-
eralized to B-tensors and gave a new simple criterion for the identification of a new class of
positive definite tensors. We have proposed an extension of the class of BR

π -matrices to BR
π -

tensors in [80], giving a new class of positive definite tensors that can be identified by using
a criterion based only on the tensor entries. Finally, we characterized tridiagonal Toeplitz
P-matrices and studied the cases when a bidiagonal decomposition could be obtained and
used as a parametrization to achieve accurate computations [21].



Resumen

El tema principal de esta tesis doctoral es el Álgebra Lineal Numérica, con un énfasis especial
en dos clases de matrices estructuradas: las matrices totalmente positivas y las M-matrices.
Para algunas subclases de estas matrices, es posible desarrollar algoritmos para resolver nu-
méricamente varios de los problemas más comunes en álgebra lineal con alta precisión rela-
tiva independientemente del número de condición de la matriz. La clave para lograr cálculos
precisos está en el uso de una parametrización diferente que represente la estructura especial
de la matriz y en el desarrollo de algoritmos adaptados que trabajen con dicha parametriza-
ción.

Las matrices totalmente positivas no singulares admiten una factorización única como
producto de matrices bidiagonales no negativas llamada factorización bidiagonal [46, 47].
Si conocemos esta representación con alta precisión relativa, se puede utilizar para resolver
ciertos sistemas de ecuaciones y para calcular la inversa, los valores propios y los valores sin-
gulares con alta precisión relativa utilizando los métodos desarrollados por P. Koev [58–60].
Por tanto, si encontramos un método para calcular la factorización bidiagonal de una matriz
totalmente positiva no singular con alta precisión relativa tendremos una representación de la
matriz que nos permite resolver muchos problemas con ella también con alta precisión rela-
tiva. Nuestra contribución en este campo ha sido la obtención de la factorización bidiagonal
con alta precisión relativa de matrices de colocación de polinomios de Laguerre generaliza-
dos [17], de matrices de colocación de polinomios de Bessel [16], de clases de matrices que
generalizan la matriz de Pascal [18] y de matrices de q-enteros [20]. También hemos estu-
diado la extensión de varias propiedades óptimas de las matrices de colocación de B-bases
normalizadas (que en particular son matrices totalmente positivas). En particular, hemos de-
mostrado propiedades de optimalidad de las matrices de colocación del producto tensorial de
B-bases normalizadas [19].

Si conocemos las sumas de filas y las entradas extradiagonales de una M-matriz no sin-
gular diagonal dominante con alta precisión relativa, entonces podemos calcular su inversa,
determinante y valores singulares también con alta precisión relativa. Hemos buscado nuevos
métodos para lograr cálculos precisos con nuevas clases de M-matrices o matrices relacio-
nadas. Hemos propuesto una parametrización para las Z-matrices de Nekrasov con entradas
diagonales positivas que puede utilizarse para calcular su inversa y determinante con alta pre-
cisión relativa [79, 82]. También hemos estudiado la clase denominada B-matrices, que está
muy relacionada con las M-matrices. Hemos obtenido un método para calcular los determi-
nantes de esta clase con alta precisión relativa y otro para calcular los determinantes de las
matrices de B-Nekrasov también con alta precisión relativa en [82]. Basándonos en la utili-
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zación de dos matrices de escalado que hemos introducido, hemos desarrollado nuevas cotas
para la norma infinito de la inversa de una matriz de Nekrasov y para el error del problema de
complementariedad lineal cuando su matriz asociada es de Nekrasov [81]. También hemos
obtenido nuevas cotas para la norma infinito de las inversas de BR

π -matrices, una clase que
extiende a las B-matrices, y las hemos utilizado para obtener nuevas cotas del error para el
problema de complementariedad lineal cuya matriz asociada es una BR

π -matriz [83]. Algunas
clases de matrices han sido generalizadas al caso de mayor dimensión para desarrollar una
teoría para tensores extendiendo la conocida para el caso matricial. Por ejemplo, la defini-
ción de la clase de las B-matrices ha sido extendida a la clase de B-tensores, dando lugar a
un criterio sencillo para identificar una nueva clase de tensores definidos positivos. En esta
memoria proponemos una extensión de la clase de las BR

π -matrices a BR
π -tensores (ver [80]),

definiendo así una nueva clase de tensores definidos positivos que puede ser identificada en
base a un criterio sencillo basado solo en cálculos que involucran a las entradas del tensor.
Finalmente, hemos caracterizado los casos en los que las matrices de Toeplitz tridiagonales
son P-matrices y hemos estudiado cuándo pueden ser representadas en términos de una fac-
torización bidiagonal que sirve como parametrización para lograr cálculos con alta precisión
relativa [21].
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Chapter 1

Introduction

This thesis main topic is Numerical Linear Algebra, specifically the study of numerical meth-
ods for special classes of structured matrices. One of the main problems in this area consists
on the identification of important classes of matrices whose structure can be exploited to
achieve computations to high relative accuracy. Achieving accurate results is a highly desir-
able property for any numerical method, especially if the solution can be computed to high
relative accuracy independently of the conditioning of the problem. However, until now high
relative accuracy has only been guaranteed for a very small number of numerical methods
for a very short list of mathematical problems. In particular, in numerical methods devised
for matrices with a special structure. Among the first precedents of these methods, we would
like to highlight the accurate algorithms for the computation of the singular values based on
the methods developed by J. Demmel et al. [31] that have been applied to matrices related to
diagonal dominance [32, 87], as well as the accurate methods for the computation of inverses,
eigenvalues or singular values that have been found for certain classes of nonsingular totally
positive matrices (i.e., matrices whose minors are all nonnegative) [16–18, 20, 23–26, 58–
60, 67–74, 76]. Finding the right parametrization for these classes of matrices has been
crucial for the development of these accurate algorithms. If we intend to obtain a small error
in our computations in finite precision arithmetic even when the matrix is ill-conditioned, we
need to take as input a different representation or parametrization of that matrix. The bad
conditioning means that a small perturbation of the matrix entries may translate into a huge
error in the computed solution in other case. This alternative representation should have a
natural interpretation and it should reflect the particular structure of the matrix, as it has been
the case in the previous examples. Let us note that for some particular classes of matrices it is
not possible to find such a representation. For instance, the class of Toeplitz matrices presents
a really simple structure but it does not admit a representation that can be used to compute its
determinant to high relative accuracy [30]. In conclusion, methods that assure computations
to high relative accuracy have been found mainly for special classes of matrices with a strong
structure related to either positivity or diagonal dominance, and in every case the use of a
special parametrization that captures that special structure has been required.

Nonnegative matrices appear frequently in many applications of diverse areas, such as
Physics, Chemistry, Biology, Engineering, Economics or Social sciences. Furthermore, the
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4 CHAPTER 1. INTRODUCTION

well-known results about the positivity or nonnegativity of their dominant eigenvalue and
its associated eigenvector, the Perron-Frobenius theorems, have been fundamental for the
mathematical modeling of many real situations. In general, many classes of matrices whose
structure is characterized by positivity prove to be quite useful in applications. In particular,
totally positive matrices have applications in many areas, such as Computer Aided Geometric
Design, Approximation Theory, Statistics, Finance or Biomathematics. In fact, the develop-
ment of the theory on Total positivity, which includes the study of totally positive matrices,
has over a century of history behind and its many applications can be consulted in the clas-
sical books written by Karlin [55] and by Gantmacher and Klein [37], in the survey work of
Ando [3], in the book edited by Gasca and Micchelli [44] as well as in the two recent books
on totally positive matrices [36, 89]. The relevance of totally positive matrices in many appli-
cations is due to their variation diminishing properties, meaning that the linear applications
defined by these matrices do not increase the number of sign changes: the number of sign
changes between consecutive entries of the image vector is bounded above by the number of
sign changes between consecutive entries of the input vector. On the other hand, there is a
different class of matrices closely related to diagonal dominance that is also found in many
applications. The matrices belonging to that class are called nonsingular M-matrices and they
have nonpositive off-diagonal entries and an entrywise nonnegative inverse. These matrices
appear in areas such as Economics, Numerical Analysis, Linear Programming or Dynamical
Systems [6]. In both cases, either for totally positive matrices or M-matrices, it has been
fundamental the previous identification of the right parametrization for the development of
numerical methods that assure computations to high relative accuracy.

For nonsingular totally positive matrices, the starting point for finding a good represen-
tation has been the (unique) factorization as a product of nonnegative bidiagonal matrices
obtained by M. Gasca and J.M. Peña in [46, 47]. This factorization, called the bidiagonal
decomposition, was then used by P. Koev [60] for building methods that compute the sin-
gular values, eigenvalues, inverses and the solution of some linear systems of equations to
high relative accuracy. These accurate methods require that the bidiagonal decomposition is
also known to high relative accuracy, a requirement that has been fulfilled only for certain
subclasses of totally positive matrices. The parameters given by the bidiagonal decompo-
sition can be obtained in terms of the elimination algorithm called Neville elimination [45]
(see Section 3.3). Neville elimination is an elimination procedure alternative to Gaussian
elimination. Neville elimination produces zeros in a matrix column by adding to each row
an appropriate multiple of the previous one, instead of a multiple of the pivot row like it is
done in Gaussian elimination. The parameters given by the bidiagonal decomposition of a
nonsingular totally positive matrix are the multipliers of the Neville elimination of that ma-
trix and of its transpose as well as the associated diagonal pivots and, in any case, it can
be shown that they are quotients of minors of that matrix. The computation of the bidi-
agonal decomposition using Neville elimination usually implies many subtractions, which
can translate into a significant loss in accuracy when those subtractions are of approximate
numbers of the same size. Therefore, the right strategy implies looking for an expression
for these parameters in terms of the original data, in a way that all the subtractions appear-
ing are of initial data. This idea has already been used to achieve accurate computations
with some subclasses of nonsingular totally positive matrices such as Vandermonde matri-
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ces [33], Bernstein-Vandermonde matrices [71, 72], Pascal matrices [2], Shoemaker-Coffey
matrices [22], Said-Ball-Vandermonde matrices [74], Cauchy-Vandermonde matrices [75],
Jacobi-Stirling matrices [25], collocation matrices of rational bases [24], collocation ma-
trices of the q-Bernstein polynomials basis [26], Lupaş matrices [27] or from orthogonal
polynomials associated to the Marchenko-Pastur law [73], as well as with other families of
totally positive matrices. In the work presented in this dissertation, we have carried out a
systematic search for subclasses of nonsingular totally positive matrices whose bidiagonal
decomposition can be obtained accurately and used to solve many algebraic problems to high
relative accuracy. In fact, this objective has been achieved with some new classes of totally
positive matrices important in applications in areas such as Combinatorics and Orthogonal
Polynomials. Specifically, for Laguerre matrices (in the article [17] presented on page 33),
which are collocation matrices of the generalized Laguerre polynomials (a classical family
of orthogonal polynomials), for Bessel matrices (in the article [16] presented on page 45),
which are collocation matrices of Bessel polynomials, also for generalized Pascal matrices
(in the article [18] presented on page 107) as well as for matrices of q-integers (in the article
[20] presented on page 119). We also considered applications of totally positive matrices
appearing in Computer Aided Geometric Design, in particular related to the optimal proper-
ties of the collocation matrices of normalized B-bases (bases with optimal shape preserving
properties [9] as well as other optimal properties [28]) and its Kronecker products, deriving
new optimal properties (in the article [19] presented on page 141). Finally, we also derived
characterizations and accurate methods for tridiagonal Toeplitz P-matrices (in the article [21]
presented on page 149).

Other class of matrices whose structure has proven to be useful to achieve accurate com-
putations is that of M-matrices. Let us recall that nonsingular M-matrices have positive di-
agonal entries, nonnegative off-diagonal entries and an entrywise nonnegative inverse. These
matrices have important applications in Numerical Analysis, Linear Programming, Dynam-
ical Systems and Economics (see [6]). For matrices related to diagonal dominance and M-
matrices, rank revealing decompositions play a key role in the study and obtention of algo-
rithms that assure computations to high relative accuracy. A rank revealing decomposition
is a factorization of the form XDY T , where D is a nonsingular diagonal matrix and both X
and Y are well-conditioned matrices. If we know a rank revealing decomposition of a matrix
to high relative accuracy, then it can be used to compute its singular values to high relative
accuracy using an algorithm developed by J. Demmel et al. [30]. Moreover, rank reveal-
ing decompositions have been obtained for the class of diagonally dominant M-matrices in
[32, 87] using as parametrization the row sums and off-diagonal entries. In this dissertation,
we have looked for new classes more general than diagonally dominant M-matrices that admit
computations to high relative accuracy. For that, we should first find the right parametriza-
tion for the class. A fundamental tool for the obtention of rank revealing decompositions is
given by specific pivoting strategies adapted to the special structure of the considered class of
matrices, since the use of Gaussian elimination with the right pivoting strategies can provide
an LDU decomposition with well-conditioned matrices L and U (see [32, 87]). We have ob-
tained a parametrization for the class of Nekrasov Z-matrices with positive diagonal entries,
which extends diagonally dominant M-matrices, and we have used that parametrization to
compute their inverses and determinants to high relative accuracy (in articles [79] and [82],
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included at pages 63 and 173, respectively). This class of matrices has proved to be quite use-
ful [41] in the development of error bounds for the linear complementarity problem, which
is an optimization problem with many important applications. The linear complementarity
problem has a unique solution when its associated matrix is a P-matrix [11], i.e., when all
its principal minors are positive. Both nonsingular totally positive matrices and nonsingular
M-matrices are P-matrices. We have also obtained new bounds for the infinity norm of the
inverse of Nekrasov matrices, which can be used to derive new error bounds for the linear
complementarity problem (in article [81], presented on page 79). A different subclass of P-
matrices is given by B-matrices [85]. We have devised a method to compute the determinants
of B-matrices to high relative accuracy (in the article [82], included at page 173). Moreover,
we have also studied BR

π -matrices [83], a subclass of P-matrices that extends B-matrices, and
we developed new error bounds for them (in article [83], included at page 189). Finally, these
classes of matrices related to diagonal dominance have a potential application in the theory
on hypermatrices. The research interest on hypermatrices (or tensors, see [90]) has been
growing a lot recently because of its applications to Big Data, which attracts a lot of well-
deserved attention because of its relevance in the field of Information Technology. This fact
has translated into many publications that propose extensions of classical results for matrices
to the context of tensors. We have considered the development of new sufficient conditions
to assure that a symmetric tensor is positive definite, which is a property highly desired in
optimization problems. In fact, we have characterized a new class of positive definite tensors
via the extension of BR

π -matrices to tensors (in article [80], which can be consulted at page
91).

This dissertation is organized in four parts. The first part is formed by this Introduction
and Chapter 3, where we introduce basic results that are fundamental for the work presented
later. In particular, the chapter introduces P-matrices, M-matrices and totally positive matri-
ces as well as totally positive bases. It also includes basic concepts about tensors and high
relative accuracy. The second part includes at pages 33, 45, 63, 79, 91, 107, 119, 141, 149,
173 and 189 the articles [17], [16], [79], [81], [80], [18], [20], [19], [21], [82] and [83], re-
spectively, that belong to the compendium of publications of this dissertation. The third part
is formed by Chapter 4 and Chapter 5. These chapters are used to justify the thematic unit of
the publications as well as to present the main results of the publications. Chapter 4 is devoted
to the articles on totally positive matrices. This chapter starts by presenting the new results on
high relative accuracy for the following subclasses of nonsingular totally positive matrices:
Laguerre matrices, Bessel matrices, generalized Pascal matrices and matrices of q-integers.
It also presents the optimal properties on tensor products of normalized B-bases that we have
obtained. Finally, tridiagonal Toeplitz P-matrices are characterized and we show how to per-
form accurate computations with them. Chapter 5 is devoted to M-matrices and other classes
of related matrices. We start the chapter presenting our results about the accurate computation
of the inverse and determinands of Nekrasov Z-matrices with positive diagonal entries as well
as the computation of the determinants of B-matrices also to high relative accuracy. After the
problems on computations to high relative accuracy, we introduce new infinity norm bounds
for the inverses of Nekrasov matrices as well as error bounds for the linear complementarity
problem when its associated matrix is Nekrasov with positive diagonal entries. These bounds
are based on the use of a diagonal scaling matrix that transforms a Nekrasov matrix into an
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strictly diagonally dominant matrix. The last section summarizes our results on BR
π -matrices,

a class that extends that of B-matrices. We have developed new error bounds for the linear
complementarity problem involving this class as well as an extension to the tensor case that
provides a new class of positive definite tensors. Finally, the last part includes the conclusions
of this thesis and it presents some possible future work based on the research work presented
in this dissertation.





Chapter 2

Introducción

Esta tesis trata problemas de Algebra Lineal Numérica, sobre todo del campo de estudio de
métodos numéricos adaptados a clases de matrices con estructura especial, campo que mues-
tra una intensa y creciente actividad investigadora. Uno de los problemas principales en este
campo consiste en identificar clases de matrices importantes por sus aplicaciones y para las
que se puedan encontrar métodos numéricos cuyo cálculo se podrá llevar a cabo con alta
precisión relativa. Conseguir cálculos precisos es una propiedad muy deseable para cualquier
método numérico. En este sentido, el ideal es conseguir alta precisión relativa (independien-
temente del condicionamiento del problema). Sin embargo, hasta ahora sólo se ha podido
garantizar dicha alta precisión relativa en un número muy reducido de métodos numéricos
para una lista muy corta de problemas matemáticos. En particular, en métodos aplicados a
matrices con una estructura especial. Entre los primeros precedentes, destacamos los algorit-
mos de alta precisión relativa para el cálculo de valores singulares, basados en las técnicas
desarrolladas por el profesor James Demmel y colaboradores [31], que pudieron ser aplicados
a matrices relacionadas con las diagonalmente dominantes [32, 87], así como los algoritmos
de alta precisión relativa para el cálculo de inversas o valores propios y singulares que se ob-
tuvieron para ciertas matrices totalmente positivas (es decir, matrices con todos sus menores
no negativos) [16–18, 20, 23–26, 58–60, 67–74, 76]. Además, para la obtención de dichos
algoritmos, encontrar una adecuada parametrización de las matrices es crucial en este campo.
Si queremos obtener un pequeño error en nuestros cálculos con aritmética de precisión finita
a pesar de que la matriz esté muy mal condicionada, estamos obligados a tener que trabajar
con una parametrización alternativa de la matriz. Esto es debido a que una ligera perturbación
en las entradas de la matriz dará lugar a un gran error en los cálculos debido al mal condicio-
namiento. La parametrización alternativa de la matriz deberá tener una interpretación natural
y será muy conveniente que se adapte a la estructura de la matriz, como ha ocurrido en los
casos mencionados anteriormente. Advirtamos de antemano que no toda clase de matrices
estructuradas es susceptible de admitir una parametrización que dé lugar a algoritmos de alta
precisión relativa. Por ejemplo, para unas matrices estructuradas tan sencillas como las de
Toeplitz, no es posible encontrar una parametrización que permita calcular con alta precisión
relativa sus determinantes [30]. En resumen, las principales clases de matrices para las que se
han podido desarrollar métodos con alta precisión relativa han sido clases de matrices cuya

9
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estructura tiene alguna relación con la positividad o bien con la dominancia diagonal, siendo
además necesario partir de una adecuada parametrización de las mismas.

Las matrices no negativas surgen con gran frecuencia en aplicaciones en los campos más
diversos, como la Física, Química, Biología, Ingeniería, Economía y Ciencias Sociales. Ade-
más, los bien conocidos resultados sobre la positividad o no negatividad de su valor propio
dominante y de su vector propio asociado (teoremas de Perron-Frobenius) ha sido una he-
rramienta clave en la modelización matemática de muchas situaciones reales. En general, las
clases de matrices relacionadas con la positividad se han mostrado muy fructíferas en las
aplicaciones. En particular, las matrices totalmente positivas tienen aplicaciones en muchos
campos, como diseño geométrico asistido por ordenador, teoría de aproximación, estadística,
finanzas o biomatemática. De hecho, la teoría de la Total Positividad, que incluye el estudio
de las matrices totalmente positivas, tiene más de un siglo de antigüedad y sus muchas apli-
caciones se pueden ver tanto en libros clásicos como el de Karlin [55] o el de Gantmacher
y Klein [37] como en el survey de Ando [3], en el libro editado por Gasca y Micchelli [44]
y en los dos libros recientes sobre matrices totalmente positivas [36, 89]. Destaquemos que
el interés de las matrices totalmente positivas no singulares en muchas aplicaciones es de-
bido a su propiedad (conocida como disminución de la variación) consistente en que, como
aplicaciones lineales, disminuyen la variación de signo: el número de variaciones de signo
entre las componentes consecutivas del vector imagen no supera el número de variaciones
de signo entre las componentes consecutivas del vector de partida. Por otro lado, recordemos
una clase de matrices relacionadas con las diagonalmente dominantes, que es la clase de las
M-matrices no singulares (que son matrices con extradiagonales no positivos e inversa no
negativa). Estas matrices también tienen aplicaciones muy importantes en economía, análi-
sis numérico, programación lineal y sistemas dinámicos, entre otros campos [6]. En ambos
casos, tanto para las matrices totalmente positivas como para las M-matrices, ha sido funda-
mental en los estudios de alta precisión relativa la obtención previa de una parametrización
adecuada de las mismas.

En el caso de matrices totalmente positivas no singulares, el punto de partida para parame-
trizarlas adecuadamente es la factorización (única) como producto de matrices bidiagonales
obtenida por M. Gasca y J.M. Peña en [46, 47]. Esta factorización bidiagonal fue usada por
P. Koev [60] para obtener algoritmos precisos (para el cálculo de valores singulares, valores
propios, inversas o resolución de ciertos sistemas de ecuaciones lineales) usando las entra-
das de esa factorización como parámetros conocidos. Ello implica conocer con alta precisión
relativa dichos parámetros, lo que se ha conseguido sólo para ciertas subclases de matrices
totalmente positivas. Los parámetros de la factorización bidiagonal se pueden obtener en tér-
minos de la técnica de eliminación conocida como eliminación de Neville [45] (véase Sección
3.3). La eliminación de Neville es un procedimiento de eliminación, alternativo a la elimina-
ción gaussiana, en el que se producen ceros en cada columna restando a cada fila un múltiplo
de la fila inmediatamente anterior, en vez de un múltiplo de la fila pivote como se hace en la
eliminación gaussiana. Los parámetros de la mencionada factorización bidiagonal de las ma-
trices totalmente positivas no singulares son los multiplicadores de la eliminación de Neville
de la matriz, de su traspuesta y los pivotes diagonales y así, en cualquier caso, se puede de-
mostrar que son cocientes de determinantes de la matriz. Las expresiones de los parámetros
de la factorización bidiagonal obtenidas por este procedimiento usan restas, que pueden dan
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lugar a una pérdida importante de cifras significativas (y por tanto de la alta precisión relativa)
cuando se realizan substracciones de cantidades de tamaño similar. Por tanto, hay que inten-
tar expresar dichos parámetros en términos de datos iniciales de problemas que involucren
dichas matrices y de modo que sólo se permitan restas en el caso de datos iniciales. Esta idea
ya se había aplicado a garantizar cálculos con alta precisión relativa en subclases de matrices
totalmente positivas como las de Vandermonde [33], las de Bernstein-Vandemonde [71, 72],
las de Pascal [2], las de Shoemaker-Coffey [22], las de Said-Ball-Vandermonde [74], las de
Cauchy-Vandermonde [75], las matrices de Jacobi-Stirling [25], las matrices de colocación
de bases racionales [24], de la base de q-Bernstein polinomios [26], las matrices de Lupaş
[27], o las de los polinomios ortogonales asociados a la medida de Marchenko-Pastur [73],
entre otras familias de matrices. En esta Tesis, se ha realizado una búsqueda sistemática de
posibles subclases de matrices totalmente positivas para las que se puedan encontrar con alta
precisión relativa los parámetros de la factorización bidiagonal y, en consecuencia, se puedan
resolver con alta precisión relativa los problemas algebraicos mencionados. Además, esto se
ha conseguido también para nuevas subclases de matrices totalmente positivas importantes
en las aplicaciones, sobre todo en los campos de combinatoria y polinomios ortogonales.
Concretamente, para la clase de matrices de Laguerre (en el artículo [17], que es presentado
en la página 33), que son las matrices de colocación correspondientes a los polinomios de
Laguerre (familia clásica de polinomios ortogonales), así como con las matrices de Bessel
(en el artículo [16], que es presentado en la página 45), que son las matrices de colocación
correspondientes a los polinomios de Bessel, también con matrices de Pascal generalizadas
(en el artículo [18], que es presentado en la página 107) así como con matrices de q-enteros
(en el artículo [20], que es presentado en la página 119). También incluimos aplicaciones
sobre matrices totalmente positivas que surgen en problemas de diseño geométrico asistido
por ordenador, en particular en relación con propiedades óptimas de las matrices de coloca-
ción de las B-bases normalizadas (bases con óptimas propiedades de preservación de forma
[9] y con otras propiedades óptimas [28]) y sus productos de Kronecker, obteniendo nuevas
propiedades de optimalidad (en el artículo [19], que es presentado en la página 141). Final-
mente, también se obtienen caracterizaciones y resultados de alta precisión relativa para las
P-matrices Toeplitz tridiagonales (en el artículo [21], que es presentado en la página 149).

Otra de las clases de matrices relacionada con algoritmos de alta precisión relativa es la
clase de las M-matrices. Recordemos que las M-matrices (en el caso no singular) son ma-
trices que tienen elementos diagonales positivos, elementos extradiagonales no positivos y
cuya inversa es no negativa. Constituyen una clase de matrices que ha dado lugar a importan-
tes aplicaciones en Análisis Numérico, en programación lineal, en sistemas dinámicos y en
economía (véase [6]). En el caso de matrices relacionadas con la dominancia diagonal y las
M-matrices, juega un papel muy importante en la búsqueda de algoritmos de alta precisión
relativa la obtención y análisis de las llamadas descomposiciones reveladoras del rango, que
consisten en una factorización XDY T donde D es diagonal no singular y X e Y son matrices
bien condicionadas. Si se conoce con alta precisión relativa una descomposición reveladora
del rango de una matriz, entonces se pueden obtener con alta precisión relativa sus valores
singulares mediante un algoritmo que obtuvieron J. Demmel y colaboradores [30]. Además,
en [32, 87] se obtuvieron descomposiciones reveladoras del rango con alta precisión relati-
va para las M-matrices diagonal dominantes, usando como parámetros conocidos de partida
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las sumas de filas y los elementos extradiagonales. En esta memoria, se estudian clases de
matrices más generales que las M-matrices diagonal dominantes para las que habrá que, en
primer lugar, encontrar la parametrización adecuada para poder obtener algoritmos con alta
precisión relativa. Con objeto de obtener dichas descomposiciones reveladoras del rango, un
instrumento fundamental es la búsqueda de adecuadas estrategias de pivotaje para las men-
cionadas clases de matrices, ya que la eliminación gaussiana con adecuadas estrategias de
pivotaje puede proporcionar descomposiciones LDU que son descomposiciones reveladoras
del rango (véase [32, 87]). Un ejemplo de clase de matrices estudiada en la memoria pa-
ra la que se ha encontrado una parametrización que garantiza cálculos algebraicos con alta
precisión relativa (tanto para calcular la inversa como el determinante) y que generaliza las
M-matrices diagonal dominantes es la clase de matrices de Nekrasov (en los artículos [79] y
[82], presentados en las páginas 63 y 173, respectivamente). Esta clase de matrices ha sido
muy útil recientemente [41] en el estudio de cotas de error en el problema de complemen-
tariedad lineal (problema de optimización con aplicaciones muy importantes). El problema
de complementariedad lineal tiene solución única cuando la matriz asociada es una P-matriz
[11], es decir, cuando todos sus menores principales son positivos. Tanto la matrices total-
mente positivas no singulares como las M-matrices no singulares son P-matrices. Para las
Z-matrices de Nekrasov también obtenemos nuevas cotas para la norma de su inversa, que a
su vez permiten obtener nuevas cotas de error en el problema de complementariedad lineal
(en el artículo [81], que es presentado en la 79). Otra clase de P-matrices es la de las B-
matrices [85], para la que también se garantiza el cálculo del determinante con alta precisión
relativa (en el artículo [82], que es presentado en la página 173). Además, en la memoria se
analizan las BR

π -matrices [83], que forman otra clase de P-matrices más general que la de las
B-matrices y para ellas también se obtienen cotas de error en el problema de complementa-
riedad lineal (en el artćulo [83], que es presentado en la página 189). Finalmente, estas clases
de matrices relacionadas con la dominancia diagonal tienen una aplicación potencial en teo-
ría de hipermatrices. El interés por las hipermatrices (o tensores, véase [90]) ha aumentado
recientemente de manera considerable por sus aplicaciones en el tratamiento computacional
de “Big Data” (Datos Masivos), campo de gran interés en la actualidad en tecnologías de la
información y de la comunicación. Esto ha dado lugar a un gran número de publicaciones
que intentan extender al contexto de tensores técnicas y resultados que han sido útiles en el
caso matricial. Uno de los problemas en que nos centramos es la búsqueda de condiciones
suficientes de tensores simétricos para que sean definidos positivos, cuestión muy importante
en problemas de optimización. Concretamente, abordamos estas cuestiones en la extensión
de las BR

π -matrices a tensores (en el artículo [80], que es presentado en la página 91).
Este trabajo está estructurado en cuatro partes del modo siguiente. La primera parte es-

tá compuesta por esta Introducción y el Capítulo 3. El Capítulo 3 introduce conceptos y
resultados básicos de la Tesis. Concretamente, se introducen las P-matrices, M-matrices y
matrices totalmente positivas, así como las bases totalmente positivas. También conceptos
básicos de tensores y la alta precisión relativa. En la segunda parte, presentamos en las pá-
ginas 33, 45, 63, 79, 91, 107, 119, 141, 149, 173 y 189 los artículos [17], [16], [79], [81],
[80], [18], [20], [19], [21], [82] y [83] respectivamente, que pertenecen al compendio de pu-
blicaciones de esta tesis. La tercera parte está compuesta por el Capítulo 4 y el Capítulo 5.
El objetivo de estos capítulos es justificar la unidad temática de las publicaciones y presentar
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los resultados principales de estos artículos. En el Capítulo 4 comenzamos mostrando los re-
sultados que permiten los cálculos con alta precisión relativa para las siguientes subclases de
matrices totalmente positivas: matrices de Laguerre, matrices de Bessel, matrices de Pascal
generalizadas y matrices de q-enteros. También se muestran las propiedades óptimas de los
productos tensoriales de B-bases normalizadas. Finalmente, se caracterizan las P-matrices
Toeplitz tridiagonales y se garantizan para ellas cálculos con alta precisión relativa. El Capí-
tulo 5 está dedicado a M-matrices y otras clases de matrices relacionadas, considerando tanto
los problemas de la obtención de algoritmos con alta precisión relativa como otros problemas
relacionados con dichas clases de matrices. Comenzamos considerando la alta precisión re-
lativa para la inversa y los determinantes de las Z-matrices Nekrasov con entradas diagonales
positivas y para los determinantes de las B-matrices. A continuación, se estudian cotas para
matrices de Nekrasov tanto para la norma de su inversa como para el error de los problemas
de complementariedad lineal correspondientes. Dichas cotas se basan en en el uso de una
matriz de escalado que transforma las matrices en diagonal dominantes. La última sección
considera BR

π -matrices, que generalizan las B-matrices. Se estudian cotas para el error de los
problemas de complementariedad lineal correspondientes y también su extensión a tensores
y problemas relacionados. Finalmente, la parte cuarta incluye las conclusiones de la Tesis así
como posible trabajo futuro relacionado con la investigación realizada en la Tesis.





Chapter 3

Background

This first chapter provides the foundation for the publications that compose the core of this
thesis. It presents a short survey on the classes of structured matrices object of study and the
tools used to achieve accurate computations. It is organized in five sections. The first section
introduces basic notation and the class of P-matrices, which includes most of our examples.
The second section is devoted to M-matrices, H-matrices and Gaussian elimination. The third
section presents totally positive matrices, Neville elimination and the bidiagonal decomposi-
tion. The fourth section introduces tensors (or hypermatrices) and presents some of the basic
concepts used on the study of the extension of matrices to a higher order case. Finally, we in-
troduce the concepts of finite precision arithmetic, roundoff error, high relative accuracy and
we identify the right tools that grant accurate results for the classes of diagonally dominant
M-matrices and nonsingular totally positive matrices.

3.1 Basic concepts and P-matrices
Let us start by introducing some notation that will be used through this dissertation. In
general, we will assume that matrices are square unless stated otherwise. For example, A :=
(ai j)1≤i, j≤n will denote an n× n matrix, where ai j is the entry in the place (i, j) of A. The
first important case of structured matrices is given by diagonal matrices. We say that D :=
(di j)1≤i, j≤n is diagonal if di j = 0 whenever i 6= j. In this case, it is possible to represent D in
terms of its diagonal entries, so we will use the notation D := diag(d1, . . . ,dn), where di := dii
for i = 1, . . . ,n.

Let us denote by Qk,n the set of strictly increasing sequences of k integers chosen from
{1, . . . ,n}. Let α = (α1, . . . ,αk) and β = (β1, . . . ,βk) be two sequences of Qk,n. Then A[α|β ]
denotes the k× k submatrix of A formed using the rows numbered by α1, . . . ,αk and the
columns numbered by β1, . . . ,βk. Whenever α = β , the submatrix A[α|α] is called a principal
submatrix and it is denoted by A[α], and detA[1, . . . ,k] is called a leading principal minor of
A. For each α ∈ Qk,n, the dispersion number d(α) is defined by

d(α) := αk−α1− (k−1). (3.1)

So, α consists of consecutive integers if and only if d(α) = 0.

15
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Let us denote by Ei(x), with i = 2, . . . ,n, the n× n lower elementary bidiagonal matrix
whose (i, i−1) entry is x:

Ei(x) =



1
. . .

1
x 1

. . .
1


. (3.2)

In particular, Ei(x) can be identified by its 2× 2 principal submatrix using the rows and
columns with indices i− 1 and i. The matrix ET

i (x) := (Ei(x))T is called upper elementary
bidiagonal matrix.

As we anticipated earlier, the matrices studied in this dissertation are closely related to
the class of P-matrices.

Definition 3.1. A square matrix is a P-matrix if all its principal minors are positive.

The next proposition characterizes a P-matrix in terms of the positivity of the real eigen-
values of its principal submatrices.

Proposition 3.2. (cf. 2.5.6.5 in p. 120 of [53]) An n×n matrix A is a P-matrix if and only if
every real eigenvalue of every principal submatrix of A is positive.

The class of P-matrices admits different characterizations. Some of their characteriza-
tions directly relate them to their applications. For example, we can characterize P-matrices
in terms of a common problem arising in linear programming: the linear complementarity
problem (LCP). Given an n×n real matrix A and a vector q ∈Rn, the linear complementarity
problem LCP(A,q) consists of finding, if possible, vectors x ∈ Rn satisfying

Ax+q≥ 0, x≥ 0, xT (Ax+q) = 0, (3.3)

where the inequalities are entrywise. As the following theorem states, the existence of a
unique solution of (3.3) characterices P-matrices (p. 275 of [6]).

Theorem 3.3. The matrix M = (mi j)1≤i, j≤n is a P-matrix if and only if the linear comple-
mentarity problem LCP(M,q) (3.3) has a unique solution x∗ for every q ∈ Rn.

Let us also recall that an n×n real matrix A is called a Q-matrix if LCP(A,q) has a solution
for any q ∈ Rn (see p. 276 of [6]).

The problem of characterizing the class of P-matrices and the development of practical
criteria for identifying this class has attracted a lot of attention. The problem of recognizing
whether a given matrix is a P-matrix is called the P-problem. It has been shown that the
P-problem is CO-NP-complete [12] and that, in general, the P-problem seems inevitably of
exponential time complexity [95]. However, the complexity of recognizing some important
subclasses of P-matrices, such as nonsingular M-matrices [86], nonsingular totally positive
matrices [45] or B-matrices [85], has polynomial complexity.
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M-matrices and totally positive matrices arise in many applications and, joint with some
related classes of matrices, are the main topic of this dissertation. The next sections will
introduce these classes of matrices and the properties and techniques that will be key to
achieving accurate computations with them.

3.2 M-matrices, related matrices and Gaussian elimination

We say that a real matrix A = (ai j)1≤i, j≤n is a Z-matrix if all its off–diagonal entries are
nonpositive, i.e., ai j ≤ 0 for all (i, j) such that i 6= j.

Definition 3.4. A Z-matrix A = (ai j)1≤i, j≤n is called an M-matrix if it can be expressed in
the form: A = sI−B, with B≥ 0 and s≥ ρ(B) (where ρ(B) is the spectral radius of B).

If s > ρ(B), then A is a nonsingular M-matrix. It is possible to achieve accurate com-
putations with M-matrices when they are also diagonally dominant. In fact, the condition of
diagonal dominance is closely related to this class of matrices and can be used to characterize
it (see Theorem 3.7). Let us first introduce the definition of diagonally dominant matrices.

Definition 3.5. We say that A = (ai j)1≤i, j≤n is a (row) diagonally dominant (DD) matrix if

|aii| ≥∑
j 6=i
|ai j| for all i = 1, . . . ,n. (3.4)

If (3.4) holds strictly for all i = 1, . . . ,n, then we say that A is strictly diagonally dominant
(SDD).

As an immediate consequence of the definition, strictly diagonally dominant matrices
are nonsingular. The following result gives a useful relationship between M-matrices and
nonsingular M-matrices.

Lemma 3.6. (cf. Lemma 4.1 in chapter 6 of [6]) Let A = (ai j)1≤i, j≤n be a Z-matrix. Then A
is an M-matrix if and only if A+ εI is a nonsingular M-matrix for all scalars ε > 0.

Nonsingular M-matrices admit a lot of different characterizations (Theorem (2.3) of chap-
ter 6 of [6] presents 50 different characterizations). Nonsingular M-matrices are well-known
in many applications [6] because their inverses are entrywise nonnegative, i.e., A−1 ≥ 0.

Theorem 3.7. Let A = (ai j)1≤i, j≤n be a Z-matrix. Then the following conditions are equiva-
lent:

i) A is a nonsingular M-matrix.

ii) Every real eigenvalue of A is positive.

iii) Every principal minor of A is positive.

iv) Every leading principal minor of A is positive.
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v) A is nonsingular and A−1 is nonnegative (A−1 ≥ 0).

vi) The diagonal entries of A are positive and there exists a diagonal matrix D such that
AD is a strictly diagonally dominant matrix.

vii) A = LU, where L is a lower triangular matrix, U is an upper triangular matrix and the
all diagonal entries of L and U are positive.

viii) A is nonsingular and A+D is nonsingular for every diagonal matrix D with positive
diagonal entries.

Let us observe that, since i) implies iii) in Theorem 3.7, nonsingular M-matrices are also
P-matrices. In order to achieve accurate computations with DD M-matrices, we will use an
adapted version of the well-known method of Gaussian elimination. Given a nonsingular
matrix A = (ai j)1≤i, j≤n, Gaussian elimination is a method used to produce zeros below the
main diagonal of A. This procedure consists of n−1 steps leading to the following sequence
of matrices:

A = A(1)→ Ã(1)→ A(2)→ Ã(2)→ . . .→ A(n) = Ã(n) = DU, (3.5)

where A(k) has zero entries under the main diagonal in its first k− 1 columns and DU is
an upper triangular matrix. We obtain Ã(k) from A(k) by reordering the rows and/or columns
using a pivoting strategy. A pivoting strategy in Gaussian elimination consists on a reordering
of the rows and/or columns of A at every step to choose the pivot entry that will be used to
produce zeros on the next step. In (3.5), the pivoting strategy is applied to transform A(k) into
Ã(k). Two well-known pivoting strategies are partial pivoting and complete pivoting. Partial
pivoting consists on a reordering of rows at every step looking for the entry with the largest
absolute value in the column A(k)[k, . . . ,n|k] where we want to produce zeros at the next step.
Complete pivoting consists on a reordering of rows and columns at every step, looking for
the entry with the largest absolute value in the whole submatrix A(k)[k, . . . ,n]. For all pivoting
strategies, it is needed to choose a nonzero pivot ã(k)kk . Pivoting strategies that apply the same
permutation to the rows and columns at every step are called symmetric pivoting strategies.

The entry ã(k)kk in Ã(k) is the pivot chosen by the pivoting strategy and it will be used to pro-
duce zeros below the main diagonal in the k-th step. For that purpose, we subtract multiples
of the k-th row to the rows beneath it. Hence, the resulting matrix A(k+1) = (a(k+1)

i j )1≤i, j≤n is
given by

a(k+1)
i j =


ã(k)i j , if 1≤ i≤ k,

ã(k)i j −
ã(k)ik

ã(k)kk

ã(k)k j , if k < i≤ n.

We can also compute the inverse of A using the well-known method of Gauss-Jordan. We
can describe Gauss-Jordan (without pivoting) through the following sequence of steps

A = A(1)→ A(2)→ . . .→ A(n) = DU → A(n+1)→ . . .→ A(2n−1) = D→ A(2n) = I,
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where the first n−1 steps consist of using Gaussian elimination without pivoting to produce
zeros below the main diagonal of A. Then on the next n−1 steps we apply Gaussian elimina-
tion without pivoting to produce zeros over the diagonal of A (this procedure can be seen as
applying Gaussian elimination to (A(n))T ). Then we finish multiplying A(2n−1) by a diagonal
matrix so that we obtain the identity matrix. If we apply the same elementary operations to
the identity matrix (i.e., to B = B(1) = I), when we obtain the result A(2n) = I we also com-
pute B(2n) = A−1. Analogously to Gaussian elimination, Gauss-Jordan can also be carried
out using a row pivoting strategy.

Given a complex matrix A = (ai j)1≤i, j≤n, its comparison matrix M (A) = (ãi j)1≤i, j≤n
satisfies that ãii := |aii| and ãi j := −|ai j| for all j 6= i and i, j = 1, . . . ,n. Let us notice that a
comparison matrix is always a Z-matrix. The next definition introduces a class that contains
M-matrices.

Definition 3.8. We say that a complex matrix A is an H-matrix if its comparison matrix
M (A) = (ãi j)1≤i, j≤n is a nonsingular M-matrix.

A wider class of H-matrices can be defined without requiring the nonsingularity of its
comparison matrix. For a study on a more general definition of H-matrices, see [8]. Non-
singular M-matrices A can be characterized in terms of the existence of a scaling diagonal
matrix such as the product AD is a strictly diagonally dominant matrix (see vi) in Theorem
3.7). In fact, this property characterizes the class of H-matrices (see p. 124 of [53]) as it can
be seen in the following theorem.

Theorem 3.9. A = (ai j)1≤i, j≤n is an H-matrix if and only if there exists a diagonal matrix D
such that AD is a strictly diagonally dominant matrix.

The definition of diagonal dominance does not depend on the sign structure of a matrix.
Hence, finding a diagonal matrix D as described in Theorem 3.9 for an M-matrix M means
finding a scaling matrix for any H-matrix A satisfying that M (A) = M. This connection
helped us developing error bounds for the LCP and infinity norm bounds for the inverses
of Nekrasov matrices in [81] using as a starting point a diagonal scaling matrix obtained
for Nekrasov Z-matrices with positive diagonal entries in [79]. Nekrasov Z-matrices with
positive diagonal entries are a subclass of M-matrices that contains SDD M-matrices. Let
N := {1, . . . ,n}. Given a complex matrix A = (ai j)1≤i, j≤n with aii 6= 0 for all i ∈ N, we define

h1(A) := ∑
j 6=1
|a1 j|, hi(A) :=

i−1

∑
j=1
|ai j|

h j(A)
|a j j|

+
n

∑
j=i+1

|ai j|, i = 2, . . . ,n. (3.6)

We say that A is a Nekrasov matrix if |aii| > hi(A) for all i ∈ N (see [13–15, 94]). Nekrasov
matrices are nonsingular H-matrices. In particular, a Nekrasov Z-matrix with positive diago-
nal entries is a nonsingular M-matrix.

Another subclass of P-matrices closely related to M-matrices is that of B-matrices. The
condition that defines B-matrices was studied in [51], where it was shown that this class
of matrices has positive determinant. In [85], the class was named B-matrices and it was
shown that it is a subclass of P-matrices (Corollary 2.6 of [85]). The class was first studied
in the development of localization criteria for the eigenvalues of a real matrix. Since then,
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the class of B-matrices has been used in more applications such as the development of error
bounds for the LCP [39] and the development of simple criteria for identifying subclasses of
P-matrices. Because of that, the class of B-matrices has also been extended to characterize
wider subclasses of P-matrices [78] and to the higher order case due to the interest of finding
easy recognition conditions for subclasses of P-tensors based on their entries. Let us now
recall the definition of B-matrix [85].

Definition 3.10. A square real matrix A := (ai j)1≤i, j≤n with positive row sums is a B-matrix
if all its off-diagonal elements are bounded above by the corresponding row means, i.e., for
all i = 1, . . . ,n,

n

∑
j=1

ai j > 0,
1
n

(
n

∑
k=1

aik

)
> ai j ∀ j 6= i. (3.7)

B-matrices admit a decomposition that relates them to SDD Z-matrices (and so, to SDD
M-matrices). Given a real matrix B = (bi j)1≤i, j≤n, we define for each i = 1, . . . ,n, r+i :=
max j 6=i{0,bi j}. Then B can be decomposed in the form

B = B++C, (3.8)

B+ =

b11− r+1 . . . b1n− r+1
...

...
bn1− r+n . . . bnn− r+n

 , C =

r+1 . . . r+1
...

...
r+n . . . r+n

 . (3.9)

This decomposition gives the following characterization of B-matrices.

Proposition 3.11. Let M be a real matrix and let us write M = B++C following (3.8) and
(3.9). Then M is a B-matrix if and only if the matrix B+ is an SDD Z-matrix.

The decomposition defined by (3.8) and (3.9) gives a good starting point for finding ex-
tensions of the class of B-matrices. For example, we say that B is a B-Nekrasov matrix if
the matrix B+ given by (3.8) and (3.9) is a Nekrasov Z-matrix with positive diagonal entries
(see [43]) or that B is a MB-matrix if B+ is a nonsingular M-matrix [65]. Both B-Nekrasov
matrices and MB-matrices are also P-matrices. And, B-matrices are contained in B-Nekrasov
matrices while B-Nekrasov matrices form a subclass of MB-matrices.

3.3 Totally positive matrices and bases

The second class of matrices that we have studied is known as totally positive matrices [89]
or also totally nonnegative matrices [36].

Definition 3.12. We say that a matrix is totally positive (TP) if all its minors are nonnegative
and that it its strictly totally positive (STP) if all its minors are positive.
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Nonsingular TP matrices are in particular P-matrices (cf. Corollary 3.8 of [3]). Checking
the definition of a TP matrix or STP matrix would require the computation of many determi-
nants. However, because of the strong structure of these classes, it is far easier to check total
positivity and strict total positivity than checking that a matrix is a P-matrix. For instance,
the elimination procedure called Neville elimination (3.11) gives us a method to check if a
n×n matrix is TP (or STP) with O(n3) elementary operations (see [45]). Moreover, there is
also a simple sufficient condition based on the matrix entries to assure total positivity. Given
a positive matrix A = (ai j)1≤i, j≤n, the following condition is sufficient for its total positivity
(see [56] or section 2.6 of [89]):

ai jai+1, j+1 ≥ 4cos2
(

π

n+1

)
ai, j+1ai+1, j, (3.10)

with i, j = 1, . . . ,n−1. If all these inequalities are strict, then A is STP.
In the previous section, we have commented that Gaussian elimination is an important

tool to achieve accurate computations with M-matrices. In this section, we introduce an al-
ternative procedure to Gaussian elimination, called Neville elimination (NE), which is going
to be fundamental to our study of TP matrices. As we have just stated, Neville elimination
(NE) is an elimination procedure used to produce zeros below the main diagonal of a matrix.
NE makes zeros in a column of a matrix by adding to each row an appropriate multiple of
the previous one (see [45]). Given a nonsingular matrix A = (ai j)1≤i, j≤n, the NE procedure
consists of n−1 steps, leading to a sequence of matrices as follows:

A = A(1)→ Ã(1)→ A(2)→ Ã(2)→ ··· → A(n) = Ã(n) =U, (3.11)

with U an upper triangular matrix.
In (3.11), Ã(t) is obtained from the matrix A(t) by moving to the bottom the rows with

a zero entry in column t below the main diagonal, if necessary. The matrix A(t+1), t =
1, . . . ,n−1, is obtained from Ã(t) by computing

a(t+1)
i j =


ã(t)i j −

ã(t)it

ã(t)i−1,t

ã(t)i−1, j, if t ≤ j ≤ n, t +1≤ i≤ n and ã(t)i−1,t 6= 0,

ã(t)i j , otherwise,

(3.12)

for all t ∈ {1, . . . ,n−1}. The entry

pi j := ã( j)
i j , 1≤ j ≤ i≤ n, (3.13)

is the (i, j) pivot of the NE of A, and the pivots pii are called diagonal pivots. If all the pivots
are nonzero, then we can use the following expression to compute them (Lemma 2.6 of [45]):

pi1 = ai1, 1≤ i≤ n,

pi j =
detA[i− j+1, . . . , i|1, . . . , j]

detA[i− j+1, . . . , i−1|1, . . . , j−1]
, 1≤ j ≤ i≤ n. (3.14)
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Finally, the number mi j defined as

mi j =


ã( j)

i j

ã( j)
i−1, j

=
pi j

pi−1, j
, if ã( j)

i−1, j 6= 0,

0, if ã( j)
i−1, j = 0,

(3.15)

is called the (i, j) multiplier of NE of A, where 1≤ j < i≤ n.
NE is a method with a lot of useful properties when applied to TP matrices. If A is a

nonsingular TP matrix, then no rows exchanges are needed when applying NE and so, in this
case, A(t) = Ã(t) for all t. In fact, in Corollary 5.5 of [45] the following characterization of
nonsingular TP matrices was provided based on NE.

Theorem 3.13. Let A be a nonsingular matrix. Then A is TP if and only if there are no row
exchanges in the Neville elimination of A and UT and the pivots of both Neville elimination
procedures are nonnegative.

So, by Theorem 3.13 Neville elimination characterizes nonsingular TP matrices. More-
over, the pivots and multipliers associated to this elimination procedure gives us a different
representation of this class of matrices: the bidiagonal decomposition. In [47], it was seen
that nonsingular TP matrices can be expressed as a unique bidiagonal decomposition.

Theorem 3.14. (cf. Theorem 4.2 of [47]). Let A be a nonsingular n×n TP matrix. Then A
admits a decomposition of the form

A = Fn−1 · · ·F1DG1 · · ·Gn−1, (3.16)

where Fi and Gi, i ∈ {1, . . . ,n−1}, are the lower and upper triangular nonnegative bidiago-
nal matrices given by

Fi =


1
0 1

. . . . . .
0 1

mi+1,1 1
. . . . . .

mn,n−i 1

 , GT
i =


1
0 1

. . . . . .
0 1

m̃i+1,1 1
. . . . . .

m̃n,n−i 1

 , (3.17)

and D a diagonal matrix diag(p11, . . . , pnn) with positive diagonal entries. If, in addition, the
entries mi j, m̃i j satisfy

mi j = 0⇒ mh j = 0 ∀h > i

and
m̃i j = 0⇒ mik = 0 ∀k > j,

then the decomposition given by (3.16) and (3.17) is unique.

By Theorems 4.1 and 4.2 of [47] we also know that, for 1 ≤ j < i ≤ n, mi j and pii in
the bidiagonal decomposition given by (3.16) with (3.17) are the multipliers and the diagonal
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pivots when applying the NE to A and, using the arguments of p. 116 of [47], m̃i j are the
multipliers when applying the NE to AT .

The bidiagonal decomposition gives a different representation of a TP matrix. If we
look at (3.16) and (3.17), we see that for an n× n matrix we have a representation in terms
of n2 parameters (the entries pii, mi j and m̃i j), which plays a key role to derive accurate
computations with these matrices. In [60], Plamen Koev introduced the following abbreviated
matrix notation for the bidiagonal decomposition of a matrix:

(BD(A))i j =


mi j, if i > j,
m̃ ji, if i < j,
pii, if i = j.

(3.18)

If A is a TP matrix, then AT is also TP. Transposing formula (3.16) of Theorem 3.14 we
obtain the unique bidiagonal decomposition of AT :

AT = GT
n−1 · · ·GT

1 DFT
1 · · ·FT

n−1,

where Fi and Gi, i∈ {1, . . . ,n−1}, are the lower and upper triangular nonnegative bidiagonal
matrices given in formula (3.17). Then it can be checked that

BD(AT ) = BD(A)T . (3.19)

Knowing the bidiagonal decomposition of nonsingular totally positive matrices accurately
will allow us to solve many algebraic problems with them with high relative accuracy [59, 60].
We will elaborate on this topic in Section 3.5 and it will be one of the main ideas used in
Chapter 4 to achieve accurate computations.

Given a system of functions u = (u0, . . . ,un) defined on an interval I ⊆ R, the collocation
matrix of u at t0 < .. . < tn in I is given by

M
(

u0, . . . , un
t0, . . . , tn

)
:=

u0(t0) · · · un(t0)
...

...
u0(tn) · · · un(tn)

 (3.20)

We say that the system of functions u is totally positive if all its collocation matrices are
totally positive. If ∑

n
i=0 ui(t) = 1 for all t ∈ I, then we say that the system is normalized. Nor-

malized totally positive (NTP) systems play an important role in Computer Aided Geometric
Design (CAGD) because of their shape preserving properties [88].

A totally positive system of linearly independent functions u defined on I ⊆ R is said to
be a B-basis if all totally positive bases v of the space generated by u satisfy that

(v0, . . . ,vn) = (u0, . . . ,un)A, with A a nonsingular TP matrix (3.21)

Among all NTP bases of a space, the basis with optimal shape preserving properties is the
normalized B-basis [9]. Hence, collocation matrices of normalized B-bases are an important
example of TP matrices. Some examples of well-known B-bases are:
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• In the space of polynomials of degree less than or equal to n on the interval [0,1],
the normalized B-basis is the Bernstein basis (bn

i )0≤i≤n. This basis is formed by the
Bernstein polynomials of degree n defined as

bn
i (t) :=

(
n
i

)
(1− t)n−it i, i = 0,1, . . . ,n. (3.22)

• In the space of polynomials of degree less than or equal to n on the interval [0,∞),
the B-basis is given by the monomial basis (xi)0≤i≤n. This space has no normal-
ized totally positive basis. The collocation matrices of the monomial basis are also
known as Vandermonde matrices. The Vandermonde matrix is defined to be the matrix
V (x1, . . . ,xn) := (x( j−1)

i )1≤i, j≤n and all its minors are positive as long as it is defined on
increasingly ordered positive nodes 0 < x1 < x2 < .. . < xn.

• Let us consider a sequence (wi)0≤i≤n of positive weights. Then the system of functions
(rn

0, . . . ,r
n
n) defined on the interval [0,1] by

rn
i (t) :=

wibn
i (t)

∑
n
j=0 w jbn

j(t)
, i = 0, . . . ,n,

is called the rational Bernstein basis and it is the normalized B-basis of the correspond-
ing spanned space of functions. Both the Bernstein basis (bn

i )0≤i≤n and the rational
Bernstein basis can also be defined on any closed interval [a,b].

3.4 Basic concepts and definitions about tensors
We have considered the extension of some of the studied classes of matrices to the higher
dimensional case. The concept of tensor or hypermatrix is introduced as a higher order gen-
eralization of matrices to develop an extension of matrix theory to be used with multi-indexed
datasets. We are going to introduce the concept of tensor and give some basic definitions of
important classes of tensors. Some of these definitions are extensions of the definitions intro-
duced in the previous sections for matrices.

A tensor (or hypermatrix) A = (ai1···im) is a multi-array of entries ai1···im where i j =
1, . . . ,n j for j = 1, . . . ,m. We will consider real mth order n-dimensional tensors, that is,
the case where A = (ai1···im) ∈ R[m,n] is a multi-array of real entries ai1···im ∈ R with ik ∈
N := {1, . . . ,n} for k = 1, . . . ,m. We say that A is a symmetric tensor if its entries are
invariant under any permutation of its indices. Let us consider the set of entries aii2···im for
i, i2, . . . , im ∈ N as the i-th row of A . Then, the i-th row sum of A is given by

Ri(A ) :=
n

∑
i2,...,im=1

aii2···im .

A tensor A is called diagonally dominant if

|ai···i| ≥
n

∑
i2,...,im 6=(i,...,i)

|aii2···im|, i ∈ N. (3.23)
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Let us notice that this definition is an extension of diagonally dominant matrix given by (3.4)
in Definition 3.5. If (3.23) holds strictly, then A is called strictly diagonally dominant. We
say that A = (ai1···im) ∈ R[m,n] is a B-tensor (B0-tensor) if

Ri(A )> 0 (≥ 0), i ∈ N, (3.24)

and
Ri(A )

nm−1 > ai j2··· jm (≥ ai j2··· jm), ∀( j2, . . . , jm) 6= (i, . . . , i). (3.25)

The definition of B-tensor (see p. 201 [90]) also extends the definition of B-matrix given in
Definition 3.10. We say that a tensor is nonnegative if all its entries are nonnegative, and that
it is a Z-tensor if all its off-diagonal entries are nonpositive. Let us also define the identity
tensor I , whose entries are ones on the main diagonal (i.e., entries such that i1 = . . .= im )
and zeros elsewhere. A tensor A = (ai1···im) ∈ R[m,n] is called an (a strong) M-tensor if there
exists a nonnegative tensor B = (bi1···im) ∈ R[m,n] and a positive scalar s ≥ ρ(B) (> ρ(B))
such that A = sI −B, where ρ(B) is the spectral radius of B (see page 15 of [90]).
(Strictly) diagonally dominant Z-tensors are also (strong) M-tensors (as it is the case in the
2-dimensional case with SDD Z-matrices and nonsingular M-matrices).

A tensor A is called positive semidefinite (definite) if for each (nonzero) x ∈ Rn

A xm ≥ 0 (> 0),

where A xm = ∑
n
i1,...,im=1 ai1i2···imxi1 · · ·xim . Notice that there are not any nontrivial positive

semidefinite tensors when m is odd. Let us recall that, given an m-th order tensor A =
(ai1···im) ∈ R[m,n] and x ∈ Rn, then A xm−1 ∈ Rn is given by

(
A xm−1)

i :=
n

∑
i2,...,im=1

aii2···imxi2 · · ·xim, for each i = 1, . . . ,n.

Definition 3.15. (see [34] or page 192 of [90]) A tensor A ∈R[m,n] is called a P-tensor if for
each nonzero x ∈ Rn there exists an index i ∈ N such that

xm−1
i (A xm−1)i > 0. (3.26)

A tensor A ∈ R[m,n] is called a P0-tensor if for each nonzero x ∈ Rn there exists some index
i ∈ N such that

xi 6= 0 and xm−1
i (A xm−1)i ≥ 0. (3.27)

In [93] it was shown that, in the even order case, a symmetric tensor is positive definite
(semidefinite) if and only if it is a P-tensor (P0-tensor). The following result shows the close
relationship between M-tensors and positive definiteness.

Proposition 3.16. (Theorem 4.1 of [99] and Lemma 3 of [64]) Let A ∈R[m,n] be a symmetric
Z-tensor and let m be even. Then
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1. A is positive definite if and only if A is a strong M-tensor.

2. A is positive semidefinite if and only if A is an M-tensor.

The next section will introduce the basic concepts on error analysis for numerical methods
and will show some of the right tools for achieving accurate computations with nonsingular
totally positive matrices and nonsingular DD M-matrices.

3.5 High relative accuracy in numerical linear algebra
When studying a numerical algorithm, we should take into account the effect of errors in our
computations. Following the classical reference [50], we can identify three main sources of
errors in numerical computations: rounding, truncation and data uncertainty. In our work,
we will focus on the effect of rounding errors and data uncertainty. Rounding error is an
unavoidable consequence of working with a finite precision arithmetic. Its effect should be
taken into account because a bad method could magnify these errors and result in inaccurate
numerical solutions. For studying the effect of errors, this first question raises: How can we
measure them? Let us suppose that we want to compute an approximation x̂ to a real number
x. The first definition, the absolute error, measures the difference between x̂ and x.

Definition 3.17. The absolute error of x̂ is given by Eabs := |x− x̂|.

The absolute error is a straightforward definition, but it presents a small “problem” for
our analysis: it is scale dependent. Because of that, we prefer using the relative error.

Definition 3.18. The relative error of x̂, with x 6= 0, is given by Erel := |x−x̂|
|x| .

For the case of a vector x and its approximation x̂, we define the absolute and relative
errors in terms of a vector norm ‖·‖.

Definition 3.19. The absolute error of x̂ is defined as Eabs := ‖x− x̂‖ and its relative error,
whenever x 6= 0, is given by Erel(x̂) := ‖x−x̂‖

‖x‖ .

If we are interested in the error of the smaller entries of a vector x̂ the relative error might
not be informative, so we will also consider the componentwise relative error.

Definition 3.20. The componentwise relative error of x̂, with xi 6= 0, is given by Ecomp :=
maxi

|xi−x̂i|
|xi| .

The absolute and relative errors of x̂ are called forward errors. Since we usually do
not know the error obtained when we use a numerical method, we perform error analysis by
developing upper bounds for this quantity. There is a different strategy, called backward error
analysis, for studying how good is a computed solution. Analyzing the backward error means
that we look for a perturbation of the original problem that has x̂ as its exact solution and then
we measure the distance between these two problems. This idea relates error analysis with
perturbation theory. The backward and forward errors are related by the conditioning of the
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problem, that is, the sensitivity of the problem to perturbations of the data. In general, when
backward error, forward error and the condition number of a problem are well defined, we
have the useful rule of thumb:

forward error . condition number×backward error.

The condition number is problem related. In numerical linear algebra, it is widespread
the use of the normwise condition number associated to the problem of finding a solution for
the linear system of equations Ax = b, where A is a nonsingular square matrix (see section
2.2 of [29]).

Definition 3.21. The condition number of a nonsingular matrix A is defined to be κ(A) :=
‖A‖ · ‖A−1‖, where ‖·‖ is a matrix norm.

Some of the most common cases are κ∞(A) (using the infinity norm ‖·‖∞) and κ2(A) (us-
ing the 2-norm ‖·‖2). This condition number depends only on A, and if it is too large it might
impede getting a good forward error bound.

We have mentioned that one source of error comes from working on a finite precision
arithmetic. Given a subset F of the real numbers (F ⊂ R), we say that F is a floating point
number system if its elements are of the form:

y =±m×β
e−t , (3.28)

where the number m is a real number called mantissa and it satisfies that 0≤ m≤ β t−1. The
number system F is defined by four integers: the base β , the precision t and the exponent
range emin ≤ e≤ emax.

Given a real number x that lies in the range of F , we can approximate it (by rounding)
to the closest number in F with a relative error no larger than u = 1

2β 1−t , which is called the
unit roundoff. For the rounding error analysis, we will assume the following model for the
floating point number system F . Given x,y ∈ F :

f l(x� y) = (x� y)(1+δ ), |δ |< u, �=+,−,∗,/, (3.29)

where f l(·) means the computed value of the expression. In this context, we say that we have
computed a solution to high relative accuracy (HRA) if its forward relative error satisfies the
following relationship

forward relative error ≤ Ku, for some constant K. (3.30)

In double precision, the unit roundoff is of the order of 10−16. We will see that the relative
errors of the solutions computed with the high relative methods studied in the following
chapters usually stay very close to this quantity.

While high relative accuracy is a highly desirable property for a numerical method, it
is not possible to achieve it for every problem. For instance, we cannot assure HRA for the
simple problem of evaluating the expression x+y+z (see [30]). Another example with a neg-
ative answer comes from the evaluation of the determinant of a class of structured matrices:
Toeplitz matrices. An n×n Toeplitz matrix B is of the form
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B =


a0 a1 · · · an−2 an−1

a-1 a0
. . . an−2

... . . . . . . . . . ...

a-n+2
. . . . . . a1

a-n+1 a-n+2 · · · a-1 a0

 . (3.31)

Toeplitz matrices are characterized by 2n−1 parameters: the different elements that are
repeated on every entry of each diagonal of B. But even with this simple structure, we cannot
assure high relative accuracy for the computation of their determinants when the size n grows
arbitrarily (see [30]).

However, in other problems the question of whether we can achieve computations to high
relative accuracy is positive. In fact, there is a sufficient condition to assure the high relative
accuracy of an algorithm, the condition of no inaccurate cancellations NIC (see [30]): the
algorithm only uses multiplications, divisions, sums of real numbers of the same sign and
subtractions of initial data. So, an algorithm that avoids subtractions (with the exception of
subtractions of initial data) can be carried out to high relative accuracy. And an algorithm
that avoids all subtractions it is called subtraction-free (SF) and it also satisfies the condition
NIC. Hence, SF algorithms assure high relative accuracy.

In the examples that we are going to introduce, the accurate results are obtained thanks
to the choice of the right representation of the problem. For example, we can expect high
relative accuracy with the computation of the singular value decomposition if we know a
good decomposition of the original matrix.

Given an n×n matrix A, let X , Y and D be three n×n matrices. We say that A = XDY T is
a rank revealing decomposition (RRD) if X and Y are well-conditioned and D is a nonsingular
diagonal matrix.

The interest of obtaining a rank revealing decomposition of a matrix is that it can be
used to compute its singular value decomposition efficiently and with high relative accuracy
following [31].

For diagonally dominant M-matrices, it is possible to compute an LDU decomposition
that serves as RRD, as well as their determinants and their inverses with high relative accuracy
from a special parametrization. This parametrization is given by the row sums and the off-
diagonal entries of the diagonally dominant M-matrix A = (ai j)1≤i, j≤n (see [1, 32, 87]). We
call these parameters DD-parameters:{

ai j, i 6= j,
si := ∑

n
j=1 ai j, i ∈ N.

(3.32)

Using the parametrization (3.32) as input, it is possible to adapt Gaussian elimination
to compute the LDU decomposition with high relative accuracy [32, 87]. Moreover, if we
use an adequate pivoting strategy, we obtain a LDU decomposition with well-conditioned
matrices L and U that serves as a RRD. The known pivoting strategies for this purpose are
symmetric, meaning that they exchange rows and columns with the same indices at every step
of Gaussian elimination. Two examples of symmetric pivoting strategies are symmetric com-
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plete pivoting, which was used in [32], and maximal absolute diagonal dominance (m.a.d.d.)
pivoting [87].

For nonsingular totally positive matrices, the bidiagonal decomposition (Theorem 3.14)
can be used as a parametrization to achieve accurate computations. In [59, 60], Plamen
Koev devised algorithms to solve many algebraic problems with nonsingular TP matrices to
high relative accuracy using the bidiagonal decomposition as input. He implemented these
algorithms and they are available in the library TNTool to be used in Matlab and Octave.
The library can be downloaded from Koev’s personal webpage [58], and it also includes
subsequent contributions of more authors. Some of the functions from the library that have
been key to achieving high relative accuracy in our work are the following:

• TNEigenvalues: Computes the eigenvalues of A to HRA from BD(A).

• TNSingularValues: Computes the singular values of A to HRA from BD(A).

• TNInverseExpand: Computes the explicit inverse A−1 to HRA from BD(A). This
function was contributed by Ana Marco and José Javier Martínez [77].

• TNSolve: Computes the solution to the linear system of equations Ax = b and assures
the HRA whenever b has an alternating sign pattern. It takes as input BD(A) and b.

• TNProduct: Computes BD(AB), the bidiagonal decomposition of the product of two
nonsingular TP matrices A and B, from BD(A) and BD(B) to HRA.

• TNVandBD: Computes the bidiagonal decomposition of the Vandermonde matrix on the
points t1 < .. . < tn to HRA. It requires the nodes {ti}1≤i≤n as input.

Thanks to these algorithms, we can achieve accurate computations with nonsingular TP
matrices if we know their bidiagonal decomposition accurately. This approach can present a
huge difference in the accuracy of the results with respect to the common methods, especially
because TP matrices are often ill-conditioned in the traditional sense. For instance, the sym-
metric Pascal matrix gives an example of this phenomenon. The n×n Pascal matrix PL is the
matrix whose entry (i, j) is given by the combinatorial number

(i+ j−2
i−1

)
. The Pascal matrix is a

known example of ill-conditioned matrix, and computing the eigenvalues and singular values
with usual methods can lead to inaccurate results (see [2] for experiments and discussion).
But this ill-conditioned matrix admits a really simple bidiagonal decomposition. Using the
compact notation, we have that BD(PL) = (1)1≤i, j≤n, i.e., all the multipliers and diagonal
pivots associated to the NE of PL are 1’s. And, as we would expect, working with this simple
representation of PL gives really good results [2] despite the bad conditioning of the matrix.
In the next chapter, we will also observe this difference in accuracy with the matrices studied
in this dissertation.
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Summary

This paper provides an accurate method to obtain the bidiagonal factorization of
collocation matrices of generalized Laguerre polynomials and of Lah matrices,
which in turn can be used to compute with high relative accuracy the eigen-
values, singular values, and inverses of these matrices. Numerical examples are
included.
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1 INTRODUCTION

Laguerre polynomials form a classical family of orthogonal polynomials (cf. the work of Beals et al.1) and present many
applications. For instance, they are used for Gaussian quadrature to numerically compute integrals. The larger family of
generalized Laguerre polynomials (see Section 3) presents important applications in quantum mechanics (see the work
of Koornwinder et al.2). This paper deals with the accurate computation when using collocation matrices of generalized
Laguerre polynomials. The matrices considered in this paper are totally positive (TP), that is, all their minors are nonneg-
ative. Nonsingular TP matrices have a bidiagonal factorization (see Section 2), which can be used as a parameterization
to perform algebraic algorithms with high relative accuracy (HRA). In fact, if we know this bidiagonal factorization of a
nonsingular TP matrix with HRA, then we can apply the algorithms presented by Koev3–5 to compute its inverse, all its
eigenvalues and singular values, or the solution of some linear systems associated to the matrix with HRA. This paper
performs the previous task for collocation matrices of generalized Laguerre polynomials (also called Laguerre matrices).
In Section 3, we also perform this task for Lah matrices, formed by the unsigned Lah numbers. Lah matrices are closely
related with some Laguerre matrices.

The layout of this paper is as follows. Section 2 presents auxiliary results and basic notations related with the bidiagonal
factorization. Section 3 shows the construction with HRA of the bidiagonal factorization of Laguerre and Lah matrices.

Numer Linear Algebra Appl. 2019;26:e2217. wileyonlinelibrary.com/journal/nla © 2018 John Wiley & Sons, Ltd. 1 of 10
https://doi.org/10.1002/nla.2217
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Section 4 includes illustrative numerical examples confirming the theoretical results for the computation of eigenvalues,
singular values, inverses, and the solution of linear systems.

2 AUXILIARY RESULTS

Neville elimination is an alternative procedure to Gaussian elimination. Neville elimination produces zeros in a column
of a matrix by adding to each row an appropriate multiple of the previous one (see the work of Gasca et al.6). Given a
nonsingular matrix A = (ai j)1≤ i, j≤n, the Neville elimination procedure has n − 1 steps, leading to a sequence of matrices
as follows:

A = A(1) → Ã(1) → A(2) → Ã(2) → · · · → A(n) = Ã(n) = U, (1)

with U as an upper triangular matrix.
On the one hand, Ã(t) is obtained from the matrix A(t) by moving to the bottom the rows with a zero entry in column t

below the main diagonal, if necessary. The matrix A(t + 1) comes from Ã(t) by

a(t+1)
i 𝑗 =

⎧⎪⎨⎪⎩

ã(t)
i 𝑗 −

ã(t)
it

ã(t)
i−1,t

ã(t)
i−1, 𝑗 , if t ≤ 𝑗 < i ≤ n and a(t)

i−1,t ≠ 0,

ã(t)
i 𝑗 , otherwise,

(2)

for all t ∈ {1, … ,n − 1}.
The entry

pi 𝑗 ∶= ã( 𝑗)
i 𝑗 , 1 ≤ 𝑗 ≤ i ≤ n (3)

is the (i, j) pivot of the Neville elimination of A, and the pivots pii are called diagonal pivots. The number

mi 𝑗 =
⎧
⎪⎨⎪⎩

ã( 𝑗)
i 𝑗

ã( 𝑗)
i−1, 𝑗

= pi 𝑗

pi−1, 𝑗
, if ã( 𝑗)

i−1, 𝑗 ≠ 0,

0, if ã( 𝑗)
i−1, 𝑗 = 0,

is called the (i, j) multiplier of Neville elimination of A, where 1 ≤ j < i ≤ n.
Neville elimination is a very useful procedure when working with TP matrices. A matrix is TP if all its minors are

nonnegative and it is strictly TP (STP) if they are positive (see the work of Ando7).
If A is an order n nonsingular TP matrix, then no rows exchanges are needed when applying Neville elimination (see

Corollary 5.5 in the work of Gasca et al.6). Therefore, in this case, A(t) = Ã(t) for all t.
In the work of Gasca et al.8, it was shown that nonsingular TP matrices satisfy a unique bidiagonal decomposition. Let

us first recall the mentioned result.

Theorem 1. (cf. Theorem 4.1 in the work of Gasca et al.8)
Let A be a nonsingular n × n TP matrix. Then, A admits a decomposition of the form

A = Fn−1 · · · F1DG1 · · · Gn−1, (4)

where Fi and Gi, i ∈ {1, … ,n − 1}, are the lower and upper triangular nonnegative bidiagonal matrices given by

Fi =

⎛⎜⎜⎜⎜⎜⎜⎝

1
0 1
⋱ ⋱

0 1
mi+1,1 1

⋱ ⋱
mn,n−i 1

⎞⎟⎟⎟⎟⎟⎟⎠

, GT
i =

⎛⎜⎜⎜⎜⎜⎜⎝

1
0 1
⋱ ⋱

0 1
m̃i+1,1 1

⋱ ⋱
m̃n,n−i 1

⎞⎟⎟⎟⎟⎟⎟⎠

, (5)

and D is a diagonal matrix diag( p11, … , pnn) with positive diagonal entries. If, in addition, the entries mi j, m̃i 𝑗 satisfy

mi 𝑗 = 0 ⇒ mh𝑗 ∀h > i
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and
m̃i 𝑗 = 0 ⇒ mik ∀k > 𝑗,

then the decomposition (4) is unique.

In Theorem 4.1 in the work of Gasca et al.8, it was also shown that mi j and pii in the bidiagonal decomposition given
by (4) with (5) are the multipliers and the diagonal pivots when applying the Neville elimination to A and m̃i 𝑗 are the
multipliers when applying the Neville elimination to AT.

Koev4 introduced a compact matrix notation (A) for the bidiagonal decomposition (4) defined by

((A))i 𝑗 =
⎧⎪⎨⎪⎩

mi 𝑗 , if i > 𝑗,
m̃𝑗i, if i < 𝑗,
pii, if i = 𝑗.

(6)

An algorithm can be performed with HRA if it does not include subtractions (except of the initial data), that is, if it
only includes products, divisions, sums of numbers of the same sign, and subtractions of the initial data (cf. the work of
Koev4,9). In particular, a subtraction-free algorithm provides results with HRA. In the work of Koev4, assuming that the
parameters of (A) are known with HRA, Koev presented algorithms for computing the eigenvalues of the matrix A,
the singular values of the matrix A, the inverse of the matrix A, and the solution of linear systems of equations Ax = b,
where b has a chessboard pattern of alternating signs to HRA.

3 ACCURATE COMPUTATIONS WITH COLLOCATION MATRICES OF
GENERALIZED LAGUERRE POLYNOMIALS

Let us recall that, for 𝛼 > −1, the generalized Laguerre polynomials are given by

L(𝛼)
n (t) =

n∑
k=0

(−1)k
(n + 𝛼

n − k

) tk

k!
, n = 0, 1, 2, … , (7)

and that they are orthogonal polynomials on [0,∞) with respect to the weight function x𝛼e−x.
Given a real number x and a positive integer k, let us denote the corresponding falling factorial by

xk) ∶= x(x − 1)(x − 2) · · · (x − k + 1).

Let us also denote x 0) ∶= 1. Let M ∶= (L(𝛼)
𝑗−1(ti−1))1≤i, 𝑗≤n+1 be the collocation matrix of the generalized Laguerre polyno-

mials at (0 > )t0 > t1 > … > tn, let PU be the (n + 1) × (n + 1) upper triangular Pascal matrix with
( 𝑗−1

i−1

)
as its (i, j)-entry

for j ≥ i, and let S𝛼 and J be the (n + 1) × (n + 1) diagonal matrices defined as follows:

S𝛼 ∶= diag
(
(𝛼 + i)i))

0≤i≤n, J ∶= diag
(
(−1)i)

0≤i≤n. (8)

The following result assures that, given the parameters (0 > )t0 > t1 > … > tn, many algebraic computations with
these collocation matrices M can be performed with HRA, as well as the strict total positivity and a particular factorization
of these matrices.

Theorem 2. Let M ∶= (L(𝛼)
𝑗−1(ti−1))1≤i, 𝑗≤n+1 for (0 > )t0 > t1 > … > tn with 𝛼 > −1, let PU be the (n + 1) × (n + 1)

upper triangular Pascal matrix, let S𝛼 and J be the (n + 1) × (n + 1) diagonal matrices given by (8), and let V ∶=
(t𝑗−1

i−1 )1≤i,𝑗≤n+1. Then, M = VJS−1
𝛼 PU S−1

0 S𝛼 is an STP matrix, and given the parametrization ti (0 ≤ i ≤ n), the following
computations can be performed with HRA: all the eigenvalues, all the singular values, the inverse of M, and the solution
of the linear systems Mx = b, where b = (b0, … , bn)T has alternating signs.

Proof. Let A = (ai j)1≤ i, j≤n + 1 be the matrix of change of basis between the basis of the generalized Laguerre
polynomials and the monomial basis:

(
L(𝛼)

0 (t),L(𝛼)
1 (t), … ,L(𝛼)

n (t)
)
= (1, t, … , tn)A. (9)
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Observe that ai j = 0 for j < i and that, for j ≥ i,

ai 𝑗 =
(
𝑗 − 1 + 𝛼
𝑗 − i

)
(−1)i−1

(i − 1)!

= ( 𝑗 − 1 + 𝛼) · · · (i + 𝛼)(−1)i−1

( 𝑗 − i)!(i − 1)!
( 𝑗 − 1)!
( 𝑗 − 1)!

and so

ai 𝑗 = (−1)i−1
( 𝑗 − 1

i − 1

) ( 𝑗 − 1 + 𝛼) · · · (i + 𝛼)
( 𝑗 − 1)!

=
( 𝑗 − 1

i − 1

) (−1)i−1( 𝑗 − 1 + 𝛼) · · · (𝛼 + 1)
( 𝑗 − 1)!(i − 1 + 𝛼)i−1) .

Hence, we can derive A = JS−1
𝛼 PU S−1

0 S𝛼 . Then, we can deduce from (9) that

M = VJS−1
𝛼 PU S−1

0 S𝛼. (10)

We have that VJ = (( − ti− 1) j− 1)1≤ i, j≤n + 1, and because 0 < −t0 < −t1 < … < −tn, VJ is a Vandermonde matrix
with strictly increasing positive nodes and so it is STP (see the work of Gantmacher et al.10(p111) and Fallat et al.11(p12)).
It is well known (see the work of Fallat et al.11(p52)) that the upper triangular Pascal matrix is (nonsingular) TP and so
S−1
𝛼 PU S−1

0 S𝛼 is also nonsingular TP because S−1
𝛼 , S−1

0 , S𝛼 are positive diagonal matrices. Then, we can write (10) as

M = BC, B ∶= VJ, C ∶= S−1
𝛼 PU S−1

0 S𝛼, (11)

and so, by Theorem 3.1 in the work of Ando7, M is STP because it is a product of an STP matrix and a nonsingular TP
matrix.

If we have a Vandermonde matrix with strictly increasing positive nodes, we can construct its bidiagonal factor-
ization with HRA (see section 3 of the work of Koev3). Therefore, we can obtain with HRA the (VJ) from the
parameters (0 < ) − t0 < −t1 < … < −tn. For PU,

(PU) =
⎛
⎜⎜⎜⎝

1 · · · · · · 1
0 ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 · · · 0 1

⎞
⎟⎟⎟⎠
,

(see the work of Alonso et al.12) that is,
PU = Ḡ1 · · · Ḡn (12)

with Ḡk (1 ≤ k ≤ n) as the bidiagonal upper triangular matrix defined as

Ḡk =
⎛
⎜⎜⎜⎝

1 ḡ(k)1
⋱ ⋱

⋱ ḡ(k)n
1

⎞
⎟⎟⎟⎠
,

where ḡ(k)i = 1 if i ≥ k and ḡ(k)i = 0 if i < k. We want to obtain the bidiagonal factorization of C:

C = DG1 · · · Gn, (13)

where D is a diagonal matrix and each Gk (1 ≤ k ≤ n) is a bidiagonal upper triangular matrix with unit diagonal. Let
us denote by g(k)i the (i, i + 1) entry of Gk for each i = 1 … ,n. By (11), C = S−1

𝛼 PU D̃, where D̃ = diag(d0, d1, … , dn) ∶=
S−1

0 S𝛼 . Then, observe that, for each 1 ≤ k ≤ n, ḠkD̃ = D̃Gk, and so, for i < k, g(k)i = 0 and for i ≥ k,

g(k)i = di+1

di
= (i + 𝛼)i)(i − 1)!

(i − 1 + 𝛼)i−1)i!
= i + 𝛼

i
.

Then, taking into account (12) and that S−1
𝛼 D̃ = S−1

𝛼 S−1
0 S𝛼 = S−1

0 , we can obtain the bidiagonal factorization of C:

C = S−1
0 G1 · · · Gn

(observe using (13) that, by the uniqueness of the bidiagonal factorization, D = S−1
0 ).

Then, following Section 5.2 of the work of Koev4, we can construct from (11) (M) with HRA, through the
subtraction-free Algorithm 5.1 in the work of Koev4, because we know with HRA the bidiagonal factorization of both
factors B and C of M.
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Finally, the construction of (M) with HRA guarantees that the algebraic computations mentioned in the state-
ment of this theorem can be performed with HRA (see Section 2 of this paper or section 3 of the work of Koev4).

Applying the previous result to the case 𝛼 = 0 provides the result for classical Laguerre polynomials. If we extend (7)
to the case 𝛼 = −1, we can derive (in Theorem 3) an analogous result to Theorem 2 for the particular set of polynomials:

L(−1)
0 (t) = 1, L(−1)

n (t) =
n∑

k=1
(−1)k

(n − 1
n − k

) tk

k!
, n = 1, 2, … . (14)

The interest of these polynomials arises from the close relationship between their coefficients and the unsigned Lah
numbers (cf. the work of Boyadzhiev et al.13), which will be described as follows:

L(−1)
n (t) = 1

n!

∑n

k=1
(−1)kL(n, k)tk for n ≥ 1 with L(n, k) ∶=

(
n−1
k−1

)
n!
k!
, k ≤ n. (15)

The unsigned Lah numbers L(n, k) are included as the sequence A105278 in the On-line Encyclopedia of Integer
Sequences (OEIS). The Lah numbers were introduced by Ivo Lah in 1955 (cf. the work of Lah14) and arise in applications
such as combinatorics and analysis (see the work of Riordan15(pp44–45)).

Before introducing Theorem 3, it is convenient to define the matrix P∗
U because it will play the role that PU played in

Theorem 2. The (n + 1) × (n + 1) matrix P∗
U is obtained from an n × n upper triangular Pascal matrix PU by adding

(1, 0, … , 0) as a first row and column.

Observe that P∗
U is a nonsingular TP matrix because PU is nonsingular TP.

Theorem 3. Let M = (L(−1)
𝑗−1 (ti−1))1≤i, 𝑗≤n+1 for (0 > )t0 > t1 > … > tn, let P∗

U be the (n + 1) × (n + 1) upper triangular
matrix given by (16), let S0 and J be the (n + 1) × (n + 1) diagonal matrices given by (8), and let V ∶= (t𝑗−1

i−1 )1≤i, 𝑗≤n+1.
Then, M = VJS−1

0 P∗
U ; it is an STP matrix, and given the parametrization ti (0 ≤ i ≤ n), the following computations can

be performed with HRA: all the eigenvalues, all the singular values, the inverse of M, and the solution of the linear systems
Mx = b, where b = (b0, … , bn)T has alternating signs.

Proof. Let A = (ai j)1≤ i, j≤n + 1 be the matrix of change of basis given by (9) when 𝛼 = −1. Observe that a11 = 1,
a1 j = 0 for j = 2, … ,n + 1, ai j = 0 for j < i and that, for j ≥ i ≥ 2, ai 𝑗 = (−1)i−1

(i−1)!

(
𝑗−2
i−2

)
. Then,

A = JS−1
0 P∗

U and M = VJS−1
0 P∗

U . (17)

Rearranging the factors of M, we obtain the factorization as follows:

M ∶= BC, where B ∶= VJ and C ∶= S−1
0 P∗

U .

Following the reasoning given in the proof of Theorem 2, we can deduce that M is STP because the Vandermonde
matrix B = VJ = (( − ti− 1) j− 1)1≤ i, j≤n + 1 is STP and the matrix C is a nonsingular TP matrix because it is the product
of a positive diagonal matrix and a nonsingular TP matrix. Again, by algorithm 5.1 in the work Koev4, we can obtain(M) if we know both (B) and (C) to HRA. The bidiagonal factorization of a TP Vandermonde matrix can
be obtained with HRA (section 3 of the work of Koev3), and so we only need to find (C) with HRA. From (3), it is
straightforward to deduce that
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and so, we have that

Then, we can construct (M) with HRA and perform all the previously mentioned algebraic computations
with HRA.

The Lah matrix Λ is the matrix formed by the unsigned Lah numbers (cf. the work of Martinjak et al.16). This matrix
can be written as Λ = JAS0, where A is the matrix of change of basis between the basis of the generalized Laguerre
polynomials with 𝛼 = −1 and the monomial basis given by (15). The following result also shows that many computations
with Lah matrices can be performed with HRA.

Proposition 1. Let Λ be the Lah matrix, let P∗
U be the (n + 1) × (n + 1) upper triangular matrix given by (16), and let

S0 be the (n + 1) × (n + 1) diagonal matrix given by (8). Then, Λ = S−1
0 P∗

U S0 is a TP matrix,

and the following computations can be performed with HRA: all the eigenvalues, all the singular values, the inverse of Λ,
and the solution of the linear systems Λx = b, where b = (b0, … , bn)T has alternating signs.

Proof. By (15), Λ = S−1
0 P∗

U S0. Because P∗
U is nonsingular TP, we conclude that Λ is also nonsingular TP. From (18),

we have that P∗
U = Ḡ1 · · · Ḡn−1, where Ḡk (1 ≤ k ≤ n − 1) is the bidiagonal upper triangular matrix

Ḡk =
⎛
⎜⎜⎜⎝

1 ḡ(k)1
⋱ ⋱

⋱ ḡ(k)n
1

⎞
⎟⎟⎟⎠
,

with ḡ(k)i = 1 if i ≥ k + 1 and ḡ(k)i = 0 if i < k + 1. We want to obtain the bidiagonal factorization of Λ:

Λ = DG1 · · · Gn−1, (19)

where D is a diagonal matrix and each Gk (1 ≤ k ≤ n − 1) is a bidiagonal upper triangular matrix with unit diagonal.
Let us denote by g(k)i the (i, i + 1) entry of Gk for each i = 1, … ,n − 1. Then, observe that, for each 1 ≤ k ≤ n − 1,
ḠkS0 = S0Gk, and so, for i < k + 1, g(k)i = 0 and, for i ≥ k + 1,

g(k)i = di+1

di
= i!

(i − 1)!
= i.

By the uniqueness of the bidiagonal factorization, we derive D = S−1
0 S0 = I(n+1)×(n+1) and Λ = G1 · · · Gn− 1. Because

we obtained (Λ) with HRA, we can perform all the algebraic computations included in the statement of this
proposition with HRA.

Let us recall that, in the work of Martinjak et al.16, it was already proved that the submatrix obtained fromΛ by removing
its first row and column is TP.
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In the next section, we shall illustrate the accurate computations in the case of the classical Laguerre polynomials
(of (7) with 𝛼 = 0). The corresponding collocation matrices will be called Laguerre matrices.

4 NUMERICAL TESTS

Assuming that the parameterization (A) of an square TP matrix A is known with HRA, Koev 4 devised algorithms
to compute the inverse, the eigenvalues, and the singular values of A and the solution of linear systems of equations
Ax = b, where b has a chessboard pattern of alternating signs. Koev implemented these algorithms in order to be used
with MATLAB and Octave in the software library TNTool available in the work of Koev5. The corresponding functions
are TNInverseExpand, TNEigenvalues, TNSingularValues, and TNSolve, respectively. These three functions
require as input argument the data determining the bidiagonal decomposition (4) of A, (A) given by (6), to HRA.
TNSolve also requires a second argument, the vector b of the linear system Ax = b to be solved.

In the library TNTool, Koev also provided the function TNProduct(B1,B2), which, given the bidiagonal decomposi-
tions B1 and B2 to HRA of two TP matrices F and G, provided the bidiagonal decomposition of the TP matrix FG to HRA.
We can observe in the factorization M = VJS−1

0 PU of Theorem 2 for 𝛼 = 0 that M can be expressed as the product of three
TP matrices: the Pascal matrix PU, S−1

0 , and the TP Vandermonde matrix VJ. In the work of Alonso et al.12, the bidiagonal
factorization to HRA of Pascal matrix PU was shown. S−1

0 is a diagonal TP matrix so its bidiagonal decomposition is itself
and (S−1

0 ) = S−1
0 . Taking into account the form of its diagonal entries, it can be obtained to HRA. Finally, VJ is a TP

Vandermonde matrix with node sequence −t = (−ti)n
i=0, and by using TNVandBD(-t) of library TNTool, (VJ) to HRA

can be obtained. Taking into account these facts, the pseudocode providing (M) to HRA can be seen in Algorithm 1.

We have implemented the previous algorithm to be used in MATLAB and Octave in a function TNBDLaguerre.
The bidiagonal decompositions with HRA of Laguerre matrices obtained with TNBDLaguerre can be used with

TNInverseExpand, TNEigenValues, TNSingularValues, and TNSolve in order to obtain accurate solutions for
the above mentioned algebraic problems. Now, we include some numerical experiments illustrating high accuracy.

Let us consider the Laguerre matrices Mn of order n + 1 given by the collocation matrices of the classical Laguerre
polynomials (L(0)

0 (x), … ,L(0)
n (x)) at the nodes ( − i − 1)0≤ i≤n, that is,

Mn =
(

L(0)
𝑗−1(ti−1)

)
1≤i, 𝑗≤n+1

, (20)

for n = 1, 2, … , 49.
First, we have computed in MATLAB by using TNBDLaguerre the bidiagonal decomposition of the matrices Mn to

HRA. Then, we have used that bidiagonal decomposition of Mn for computing their eigenvalues and their singular val-
ues with TNEigenValues and TNSingularValues, respectively. In the case of eigenvalues, we also compute their
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FIGURE 1 Relative errors for the lowest eigenvalue of Laguerre matrices. HRA = high relative accuracy
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FIGURE 2 Relative errors for the lowest singular value of Laguerre matrices. HRA = high relative accuracy

approximations with the MATLAB function eig. We have also computed the eigenvalues of Mn by using Mathematica
with a 100 digits precision. Then, we compute the relative errors corresponding to the approximations of the eigenvalues
obtained with both methods eig and TNEigenValues with TNBDLaguerre, considering the eigenvalues provided by
Mathematica as exact. We have observed that the approximations of all the eigenvalues obtained with TNBDLaguerre
are very accurate, whereas the approximations of the lower eigenvalues obtained with command eig are not very accu-
rate. In particular, the lower the eigenvalue is, the more inaccurate the approximation obtained with eig is. In order
to illustrate this fact, Figure 1 shows the relative errors of the approximations to the lowest eigenvalue of the matrices
M1, … ,M49 obtained by both eig and TNEigenValues with TNBDLaguerre. We can observe in the figure that our
method provides very accurate results in contrast to the poor results provided by eig.

For the case of singular values, we have also computed their approximations with the MATLAB function svd. In order
to show the accuracy of the approximations to the singular values computed in both ways, we calculate the singular values
of the matrices Mn with Mathematica using a precision of 100 digits. As in the case of eigenvalues, we observed that the
lower the singular value is, the more unaccurate the approximation obtained with svd is, whereas the approximations
of all the singular values provided by the new method are very accurate. Figure 2 shows the relative errors of the approx-
imations to the lowest singular value of the matrices M1, … ,M49 obtained by both svd and TNSingularValues with
TNBDLaguerre. We can observe in the figure that the HRA algorithm outperforms svd.

We have also computed with MATLAB approximations to M−1
i , i = 1, … , 49, with inv and TNInverseExpand

using the bidiagonal decomposition given byTNBDLaguerre. With Mathematica, we have computed the inverse of these



DELGADO ET AL. 9 of 10

0 10 20 30 40 50
n

10

10

10

10

R
el

at
iv

e 
er

ro
r

(a)

HRA
inv

0 10 20 30 40 50
n

10

10

R
el

at
iv

e 
er

ro
r

(b)

HRA
inv

FIGURE 3 Relative errors for M−1
i , i = 1, … , 49. (a) Mean relative error. (b) Maximum relative error. HRA = high relative accuracy
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FIGURE 4 Relative errors for the systems Mix = bi, i = 1, … , 49. (a) Mean relative error. (b) Maximum relative error.
HRA = high relative accuracy

Laguerre matrices with exact arithmetic. Then, we have computed the corresponding componentwise relative errors.
Finally, we have obtained the mean and maximum componentwise relative error. Figure 3a shows the mean relative
error and Figure 3b shows the maximum relative error. We can also observe in this case that the results obtained with
TNInverseExpand are much more accurate than the ones obtained with inv.

Now, we consider the linear systems Mix = bi, i = 1, … , 49, where Mi is the Laguerre matrix of order i + 1 previously
defined and bi ∈ ℝi+1 has the absolute value of its entries randomly generated as integers in the interval [1, 1000], but
with alternating signs. We have computed approximations to the solution x of the linear system with MATLAB, the first
one using TNSolve and the bidiagonal decomposition of the Laguerre matrices A obtained with TNBDLaguerre, and
the second one using the MATLAB command A⧵b. By using Mathematica with exact arithmetic, we have computed the
exact solution of the systems, and then, we have computed the componentwise relative errors for the two approximations
obtained with MATLAB. Then, we have obtained the mean and maximum componentwise relative error. Figure 4a shows
the mean relative error and Figure 4b shows the maximum relative error. Again, the results obtained with HRA algorithms
are very accurate in contrast to the results obtained with the usual MATLAB command.

Finally, we consider the linear systems Mix = b̃i, i = 1, … , 49, where now b̃i ∈ ℝi+1 has its entries randomly generated
as integers in the interval [ −1000, 1000] and so it has not a chessboard pattern of alternating signs. Hence, HRA is lost
when TNSolve is used. In spite of this, Figure 5a,b shows that, even in this case, our algorithm outperforms the usual
MATLAB command A∖b.
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Abstract
In this paper, we prove that any collocation matrix of Bessel polynomials at positive points
is strictly totally positive, that is, all its minors are positive. Moreover, an accurate method
to construct the bidiagonal factorization of these matrices is obtained and used to compute
with high relative accuracy the eigenvalues, singular values and inverses. Similar results for
the collocation matrices for the reverse Bessel polynomials are also obtained. Numerical
examples illustrating the theoretical results are included.

Keywords Bessel matrices · Totally positive matrices · High relative accuracy · Bessel
polynomials · Reverse Bessel polynomials

Mathematics Subject Classification 65F05 · 65F15 · 65G50 · 33C10 · 33C45 · 15A23

1 Introduction

Bessel polynomials are ubiquitous and occur in many fields such as partial differential equa-
tions, number theory, algebra and statistics (see [11]). They form an orthogonal sequence of
polynomials and are related to the modified Bessel function of the second kind (see pp. 7 and
34 of [11]). They are closely related to the reverse Bessel polynomials, which have many
applications in Electrical Engineering. In particular, they play a key role in network analysis
of electrical circuits (see page 145 of [11] and references therein). In Combinatorics, the
coefficients of the reverse Bessel polynomials are also known as signless Bessel numbers of
the first kind. The Bessel numbers have been studied from a combinatorial perspective and
are closely related to the Stirling numbers [12,22]. In [16] it was shown that Bessel polyno-
mials occur naturally in the theory of traveling spherical waves. Bessel polynomials are also
very important for some problems of static potentials, signal processing and electronics. For
example, the Bessel polynomials are used in Frequency Modulation (FM) synthesis and in
the Bessel filter. In the case of FM synthesis, the polynomials are used to compute the band-
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width of a modulated in frequency signal. The zeros of Bessel polynomials and generalized
Bessel polynomials also play a crucial role in applications in Electrical Engineering. On the
accurate computations of the zeros of generalized Bessel polynomials see [20].

This paper deals with the accurate computation when using collocation matrices of Bessel
polynomials and reverse Bessel polynomials. It is shown that these matrices provide new
structured classes for which algebraic computations (such as the computation of the inverse,
of all the eigenvalues and singular values, or the solutions of some linear systems) can be
performed with high relative accuracy (HRA). Moreover, a crucial result for this purpose has
been the total positivity of the consideredmatrices. Let us recall that amatrix is totally positive
(strictly totally positive) if all its minors are nonnegative (positive) and will be denoted TP
(STP). These matrices have also been called in the literature totally nonnegative (totally
positive). Many applications of these matrices can be seen in [2,7,21]. For some subclasses
of TP matrices a bidiagonal factorization with HRA has been obtained (cf. [1,4–6,17–19]).
In [3] it was proved that the first positive zero of a Bessel function of the first kind is the half
of the critical length of a cycloidal space, relating Bessel functions with the total positivity
theory and computer-aided geometric design. We prove here a new surprising connection of
total positivity with Bessel functions through the collocation matrices of Bessel polynomials.

The paper is organized as follows. In Sect. 2, we present some auxiliary results and basic
notations related to the bidiagonal factorization of totally positive matrices as well as with
high relative accuracy. In Sect. 3 we introduce the Bessel polynomials and we first prove
that the matrix of change of basis between the Bessel polynomials and the monomials is
TP. We also define the Bessel matrices and prove that they are STP. Finally, we provide the
construction with high relative accuracy of the bidiagonal factorization of Bessel matrices,
which in turn can be used to apply the algorithms presented by Koev in [15] for the algebraic
computations mentioned above with high relative accuracy. A similar task for the collocation
matrices of the reverse Bessel polynomials is performed in Sect. 4. Finally, Sect. 5 includes
illustrative numerical examples confirming the theoretical results for the computation of
eigenvalues, singular values, inverses, and the solution of linear systems with the matrices
considered in this paper.

2 Auxiliary Results

Neville elimination (NE) is an alternative procedure toGaussian elimination. NEmakes zeros
in a column of a matrix by adding to each row an appropriate multiple of the previous one
(see [9]). Given a nonsingular matrix A = (ai j )1≤i, j≤n , the NE procedure consists of n − 1
steps, leading to a sequence of matrices as follows:

A = A(1) → ˜A(1) → A(2) → ˜A(2) → · · · → A(n) = ˜A(n) = U , (1)

with U an upper triangular matrix.
On the one hand, ˜A(t) is obtained from the matrix A(t) by moving to the bottom the rows

with a zero entry in column t below the main diagonal, if necessary. The matrix A(t+1),
t = 1, . . . , n − 1, is obtained from ˜A(t) by computing

a(t+1)
i j =

⎧

⎪

⎨

⎪

⎩

ã(t)
i j − ã(t)

i t

ã(t)
i−1,t

ã(t)
i−1, j , if t ≤ j < i ≤ n and ã(t)

i−1,t �= 0,

ã(t)
i j , otherwise,

(2)

for all t ∈ {1, . . . , n − 1}.
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The entry
pi j :=ã( j)

i j , 1 ≤ j ≤ i ≤ n, (3)

is the (i, j) pivot of the NE of A, and the pivots pii are called diagonal pivots. The number

mi j =

⎧

⎪

⎨

⎪

⎩

ã( j)
i j

ã( j)
i−1, j

= pi j
pi−1, j

, if ã( j)
i−1, j �= 0,

0, if ã( j)
i−1, j = 0,

(4)

is called the (i, j) multiplier of NE of A, where 1 ≤ j < i ≤ n.
NE is a very useful method when applied to TP matrices. If A is a nonsingular TP matrix,

then no rows exchanges are needed when applying NE and so, in this case, A(t) = ˜A(t) for
all t . In fact, in Theorem 5.4 of [9] the following characterization of nonsingular TP matrices
was provided.

Theorem 1 Let A be a nonsingular matrix. Then A is TP if and only if there are no row
exchanges in the NE of A and UT and the pivots of both NE are nonnegative.

In [10] it was seen that nonsingular TP matrices can be expressed as a unique bidiagonal
decomposition.

Theorem 2 (cf. Theorem 4.2 of [10]). Let A be a nonsingular n × n TP matrix. Then A
admits a decomposition of the form

A = Fn−1 · · · F1DG1 · · ·Gn−1, (5)

where Fi and Gi , i ∈ {1, . . . , n − 1}, are the lower and upper triangular nonnegative
bidiagonal matrices given by

Fi =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
0 1

. . .
. . .
0 1

mi+1,1 1

. . .
. . .

mn,n−i 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, GT
i =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
0 1

. . .
. . .
0 1

m̃i+1,1 1

. . .
. . .

m̃n,n−i 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(6)
and D a diagonal matrix diag(p11, . . . , pnn) with positive diagonal entries. If, in addition,
the entries mi j , m̃i j satisfy

mi j = 0 ⇒ mhj = 0 ∀ h > i

and

m̃i j = 0 ⇒ m̃k j = 0 ∀k > i

then the decomposition (5) is unique.

By Theorems 4.1 and 4.2 of [10] we also know that, for 1 ≤ j < i ≤ n, mi j and pii
in the bidiagonal decomposition given by (5) with (6) are the multipliers and the diagonal
pivots when applying the NE to A and, using the arguments of p. 116 of [10], m̃i j are the
multipliers when applying the NE to AT .

In [14] it was devised a concise matrix notation BD(A) for the bidiagonal decomposition
(5) and (6) given by

(BD(A))i j =
⎧

⎨

⎩

mi j , if i > j,
m̃ ji , if i < j,
pii , if i = j .

(7)

123



Journal of Scientific Computing (2019) 80:1264–1278 1267

Remark 1 If A is a TP matrix, then AT is also TP. Transposing formula (5) of Theorem 2 we
obtain the unique bidiagonal decomposition of AT :

AT = GT
n−1 · · ·GT

1 DFT
1 · · · FT

n−1,

where Fi andGi , i ∈ {1, . . . , n−1}, are the lower andupper triangular nonnegative bidiagonal
matrices given in formula (6). It can also be checked that

BD(AT ) = BD(A)T .

An algorithm can be performed with high relative accuracy if all the included subtractions
are of initial data, that is, if it only includes products, divisions, sums of numbers of the same
sign and subtractions of the initial data (cf. [6,14]). In [14], given a nonsingular TP matrix A
whose BD(A) is known with HRA, Koev presented algorithms for computing to HRA the
eigenvalues of the matrix A, the singular values of the matrix A, the inverse of the matrix A
and the solution of linear systems of equations Ax = b, where b has a pattern of alternating
signs.

3 Bessel Polynomials andMatrices

Let us consider the Bessel polynomials defined by

Bn(x) =
n

∑

k=0

(n + k)!
2k(n − k)!k! x

k, n = 0, 1, 2 . . . , (8)

Given a real positive integer n, let us define the corresponding semifactorial by

n!! =
[n/2]−1

∏

k=0

(n − 2k).

Let A = (ai j )1≤i, j≤n be the lower triangular matrix such that

(B0(x), B1(x), . . . , Bn−1(x))
T = A(1, x, . . . , xn−1)T , (9)

that is, the lower triangular matrix A is defined by

ai j :=
{

(i+ j−2)!
2 j−1(i− j)!( j−1)! = (2 j−2)!

2 j−1( j−1)!
(i+ j−2

i− j

)

, if i ≥ j,

0, if i < j .
(10)

Theorem 3 proves the total positivity of A, and provides BD(A). In addition, its proof
gives the explicit form of all the entries of the matrices A(k) of (1) computed through the NE
of A.

Theorem 3 Let A = (ai j )1≤i, j≤n be the lower triangular matrix in (9) defined by (10). Then
we have that

(i) the pivots of the NE of A are given by

pi j = 1
2 j−1

(i−1)!
(i− j)!

∏ j−1
r=1

(2i−r−1)
(i− j+r) , 1 ≤ j ≤ i ≤ n, (11)

and the multipliers by

mi j = (2i−2)(2i−3)
(2i− j−1)(2i− j−2) , 1 ≤ j < i ≤ n, (12)
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(ii) A is a nonsingular TP matrix
(iii) and the bidiagonal factorization of A is given by

BD(A)i j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(2i−2)(2i−3)
(2i− j−1)(2i− j−2) , if i > j,
1, if i = j = 1,
(2i − 3)!!, if i = j > 1,
0, if i < j,

(13)

and can be computed to HRA.

Proof (i) If A(k) = (a(k)
i j )1≤i, j≤n is the matrix obtained after k − 1 steps of the NE of A

(see (1)) for k = 2, . . . , n, let us prove by induction on k ∈ {2, . . . , n} that

a(k)
i j = 1

2 j−1

(i + j − k − 1)!
(i − j)!( j − k)!

k−1
∏

r=1

(2i − r − 1)

(i − k + r)
(14)

for i ≥ j . For the case k = 2, let us start by computing the first step of the NE of A:

a(2)
i j = ai j − ai1

ai−1,1
ai−1, j = ai j − ai−1, j

= 1

2 j−1

(

(i + j − 2)!
(i − j)!( j − 1)! − (i + j − 3)!

(i − j − 1)!( j − 1)!
)

= (i + j − 3)!
2 j−1(i − j − 1)!( j − 1)!

(

i + j − 2

i − j
− 1

)

= (i + j − 3)!(2 j − 2)

2 j−1(i − j)!( j − 1)!
= (i + j − 3)!

2 j−1(i − j)!( j − 2)!
(2i − 2)

(i − 1)
.

Hence, formula (14) holds for k = 2. Now, let us assume that (14) holds for some
k ∈ {2, . . . , n− 1} and let us prove that it also holds for k + 1. Performing the k-th step
of the NE we have

a(k+1)
i j = a(k)

i j − a(k)
ik

a(k)
i−1,k

a(k)
i−1, j .

Then, by using the induction hypothesis, we obtain

a(k+1)
i j = a(k)

i j − a(k)
ik

a(k)
i−1,k

a(k)
i−1, j

= a(k)
i j − (2i − 2)(2i − 3)

(2i − k − 1)(2i − k − 2)
a(k)
i−1, j

= (i + j − k − 1)!
2 j−1(i − j)!( j − k)!

k−1
∏

r=1

(2i − r − 1)

(i − k + r)

− (2i − 2)(2i − 3)

(2i − k − 1)(2i − k − 2)

(i + j − k − 2)!
2 j−1(i − j − 1)!( j − k)!

k−1
∏

r=1

(2i − r − 3)

(i − k + r − 1)
.
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Simplifying the previous formula, a(k+1)
i j can be written as

a(k+1)
i j = (i + j − k − 2)!

2 j−1(i − j − 1)!( j − k)!
k−1
∏

r=1

(2i − r − 1)

(i − k + r)

(

i + j − k − 1

i − j
− i − 1

i − k

)

.

From the previous expression we can deduce that

a(k+1)
i j = (i + j − k − 2)!

2 j−1(i − j − 1)!( j − k)!
k−1
∏

r=1

(2i − r − 1)

(i − k + r)
· 2 j i − 2ki − k j − j + k2 + k

(i − j)(i − k)

= (i + j − k − 2)!
2 j−1(i − j − 1)!( j − k)!

k−1
∏

r=1

(2i − r − 1)

(i − k + r)
· ( j − k)(2i − k − 1)

(i − j)(i − k)

= (i + j − k − 2)!
2 j−1(i − j)!( j − k − 1)!

k
∏

r=1

(2i − r − 1)

(i − k + r − 1)
.

Therefore, (14) holds for k + 1 and the result follows.

The pivot pi j = ã( j)
i j = a( j)

i j is given by (14) with k = j and we have that, for i > j ,

mi j = pi j
pi−1, j

, obtaining formulas (11) and (12), respectively.
(ii) The lower triangular matrix A is nonsingular since it has nonzero diagonal entries. It

can be seen in the proof of (i) that the NE of A satisfies the hypotheses of Theorem 1.
Since UT is a diagonal matrix, the NE of UT obviously satisfies the hypotheses of
Theorem 1. Hence, we can conclude that A is a TP matrix.

(iii) By (i) and taking into account that U is a diagonal matrix with diagonal entries aii
(1 ≤ i ≤ n), it is straightforward to deduce thatBD(A) is given by (13). The subtractions
in this formula are of integers and, hence, they can be computed to HRA, in fact, in an
exact way.

	

Let us introduce the collocation matrices of the Bessel polynomials.

Definition 1 Given a sequence of parameters 0 < t0 < t1 < · · · < tn−1 we call the colloca-
tion matrix of the Bessel polynomials (B0, . . . , Bn−1) at that sequence,

M = M

(

B0, . . . , Bn−1

t0, . . . , tn−1

)

= (Bj−1(ti−1))1≤i, j≤n,

a Bessel matrix.

The following result proves that the Bessel matrices are STP and that some usual algebraic
problems with these matrices can be solved to HRA.

Theorem 4 Given a sequence of parameters 0 < t0 < t1 < · · · < tn−1, the corresponding
Bessel matrix M is an STP matrix and given the parametrization ti (0 ≤ i ≤ n − 1), the
following computations can be performed with HRA: all the eigenvalues, all the singular
values, the inverse of the Bessel matrix M, and the solution of the linear systems Mx = b,
where b = (b1, . . . , bn)T has alternating signs.

Proof By formula (9) we have that

M = V AT ,
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where M is the Bessel matrix corresponding to the collocation matrix of the Bessel polyno-
mials (B0, . . . , Bn−1) at t0, . . . , tn−1, A is the lower triangular matrix defined by (10) and V
is the Vandermonde matrix corresponding to the collocation matrix of the monomial basis
of degree n − 1 at t0, . . . , tn−1. Since V is a Vandermonde matrix with strictly increasing
positive nodes, it is STP (see page 111 of [8] and page 12 of [7]). AT is nonsingular TP
because A is nonsingular TP by Theorem 3 (ii). Then, by Theorem 3.1 of [2], the Bessel
matrix M is STP because it is the product of an STP matrix and a nonsingular TP matrix.

In Section 5.2 of [14] Koev devised an algorithm (Algorithm 5.1 in the reference) that,
given the bidiagonal decompositions BD(C) and BD(D) to HRA of two TP matrices C
and D, provides the bidiagonal decomposition BD(CD) to HRA of the TP product matrix
CD. Since the bidiagonal factorization BD(V ) of the Vandermonde matrix V is known to
HRA (see Section 3 of [13]) and the bidiagonal factorization BD(AT ) of the matrix A can
be computed to HRA by Theorem 3 (iii) and Remark 1, by using Algorithm 5.1 of [14] the
bidiagonal factorization BD(M) = BD(V AT ) of the Bessel matrix M is obtained to HRA.

Finally, the construction of BD(M)with HRA guarantees that the algebraic computations
mentioned in the statement of this theorem can be performed with HRA (see Sect. 2 of this
paper or Section 3 of [14]). 	


A system of functions is STP when all its collocation matrices are STP. The following
result is a straightforward consequence of the previous theorem.

Corollary 1 The system of functions formed by the Bessel polynomials of degree less than n,
(B0(x), B1(x), . . . , Bn−1(x)), x ∈ (0,+∞), is an STP system.

4 Reverse Bessel Polynomials andMatrices

Reversing the order of the coefficients of Bn(x) in (8) we can define the reverse Bessel
polynomials:

Br
n(x) =

n
∑

k=0

(n + k)!
2k(n − k)!k! x

n−k, n = 0, 1, 2 . . . , (15)

Let C = (ci j )1≤i, j≤n be the lower triangular matrix such that

(Br
0(x), B

r
1(x), . . . , B

r
n−1(x))

T = C(1, x, . . . , xn−1)T , (16)

that is, the lower triangular matrix C is defined by

ci j =
{

(2i− j−1)!
2i− j ( j−1)!(i− j)! , i ≥ j,

0, i < j .
(17)

Theorem 5 proves the total positivity of C , and provides BD(C). In addition, its proof
gives the explicit form of all the entries of the matrices C (k) computed through the NE of C .

Theorem 5 Let C = (ci j )1≤i, j≤n be the lower triangular matrix in (16) defined by (17).
Then, we have that

(i) the pivots of the NE of C are given by

pi j = (2i−2 j)!
2i− j (i− j)! 1 ≤ j ≤ i ≤ n if j is odd,

pi j = 0 1 ≤ j < i ≤ n, p j j = 1 1 ≤ j ≤ n if j is even,
(18)
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and the multipliers by

mi j = 2i − 1 − 2 j 1 ≤ j < i ≤ n if j is odd,
mi j = 0, 1 ≤ j < i ≤ n if j is even,

(19)

(ii) C is a nonsingular TP matrix
(iii) and the bidiagonal factorization of C is given by

BD(C)i j =
⎧

⎨

⎩

2i − 2 j − 1, if i > j with j odd,
1, if i = j,
0, otherwise,

(20)

and can be computed to HRA.

Proof (i) Let us perform the first step of the NE of C :

c(2)
i j = ci j − ci1

ci−1,1
ci−1, j = ci j − (2i − 3)ci−1, j , i > j ≥ 1.

By using (17) in the previous expression and simplifying we have that

c(2)
i j = (2i − j − 1)!

2i− j ( j − 1)!(i − j)! − (2i − 3)(2i − j − 3)!
2i− j−1( j − 1)!(i − j − 1)!

= (2i − j − 3)!
2i− j−1( j − 1)!(i − j − 1)!

[

(2i − j − 2)(2i − j − 1)

2(i − j)
− 2i + 3

]

= (2i − j − 3)!
2i− j ( j − 1)!(i − j)! ( j

2 − 3 j + 2)

= (2i − j − 3)!
2i− j ( j − 1)!(i − j)! ( j − 2)( j − 1).

From the previous formula we deduce that

c(2)
i j =

⎧

⎪

⎨

⎪

⎩

(2i− j−3)!
2i− j ( j−3)!(i− j)! , for i > j ≥ 3,

0, for i > j ≤ 2,
c(1)
i j , in otherwise.

(21)

Since c(2)
i2 = 0 for i = 3, . . . , n, we have that C (3) = C (2). So, taking into account

this fact, formula (21) and formula (17), we can observe that c(3)
i j = ci−2, j−2 and so,

performing two steps of the NE of C gives as a result a leading principal submatrix of
C . In particular, C satisfies that C (2)[3, . . . , n] = C (3)[3, . . . , n] = C[1, . . . , n − 2].
Hence, and by formulas (3) and (4), we deduce formulas (18) and (19).

(ii) The lower triangularmatrixC is nonsingular since it has nonzero diagonal entries. It can
be seen in the proof of (i) that the NE of C satisfies the hypotheses of Theorem 1. Since
the upper triangular matrix obtained after the process (1) of the NE of C is a diagonal
matrix, the NE of its transpose obviously satisfies the hypotheses of Theorem 1. Hence,
we can conclude that C is a TP matrix.

(iii) By (i) it is straightforward to deduce that BD(C) is given by (20). The subtractions in
this formula are of integers and, hence, they can be computed to HRA, in fact, in an
exact way.
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Definition 2 Given a sequence of parameters 0 < t0 < t1 < · · · < tn−1 we call the colloca-
tion matrix of the reverse Bessel polynomials (Br

0 , . . . , B
r
n−1) at that sequence,

Mr = M

(

Br
0, . . . , B

r
n−1

t0, . . . , tn−1

)

= (Br
j−1(ti−1))1≤i, j≤n

a reverse Bessel matrix.

The following result proves that the reverse Bessel matrices are STP and that some usual
algebraic problems with these matrices can be solved to HRA.

Theorem 6 Given a sequence of parameters 0 < t0 < t1 < · · · < tn−1, the corresponding
reverse Bessel matrix Mr is an STP matrix and given the parametrization ti (0 ≤ i ≤ n−1),
the following computations can be performed with HRA: all the eigenvalues, all the singular
values, the inverse of the reverse Bessel matrix Mr , and the solution of the linear systems
Mr x = b, where b = (b1, . . . , bn)T has alternating signs.

Proof The results can be proved in an anologous way to those of Theorem 4. 	

The following result is a straightforward consequence of the previous theorem.

Corollary 2 The system of functions formed by the reverse Bessel polynomials of degree less
than n, (Br

0(x), B
r
1(x), . . . , B

r
n−1(x)), x ∈ (0,+∞), is an STP system.

5 Numerical Experiments

In [14], assuming that the parameterization BD(A) of an square TP matrix A is known
with HRA, Plamen Koev presented algorithms to compute BD(A−1), the eigenvalues and
the singular values of A, and the solution of linear systems of equations Ax = b where
b has an alternating pattern of signs to HRA. Koev also implemented these algorithms in
order to be used with Matlab and Octave in the software library TNTool available in [15]. The
corresponding functions are TNInverse, TNEigenvalues, TNSingularValues and
TNSolve, respectively. The functions require as input argument the data determining the
bidiagonal decomposition (5) of A, BD(A) given by (7), to HRA. TNSolve also requires a
second argument, the vector b of the linear system Ax = b to be solved. In addition, recently
a function TNInverseExpand was added to that library, contributed by Ana Marco and
José-Javier Martínez. This function, given BD(A) to HRA, returns A−1 to HRA.

The library TNTool also provides the function TNProduct(B1,B2), which, given the
bidiagonal decompositions B1 and B2 to HRA of two TP matrices F and G, provides the
bidiagonal decomposition of the TP matrix FG to HRA. We can observe in the factorization
M = V AT in the proof of Theorem 4 that M can be expressed as the product of two TP
matrices: the TP Vandermonde matrix V and the TP matrix AT defined by (9) and (10).
Taking into account Remark 1, the bidiagonal factorization of AT to HRA can be obtained
from Theorem 3(iii). Since V is a TP Vandermonde matrix, BD(V ) is obtained to HRA
by using TNVandBD of library TNTool. Taking into account these facts, the pseudocode
providing BD(M) to HRA can be seen in Algorithm 1.

We have implemented the previous algorithm to be used in Matlab and Octave in a func-
tion TNBDBessel. The bidiagonal decompositions with HRA obtained with this function
can be used with TNInverseExpand, TNEigenValues, TNSingularValues and
TNSolve in order to obtain accurate solutions for the above mentioned algebraic problems.
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Algorithm 1 Computation of the bidiagonal decomposition of M to HRA

Require: t = (ti )
n−1
i=0 such that 0 < t0 < t1 < . . . < tn−1

Ensure: B bidiagonal decomposition of M to HRA
B1 = T NVandBD(t)
B2(1, 1) = 1
for i = 2 : n − 1 do

for j = 1 : i − 1 do
B2(i, j) = (2i−2)(2i−3)

(2i− j−1)(2i− j−2)
end for
B2(i, i) = (2i − 3)!!
for j = i + 1 : n − 1 do

B2(i, j) = 0
end for

end for
B = T N Product(B1, B2T )

Now we include some numerical tests illustrating the high accuracy of the new methods in
contrast to the accuracy of the usual methods.

First we have considered the Bessel matrix of order 20, M20, corresponding to the col-
location matrix of the Bessel polynomials of degree at most 19 at points 1, 2, . . . , 20.
We have computed with MATLAB the bidiagonal decomposition of M20 to HRA with
the function TNBDBessel. Then, using this bidiagonal decomposition, we have com-
puted approximations to its eigenvalues and its singular values with TNEigenValues and
TNSingularValues, respectively. We have also computed approximations to the eigen-
values and singular values with theMATLAB functions eig and svd, respectively. Then we
have also computed the eigenvalues and singular values of M20 with a precision of 100 digits
using Mathematica. Taking as exact the eigenvalues and the singular values obtained with
Mathematica, we have computed the relative errors for the approximation to the eigenvalues
(resp. singular values) obtained by both eig (resp., svd) and TNEigenValues (resp.,
TNSingularValues).

Since a Bessel matrix is STP, by Theorem 6.2 of [2] all its eigenvalues are real, distinct
and positive. Taking into account this fact, the eigenvalues of M20 have been ordered as
λ1 > λ2 > · · · > λ20 > 0. The relative errors for the approximations to these eigenvalues
of M20 can be seen in Table 1. We can observe in this table that the approximations obtained
by using the bidiagonal decomposition are very accurate. In contrast, the approximations
obtained with eigMATLAB function are only accurate for the larger eigenvalues of M20. In
fact, the approximations to the eigenvalues of M20 obtained with eig are not even positive
for the smaller ones.

The 20 real and positive singular values of M20 have also been ordered as σ1 ≥ σ2 ≥
· · · ≥ σ20 > 0. The relative errors for the approximations to these singular values of M20

can be seen in Table 2. As in the case of the eigenvalues, the approximation obtained for
all the singular values using the bidiagonal decomposition are very accurate, but only the
approximations obtained for the larger singular values by using svd are accurate.

We have also computed approximations to the inverse (M20)
−1 with both inv and

TNInverseExpand using the bidiagonal decomposition provided by TNBDBessel. We
have also obtained with Mathematica the inverse using exact arithmetic. Then, we have com-
puted the componentwise relative errors for both approximations. In Table 3 the mean and
maximum componentwise relative errors are shown. It can be seen that the inverse obtained
with the HRA methods is very accurate in contrast to the poor approximation obtained with
inv.
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Table 1 Relative errors for the eigenvalues of the Bessel matrix M20

i λi Rel. errors with HRA Rel. errors with eig

1 4.5222e+46 4.4851e−16 1.1213e−16

2 1.2183e+42 2.5402e−16 8.0016e−15

3 7.7264e+37 2.4448e−16 3.3983e−14

4 8.7322e+33 0 2.1003e−11

5 1.5801e+30 7.1256e−16 5.3330e−10

.

.

.
.
.
.

.

.

.
.
.
.

17 1.1529e+00 0 2.4583e+10

18 1.3072e−01 2.1233e−16 2.2085e+13

19 6.1386e−03 4.2389e−16 1.8425e+22

20 1.2006e−04 3.3864e−16 4.2167e+28

Table 2 Relative errors for the singular values of the Bessel matrix M20

i σi Rel. errors with HRA Rel. errors with svd

1 4.8763e+46 2.0797e−15 4.1594e−16

2 1.5204e+42 6.1065e−16 4.0710e−16

3 1.1076e+38 3.4108e−16 9.1922e−14

4 1.4266e+34 8.0818e−16 8.3458e−11

5 2.9165e+30 3.8604e−16 1.2661e−03

.

.

.
.
.
.

.

.

.
.
.
.

17 1.0795e+00 4.1139e−16 5.0876e+11

18 1.5106e−02 2.1818e−15 3.4860e+12

19 9.1285e−05 2.0785e−15 1.2718e+13

20 1.6258e−07 3.2563e−16 1.9230e+06

Table 3 Relative errors for the
inverse of the Bessel matrix M20

Rel. errors with HRA Rel. errors with inv

Mean 1.8498e−16 2.1364e−01

Maximum 8.4304e−16 3.0878e−01

We have considered two systems of linear equations

M20x = b1 and M20x = b2,

where the entries of b2 are randomly generated as integers in the interval [1, 1000] and
the i-th entry of b1 is given by b1i = (−1)i+1b2i for i = 1, . . . , 20. So, the independent
vector of the system M20x = b1 has an alternating pattern of signs and the linear system
can be solved with HRA by Theorem 4. Approximations x̂ to the solutions x of both linear
systems have been obtained with MATLAB, the first one using TNSolve and the bidiagonal
decomposition of the Bessel matrix obtained with TNBDBessel, and the second one using
the usual MATLAB command A\b. By using Mathematica with exact arithmetic, the exact

123



Journal of Scientific Computing (2019) 80:1264–1278 1275

Table 4 Relative errors for the
solution of the linear system
M20x = b1

i
∣

∣

∣

x̂i−xi
xi

∣

∣

∣ with HRA
∣

∣

∣

x̂i−xi
xi

∣

∣

∣ with A\b

1 5.6243e−16 1.8543e−01

2 1.8069e−16 1.8643e−01

3 0 1.8822e−01

4 1.2831e−16 1.9058e−01

5 2.2120e−16 1.9336e−01

.

.

.
.
.
.

.

.

.

17 0 2.3342e−01

18 1.4910e−16 2.3627e−01

19 2.3844e−16 2.3897e−01

20 0 2.4153e−01

Table 5 Relative errors for the
solution of the linear system
M20x = b2

i
∣

∣

∣

x̂i−xi
xi

∣

∣

∣ with TNSolve
∣

∣

∣

x̂i−xi
xi

∣

∣

∣ with A\b

1 1.6814e−16 8.9852e−01

2 1.2521e−16 8.3698e−01

3 1.7413e−16 7.4661e−01

4 2.7288e−16 6.5449e−01

5 2.0323e−16 5.7258e−01

.

.

.
.
.
.

.

.

.

17 1.8808e−16 2.1570e−01

18 1.6663e−16 2.0699e−01

19 2.5411e−16 1.9933e−01

20 0 1.9257e−01

solution of the systems have been computed, and then, the componentwise relative errors for
the two approximations obtained with MATLAB have been computed. Table 4 shows the
componentwise relative errors corresponding to the system M20x = b1. It can be observed
that the approximation to the solution provided by TNSolve is very accurate. This fact can
be expected since the independent vector b1 of the system has an alternating pattern of signs
and then it is known that TNSolve provides the solution to HRA (see [14]). On the other
hand, it can also be observed in the table that the accuracy of the approximation provided by
A\b is very poor.

Table 5 shows the componentwise relative errors corresponding to the system M20x = b2.
In this case, since the independent vector b2 has not an alternating pattern of signs, it is not
guaranteed to obtain an approximation to HRA by using TNSolve. However, it can be
observed that in this case the approximation to the solution provided by TNSolve is also
very accurate in contrast to the poor accuracy of the approximation provided by A\b.

It can be observed that the smaller an eigenvalue (resp., singular value) is, the larger
the relative error corresponding to the usual methods is. So, now let us consider the Bessel
matrices Mn of order n, for n = 2, . . . , 15 given by the collocation matrices of the Bessel
polynomials (B0(x), . . . , Bn−1(x)) at the points 1, . . . , n, that is,Mn = (Bj−1(i))1≤i, j≤n . In
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the same way that in the previous examples we have computed the eigenvalues, the singular
values and the inverses of these matrices both with the usualMATLAB functions and to HRA
by using TNBDBessel. Then we have computed the relative errors for the approximation to
the smallest eigenvalue and the smallest singular value of eachmatrix, and the componentwise
relative error for the approximations to the inverses.

The relative errors for the smallest eigenvalues and the smallest singular values of the
Bessel matrices Mn , n = 2, . . . , 15, can be seen in Fig. 1a, b, respectively.

The mean and the maximum componentwise relative errors corresponding to the approx-
imation of the inverses (Mn)

−1 can be seen in Fig. 2a, b, respectively.
In an analogous way to the Bessel matrix we can derive an algorithm to obtain the bidi-

agonal decomposition of a reverse Bessel matrix to HRA. So, the pseudocode providing
BD(Mr ) to HRA can be seen in Algorithm 2.

Algorithm 2 Computation of the bidiagonal decomposition of Mr to HRA

Require: t = (ti )
n−1
i=0 such that 0 < t0 < t1 < . . . < tn−1

Ensure: B bidiagonal decomposition of Mr to HRA
B1 = T NVandBD(t)
for i = 1 : n − 1 do

for j = 1 : i − 1 do
if j is odd then

B2(i, j) = 2i − 2 j − 1
end if

end for
B2(i, i) = 1
for j = i + 1 : n − 1 do

B2(i, j) = 0
end for

end for
B = T N Product(B1, B2T )

For the reverse Bessel matrices we have carried out the same numerical tests as for the
Besselmatrices andwehave deduced exactly the same conclusions. For the sake of brevity, for
the reverse Bessel matrices only the relative errors for the smallest eigenvalue and singular
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Fig. 1 Relative error for the minimal eigenvalue and singular value of Mn
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Fig. 2 Relative errors for (Mn)−1
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value, and the componentwise mean and maximum relative error for the inverses of the
reverse Bessel matrices Mr

n = (Br
j−1(i))1≤i, j≤n , n = 2, . . . , 15, are shown in Figs. 3 and 4,

respectively.
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accuracy (HRA), independently of the size of the classical condition number. These 
classes of matrices are defined by special sign or other structure. It is well–known (cf. 
p. 52 of [7]) that, if an algorithm is subtraction–free, its output can be computed to 
HRA. For these classes of matrices, knowing an adequate parametrization has been a 
crucial start point for the construction of the corresponding accurate algorithms, be-
ing many of them subtraction–free. In contrast to these classes of matrices, for other 
structured classes of matrices it is not possible to construct such HRA algorithms 
(cf. [6]).

In this paper, we present a parametrization for Nekrasov Z-matrices, which allows 
us to construct a subtraction–free (and so, HRA) efficient algorithm to compute their 
inverses.

Let us now recall some basic definitions on classes of matrices used in this paper. 
A real matrix A is a Z-matrix if all its off–diagonal entries are nonpositive. A Z-matrix 
A is a nonsingular M -matrix if its inverse is nonnegative. Given a complex matrix A =
(aij)1≤i,j≤n, its comparison matrix M(A) = (ãij)1≤i,j≤n has entries ãii := |aii| and 
ãij := −|aij | for all j �= i and i, j = 1, . . . , n. We say that a complex matrix is a 
nonsingular H-matrix if its comparison matrix is a nonsingular M -matrix. This concept 
corresponds with the concept of H-matrix of invertible class given in [4]. A matrix 
A = (aij)1≤i,j≤n is SDD (strictly diagonally dominant by rows) if |aii| >

∑
j �=i |aij | for 

all i = 1, . . . , n, and A is DD (diagonally dominant by rows) if |aii| ≥
∑

j �=i |aij | for 
all i = 1, . . . , n. It is well–known that an SDD matrix is nonsingular and that a square 
matrix A is a nonsingular H-matrix if and only if there exists a diagonal matrix W with 
positive diagonal entries such that AW is SDD. Nekrasov matrices (see [14]) are defined 
in Section 2 and form another subclass of H-matrices that includes SDD matrices. Some 
recent applications of Nekrasov matrices can be seen in [5], [10], [11] or [12].

Let us present the layout of the paper. Section 2 presents the parametrization of 
Nekrasov Z-matrices, some auxiliary results and the construction of the subtraction–free 
algorithms for the inverse of a Nekrasov Z-matrix in a particular case. The algorithm 
for a general Nekrasov Z-matrix A is constructed in Section 3. Section 4 includes some 
algorithms used in our method and presents numerical examples showing its accuracy. 
Our method also allows us to compute the solution of a linear system Ax = b with b ≥ 0
to HRA. The numerical examples also show great accuracy of our method even when b
does not satisfy this requirement.

The following notations will be also used in this paper. A matrix A = (aij)1≤i,j≤n

(resp., a vector v = (v1, . . . , vn)T ) is nonnegative if aij ≥ 0 for all i, j (resp., vi ≥ 0 for 
all i), and we write A ≥ 0 (resp., v ≥ 0).

2. Parametrization of Nekrasov matrices and HRA

Let us start by defining the concept of a Nekrasov matrix (see [5,14]). For this purpose, 
let us define recursively for a complex matrix A = (aij)1≤i,j≤n with aii �= 0, for all 
i = 1, . . . , n,
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h1(A) :=
∑

j �=1
|a1j |, hi(A) :=

i−1∑

j=1
|aij |

hj(A)
|ajj |

+
n∑

j=i+1
|aij |, i = 2, . . . , n. (1)

Let N := {1, . . . , n}. We say that A is a Nekrasov matrix if |aii| > hi(A) for all i ∈ N . 
A Nekrasov matrix is a nonsingular H-matrix [14]. Therefore, a Nekrasov Z-matrix with 
positive diagonal entries is a nonsingular M -matrix.

Remark 2.1. Let us recall that DD M -matrices admit some algebraic computations with 
high relative accuracy (HRA). A key tool is the use of an adequate parametrization 
of these matrices, which was provided by the off–diagonal entries and the row sums 
(cf. [1], [8], [13], [2]). We shall call these n2 parameters for an n × n DD M -matrix A
as DD-parameters. If these DD-parameters are known with HRA, then some algebraic 
computations of A can be performed with HRA as it is shown in the previous references.

In this paper we also study computations with HRA for the class of Nekrasov 
Z-matrices. Here, a good choice of parameters will also be crucial. The parameters that 
we shall use for an n ×n Nekrasov Z-matrix A = (aij)1≤i,j≤n with positive diagonal are 
the following n2 parameters, which will be called N-parameters:

{
aij , i �= j

Δj(A) := ajj − hj(A), j ∈ N
(2)

We can characterize an n × n Nekrasov Z-matrix with positive diagonal through the 
n2 signs of the parameters given in (2). In fact, A is a Nekrasov Z-matrix with positive 
diagonal if and only if the first n2 − n parameters (corresponding to the off–diagonal 
entries, aij with i �= j) are nonpositive and the last n parameters (Δj(A) for all j ∈ N) 
are positive.

Since a Nekrasov matrix is a nonsingular H-matrix, there exists a positive diagonal 
matrix W such that AW is SDD. The following lemma shows that the very simple 
diagonal matrix

S =

⎛
⎜⎜⎜⎜⎝

h1(A)
a11

h2(A)
a22

. . .
hn(A)
ann

⎞
⎟⎟⎟⎟⎠

(3)

holds that AS satisfies the weaker property of being DD.

Lemma 2.2. Let A be a Nekrasov Z-matrix with positive diagonal and let S be the matrix 
given by (3). Then the matrix AS is a DD Z-matrix.

Proof. Observe that hi(A)
aii

≥ 0 for i ∈ N , and so, S ≥ 0. Then B := AS preserves the 
signs of A, and the elements of B = (Bij)1≤i,j≤n are:
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Bij =
{

aij
hj(A)
ajj

, if i �= j,

hi(A), if i = j.

Since A is a Z-matrix, B is also a Z-matrix. It remains to prove that B is also DD. 
Since A is a Nekrasov matrix, hj(A) < ajj for all j ∈ N . For each i ∈ N ,

hi(A) =
i−1∑

j=1
|aij |

hj(A)
ajj

+
n∑

j=i+1
|aij | ≥

i−1∑

j=1
|aij |

hj(A)
ajj

+
n∑

j=i+1
|aij |

hj(A)
ajj

and so B is DD. �
For a Nekrasov Z-matrix A and the diagonal matrix S given by (3), the following 

result shows that if we know the n2 N-parameters in (2) of A, then we can compute the 
n2 DD-parameters of the DD M -matrix AS with HRA. This fact will allow us to take 
advantage of properties of DD M -matrices to obtain algorithms with HRA for Nekrasov 
Z-matrices.

Theorem 2.3. Let A = (aij)1≤i,j≤n be a Nekrasov Z-matrix with positive diagonal entries 
and let S be the matrix given by (3). Given the n2 N-parameters (2), we can compute the 
row sums and the off–diagonal entries of AS (its DD-parameters) by a subtraction–free 
algorithm (and so, with HRA), with at most 3n(n−1)

2 additions, 2n(n −1) multiplications 
and 2n − 1 quotients.

Proof. Observe that by (2),

ajj = Δj(A) + hj(A), j ∈ N. (4)

Let us start by computing h1(A), a11, h2(A), a22, . . . , hn(A), ann using the formulas (4)
and (1). We carry out n sums computing the diagonal entries by (4), n quotients in order 
to obtain hj(A)

ajj
when needed (and we store them) and (n−1)n

2 products and n(n − 2)
sums to calculate hj(A) for all j ∈ N using (1). Then we obtain the off–diagonal entries 
of AS, aij

hj(A)
ajj

, which requires n(n − 1) products. Finally, we compute the row sums of 
AS. The row sum of the ith row is:

i−1∑

j=1
aij

hj(A)
ajj

+ hi(A) +
n∑

j=i+1
aij

hj(A)
ajj

,

which can be expressed in the following form using (1), (2) and the sign pattern of a 
Z-matrix:

n∑

j=i+1
(−aij)

(
1 − hj(A)

ajj

)
=

n∑

j=i+1
|aij |

ajj − hj(A)
ajj

=
n∑

j=i+1
|aij |

Δj(A)
ajj

. (5)
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Computing the row sums requires n − 1 quotients of the form Δj(A)
ajj

for j = 2, . . . , n, 
n(n−1)

2 sums and n(n−1)
2 products. The total number of required operations is at most 

3n(n−1)
2 additions, 2n(n − 1) multiplications and 2n − 1 quotients. We do not perform 

any subtraction in this procedure and so it is subtraction–free. �
Let us introduce some basic notations related with Gaussian and Gauss–Jordan elim-

ination. Gaussian elimination without pivoting for a nonsingular n ×n matrix A consists 
of a procedure of at most n − 1 steps resulting in the following sequence of matrices:

A =: A(1) −→ A(2) −→ · · · −→ A(n), (6)

where A(t) has zeros below its main diagonal in the first (t − 1) columns and A(n) is 
an upper triangular matrix. To obtain A(t+1) from A(t) we produce zeros in column t
below the pivot element a(t)

tt by subtracting adequate multiples of row t from the rows 
beneath it. The same transformation can be performed with the matrix (A | B(1)), where 
B(1) := I is the identity matrix,

(A | I) =:
(
A(1) | B(1)

)
−→

(
A(2) | B(2)

)
−→ · · · −→

(
A(n) | B(n)

)
. (7)

Now we proceed analogously, starting from the last row and producing zeros above the 
main diagonal of A(k) (n ≤ k ≤ 2n − 1) to obtain the sequence:
(
A(n) | B(n)

)
−→ · · · −→

(
A(2n−1) | B(2n−1)

)
−→

(
A(2n) | B(2n)

)
=: (I | A−1). (8)

In this case, A(t) = (a(t)
ij )1≤i,j≤n, t = n +1, . . . , 2n −1, has zeros above its main diagonal 

in the last (t − n) columns. To obtain A(t+1) from A(t), t = n, . . . , 2n − 1, we produce 
zeros in column 2n − t above the pivot element a(t)

2n−t,2n−t by subtracting multiples of 
row 2n − t from the rows above it. Finally, A(2n) = I is obtained from A(2n−1) by 
dividing each row of A(2n−1) by its diagonal entries. This well–known method is called 
Gauss–Jordan elimination.

Let Qk,n be the set of increasing sequences of k positive integers in N . Given α, β ∈
Qk,n, we denote by A[α|β] the k×k submatrix of A containing rows numbered by α and 
columns numbered by β. If α = β, then we have the principal submatrix A[α] := A[α|α]. 
The complement αC is the increasingly rearranged N \ α.

For DD M -matrices, algorithms with HRA starting from their DD-parametrization 
were presented in [8] and [13]. In both papers, Gaussian elimination is used, but with 
a different pivoting strategy in each of them. In order to obtain the inverse with HRA, 
a pivoting strategy is not necessary, as the following result shows.

Proposition 2.4. Let A = (aij)1≤i,j≤n be a DD nonsingular Z-matrix with positive di-
agonal entries. If we know the row sums and the off–diagonal entries of A (i.e., its 
DD-parameters), then we can compute A−1 with a subtraction–free algorithm (and so, 
with HRA) performing O(n3) elementary operations.
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Proof. By the hypotheses, A is nonsingular and A + D is SDD (and so, nonsingular) 
for any positive diagonal matrix D. Then, by using property (C10) of Theorem 2.2 of 
chapter 6 of [3] we deduce that A is a nonsingular M -matrix. In order to obtain A−1

with HRA, we are going to use Gauss–Jordan elimination without pivoting. We form the 
augmented matrix M̃ := (A|I|s), which coincides with the first matrix in (7) but with a 
last column with the vector s formed by the row sums of A: s = (s1, . . . , sn)T and, for 
i = 1, . . . , n, si :=

∑n
j=1 aij . Then, we apply the elementary operations of the Gaussian 

elimination of A to the whole matrix M̃ . We start by computing the first pivot, a11, by 
adding s1 (≥ 0) and the sum of the absolute values of the first row off–diagonal entries: 
a11 = s1 +

∑
j �=1 |a1j |. Then we produce zeros in the first column of A by adding positive 

multiples of the first row and, with the exception of the diagonal entries of A(2)[2, ..., n], 
every entry of M̃ (2) = (A(2) | B(2) | s(2)) is computed with HRA. Nevertheless, we 
can obtain analogously the first diagonal entries of A(2)[2, ..., n], . . . , A(n−1)[n − 1, n]
with HRA when they are needed as pivots at the corresponding steps of the Gaussian 
elimination of A, and a(n)

nn after finishing the elimination procedure. In order to start the 
second iteration, it only remains to obtain a(2)

22 with HRA.
Since A(2)[2, ..., n] is the Schur complement of an M -matrix it is also an M -matrix 

(see [9]). The vector of row sums is obtained as Ae = s, where e = (1, . . . , 1)T . Observe 
that s = s(1) ≥ 0 and the way of constructing M̃ (2) from M̃ imply that s(2) ≥ 0. Besides, 
e will be also the solution of the linear system A(2)x = s(2), which implies by the sign 
pattern of A(2) that the components of s(2) coincide again with the row sums of A(2). 
So, a(2)

22 can be computed with HRA by adding s(2)
2 (≥ 0) and the absolute values of the 

off–diagonal entries of the second row of A(2). Now we continue the Gaussian elimination 
and make zeros in the second column below a(2)

22 . We repeat this procedure until when 
we obtain the upper triangular matrix U := A(n) with HRA. Then A(n) preserves the 
Z-matrix sign pattern. In this process, the identity matrix becomes the lower triangular 
matrix B(n), with ones on the diagonal and nonnegative entries below it.

Now, we continue the elimination procedure of A(n) starting with the last row and 
producing zeros above the main diagonal of A(k) (n ≤ k ≤ 2n − 1), as described in (8), 
and we apply it to the whole matrix 

(
A(n) | B(n)). The sign pattern of 

(
A(n) | B(n))

allows us to carry out this elimination process without subtractions, and so, with 
HRA.

The computational cost is given by the cost of Gauss–Jordan elimination (and so of 
O(n3) elementary operations) in addition to the elementary operations to compute the 
pivots a11, a

(2)
22 , . . . , a(n)

nn and to update the vectors s, s(2), . . . , s(n) (of O(n2) elementary 
operations in both cases). �
Remark 2.5. By the characterization (I28) of Theorem (2.3) of chapter 6 of [3], a 
Z-matrix A is a nonsingular M -matrix if and only if there exists a vector z with 
positive entries such that s := Az has positive entries. Then the same proof of 
Proposition 2.4 can be used to prove that, if we know the n2 + n parameters of 
A given by its n2 − n off–diagonal entries, the n entries of z := (z1, . . . , zn)T and 
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the n entries of Az = s (= (s1, . . . , sn)T ), then we can compute A−1 with HRA. 
The analogous proof to that of Proposition 2.4 will use now the augmented matrix 
M̃ := (A|I|s), where s = Az, z will play the role of (1, . . . , 1)T and the expression 

of a11 will be now a11 =
(
s1 +

∑
j �=1 |a1j |zj

)
/z1. Besides, z will be again the solu-

tion of the linear systems A(k)x = s(k) for k = 2, . . . , n. The result can be stated as 
follows: “If A = (aij) is a nonsingular M -matrix and we know its off–diagonal en-
tries as well as z > 0 such that s := Az > 0, then we can compute A−1 with a 
subtraction–free algorithm (and so with HRA) performing O(n3) elementary opera-
tions”.

The following result is a consequence of Theorem 2.3 and Proposition 2.4 and guar-
antees the construction of the inverse of Nekrasov Z-matrices A in the particular case 
that hi(A) �= 0 for all i.

Corollary 2.6. Let A = (aij)1≤i,j≤n be a Nekrasov Z-matrix with positive diagonal entries 
such that hi(A) �= 0 for i = 1, . . . , n (see (1)). If we know its n2 N-parameters (2) then 
we can compute A−1 with a subtraction–free algorithm (and so, with HRA) performing 
O(n3) elementary operations.

Proof. Let S be the matrix given by (3), which can be obtained with HRA and O(n2) ele-
mentary operations, without performing any subtraction. Then B := AS is a nonsingular 
diagonally dominant M -matrix and by Theorem 2.3 we can compute its DD-parameters 
(i.e., off–diagonal entries and row sums) with HRA. With these DD-parameters we can 
compute B−1 with HRA by the procedure described in Proposition 2.4.

Since B = AS, we conclude that A−1 = SB−1 and so each entry of the inverse of A
can be computed by multiplying the corresponding entry of B−1 by the corresponding 
diagonal entry of S. This step can be computed with n2 elementary operations, without 
performing any subtraction. �
Remark 2.7. The accurate inverse A−1 obtained in Corollary 2.6 (and also for a general 
Nekrasov Z-matrix with positive diagonal entries, obtained in the following section) can 
be used to compute with HRA the solution of a linear system Ax = b with b ≥ 0 by the 
direct computation x = A−1b, since the constructed matrix with HRA A−1 ≥ 0 and so 
subtractions are not performed. In Section 4, our numerical experiments also show that 
the solution of the linear system Ax = b for any b, computed by this procedure, is also 
accurately computed.

3. Accurate inverses in the general case

We show in this section that the condition hi(A) �= 0 for i = 1, . . . , n can be suppressed 
in Corollary 2.6. In order to prove this fact, it is crucial to study first the distribution of 
the zero entries of a Nekrasov matrix that satisfies hi(A) = 0 for some i ∈ N .
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Lemma 3.1. Let A = (aij)1≤i,j≤n be a Nekrasov matrix, and let J = {i1, . . . , ik} ⊆ N

(i1 ≤ i2 ≤ · · · ≤ ik) be the ordered set of indices such that hij (A) = 0. Then at least 
n − j off–diagonal elements of the row ij are zero for each j = 1, . . . , k.

Proof. Assuming that J �= ∅, we start by considering the row i1:

hi1(A) =
i1−1∑

k=1
|ai1k|hk(A)

|akk| +
n∑

k=i1+1
|ai1k| = 0. (9)

Since hk(A) �= 0 for k < i1, we deduce from (9) that ai1k = 0 when k �= i1, that is, all 
the off–diagonal entries of the ith row are zero. Now we consider the row ij ∈ J with 
j > 1:

ij−1∑

k=1
|aijk|hk(A)

|akk| +
n∑

k=ij+1
|aijk| =

ij−1∑

k=1, k/∈J

|aijk|hk(A)
|akk| +

n∑

k=ij+1
|aijk| = 0.

In this case, we have that aijk = 0 whenever k /∈ {i1, . . . , ij}. So there are at least n − j

zero entries corresponding to the columns with index k /∈ {i1, . . . , ij}. �
By the previous result, observe that the first row of a Nekrasov matrix A =

(aij)1≤i,j≤n that satisfies hi(A) = 0 has exactly n − 1 zero entries.

Theorem 3.2. Let A = (aij)1≤i,j≤n be a Nekrasov Z-matrix with positive diagonal entries. 
If we know its n2 N-parameters (2), then we can compute A−1 with HRA performing a 
subtraction–free algorithm of O(n3) elementary operations.

Proof. We start by computing h1(A), a11, . . . , hn(A), ann by (1) and (2) from the N-
parameters of A without subtractions. This computation requires O(n2) elementary 
operations. Let us define the ordered set I ⊆ N given by the increasing sequence of 
indices such that hi(A) �= 0. If I = N we can apply Theorem 2.6. So, from now on we 
consider the case I �= N .

Let S be the diagonal matrix given by (3). We define the submatrices Â := A[I]
and B := (AS)[I]. Observe that B is DD because it is a principal submatrix of AS. 
It is possible to compute its inverse without performing subtractions and with O(n3)
elementary operations. In order to prove it, we first obtain an adequate parametrization 
of B with a subtraction–free algorithm. In this case, the required parameters are its 
off–diagonal elements, aij

hj(A)
ajj

, and its row sums (i.e., its DD-parameters), which can 
be written by the choice of I, formulae (1), (2) and the sign pattern of a Z-matrix in 
the following form, as in (5):

∑

j∈I,j �=i

aij
hj(A)
ajj

+ hi(A) =
i−1∑

j=1
aij

hj(A)
ajj

+ hi(A) +
n∑

j=i+1
aij

hj(A)
ajj

=
n∑

j=i+1
|aij |

Δj(A)
ajj

.
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So, the mentioned DD-parametrization of B can be obtained from (2) by a subtraction–
free procedure and O(n2) elementary operations. With these parameters we can ap-
ply Theorem 2.6 in order to obtain the inverse of the diagonally dominant M -matrix 
B = (AS)[I] with a subtraction–free algorithm and O(|I|3) elementary operations. Then 
it is straightforward to compute accurately (and with O(|I|2) elementary operations) 
Â−1 = S[I]B−1.

The |I| × |I| matrices Â and Â−1 allow us to define the following procedure, key 
to obtain A−1 with HRA. It consists of n − |I| major steps resulting in a sequence of 
matrices as follows:

Â := Â(1) → Â(2) → . . . → Â(n−|I|+1) = A. (10)

For each p ∈ {2, . . . , n − |I| + 1}, we obtain the matrix Â(p) by adding to Â(p−1) the 
row and column of A corresponding to the biggest index i ∈ N that was not already 
involved in it. We form the new matrix keeping the row/column ordering of A, and then 

we construct the inverse 
(
Â(p)

)−1
using the information provided by 

(
Â(p−1)

)−1
. The 

last step will give us A−1. To carry out the first step we start by choosing the biggest 
k ∈ Ic. Then we form the (n −|I| +1) ×(n −|I| +1) matrix Â(2) adding the corresponding 
entries of the kth row and column of A to Â in the corresponding place. In order to obtain 
the inverse of this new matrix from C = Â−1 we use Lemma 3.1, which states that the 
new row added to Â has at least |I| zeros that will appear as off–diagonal elements. The 
new row has only one element in Â(2) different from zero, akk. In this case the entries of 
C(2) := (Â(2))−1 are the following:

c
(2)
ij =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

cij , i, j ∈ I,
1

akk
, i = j = k,

0, i = k, j ∈ I,

c
(2)
ik , i ∈ I, j = k.

We need to check this fact and find the expression of the entries c(2)
ik . We consider the 

product Â(2)C(2), which has to be the identity matrix of order |I| + 1. Let us start with 
the case when both i, j ∈ I. Since the inverse of Â is C, the performed operation to 
obtain the element (i, j) of the product is:

∑

s∈I

aiscsj + aik · 0 =
{

0, i �= j,

1, i = j.

Now, if i = k, j ∈ I, we have
∑

s∈I

akscsj + akkckj =
∑

s∈I

0 · csj + akk · 0 = 0

If i = j = k, we obtain
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∑

s∈I

akscsk + akkckk =
∑

s∈I

0 · csk + akk

akk
= 1

It remains the case i ∈ I, j = k, which determines the missing entries of C(2):
∑

s∈I

aisc
(2)
sk + aik

akk
= 0, i ∈ I.

Let us define c :=
(
c
(2)
ik

)
i∈I

, the vector composed by the missing entries. Then, we can 

express the system of equations in terms of the matrix Â:

Âc = − (aik)i∈I

(
1

akk

)
.

We have already computed Â−1 with HRA, and the right hand side is nonnegative, so 
we obtain c with HRA (see Theorem 2.6) by performing the product:

c = C (aik)i∈I

(−1
akk

)
= Â−1(aik)i∈I

(−1
akk

)
.

So we obtain C(2). We can continue analogously. In general, after performing p −1 major 
steps we may obtain A−1 and finish the procedure, or we may have to continue it adding 
the row and column of index k, where k ∈ Ic is the biggest index such that the kth row 
was not involved in Â(p−1). The added row had at least |I| + p − 1 zeros in the original 
matrix, A. Now these zeros are the off–diagonal elements of the added row. We define 
I(p), the ordered set of indices of the rows from A used in Â(p−1). Then we perform 
the product c = C(p−1) (aik)i∈I(p−1)

(
−1
akk

)
in order to obtain the missing entries of the 

matrix C(p) = (Â(p))−1. After computing c, we build C(p):

c
(p)
ij =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
(p−1)
ij , i, j ∈ I(p),

1
akk

, i = j = k,

0, i = k, j ∈ I(p),

c, i ∈ I(p), j = k.

Clearly, we can perform these calculations with HRA and with O(n3) elementary 
operations. �
4. Algorithms and numerical tests

In the previous section we have presented a procedure that allows us to compute the 
inverse of a Nekrasov Z-matrix accurately if we know its N-parameters (2) with HRA. In 
this section, we are going to present the algorithms to compute such inverses following 
Theorem 3.2 and we are going to test them with some numerical examples.
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The first algorithm introduced, Algorithm 1, starts with the N-parameters of the 
Nekrasov Z-matrix and performs the required preparation to compute its inverse de-
pending on the distribution of the zero entries of the matrix.

If hi(A) �= 0 for i = 1, . . . , n the procedure corresponds to Theorem 2.3, and it 
calculates the DD-parameters of AS. Otherwise, the algorithm works with the adequate 
submatrix as described in Theorem 3.2. The output consists of the matrix A, where the 
parameters of (AS)[I] are stored in the submatrix A[I] (the case I = N corresponds 
to Theorem 2.3), the ordered set of indices I and, if the cardinal |I| > 1, the diagonal 
matrix S.

Algorithm 1 nektoDD.
Input: A = (aij)(i �= j), Δ � The N-parameters (2)
for i = 1 : n do

hi =
∑i−1

j=1 aijkj +
∑n

j=i+1 aij

aii = Δi + hi

ki = hi/aii

end for
Build I, the set of indices such that hi(A) �= 0.
if |I| > 1 then

for i = I do
aii =

∑n
j=i+1 aijΔj/ajj

for j = I\{i} do
aij = aijkj

end for
end for
Build S, the |I| × |I| diagonal matrix whose diagonal entries are kj , j ∈ I.

else if |I| = 1 then
aII = 1/aII

else
ann = 1/ann

I = [n]
end if

Once we obtain the DD-parameters of the DD M -matrix AS (or (AS)[I]), our goal 
is to compute its inverse with HRA. We can compute it using the subtraction–free 
implementation of Gauss–Jordan elimination without pivoting described in the proof 
of Proposition 2.4. For brevity, we do not include this algorithm, which can be easily 
derived. The inverse can be stored in A using again the submatrix A[I].

If we have the case that hi(A) �= 0 for i = 1, . . . , n (analogously, |I| = n), it 
only remains to perform the product S(AS)−1, since we obtained (AS)−1 applying 
Gauss–Jordan elimination. Otherwise, we need to build the inverse of AS starting with 
((AS)[I])−1. Algorithm 2 performs this computation. Its input is the matrix A obtained 
after running Algorithm 1 and the set of indices I (we just need to perform the direct 
product S[I]((AS)[I])−1 before, as done in Algorithm 3).

With Algorithm 1, Gauss–Jordan elimination adapted according to Proposition 2.4
and Algorithm 2, we can give a general method to compute the inverse of a Nekrasov 
Z-matrix with positive diagonal with HRA starting with its N-parameters. Algorithm 3
performs all the process.
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Algorithm 2 buildnekinv.
Input: A, I � A[I] contains A[I]−1

Build the set of ordered indices J := Ic = {j1, . . . , jk} such that j1 > j2 > . . . > jk.
for i = J do

aii = 1/aii

A[I|i] = −A[I](A[I|i]. ∗ aii) � .∗ means component–wise multiplication
I = I ∪ {i} (ordered)

end for

Algorithm 3 Computation of the inverse.
Input: A = (aij)(i �= j), Δ � N-parameters
[A, I, S] = nektoDD(A = (aij)(i �= j), Δ)
if |I| > 1 then

Compute B = A[I]−1 using the adapted Gauss–Jordan elimination
A[I] = S ∗ B

end if
A−1 = buildnekinv(A)

Table 1
Maximum relative errors when computing A−1.

Condition number MATLAB HRA
6.7161e+03 2.5585e-13 4.4536e-15
7.4296e+04 5.4000e-12 8.9743e-15
2.1634e+06 3.7380e-11 4.4752e-15
1.2159e+05 4.5739e-12 2.9456e-15
6.4136e+03 5.1254e-13 1.6247e-15
1.6378e+05 1.9921e-11 2.2964e-15
1.9344e+06 1.3436e-13 3.7407e-14
2.0715e+05 3.0038e-11 2.2757e-15
2.9297e+05 7.1062e-12 1.5991e-15
1.7608e+03 4.9903e-14 1.6191e-15

The numerical experiments have been carried out computing the inverses with Algo-
rithm 3. The errors were estimated comparing the computed approximations with the 
exact arithmetic solutions obtained with the Symbolic Math Toolbox of MATLAB. In or-
der to illustrate the accuracy of the method presented in this paper, the same problems 
are also solved using the usual MATLAB commands. In Table 1 we show the maxi-
mum relative errors obtained computing the inverse of ten 20 × 20 Nekrasov Z-matrices 
generated randomly. The column labeled MATLAB shows the error when the inverse 
is computed using the MATLAB command inv, and the column HRA shows the error 
when the inverse is obtained from the N-parameters using the procedure with HRA. We 
observe better results with our method, but the obtained difference is not large since the 
generated examples are not ill–conditioned.

Besides, since all off–diagonal entries are generated randomly, these first examples 
do not include any matrix satisfying hi(A) = 0 for some i = 1, . . . , n. One way to 
obtain examples with a greater condition number consists precisely in generating matrices 
using this additional condition. If we impose hj(A) = 0 whenever j ∈ J ⊆ N , the 
entries aij with j ∈ J and i > j may be arbitrarily large. By generating these entries 
significantly larger than the others, we obtain Nekrasov matrices that are far from being 
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Table 2
Maximum relative errors when computing A−1, 
with the condition hi(A) = 0 for some i.

Condition number MATLAB HRA
4.8463e+11 1.4620e-04 8.7273e-16
1.8512e+11 1.5955e-12 9.0349e-16
1.1334e+11 9.1933e+14 6.3183e-16
3.6138e+11 2.4059e-05 8.5640e-16
8.4356e+10 3.1290e+05 9.1776e-16
1.0278e+11 3.7958e-02 8.7454e-16
1.0960e+11 1.0160e-12 7.6520e-16
1.1049e+12 2.2165e-04 3.8750e-15
2.0787e+11 2.2370e-05 1.5643e-15
1.8109e+11 5.8134e-06 1.1298e-15

Table 3
Maximum relative errors when solving Ax = b with 
b = e.

Condition number MATLAB HRA
1.5337e+11 5.5757e-05 9.7469e-16
5.2794e+10 9.0848e-07 3.4470e-16
8.7214e+10 1.5188e-05 6.6034e-16
1.2596e+11 2.3053e-14 1.3981e-15
6.3378e+10 2.6565e-14 5.2600e-16
7.1578e+10 4.8790e-05 3.6567e-16
4.6526e+10 1.3704e-14 5.5542e-16
7.7622e+10 5.8318e-06 5.1943e-16
4.1758e+10 4.5051e-15 5.8087e-16
7.2351e+10 1.2952e-13 5.6605e-16

diagonally dominant. For such matrices, the MATLAB command inv gives inaccurate
inverses and the procedure with HRA introduced in Theorem 3.2 performs as expected. 
The results can be seen in Table 2, which contains ten examples of 20 × 20 Nekrasov 
Z-matrices.

As we mentioned earlier in Remark 2.7, computing the inverse of a Nekrasov Z-matrix 
A with HRA also allows us to solve with HRA the linear system Ax = b with b ≥ 0
by performing the computation x = A−1b. In Table 3, we show the maximum relative 
error obtained computing the solution in ten cases considering b = e = (1, . . . , 1)T . The 
involved matrices are 20 × 20 Nekrasov Z-matrices with positive diagonal, generated 
as in the previous case. We show the results obtained computing the solution with the 
MATLAB command \ and the method with HRA, which computes the inverse from the 
N-parameters and performs the direct computation x = A−1b. We observe the great 
accuracy of our method, in contrast to MATLAB.

In order to assure the HRA, we required b ≥ 0. However, we may obtain accurate 
solutions even without this requirement. For this purpose, we generated ten 20 × 20
Nekrasov Z-matrices with positive diagonal entries and we solved the system Ax = b

with b = (bi)1≤i≤n, bi = (−1)i+1. Table 4 shows the results obtained with the MATLAB 
command \ and with the procedure with HRA.
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Table 4
Maximum relative errors when solving Ax = b with 
bi = (−1)i+1.

Condition number MATLAB HRA
1.8080e+11 2.0521e-13 3.9922e-16
1.6297e+12 8.7030e-14 3.2741e-14
1.6561e+12 6.1643e-04 1.5069e-15
6.7289e+10 1.9126e-14 2.6656e-15
1.1951e+11 3.0361e-14 8.7663e-16
2.7320e+11 7.5251e-15 1.1204e-15
4.6654e+10 9.9933e-06 7.0215e-16
1.1328e+11 2.3099e-06 3.1267e-16
5.7753e+11 1.7024e-13 3.5437e-15
7.4226e+10 1.9813e-06 8.1572e-16
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1. Introduction 

Providing upper bounds for the infinity norm of the inverse of a matrix has many potential applications in Computational 

Mathematics. For instance, for bounding the condition number of the matrix, for bounding errors in linear complementarity 

problems (cf. [1] ) or, in the class of H -matrices, for proving the convergence of matrix splitting and matrix multisplitting 

iteration methods for solving sparse linear systems of equations (cf. [2] ). 

The class of Nekrasov matrices (see [3] or Section 2 ) contains the class of strictly diagonally dominant matrices. Re- 

cent applications of Nekrasov matrices can be seen in [4–11] . Nekrasov matrices are H -matrices. Let us recall some related 

classes of matrices. A real matrix A is a nonsingular M-matrix if its inverse is nonnegative and all its off-diagonal entries 

are nonpositive. M -matrices form a very important class of matrices with applications to Numerical Analysis, Optimization, 

Economy, and Dynamic systems (cf. [12] ). Given a complex matrix A = (a i j ) 1 ≤i, j≤n , its comparison matrix M (A ) = ( ̃  a i j ) 1 ≤i, j≤n 

has entries ˜ a ii := | a ii | and 

˜ a i j := −| a i j | for all j � = i and i, j = 1 , . . . , n . We say that a complex matrix is an H-matrix if its com- 

parison matrix is a nonsingular M -matrix. About a more general definition of H -matrix, see [13] . A matrix A = (a i j ) 1 ≤i, j≤n is 

SDD (strictly diagonally dominant by rows) if | a ii | > �j � = i | a ij | for all i = 1 , . . . , n . 

It is well–known that an SDD matrix is nonsingular and that a square matrix A is an H -matrix if there exists a diagonal 

matrix S with positive diagonal entries such that AS is SDD. The role of the scaling matrix is crucial, for instance, for the 

problem mentioned above of the convergence of iteration methods and also for the problem of eigenvalue localization (see 

[11] ). This paper deals with the research of such scaling matrices S for the particular case when A is a Nekrasov matrix. The 

scaling matrix S is applied to obtain upper bounds for the infinity norm of the inverse of a Nekrasov matrix. 
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The paper is organized as follows. Section 2 constructs scaling matrices S for Nekrasov matrices A , such that AS is SDD. 

Section 3 applies the scaling matrices of Section 2 to derive upper bounds of 
∥

∥A 

−1 
∥

∥

∞ 

, including an algorithm to obtain the 

corresponding bound. Section 4 presents an improvement of the bound obtained in Section 3 and includes numerical exam- 

ples, illustrating our bounds and comparing them with other previous bounds. We consider several test matrices previously 

considered in the literature, and we also consider some variants of these matrices. We also include a family of 3 × 3 matri- 

ces showing that previous bounds can be arbitrarily large, in contrast to our bounds, which are always controlled. Finally, 

we derive bounds for other norms. Section 5 illustrates the use of our scaling matrices to derive new error bounds for the 

linear complementarity problems when the involved matrix is a Nekrasov matrix. We avoid the restrictions of the bound 

in [1] and we present a family of matrices for which our bound is a small constant, in contrast to the bounds of [14–16] , 

which can be arbitrarily large. 

We finish this introduction with some basic notations. Let N := { 1 , . . . , n } . Let Q k , n be the set of increasing sequence of k 

positive integers in N . Given α, β ∈ Q k , n , we denote by A [ α| β] the k × k submatrix of A containing rows numbered by α and 

columns numbered by β . If α = β, then we have the principal submatrix A [ α] := A [ α| α]. Finally, the diagonal matrix with 

diagonal entries d i , 1 ≤ i ≤ n , will be denoted by diag (d i ) 
n 
i =1 

. 

2. Scaling matrices 

Let us start by defining the concept of a Nekrasov matrix (see [2–4] ). For this purpose, let us define recursively, for a 

complex matrix A = (a i j ) 1 ≤i, j≤n with a ii � = 0, for all i = 1 , . . . , n, 

h 1 (A ) := 

∑ 

j � =1 

| a 1 j | , h i (A ) := 

i −1 
∑ 

j=1 

| a i j | h j (A ) 

| a j j | + 

n 
∑ 

j= i +1 

| a i j | , i = 2 , . . . , n. (1) 

We say that A is a Nekrasov matrix if | a ii | > h i ( A ) for all i ∈ N . It is well–known that a Nekrasov matrix is a nonsingular 

H -matrix [3] . So, there exists a positive diagonal matrix S such that AS is SDD . In particular, Nekrasov matrices can be 

characterized in terms of these scaling matrices (see Theorem 2.2 of [7] ). Once we have found a scaling matrix, we can use 

it to derive infinity norm bounds for the inverse of Nekrasov matrices, which may be useful for many problems, as recalled 

in the Introduction. In fact, the problem of bounding the infinity norm of the inverse of a Nekrasov matrix has attracted 

great attention recently (see [2,5,6,8,9] ). 

In this section we are introducing two methods that allow us to build a scaling matrix for any given Nekrasov matrix. 

Theorem 2.1. Let A = (a i j ) 1 ≤i, j≤n be a Nekrasov matrix. Then the matrix S = 

⎛ 

⎜ 

⎝ 

h 1 (A )+ ε1 | a 11 | 
. . . 

h n (A )+ εn | a nn | 

⎞ 

⎟ 

⎠ 

, 

with 

{

ε1 > 0 , 

0 < εi ≤ | a ii | − h i (A ) , εi > 

∑ i −1 
j=1 

| a i j | ε j 

| a j j | for i = 2 , . . . , n, 

is a positive diagonal matrix such that AS is SDD. 

Proof. Let us start by proving that there exist ε1 , . . . , εn satisfying the conditions stated above. We consider, as a first choice, 

εi := | a ii | − h i (A ) for i = 1 , . . . , n . If εi > 

∑ i −1 
j=1 

| a i j | ε j 

| a j j | for all i = 2 , . . . , n we have finished. Otherwhise, let i > 1 be the first index 

such that the inequality does not hold. Then we substitute ε j by 
ε j 

ˆ M i 

, with j = 1 , . . . , i − 1 , where ˆ M i is a positive number 

such that the inequality is satisfied. The inequalities checked at earlier steps remain true. We continue this process until the 

inequality holds for all i = 2 , . . . , n . 

The diagonal matrix S is positive because h i ( A ) ≥ 0 and ε i > 0. The entry ( i , j ) of AS is a i j 
h j (A )+ ε j 

| a j j | . In order to prove that 

AS is SDD we start by checking that the condition is true for the n th row: 

n −1 
∑ 

j=1 

| a n j | h j (A ) + ε j 

| a j j | = 

n −1 
∑ 

j=1 

| a n j | h j (A ) 

| a j j | 
︸ ︷︷ ︸ 

h n (A ) 

+ 

n −1 
∑ 

j=1 

| a n j | ε j 

| a j j | < h n (A ) + εn = | (AS)[ n ] | 

The condition holds for the row n − 1 : 

n −2 
∑ 

j=1 

| a n −1 , j | h j (A ) + ε j 

| a j j | + | a n −1 ,n | h n (A ) + εn 

| a nn | 
︸ ︷︷ ︸ 

≤1 

≤ h n −1 (A ) + 

n −2 
∑ 

j=1 

| a n −1 , j | ε j 

a j j 

< h n −1 (A ) + εn −1 = | (AS)[ n − 1] | 
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The first inequality is due to the hypothesis εn ≤ | a nn | − h n (A ) , which implies h n (A )+ εn | a nn | ≤ 1 . In general, considering the i th 

row for 2 ≤ i < n − 1 : 

i −1 
∑ 

j=1 

| a i j | h j (A ) + ε j 

| a j j | + 

n 
∑ 

j= i +1 

| a i j | h j (A ) + ε j 

| a j j | ≤ h i (A ) + 

i −1 
∑ 

j=1 

| a i j | ε j 

| a j j | < h i (A ) + εi = | (AS)[ i ] | 

and, when i = 1 : 

n 
∑ 

j=2 

| a 1 j | h j (A ) + ε j 

| a j j | ≤ h 1 (A ) < h 1 (A ) + ε1 = | (AS)[1] | . 

The inequality for the i th row is proven using that ε j ≤ | a j j | − h j (A ) for j = i + 1 , . . . , n and εi > 

∑ i −1 
j=1 

| a i j | ε j 

| a j j | . If i = 1 , the 

last inequality is reduced to ε1 > 0. �

In Theorem 2.1 we introduced a diagonal matrix S that transforms any Nekrasov matrix into an SDD matrix. Its con- 

struction implied the search of the parameters ε i for i ∈ N . Taking into account the existence of nonzero entries in the upper 

triangular part of a Nekrasov matrix, we can build a new scaling matrix S , simpler in many cases, whose product with a 

Nekrasov matrix is also SDD. 

Theorem 2.2. Let A = (a i j ) 1 ≤i, j≤n be a Nekrasov matrix and let k ∈ N be the first index such that there does not exist j > k with 

a kj � = 0 . Then the matrix S = diag (s i ) 
n 
i =1 

with s i := 

h i (A )+ εi | a ii | and with 

{

εi = 0 , i = 1 , . . . , k − 1 , 

0 < εi < | a ii | − h i (A ) , εi > 

∑ i −1 
j= k 

| a i j | ε j 
| a j j | for i = k, . . . , n, 

is a 

positive diagonal matrix such that AS is SDD. 

Proof. Let us start by showing that there exist ε1 , . . . , εn satisfying the conditions stated above. Since A is a Nekrasov matrix, 

we have that | a ii | > h i ( A ) for i = 1 , . . . , n . The existence of ε1 = · · · = εk −1 = 0 is trivial and, following the constructive proof 

of the existence of these parameters given in Theorem 2.1 , we can deduce the existence of εk , . . . , εn . It remains to prove 

that AS is an SDD matrix, which can be done analogously to the proof of Theorem 2.1 . 

Let us first consider the i th row, when i < k . Since i < k , there exists an entry a ij � = 0 with i < j . Taking also into account 

that ε j = 0 for all j < i and that h j (A ) + ε j < | a j j | for all j = i + 1 , . . . , n, we deduce that: 

i −1 
∑ 

j=1 

| a i j | h j (A ) + ε j 

| a j j | + 

n 
∑ 

j= i +1 

| a i j | h j (A ) + ε j 

| a j j | 

= 

i −1 
∑ 

j=1 

| a i j | h j (A ) 

| a j j | + 

n 
∑ 

j= i +1 

| a i j | h j (A ) + ε j 

| a j j | 

< 

i −1 
∑ 

j=1 

| a i j | h j (A ) 

| a j j | + 

n 
∑ 

j= i +1 

| a i j | = h i (A ) = | (AS)[ i ] | . 

For the k th row we have that a k j = 0 for every j > k and so: 

k −1 
∑ 

j=1 

| a k j | h j (A ) + ε j 

| a j j | + 

n 
∑ 

j= k +1 

| a k j | h j (A ) + ε j 

| a j j | = 

k −1 
∑ 

j=1 

| a k j | h j (A ) 

| a j j | 
= h k (A ) < h k (A ) + εk = | (AS)[ k ] | . 

It just remains to check the i th rows, when i > k . Since h j (A ) + ε j < | a j j | for all j > i ( > k ), we have, by the choice of ε i : 

i −1 
∑ 

j=1 

| a i j | h j (A ) + ε j 

| a j j | + 

n 
∑ 

j= i +1 

| a i j | h j (A ) + ε j 

| a j j | ≤ h i (A ) + 

i −1 
∑ 

j= k 
| a i j | ε j 

| a j j | < h i (A ) + εi = | (AS)[ i ] | . 

�

The particular case k = n corresponds to a diagonal matrix with ε1 = · · · = εn −1 = 0 and εn ∈ ( 0 , | a nn | − h n (A ) ) . This scal- 

ing matrix was already introduced in [1] and it was used to derive an error bound for linear complementarity problems of 

Nekrasov matrices. In the following section, we shall apply the scaling matrices derived in this section to the problem of 

bounding the norm of the inverse of a Nekrasov matrix. 

3. Bounding 
∥
∥
∥A 

−1 
∥
∥
∥∞ 

With an adequate scaling matrix S (given by Theorems 2.1 or 2.2 ) we can obtain the desired bound for the inverse of 

a Nekrasov matrix A considering the product AS . For this purpose, we are going to use the following result introduced by 

Varah in [17] : 
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Table 1 

Computational cost of (2) . 

Operations General k = n k = 1 

additions/subtractions 3 n 2 + n +2 
2 

+ 

(n −k −1)(n −k ) 
2 

3 n 2 + n +2 
2 

2 n 2 − n + 2 

multiplications 7 n 2 +9 n +4 
2 

+ 

5 k 2 −10 kn −11 k 
2 

n (n − 1) 7 n 2 −n −2 
2 

quotients 2 n − 1 + 2(n − k ) 2 n − 1 4 n − 3 

Table 2 

Leading term of the computational cost of (2) . 

k = n k = 1 

T 5 
2 

n 2 11 
2 

n 2 

Theorem 3.1. If A is SDD and α := min k (| a kk | − ∑ 

j � = k | a k j | ) , then 
∥

∥A 

−1 
∥

∥

∞ 

< 1 /α. 

Theorem 3.1 gives a bound for the infinity norm of the inverse of an SDD matrix. This theorem, jointly with the scaling 

matrices introduced in Section 2 , allows us to deduce Theorem 3.2 . 

Theorem 3.2. Let A = (a i j ) 1 ≤i, j≤n be a Nekrasov matrix. Then 

∥

∥A 

−1 
∥

∥

∞ 

≤
max i ∈ N 

(

h i (A )+ εi | a ii | 
)

min i ∈ N (εi − w i + p i ) 
, (2) 

where (ε1 , . . . , εn ) are given by Theorems 2.1 or 2.2 , w i := 

∑ i −1 
j=1 | a i j | ε j 

| a j j | , and p i := 

∑ n 
j= i +1 | a i j | | a j j |−h j (A ) −ε j 

| a j j | for all i ∈ N. 

Proof. We choose a diagonal matrix S following either Theorems 2.1 or 2.2 and we deduce the following inequality: 
∥

∥A 

−1 
∥

∥

∞ 

= 

∥

∥S(S −1 A 

−1 ) 
∥

∥

∞ 

= 

∥

∥S(AS) −1 
∥

∥

∞ 

≤ ‖ 

S ‖ ∞ 

∥

∥(AS) −1 
∥

∥

∞ 

. (3) 

The matrix S is diagonal, so its infinity norm is given by max i ∈ N ( 
h i (A )+ εi | a ii | ) . Since AS is SDD we can apply Theorem 3.1 to 

∥

∥(AS) −1 
∥

∥

∞ 

. For this purpose, we need to compute for each i = 1 , . . . , n : 

h i (A ) + εi −
∑ 

j � = i 
| a i j | h j (A ) + ε j 

| a j j | = εi −
i −1 
∑ 

j=1 

| a i j | ε j 

| a j j | + 

n 
∑ 

j= i +1 

| a i j | | a j j | − h j (A ) − ε j 

| a j j | 
= εi − w i + p i , 

where we have substituted h i ( A ) by the expression given by (1) . �

Since the diagonal matrix S satisfies ‖ S ‖ ∞ 

≤ 1, we can substitute the numerator of the bound (2) by one and obtain the 

following result: 

Corollary 3.3. Let A = (a i j ) 1 ≤i, j≤n be a Nekrasov matrix. Then 

∥

∥A 

−1 
∥

∥

∞ 

≤ 1 

min i ∈ N (εi − w i + p i ) 
, 

where (ε1 , . . . , εn ) are given by Theorems 2.1 or 2.2 , w i := 

∑ i −1 
j=1 | a i j | ε j 

| a j j | , and p i := 

∑ n 
j= i +1 | a i j | | a j j |−h j (A ) −ε j 

| a j j | for i ∈ N . 

In Table 1 we present the computational cost of the bound (2) using the matrix S given by Theorem 2.2 . The cost depends 

on the index k . Two extreme cases are studied separately. The first one, k = n, corresponds to the simplest case, where εi = 0 

for i = 1 , . . . , n − 1 . The second one corresponds to k = 1 and it uses a diagonal matrix S with ε i � = 0 for all i ∈ N . In fact, in 

this case the diagonal matrix S also satisfies the definition given by Theorem 2.1 . 

The particular cases k = n and k = 1 have the lowest and biggest computational cost, respectively. Table 2 shows the 

leading term T of the computational cost in these cases. 

Now we are going to introduce Algorithm 1 , which allows us to compute the bound (2) choosing ε i with i ∈ N following 

Theorem 2.2 . It corresponds to Theorem 2.1 when k = 1 . In order to compute this bound, the algorithm needs to give some 

initial values to ε1 , . . . , εn . These parameters are initialized with either 0 or t(| a ii | − h i (A )) , where t ∈ (0, 1). It could be useful 

to choose a different scalar t for each ε i . However, it is not clear how to choose their values, and for many matrices, such as 

those included in Section 4 , we have that εi = 0 for i = 1 , . . . , n − 1 . In this case, we also consider in Section 4 the possibility 

of choosing εn as the middle point of its interval, that is, εn = 

�n 
2 , where �n = | a nn | − h n (A ) . 
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Algorithm 1 nektoSDD - Computing bound (2) . 

Input: A = (a i j ) 1 ≤i, j≤n , t 

for i = 1 : n do 

h i = 

∑ i −1 
j=1 | a i j | k j 

r = 

∑ n 
j= i +1 | a i j | 

if r == 0 , J == 0 then � Find the first row such that εi > 0 

J=i; 

end if 

h i = h i + r 

�i = | a ii | − h i 
k i = h i / | a ii | 

end for 

εK = t�K 

w 1 = · · · = w K = 0 � If i ≤ K, we have that w i = 0 

for i = K + 1 : n do 

εi = t�i 

p j = ε j / | a j j | 
w i = 

∑ i −1 
j= K | a i j | p j 

if w i − εi > 0 then 

M = 1 / 2 w i 

for j = K : i − 1 do 

ε j = ε j εi M 

w j = w j εi M 

end for 

w i = εi / 2 

end if 

end for 

for i=n:-1:2 do 

S i = εi − w i + 

∑ n 
j= i +1 | a i j | f j 

f i = (�i − εi ) / | a ii | 
end for 

S 1 = ε1 − w 1 + 

∑ n 
j=2 | a 1 j | f j 

Bound = 

max i ∈ N { k i + εi / | a ii |} 
min i ∈ N { S i } 

4. Improvements, numerical tests and bounds for other norms 

In the previous section, we derived the bound (2) for the infinity norm of the inverse of a Nekrasov matrix A . For this pur- 

pose, we first obtained an adequate scaling matrix S and then we applied the well–known Varah’s bound of Theorem 3.1 to 

the matrix AS . Nevertheless, any bound applicable to SDD matrices could be applied to AS , and a different choice would lead 

us to a different bound. In order to illustrate this fact, we are also going to use the bound introduced in [6] for Nekrasov 

matrices, which in particular improves Varah’s bound for SDD matrices (as proven in Theorem 2.4 of [6] ): 

∥

∥A 

−1 
∥

∥

∞ 

≤ max 
i ∈ N 

z i (A ) 

| a ii | − h i (A ) 
, (4) 

z 1 (A ) := 1 , z i (A ) := 

i −1 
∑ 

j=1 

| a i j | z j (A ) 

| a j j | + 1 , i = 2 , . . . , n. 

As in (3) , the new bound for 
∥

∥A 

−1 
∥

∥

∞ 

reduces to the product of ‖ S ‖ ∞ 

and the bound to 
∥

∥(AS) −1 
∥

∥

∞ 

obtained by (4) . In fact, 

taking into account that z i (AS) = z i (A ) for all i ∈ N , the explicit form of this new bound is: 

∥

∥A 

−1 
∥

∥

∞ 

≤ max 
i ∈ N 

(

h i (A ) + εi 

| a ii | 
)

max 
i ∈ N 

z i (A ) 

(h i (A ) + εi − h i (AS)) 
. (5) 

As shown by the following numerical experiments, this change gives a better bound whenever S follows Theorem 2.2 . How- 

ever, in general the substitution of Varah’s bound is going to increase the computational cost of the bound, while the bound 

(2) using Theorem 2.1 is not significantly improved. Analogously to (5) , if better bounds than (4) for SDD matrices are ob- 

tained, then they can be also combined with our bound of Theorem 2.2 to derive sharper bounds than (5) , although the 

computational cost can increase again. 
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Recent articles have studied the problem of finding bounds for the infinity norm of the inverse of a Nekrasov matrix. In 

[2] , two bounds are introduced and tested with the following six matrices: 

A 1 = 

⎛ 

⎜ 

⎝ 

−7 1 −0 . 2 2 

7 88 2 −3 

2 0 . 5 13 −2 

0 . 5 3 1 6 

⎞ 

⎟ 

⎠ 

, A 2 = 

⎛ 

⎜ 

⎝ 

8 1 −0 . 2 3 . 3 

7 13 2 −3 

−1 . 3 6 . 7 13 −2 

0 . 5 3 1 6 

⎞ 

⎟ 

⎠ 

, 

A 3 = 

⎛ 

⎜ 

⎝ 

21 −9 . 1 −4 . 2 −2 . 1 

−0 . 7 9 . 1 −4 . 2 −2 . 1 

−0 . 7 −0 . 7 4 . 9 −2 . 1 

−0 . 7 −0 . 7 −0 . 7 2 . 8 

⎞ 

⎟ 

⎠ 

, A 4 = 

⎛ 

⎜ 

⎝ 

5 1 0 . 2 2 

1 21 1 −3 

2 0 . 5 6 . 4 −2 

0 . 5 −1 1 9 

⎞ 

⎟ 

⎠ 

, 

A 5 = 

( 

6 −3 −2 

−1 11 −8 

−7 −3 10 

) 

, A 6 = 

⎛ 

⎜ 

⎝ 

8 −0 . 5 −0 . 5 −0 . 5 

−9 16 −5 −5 

−6 −4 15 −3 

−4 . 9 −0 . 9 −0 . 9 6 

⎞ 

⎟ 

⎠ 

. 

In more recent works, such as [5,6,9] , improvements of these bounds are developed and tested using also these matrices. 

Since the scaling matrices introduced in Section 2 allowed us to derive different bounds, we are going to compare them 

with the results obtained in some of the mentioned papers. 

We have included results from Gao et al. [5,6] . The bound (4) (which corresponds to the bound 2.4 of [6] ) improves 

those obtained in [2] for Nekrasov matrices (as proven in Theorem 2.3 of [6] ). Theorem 9 of [5] gives a sharper bound in 

some cases, and so we also include it in our comparison. 

Table 3 gathers the different bounds. The first row shows the exact infinity norm of the matrices. The data included in 

the second (corresponding to bound (4) ) and third rows are borrowed from the articles that achieved the sharpest bounds. 

The other rows contain our results, obtained with bounds (2) and (5) . In the last case S was given by Theorem 2.1 while 

in the other cases the diagonal matrix S followed Theorem 2.2 . Excluding the case where εn = �n / 2 , our bounds used an 

appropriate choice of parameters. 

Looking at the rows corresponding to Theorem 2.2 we can observe that the obtained bounds are better for A 4 and A 5 , 

but they are worse in the other cases. With the choice of a diagonal matrix S following Theorem 2.1 and bound (2) we 

obtained a better bound for every matrix. This option seems superior to the other possibilities. However, it has an intrinsic 

problem: the choice of the parameters ε i for i = 1 , . . . , n . Given the right parameters, the obtained bound is excellent. But 

a bad choice of these values may give a useless bound. In general, it is not clear how to find the optimal values using 

Theorem 2.1 . 

Performing more numerical tests, we have seen that the bounds introduced in this paper may be particularly useful 

when the considered Nekrasov matrix is far from satisfying | a ii | > h i ( A ) for some i ∈ N \ { n }. Looking at the bound for SDD 

matrices introduced by Varah ( Theorem 3.1 ), we can observe that it depends on all the row sums of the comparison matrix. 

In particular, bounds for Nekrasov matrices based on Varah’s bound seem to be inversely proportional to | a ii | − h i (A ) for 

some indices i ∈ N . In order to illustrate this fact, we have modified one entry of all previous examples and we present the 

bounds obtained for the inverses of these new matrices in Table 4 . 

ˆ A 1 = 

⎛ 

⎜ 

⎝ 

−7 1 −3 . 9 2 

7 88 2 −3 

2 0 . 5 13 −2 

0 . 5 3 1 6 

⎞ 

⎟ 

⎠ 

, ˆ A 2 = 

⎛ 

⎜ 

⎝ 

8 1 −0 . 2 3 . 3 

7 13 2 −3 

−11 6 . 7 13 −2 

0 . 5 3 1 6 

⎞ 

⎟ 

⎠ 

, 

ˆ A 3 = 

⎛ 

⎜ 

⎝ 

21 −9 . 1 −4 . 2 −2 . 1 

−0 . 7 9 . 1 −4 . 2 −4 . 2 

−0 . 7 −0 . 7 4 . 9 −2 . 1 

−0 . 7 −0 . 7 −0 . 7 2 . 8 

⎞ 

⎟ 

⎠ 

, ˆ A 4 = 

⎛ 

⎜ 

⎝ 

5 1 0 . 2 2 

1 21 1 −3 

2 0 . 5 6 . 4 −2 

0 . 5 −1 15 9 

⎞ 

⎟ 

⎠ 

, 

ˆ A 5 = 

( 

6 −3 −2 

−1 9 −8 

−7 −3 10 

) 

, ˆ A 6 = 

⎛ 

⎜ 

⎝ 

8 −0 . 5 −0 . 5 −0 . 5 

−31 . 9 16 −5 −5 

−6 −4 15 −3 

−4 . 9 −0 . 9 −0 . 9 6 

⎞ 

⎟ 

⎠ 

. 

In Table 4 we observe that bound (2) is lower than (4) and the bound of [5] even with the choice of εn as the middle 

point for matrices ˆ A 2 , ˆ A 3 , ˆ A 5 and 

ˆ A 6 . We also obtained tight bounds for the norm of the inverse of ˆ A 1 . The remaining case, 
ˆ A 4 , was built increasing significantly an entry of the last row. As a consequence, all bounds compared in Table 4 obtained 

weaker results than in Table 3 . For ˆ A 6 , bounds of [5] and [6] (corresponding to bound (4) ) are very high while our bounds 

(using (2) ) are all controlled. This phenomenon will be also illustrated with the following family of 3 × 3 matrices. 
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Table 3 

Upper bounds of || A −1 || ∞ . 
Matrix A 1 A 2 A 3 A 4 A 5 A 6 

Exact norm 0.1921 0.2390 0.8759 0.2707 1.1519 0.4474 

(4) 0.2632 0.5365 0.9676 0.5556 1.4138 0.4928 

Theorem 9 of [5] 0.2505 0.5365 0.9676 0.5038 1.4138 0.4928 

(2) , εn = �n / 2 0.6398 1.4406 1.5527 0.7264 1.2974 1.2893 

(5) , εn = �n / 2 0.4992 0.7422 1.0632 0.5596 1.2809 1.2893 

(2) , Theorem 2.2 0.3474 0.8894 1.3325 0.4484 1.1658 1.0796 

(5) , Theorem 2.2 0.3074 0.5684 0.9735 0.3817 1.1658 1.0436 

(2) , Theorem 2.1 0.2354 0.5260 0.9273 0.3168 1.1588 0.4527 

Table 4 

Upper bounds of || A −1 || ∞ . 
Matrix ˆ A 1 ˆ A 2 ˆ A 3 ˆ A 4 ˆ A 5 ˆ A 6 

Exact norm 0.2385 0.9827 1.0997 0.2848 2.4545 0.9144 

(4) 10.0 0 0 0 16.2005 5.5357 8.7889 7.0 0 0 0 266.0 0 0 0 

Theorem 9 of [5] 0.3979 16.2005 5.5357 8.7889 7.0 0 0 0 266.0 0 0 0 

(2) , εn = �n / 2 1.2345 2.2098 2.3120 17.0569 5.5208 2.6020 

(5) , εn = �n / 2 0.6144 1.2071 1.6377 3.1074 5.5208 2.6020 

(2) , Theorem 2.2 0.8230 1.4732 2.1018 10.2316 4.1085 2.0316 

(5) , Theorem 2.2 0.5344 0.9923 1.5203 3.0603 3.4717 1.9119 

(2) , Theorem 2.1 0.3262 1.2642 1.1479 6.6456 2.6180 2.0316 

Example 4.1. Let us consider the family of matrices 

A = 

( 

4 2 1 

4 
3 

− ε 2 1 

1 1 2 

) 

, (6) 

where 0 < ε < 

1 
10 . In this case, || A 

−1 || ∞ 

< 1 . 4167 , h 1 (A ) = 3 , h 2 (A ) = 2 − 3 
4 ε and h 3 (A ) = 

7 
4 − 3 

8 ε. Then the bounds (2.4) of 

[6] and Theorem 9 of [5] coincide and are equal to 16 
9 ε − 1 

3 . We can observe that this bound is arbitrarily large when ε → 0. 

However, our bounds remain controlled. In fact, (2) with ε3 = �3 / 2 (and ε1 = 0 , ε2 = 0 ) gives the bound 16( 1 −(3 ε/ 8) 
1+(3 ε/ 2) 

) , (2) in 

Theorem 2.2 is equal to 12( 1 −(3 ε/ 8) 
1+(3 ε/ 2) 

) and (2) in Theorem 2.1 can become equal to 12. 

We finish this section by applying Theorem 3.2 to derive bounds for other norms. The first result is obtained from 

applying Theorem 3.2 to the transpose matrix. 

Corollary 4.2. Let A = (a i j ) 1 ≤i, j≤n be a matrix with A 

T Nekrasov. Then 

∥

∥A 

−1 
∥

∥

1 
≤

max i ∈ N 
(

h i (A T )+ ̄εi | a ii | 
)

min i ∈ N ( ̄εi − w̄ i + p̄ i ) 
, 

where ε̄i , w̄ i , p̄ i are the parameters εi , w i , p i of Theorems 2.2 and 3.2 corresponding to A 

T . 

Corollary 4.3. Let A = (a i j ) 1 ≤i, j≤n be a matrix with A and A 

T Nekrasov and let σ n ( A ) be its minimal singular value. Then 

σn (A ) = 

∥

∥A 

−1 
∥

∥

−1 

2 
≥

√ 

min i ∈ N (εi − w i + p i ) min i ∈ N ( ̄εi − w̄ i + p̄ i ) 

max i ∈ N 
(

h i (A )+ εi | a ii | 
)

max i ∈ N 
(

h i (A T )+ ̄εi | a ii | 
) , (7) 

where εi , w i , p i , ε̄i , w̄ i , p̄ i are given in Theorems 2.2 and 3.2 and Corollary 4.2 . 

Proof. It is a consequence of the well–known facts that, for a nonsingular matrix M , its minimal singular value coincides 

with 

∥

∥M 

−1 
∥

∥

−1 

2 
and that ‖ M ‖ 2 

2 
≤ ‖ M ‖ 1 ‖ M ‖ ∞ 

. �

In the following example we apply Corollary 4.3 to the suitable matrices from the previous experiments, A 3 and A 4 . The 

matrix A 3 is an SDD matrix whose transpose is Nekrasov, while A 4 is an SDD matrix whose transpose is also SDD. 

Example 4.4. Corollary 4.3 gives a lower bound for the minimal singular value of a Nekrasov matrix whose transpose is also 

a Nekrasov matrix. We can apply this result to A 3 and A 4 with the choice ε1 = ε2 = ε3 = 0 , ε4 = �4 / 2 , where �4 (A 3 ) / 2 = 

0 . 6572 and �4 (A 4 ) / 2 = 3 . 9646 . For these matrices, we have that σn (A 3 ) = 1 . 0943 and σn (A 4 ) = 4 . 2327 . The bounds obtained 

applying (7) are σ n ( A 3 ) > 0.3357 and σ n ( A 4 ) > 0.8680. 
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5. Error bounds for LCP of Nekrasov matrices 

Given an n × n real matrix A and q ∈ R 

n , these problems look for solutions x ∗ ∈ R 

n of 

Ax + q ≥ 0 , x ≥ 0 , x T (Ax + q ) = 0 . (8) 

This problem (8) is usually denoted by LCP( A , q ). A real square matrix is called a P-matrix if all its principal minors are 

positive. Let us recall (see [18] ) that A is a P -matrix if and only if the LCP( A , q ) (8) has a unique solution x ∗ for each q ∈ R 

n . 

Let A be a real H -matrix with all its diagonal entries positive. Then A is a P -matrix and so we can apply the third 

inequality of Theorem 2.3 of [14] and obtain for any x ∈ R 

n the inequality: 

‖ x − x ∗‖ ∞ 

≤ max d∈ [0 , 1] n ‖ (I − D + DA ) −1 ‖ ∞ 

‖ r(x ) ‖ ∞ 

, 

where we denote by I the n × n identity matrix, by D the diagonal matrix D = diag (d i ) 
n 
i =1 

with 0 ≤ d i ≤ 1 for all i = 1 , . . . , n, 

by x ∗ the solution of the LCP( A , q ) and by r(x ) := min (x, Ax + q ) , where the min operator denotes the componentwise min- 

imum of two vectors. 

By (2.4) of [14] , given in Theorem 2.1 of [14] , when A = (a i j ) 1 ≤i, j≤n is a real H -matrix with all its diagonal entries positive, 

then we have 

max d∈ [0 , 1] n ‖ (I − D + DA ) −1 ‖ ∞ 

≤ ‖ (M (A )) −1 max (	, I) ‖ ∞ 

, (9) 

where we denote by M (A ) the comparison matrix of A , by 	 the diagonal part of A ( 	 := diag (a ii ) 
n 
i =1 

) and by max (	, I) := 

diag ( max { a ii , 1 } ) n i =1 
. 

The next theorem, corresponding to Theorem 2.1 of [19] , shows the application of obtaining scaling matrices to transform 

an H -matrix into an SDD matrix in order to derive error bounds for LCP. 

Theorem 5.1. Suppose that A = (a i j ) 1 ≤i, j≤n is an H-matrix with all its diagonal entries positive. Let S = diag(s i ) 
n 
i =1 

, s i > 0 for all 

i ∈ N , be a diagonal matrix such that AS is SDD. For any i = 1 , . . . , n, let β̄i := a ii s i −
∑ 

j � = i | a i j | s j . Then 

max d∈ [0 , 1] n ‖ (I − D + DA ) −1 ‖ ∞ 

≤ max 

{

max i { s i } 
min i { βi } , 

max i { s i } 
min i { s i } 

}

. (10) 

The following theorem provides an error bound for the particular LCP associated to a Nekrasov matrix. 

Theorem 5.2. Let A = (a i j ) 1 ≤i, j≤n be a Nekrasov matrix with all its diagonal entries positive. Let S = diag(s i ) 
n 
i =1 

and ε i (i ∈ N) be 

the diagonal matrix and positive real numbers, respectively, defined in Theorem 2.2 . Then 

max d∈ [0 , 1] n ‖ (I − D + DA ) −1 ‖ ∞ 

≤ max 

{ 

1 

min i { εi − w i + p i } , 
1 

min i { s i } 
} 

, (11) 

where, for each i ∈ N , p i and w i are defined in Theorem 3.2 . 

Proof. Since A is Nekrasov, s i < 1 for all i ∈ N and A is an H -matrix. So, we can apply (10) and then it is sufficient to prove 

that β̄i = εi − w i + p i for all i ∈ N . For any i ∈ N , we have 

β̄i = a ii 
h i (A ) + εi 

a ii 
−

∑ 

j∈ N\{ i } 
| a i j | h j (A ) + ε j 

a j j 

and by (1) we can write 

β̄i = 

i −1 
∑ 

j=1 

| a i j | h j (A ) 

a j j 

+ 

n 
∑ 

j= i +1 

| a i j | −
∑ 

j∈ N\{ i } 
| a i j | h j (A ) 

a j j 

+ εi −
∑ 

j∈ N\{ i } 
ε j 

| a i j | 
a j j 

= εi −
i −1 
∑ 

j=1 

| a i j | 
a j j 

+ 

n 
∑ 

j= i +1 

| a i j | 
(

1 − h j (A ) + ε j 

a j j 

)

= εi − w i + p i . 

�

As a choice of each parameter ε i ( i ∈ N ) in Theorem 5.2 , we recommend (as we already did for εn ) to choose the middle 

point of the interval where it lies (see Theorem 2.2 ). This choice is applied in the following example, where we present 

a family of matrices for which our bound (11) is a small constant, in contrast to the bounds of [14–16] , which can be 

arbitrarily large. Observe also that these matrices do not satisfy the necessary hypotheses to apply the bound of [1] . 

Example 5.3. Let us consider the family of matrices 

A = 

( 

K −K + 2 −1 

−K K 0 

−K 

−1 
K 

K 

) 

, 
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where K > 2. In this case, h 1 (A ) = K − 1 , h 2 (A ) = K − 1 and h 3 (A ) = K − 1 + 

K−1 
K 2 

. Then the bound (9) (of [14] ) is equal to 

2 K 3 +2 K 
K 2 −1 

and the bounds of [15,16] coincide and are equal to 2 K 3 +2 K 2 

K 2 −K+1 
. We can observe that these bounds are arbitrarily large 

when K → ∞ . However, our new bound remains controlled. In fact, (11) with ε1 = 0 , ε2 = 1 / 2 and ε3 = 

2 K 2 −2 K+3 
4 K 2 

gives the 

bound 

4 K 3 

2 K 3 −2 K 2 −2 K+1 
. 
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relationship with other classes of tensors is also analyzed.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction
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π -matrices was introduced and analyzed in [7]. It contains the class of 

B-matrices, which we applied to the eigenvalue localization (cf. [8]) and to the Linear 
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π -matrices are P -matrices under the restriction 
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are matrices whose principal minors are positive (nonnegative, respectively) and they 
generalize positive definite (semidefinite, respectively) symmetric matrices to the non 
symmetric case, in the sense that a symmetric matrix is positive definite (semidefinite) 
if and only if it is a P -matrix (P0-matrix, respectively). Among many applications of 
P -matrices, we recall that a Linear Complementarity Problem has always a unique so-
lution if and only if the associated matrix is a P -matrix (cf. [1]).

In [11], Song and Qi extended P -matrices (P0-matrices) to P -tensors (P0-tensors) 
of even order, which are positive definite (semidefinite) when the tensor is symmetric. 
Later, in [2], a more general definition of P -tensor (P0-tensor) was provided, which 
coincides with that of [11] for the even order tensors and includes many important 
structured tensors of odd order. In particular, odd order P -tensors contain B-tensors 
(an easily checkable class of tensors, see [5,9,10]) and strong M -tensors, which extend 
the corresponding classes of matrices. These last two classes of tensors also belong to the 
class of MB-tensors (see [6]).

In this paper, we extend the class of BR
π -matrices to the class of BR

π -tensors. We 
analyze these tensors and their relationship with other structured classes of tensors. The 
paper is organized as follows. In Section 2, we introduce basic concepts and notations. 
Section 3 provides several decompositions of BR

π -tensors and symmetric BR
π -tensors that 

will be used in the following section. In Section 3 we also provide examples showing that 
BR

π -tensors are not necessarily MB-tensors. In Section 4, it is proved that odd order 
BR

π -tensors are P -tensors and that symmetric even order BR
π -tensors are P -tensors and 

so positive definite. Finally, we also prove that symmetric even order BR
π -tensors are 

sum-of-squares tensors.

2. Basic concepts and notations

A real mth order n-dimensional tensor A = (ai1···im
) ∈ R[m,n] is a multi-array of real 

entries ai1···im
∈ R, where ik ∈ N := {1, . . . , n} for k = 1, . . . , m. If the entries of the 

tensor A are invariant under any permutation of its indices we say that A is a symmetric
tensor. Let us consider the set of entries aii2···im

for i, i2, . . . , im ∈ N as the i-th row of 
A. Then we can define the i-th row sum of A as

Ri(A) :=
n∑

i2,...,im=1
aii2···im

.

A tensor A is called diagonally dominant if

|ai···i| ≥
n∑

i2,...,im �=(i,...,i)

|aii2···im
|, i ∈ N. (1)

If (1) holds strictly, then A is called strictly diagonally dominant. We say that A =
(ai1···im

) ∈ R[m,n] is a B-tensor (B0-tensor) if
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Ri(A) > 0 (≥ 0), i ∈ N, (2)

and

Ri(A)
nm−1 > aij2···jm

(≥ aij2···jm
), ∀(j2, . . . , jm) �= (i, . . . , i). (3)

Observe that, if A is a B-tensor, then each diagonal entry ai···i is greater than the 
off-diagonal entries of its row.

We say that A = (ai1···im
) ∈ R[m,n] is nonnegative if ai1···im

≥ 0 for all i1, . . . , im ∈ N

and that A is a Z-tensor if all its off-diagonal entries are non-positive, i.e., ai1···im
≤ 0

whenever δi1···im
= 0, where δi1···im

is the generalized Kronecker symbol with m indices:

δi1···im
=
{

1, if i1 = . . . = im,

0, otherwise.

Let I be the identity tensor, whose off-diagonal entries are 0 and its diagonal entries 
are 1. A tensor A = (ai1···im

) ∈ R[m,n] is called an (a strong) M -tensor if there exists a 
nonnegative tensor B = (bi1···im

) ∈ R[m,n] and a positive scalar s ≥ ρ(B) (> ρ(B)) such 
that A = sI − B, where ρ(B) is the spectral radius of B (see page 15 of [9]). (Strictly) 
diagonally dominant Z-tensors are clearly (strong) M -tensors.

Let A = (ai1···im
) ∈ R[m,n] and let βi(A) be given by

βi(A) := max
i2,...,im∈N
δii2···im=0

{aii2···im
, 0} . (4)

Then we can decompose A as follows

A = B+ + C, (5)

where B+ = (bi1···im
) ∈ R[m,n] and C = (ci1···im

) ∈ R[m,n], with

bii2···im
:= aii2···im

− βi(A) for i ∈ N, (6)

and

cii2···im
:= βi(A) for i ∈ N. (7)

Observe that A is a B-tensor (B0-tensor) if and only if the tensor B+ given by (5) and (6)
is a strictly diagonally dominant (diagonally dominant) Z-tensor with positive (nonneg-
ative) diagonal entries and the tensor C given by (5) and (7) is a nonnegative rank-one 
tensor (see page 3 of [9]). In [6] two new classes of tensors were introduced, MB0-tensors 
and MB-tensors, which clearly contain B0-tensors and B-tensors, respectively.
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Definition 2.1. Let A = (ai1···im
) ∈ R[m,n], and let A = B+ + C be the decomposition 

given by (5). Then A is called an MB0-tensor (MB-tensor) if B+ is an M -tensor (a 
strong M -tensor).

A tensor A is called positive semidefinite (definite) if for each (nonzero) x ∈ Rn

Axm ≥ 0 (> 0),

where Axm =
∑n

i1,...,im=1 ai1i2···im
xi1 · · ·xim

. Notice that there are not any nontrivial 
positive semidefinite tensors when m is odd.

We now introduce the important concepts of P -tensor and P0-tensor, independently 
of the order of the tensor (cf. [2]). Let us recall that, given an m-th order tensor A =
(ai1···im

) ∈ R[m,n] and x ∈ Rn, then Axm−1 ∈ Rn is given by

(
Axm−1)

i
:=

n∑

i2,...,im=1
aii2···im

xi2 · · ·xim
, for each i = 1, . . . , n.

Definition 2.2. (see [2] or page 192 of [9]) A tensor A ∈ R[m,n] is called a P -tensor if for 
each nonzero x ∈ Rn there exists an index i ∈ N such that

xm−1
i (Axm−1)i > 0. (8)

A tensor A ∈ R[m,n] is called a P0-tensor if for each nonzero x ∈ Rn there exists some 
index i ∈ N such that

xi �= 0 and xm−1
i (Axm−1)i ≥ 0. (9)

In [11] it was shown that in the even order case a symmetric tensor is positive definite 
(semidefinite) if and only if it is a P -tensor (P0-tensor). The following result will be used 
later.

Proposition 2.3. (Theorem 4.1 of [13] and Lemma 3 of [6]) Let A ∈ R[m,n] be a symmetric 
Z-tensor and let m be even. Then

1. A is positive definite if and only if A is a strong M -tensor.
2. A is positive semidefinite if and only if A is an M -tensor.

Given v �= 0 ∈ Rn, let us recall that a symmetric rank-one tensor vm(= v ⊗ · · · ⊗ v) ∈
R[m,n] is defined by (vm)i1···im

= vi1 · · · vim
. Then a tensor A ∈ R[m,n] is called completely 

positive if it can be written as

A =
k∑

i=1
(u(i))m, (10)
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where k is a positive integer and u(i) is a nonnegative vector for i = 1, . . . , k. A completely 
positive tensor is a P0-tensor independently of its order (see Proposition 3.3 of [2]).

Now we introduce a class of matrices defined in [7], which will lead to a new class of 
tensors. Let π = (π1, . . . , πn) be a nonnegative vector satisfying

0 <

n∑

j=1
πj ≤ 1, (11)

let A = (aij)1≤i,j≤n be a square real matrix with positive row sums and let R =
(R1, . . . , Rn) be the vector formed by the row sums of A. Let us observe that, although 
in [7] there are no further restrictions on the vector π than (11), it is necessary that π is 
nonnegative in order to have that a BR

π -matrix is a P -matrix (see proof of Theorem 3.4 
of [7]). So, we say that A is a BR

π -matrix if for all i = 1, . . . , n

πjRi > aij , ∀j �= i. (12)

Definition 2.4. Let π = (π1, . . . , πn) be a nonnegative vector satisfying (11), let 
i1, . . . , im ∈ N and let πi1i2···ik

:= πi1πi2 · · ·πik
with k ≤ m. Given a tensor A =

(ai1···im
) ∈ R[m,n] and the vector R = (Ri)i∈N formed by its row sums, we say that A is 

a BR
π -tensor ((BR

π )0-tensor) if R is positive (nonnegative) and, for all k ∈ N ,

πi2···im
Rk > aki2···im

(≥ aki2···im
), with δki2···im

= 0. (13)

When πj = 1
n for j ∈ N this definition of a BR

π -tensor ((BR
π )0-tensor) coincides with 

that of a B-tensor (B0-tensor).

3. Decompositions of BR
π -tensors and examples

In this section we present several decompositions of BR
π -tensors and (BR

π )0-tensors 
that will be used later, as well as examples of BR

π -tensors that are not MB-tensors.

Theorem 3.1. Let A ∈ R[m,n] be a BR
π -tensor. Then we can write A as

A = B + C,

where B is a strictly diagonally dominant M -tensor and C is a nonnegative rank-one 
tensor.

Proof. Since π satisfies (11) there exists an index k ∈ N such that πk > 0. Then, for every 
i ∈ N and (i2, . . . , im) with k = ij for some j ∈ {2, . . . , m}, there exists 0 < εi2···im

< πk

such that

aii2...im
− π̂i2···im

Ri < 0,
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where π̂i2···im
= π̂i2 · · · π̂im

with

π̂ir
=
{

πir
, r �= j (ir �= k),

πk − εi2···im
, r = j (ir = k), for r = 2, . . . ,m.

Then we take ε := min{εi2···im
} and we define

π̃i2···im
:= π̃i2 · · · π̃im

, with π̃ir
=
{

πir
, r �= j,

πk − ε, r = j,
for r = 2, . . . ,m.

We can decompose A as

A = B+
π̃ + Cπ̃, (14)

where B+
π̃ = (bi1···im

) ∈ R[m,n] and Cπ̃ = (ci1···im
) ∈ R[m,n],

bii2···im
:= aii2···im

− π̃i2···im
Ri, i ∈ N,

and

cii2···im
:= π̃i2···im

Ri, i ∈ N. (15)

So, we have that Cπ̃ is a nonnegative rank-one tensor. On the other hand, we have that 
the i-th row sum of B+

π̃ , with i ∈ N , is positive:

n∑

i2,...,im=1
bii2···im

=
n∑

i2,...,im �=k

(aii2···im
− πi2···im

Ri) +
n∑

∃j=2,...,m
s.t. ij=k

(aii2···im
− π̃i2···im

Ri)

= Ri − Ri

n∑

i2,...,im �=k

πi2···im
− Ri

n∑

∃j=2,...,m
s.t. ij=k

π̃i2···im

> Ri

⎛
⎝1 −

n∑

i2,...,im=1
πi2···im

⎞
⎠ ≥ 0. (16)

Since B+
π̃ is a Z-tensor with positive row sums it is strictly diagonally dominant. �

We can derive a similar decomposition for (BR
π )0-tensors.

Theorem 3.2. Let A ∈ R[m,n] be a (BR
π )0-tensor. Then we can write A as

A = B+
π + Cπ, (17)

where B+
π is a diagonally dominant M-tensor and Cπ is a nonnegative tensor.
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Proof. In order to prove this result, we can follow the proof of Theorem 3.1 with ε = 0. 
Following (14), we can decompose A as

A = B+
π + Cπ,

where B+
π is a Z-tensor with nonnegative row sums, or equivalently, a diagonally domi-

nant Z-tensor. �
Let Π = πm ∈ R[m,n] and let J ⊆ N . Then we denote by ΠJ a tensor A = (ai1···im

) ∈
R[m,n] such that ai1···im

= (πm)i1···im
= πi1 · · ·πim

whenever ij ∈ J for all j = 1, . . . , m
and such that all its remaining entries are zero. The tensors ΠJ play a key role in the 
new decomposition for symmetric BR

π -tensors of even and odd order introduced in the 
next theorem. This decomposition will allow us to prove, in the following section, that a 
symmetric BR

π -tensor of even order is positive definite.

Theorem 3.3. Let A ∈ R[m,n] be a symmetric BR
π -tensor. Then either A is a strictly 

diagonally dominant symmetric Z-tensor or it can be written as

A = M +
s∑

i=1
hiΠ

Ji , (18)

where M is a strictly diagonally dominant Z-tensor, s is a positive integer, hk > 0, 
Jk ⊆ N for k = 1, . . . , s and Js � Js−1 � . . . � J1.

Proof. Let J1 := {i ∈ N such that there is at least one positive off-diagonal entry in the 
i-th row of A}. If J1 = ∅, then A is a symmetric Z-tensor with positive row sums, and 
so A is also strictly diagonally dominant. So, let us suppose that J1 �= ∅. Let us define

γi(A) := max
i2,...,im∈J1
δii2···im=0

{
aii2···im

πii2···im

}
, for i ∈ J1. (19)

The choice of the indices implies that γi(A) is well-defined, i.e., we avoid any division 
by zero. Let us suppose that πj = 0 for some j ∈ N . In that case, from (13) we see that

0 = πji3···im
Ri2 > ai2ji3···im

, (20)

for any i2, . . . , im with δi2ji3···im
= 0. Combining the symmetry of A and the bound (20), 

we deduce that ai1i2···im
< 0 whenever δi1i2···im

= 0 and ik = j for some k = 1, . . . , m. 
In particular, it holds for k = 1, and this fact implies that j /∈ J1, and so, formula (19)
is well-defined.

We take h1 := mini∈J1{γi(A)}. Let j ∈ J1 be an index such that h1 = γj(A) and let 
j2, . . . , jm ∈ N be the indices such that γj(A) = ajj2···jm

πjj2···jm
. Then A(2) := A − h1ΠJ1 is 

also a symmetric BR
π -tensor. Furthermore, A(2) satisfies that γi(A(2)) = γi(A) − h1 ≥ 0
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for i ∈ J1 and that γj(A(2)) = 0. In order to check that γj(A(2)) = 0 we are going to see 

that all the off-diagonal entries in the jth row of A(2) =
(
a
(2)
i1···im

)
are nonpositive:

a
(2)
ji2···im

= aji2···im
− ajj2···jm

πjπj2···jm

πjπi2···im
≤ 0, (21)

which holds by the choice of h1 as γj(A). In order to see that A(2) is a BR
π -tensor let us 

first prove that it has positive row sums. In fact, for each i ∈ J1,

Ri(A(2)) =
n∑

i2,...,im=1
a
(2)
ii2···im

=
n∑

i2,...,im=1
aii2···im

−
∑

i2,...,im∈J1

h1πii2···im

= Ri − h1
∑

i2,...,im∈J1

πii2···im
= Ri − ajj2···jm

πjπj2···jm

πi

∑

i2,...,im∈J1

πi2···im

≥ Ri − γi(A)πi

∑

i2,...,im∈J1

πi2···im
≥ Ri − max

i2,...,im∈J1
δii2···im=0

{
aii2···im

πi2···im

}
> 0.

We also need to prove that (13) holds. We have that a(2)
ii2···in

= aii2···in
whenever 

i /∈ J1, so let us impose that i ∈ J1. Then, for the i-th row of A(2), we have to see that

πi2···im

⎛
⎝Ri − πi

∑

j2,...,jm∈J1

h1πj2···jm

⎞
⎠ > aii2···im

− h1πiπi2···im
. (22)

After some computations, we deduce that condition (22) is equivalent to

Ri >
aii2···im

πi2···im

− h1πi + πi

∑

j2,...,jm∈J1

h1πj2···jm

= aii2···im

πi2···im

− h1πi

⎛
⎝1 −

n∑

j2,...,jm∈J1

πj2···jm

⎞
⎠ . (23)

Since 0 <
∑n

j2,...,jm
πj2···jm

≤ 1, the inequality (23) holds from (13) and, as a conse-
quence, (22) also holds. Finally, since both A and h1ΠJ1 are symmetric, we have that 
A(2) is a symmetric BS

π -tensor, for some positive vector S ∈ Rn. Moreover, we can follow 
the same process with A(2). Let us define J2 := {i ∈ N such that there is at least one 
positive off-diagonal entry in the i-th row of A(2)}. By the definition of A(2) we have 
that J2 � J1. So, if we repeat this process s times (with s ≤ n), we would end up with 
a tensor A(s+1) that satisfies Js+1 = ∅.

This fact implies that we can write A as

A = A(s+1) +
s∑

i=1
hiΠ

Ji , (24)
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where A(s+1) is a Z-tensor with positive row sums, and so it is strictly diagonally dom-
inant, and the decomposition (24) corresponds to (18). �

Following the proof of Theorem 3.3 it is straightforward to deduce the equivalent 
decomposition to (18) for (BR

π )0-tensors.

Theorem 3.4. Let A ∈ R[m,n] be a symmetric (BR
π )0-tensor. Then either A is a diagonally 

dominant symmetric Z-tensor or it can be written as

A = M +
s∑

i=1
hiΠ

Ji , (25)

where M is a diagonally dominant Z-tensor, s is a positive integer, hk > 0, Jk ⊆ N for 
k = 1, . . . , s and Js � Js−1 � . . . � J1.

Let us now consider the relationship between these new classes of BR
π -tensors and 

(BR
π )0-tensors with other generalizations of B-tensors. As commented in Section 2, we 

already know that a B-tensor is a BR
π -tensor for π =

( 1
n , . . . , 1

n

)
. The next result about 

Z-tensors that are BR
π -tensors or (BR

π )0-tensors follows from Definition 2.4.

Proposition 3.5. Let A ∈ R[m,n] be a Z-tensor. Then

1. A is strictly diagonally dominant if and only if it is a BR
π -tensor for any positive 

vector π satisfying (11).
2. A is diagonally dominant if and only if it is a (BR

π )0-tensor for any nonnegative 
vector π satisfying (11).

It is known that a Z-tensor is a B0-tensor (B-tensor) if and only if it is diagonally 
dominant (strictly diagonally dominant). Proposition 3.5 implies that, for the particular 
case of Z-tensors, the classes of B-tensors and BR

π -tensors are the same. In particular, a 
Z-tensor that is a BR

π -tensor is also an MB-tensor. We also have that a Z-tensor that 
is a (BR

π )0-tensor is an MB0-tensor. But, as the following examples show, in general a 
BR

π -tensor is not necessarily an MB-tensor or even an MB0-tensor.

Example 3.6. Let A = (ai1i2i3) ∈ R[3,2] be such that

a111 = 1
2 , a122 = 1, a112 = a121 = 0,

a222 = 20, a212 = a221 = 1, a211 = 0.

We have that A is a BR
π -tensor with π =

( 1
10 ,

9
10
)

but it is not an MB0-tensor. If we 
decompose A using (5)
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A = B+ + C,

we have that B+ is not an M -tensor. In order to see this fact, it is sufficient to check its 
first row. Since β1(A) = 1,

b111 = −1
2 , b122 = 0, b121 = b112 = −1. (26)

It is known that the diagonal entries of an M -tensor must be nonnegative (see Proposition 
15 of [3]). This is also true for the case of even order tensors. Let A = (ai1i2i3i4) ∈ R[4,2]

be such that

a1111 = 1
2 , a1222 = 1, a1112 = a1121 = a1211 = a1221 = a1122 = a1212 = 0,

a2222 = 20, a2122 = a2212 = a2221 = 1, a2111 = a2211 = a2121 = a2112 = 0.

Then we have that A is a BR
π -tensor with π =

( 1
10 ,

9
10
)

but it is not an MB0-tensor. 
The reasoning given in the previous example can also be applied to this case in order to 
check that A is not an MB0-tensor.

The following section will analyze the relationship of BR
π -tensors and (BR

π )0-tensors 
with P -tensors and P0-tensors.

4. BR
π -tensors and P -tensors

The following result shows that all BR
π -tensors of odd order are P -tensors.

Theorem 4.1. Let A ∈ R[m,n] be a BR
π -tensor with m odd. Then A is a P -tensor.

Proof. Following Theorem 3.1 we can decompose A by (14) as

A = B+
π̃ + Cπ̃,

where B+
π̃ is a strong M -tensor since it is a Z-tensor with positive row sums. Given 

x �= 0 ∈ Rn, for any i ∈ N one can derive from (15)

(
Cπ̃xm−1)

i
= Ri(π̃1x1 + . . . + π̃nxn)m−1 ≥ 0,

and so we deduce that

xm−1
i

(
Cπ̃xm−1)

i
≥ 0. (27)

Let i ∈ N be such that xm−1
i

(
B+

π̃ xm−1)
i
> 0. Then we can use the decomposition (14)

to see that



H. Orera, J.M. Peña / Linear Algebra and its Applications 581 (2019) 247–259 257

xm−1
i

(
Axm−1)

i
= xm−1

i

(
Cπ̃xm−1)

i
+ xm−1

i

(
B+

π̃ xm−1)
i
> 0,

and so, we conclude that A is a P -tensor. �
Analogously, a (BR

π )0-tensor of odd order is a P0-tensor.

Theorem 4.2. Let A ∈ R[m,n] be a (BR
π )0-tensor with m odd. Then A is a P0-tensor.

Proof. In order to prove this result we can use the decomposition given by Theorem 3.2,

A = B+
π + Cπ,

where B+
π is a diagonally dominant Z-tensor, and as a consequence, an M -tensor. Given 

x �= 0 ∈ Rn, let i ∈ N be such that xm−1
i

(
B+

π xm−1)
i
≥ 0. Then we can derive

xm−1
i

(
Axm−1)

i
= xm−1

i

(
Cπxm−1)

i
+ xm−1

i

(
B+

π xm−1)
i
≥ 0,

and A is a P0-tensor. �
A BR

π -matrix is a P -matrix, and so, a BR
π -tensor of order 2 is a P -tensor. However, 

in general a B-tensor of even order m ≥ 4 is not a P -tensor (see Proposition 3.1 of 
[12]). But, as the following result shows, a symmetric BR

π -tensor of even order is also a 
P -tensor.

Theorem 4.3. Let A ∈ R[m,n] be a symmetric BR
π -tensor. If m is even, then A is positive 

definite, and so, a P -tensor.

Proof. By Theorem 3.3, either A is a symmetric strong M -tensor or we can decompose 
A by (18) as the sum of a symmetric strong M -tensor, M, and a completely positive 
tensor, 

∑s
i=1 hiΠJi . By Proposition 2.3, a symmetric strong M -tensor with even order is 

positive definite, so let us suppose that we are in the case where the decomposition (18)
of A is not trivial. Let us define πJk

= (π̃1, . . . , ̃πn), where π̃i := πi if i ∈ Jk and π̃i := 0
otherwise. By (18) we have that

Axm = Mxm +
s∑

i=1
hiΠ

Jixm = Mxm +
s∑

i=1
hi(πT

Ji
x)m

= Mxm +
s∑

i=1
hi(π̃1x1 + . . . π̃mxm)m ≥ Mxm > 0,

and A is positive definite, and so, a P -tensor. �
The analogous result for (BR

π )0-tensors also holds.
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Theorem 4.4. Let A ∈ R[m,n] be a symmetric (BR
π )0-tensor. If m is even, then A is 

positive semidefinite, and so, a P0-tensor.

Proof. By Theorem 3.4, either A is a symmetric M -tensor or we can decompose A
following (25) as the sum of a symmetric M -tensor, M, and a completely positive tensor, ∑s

i=1 hiΠJi . Since A is symmetric and m is even this decomposition implies that A is 
positive semidefinite and a P0-tensor. �

Suppose that A ∈ R[m,n] is a symmetric tensor with m even. Let

fA(x) = Axm =
n∑

i1,...,im=1
ai1···im

xi1 · · ·xim
,

where x ∈ Rn. If it is possible to write

fA(x) =
r∑

j=1
fj(x)2,

where fj for j = 1, . . . , r are homogeneous polynomials of degree m
2 , then f is called a 

sum-of-squares (SOS) polynomial, and the symmetric tensor A is called a sum-of-squares
(SOS) tensor. Applications of SOS tensors can be seen in [9].

Theorem 4.5. Let A = (ai1···im
) ∈ R[m,n] be a symmetric (BR

π )0-tensor with m even. 
Then A is an SOS tensor.

Proof. We have already seen that we can decompose A using (25), and so we can write 
A as the sum of a symmetric M -tensor, which is an SOS tensor, and 

∑s
i=1 hiΠJi . Let us 

see that ΠJk is an SOS tensor. Let us define πJk
= (π̃1, . . . , ̃πn), where π̃i := πi if i ∈ Jk

and π̃i := 0 otherwise. Then:

fΠJi (x) =
n∑

i1,...,im=1
π̃i1···im

xi1 · · ·xim
=

n∑

i1,...,im=1
π̃i1 · · · π̃im

xi1 · · ·xim

= (π̃i1xi1 + . . . + π̃in
xin

)m. �
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1. Introduction

Finding classes of matrices relevant in applications for which algebraic computations can be performed with high
relative accuracy (HRA) is an active research topic of great interest in recent years. This goal has been achieved for some
subclasses of totally positive matrices (see, for instance, [1–7]). Let us recall that a matrix is called totally positive (TP) if
all their minors are nonnegative and, if they are all positive, then the matrix is called strictly totally positive (STP). These
classes of matrices play an important role in many fields such as approximation theory, statistics, mechanics, computer-
aided geometric design, economics, combinatorics or biology (see [8–10]). For the subclasses of TP matrices mentioned
above, their bidiagonal decomposition (see Section 2) was obtained with HRA, and then the algorithms given in [11–13]
permit to compute with HRA many algebraic calculations: all their eigenvalues and singular values, their inverses, or the
solution of some linear systems. Recall that a real value x is obtained with HRA if the relative error of the computed value
x̃ satisfies ∥x − x̃∥/∥x∥ < Ku, where K is a positive constant independent of the arithmetic precision and u is the unit
round-off. It is well known that an algorithm can be performed with HRA if all the included subtractions are of initial
data, that is, if it only includes products, divisions, sums of numbers of the same sign and subtractions of the initial data
(cf. [1,12,14]).

The lower triangular Pascal matrix P = (pij)1≤i,j≤n+1 (with pij =
(i−1
j−1

)
for 1 ≤ j ≤ i ≤ n + 1 and pij := 0 when j > i)

and the symmetric Pascal matrix R = (rij)1≤i,j≤n+1 (with rij =
(i+j−2

j−1

)
) are naturally derived from the Pascal triangle. The

∗ Corresponding author.
E-mail address: jorgedel@unizar.es (J. Delgado).

1 This work was partially supported through the Spanish research grant PGC2018-096321-B-I00 (MCIU/AEI), by Gobierno de Aragón (E41-17R)
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matrix R = PPT is also called Pascal matrix. This paper deals with some classes of matrices (see [15–18]) generalizing
the lower triangular Pascal matrix and the symmetric Pascal matrix. These generalized classes of Pascal matrices arise in
applications such as filter design, probability, combinatorics, signal processing or electrical engineering (see [19] and its
references). In [19], one can also see some concrete applications of solving linear systems with these matrices. Let us recall
that the bidiagonal decomposition of a Pascal matrix is well known and has the remarkable property that it is formed
by 1’s (see [12,20]). In this paper, we show that the bidiagonal decompositions of these generalized Pascal matrices can
be obtained with HRA, and so the remaining algebraic calculations mentioned above can be also computed with HRA.
Although Pascal matrices are ill-conditioned (see [20]) and the bidiagonal decompositions of their generalizations are not
as simple as those with the Pascal matrix, we can still guarantee the mentioned algebraic calculations with HRA.

In Section 2 we present auxiliary results concerning the bidiagonal decomposition of nonsingular TP matrices and
some basic definitions of generalized Pascal matrices. In Section 3 we obtain the bidiagonal decomposition of generalized
triangular Pascal matrices and of lattice path matrices, which in turn contain many classical generalized Pascal matrices. In
many cases, we prove that they are TP or STP and show that the algebraic calculations mentioned above can be computed
with HRA. Section 4 includes numerical experiments showing the great accuracy of the proposed method. Finally, Section 5
summarized the main conclusions of the paper.

2. Auxiliary results and basic definitions

Neville elimination (NE) is an alternative procedure to Gaussian elimination that produces zeros in a column of a matrix
by adding to each row an appropriate multiple of the previous one. This elimination procedure is very useful when
dealing with some classes of matrices such as TP matrices. For more details on NE see [21,22]. Given a nonsingular matrix
A = (aij)1≤i,j≤n, the Neville elimination procedure consists of n−1 steps and leads to the following sequence of matrices:

A =: A(1)
→ Ã(1)

→ A(2)
→ Ã(2)

→ · · · → A(n)
= Ã(n)

= U, (1)

where U is an upper triangular matrix.
The matrix Ã(k)

= (̃a(k)ij )1≤i,j≤n is obtained from the matrix A(k)
= (a(k)ij )1≤i,j≤n by a row permutation that moves to

the bottom the rows with a zero entry in column k below the main diagonal. For nonsingular TP matrices, it is always
possible to perform NE without row exchanges (see [21]). If a row permutation is not necessary at the kth step, we have
that Ã(k)

= A(k). The entries of A(k+1)
= (a(k+1)

ij )1≤i,j≤n can be obtained from Ã(k)
= (̃a(k)ij )1≤i,j≤n using the formula:

a(k+1)
ij =

⎧⎪⎨⎪⎩̃a(k)ij −
ã(k)ik

ã(k)i−1,k

ã(k)i−1,j, if k ≤ j < i ≤ n and ã(k)i−1,k ̸= 0,

ã(k)ij , otherwise,

(2)

for k = 1, . . . , n − 1. The (i, j) pivot of the NE of A is given by

pij = ã(j)ij , 1 ≤ j ≤ i ≤ n.

If i = j we say that pii is a diagonal pivot. The (i, j) multiplier of the NE of A, with 1 ≤ j ≤ i ≤ n, is defined as

mij =

⎧⎪⎪⎨⎪⎪⎩
ã(j)ij
ã(j)i−1,j

=
pij

pi−1,j
, if ã(j)i−1,j ̸= 0,

0, if ã(j)i−1,j = 0.

The multipliers satisfy that

mij = 0 ⇒ mhj = 0 ∀h > i.

Nonsingular TP matrices can be expressed as a product of nonnegative bidiagonal matrices. The following theorem (see
Theorem 4.2 and p. 120 of [22]) introduces this representation, which is called the bidiagonal decomposition.

Theorem 1 (Cf. Theorem 4.2 of [22]). Let A = (aij)1≤i,j≤n be a nonsingular TP matrix. Then A admits the following
representation:

A = Fn−1Fn−2 · · · F1DG1 · · ·Gn−2Gn−1, (3)

2
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where D is the diagonal matrix diag(p11, . . . , pnn) with positive diagonal entries and Fi, Gi are the nonnegative bidiagonal
matrices given by

Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

. . .
. . .

0 1
mi+1,1 1

. . .
. . .

mn,n−i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

Gi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

1
. . .

. . . 0
1 m̃i+1,1

1
. . .

. . . m̃n,n−i
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

for all i ∈ {1, . . . , n − 1}. If, in addition, the entries mij and m̃ij satisfy

mij = 0 ⇒ mhj = 0 ∀h > i,
m̃ij = 0 ⇒ m̃hj = 0 ∀h > i, (6)

then the decomposition is unique.

In the bidiagonal decomposition given by (3), (4) and (5), the entries mij and pii are the multipliers and diagonal pivots,
respectively, corresponding to the NE of A (see Theorem 4.2 of [22] and the comment below it) and the entries m̃ij are
the multipliers of the NE of AT (see p. 116 of [22]). The following result shows that the bidiagonal decomposition also
characterizes STP matrices.

Theorem 2 (Cf. Theorem 4.3 of [22]). A nonsingular n × n matrix A is STP if and only if it can be factorized in the form (3)
with D a diagonal matrix with positive diagonal entries, Fi, Gi given by (4) and (5), and the entries mij and m̃ij are positive
numbers. This factorization is unique.

Let us recall that an algorithm can be performed with high relative accuracy if it only includes products, divisions,
sums of numbers of the same sign and subtractions of initial data (cf. [1,14]). In [11,12], assuming that the bidiagonal
decomposition of a nonsingular TP matrix A is known to HRA, Plamen Koev designed efficient algorithms for computing
to HRA the eigenvalues, singular values and the inverse of A as well as the solution to linear systems of equations Ax = b
whenever b has a pattern of alternating signs.

In [11] the matrix notation BD(A) was introduced to represent the bidiagonal decomposition of a nonsingular TP
matrix,

(BD(A))ij =

{mij, if i > j,
m̃ji, if i < j,
pii, if i = j.

(7)

In general, more matrices can be written as a product of bidiagonal matrices following (3). Throughout this paper, we
will use the notation BD(A) given by (7) to denote the bidiagonal decomposition (3)–(5) of a general matrix A.

Finally, let us introduce the following classical generalizations of Pascal matrices.

Definition 3 (See [15,18]). For a real number x, the generalized Pascal matrix of the first kind, Pn[x], is defined as the
(n + 1) × (n + 1) lower triangular matrix with 1′s on the main diagonal and

(Pn[x])ij := xi−j
(
i − 1
j − 1

)
, 1 ≤ j ≤ i ≤ n + 1

and the symmetric generalized Pascal (n + 1) × (n + 1) matrix Rn[x] is given by

(Rn[x])ij := xi+j−2
(
i + j − 2
j − 1

)
, 1 ≤ i, j ≤ n + 1.

For x, y ∈ R we define the (n + 1) × (n + 1) matrix Rn[x, y]

(Rn[x, y])ij := xj−1yi−1
(
i + j − 2
j − 1

)
, 1 ≤ i, j ≤ n + 1.

3
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Observe that Rn[x] = Rn[x, x], that Pn[1] is the lower triangular Pascal matrix and that Rn[1] is the symmetric Pascal
matrix.

Definition 4 (See [16]). For x, y ∈ R, the extended generalized Pascal matrix Φn[x, y] is defined as

(Φn[x, y])ij = xi−jyi+j−2
(
i − 1
j − 1

)
, 1 ≤ j ≤ i ≤ n + 1

and the extended generalized symmetric Pascal matrix Ψn[x, y] is given by

(Ψn[x, y])ij = xi−jyi+j−2
(
i + j − 2
j − 1

)
, 1 ≤ i, j ≤ n + 1.

In the next section we are going to deduce the bidiagonal decomposition of more general classes of matrices. As a
consequence, we can also obtain the bidiagonal decomposition of the matrices Pn[x], Rn[x, y], Φn[x, y] and Ψn[x, y].

3. Bidiagonal decomposition of generalized Pascal matrices

3.1. Generalized triangular Pascal matrices

Let x and λ be two real numbers and let n be a nonnegative integer. We define the notation xn|λ as follows:

xn|λ =

{
x(x + λ) · · · (x + (n − 1)λ), if n > 0,

1, if n = 0. (8)

In [17], the generalized lower triangular Pascal matrix Pn,λ[x] is defined by

(Pn,λ[x])i,j := x(i−j)|λ
(
i − 1
j − 1

)
, 1 ≤ j ≤ i ≤ n + 1, (9)

where n is a natural number and λ and x are real numbers. Observe that the particular case λ = 0 leads to the
generalized Pascal matrix of the first kind Pn,0[x] = Pn[x]. The following result provides the bidiagonal decomposition
of the generalized Pascal matrix Pn,λ[x].

Theorem 5. Given x, λ ∈ R and n ∈ N, let Pn,λ[x] be the (n + 1) × (n + 1) lower triangular matrix given by (9).

(i) If x ̸= kλ for k = −n + 1, . . . , 0, . . . , n − 1, then we have that

(
BD(Pn,λ[x])

)
ij =

{ 1, i = j,
x + (i − 2j)λ, i > j,

0, i < j.
(10)

(ii) If x = kλ for some k ∈ {0, . . . , n − 1}, then we have that

(
BD(Pn,λ[x])

)
ij =

{ 1, i = j,
x + (i − 2j)λ, i > j, j ≤ k,

0, otherwise.
(11)

(iii) If x = −kλ for some k ∈ {0, . . . , n − 1}, then we have that

(
BD(Pn,λ[x])

)
ij =

{ 1, i = j,
x + (i − 2j)λ, 0 < i − j ≤ k,

0, otherwise.
(12)

Proof. Let us first assume that x ̸= kλ for k = −n + 1, . . . , 0, . . . , n − 1. We are going to perform the first step of the
Neville elimination of A = (aij)1≤i,j≤n+1, where aij := (Pn,λ[x])i,j for i, j = 1, . . . , n + 1:

a(2)ij = aij −
ai1

ai−1,1
ai−1,j = aij − (x + (i − 2)λ)ai−1,j, i > j ≥ 1.

Applying (9) to the previous formula, a(2)ij can be written as

a(2)ij = x(i−j)|λ
(
i − 1
j − 1

)
− (x + (i − 2)λ)x(i−j−1)|λ

(
i − 2
j − 1

)
.
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By formula (8), we have that

a(2)ij =

(
(x + (i − j − 1)λ)

(
i − 1
j − 1

)
− (x + (i − 2)λ)

(
i − 2
j − 1

))
x(i−j−1)|λ

=

(
x
(
i − 2
j − 2

)
+

(i − j − 1)(i − 1)!
(j − 1)!(i − j)!

λ −
(i − 2)(i − 2)!

(j − 1)!(i − j − 1)!
λ

)
x(i−j−1)|λ.

After some computations we deduce that

a(2)ij =

(
x
(
i − 2
j − 2

)
− λ

(
i − 2
j − 2

))
x(i−j−1)|λ

=

(
i − 2
j − 2

)
(x − λ)(i−j)|λ.

We can observe that a(2)ij = (Pn,λ[x])
(2)
ij = (Pn,λ[x − λ])i−1,j−1 for i > j ≥ 2 and, hence, (Pn,λ[x])(2)[2, . . . , n + 1] =

(Pn,λ[x − λ])[1, . . . , n]. Then we can deduce that (Pn,λ[x])
(k+1)
ij = (Pn,λ[x − kλ])i−k,j−k for i > j ≥ k + 1 and that the

multipliers for the kth step of the NE of Pn,λ[x] will be given by x − (k − 1)λ + (i − k − 1)λ for i = k + 1, . . . , n + 1, and
so, we conclude that (10) holds.

Let us now assume that x = kλ for any k ∈ {0, . . . , n − 1}. Following the above proof we can see that (Pn,λ[x])
(k+1)
ij =

(Pn,λ[0])i−k,j−k and the NE finishes at the k + 1 step. Hence, (ii) holds.
Finally, if x = −kλ for any k ∈ {0, . . . , n − 1}, then x(i−j)|λ

= 0 for i − j > k. Then the n − k lower subdiagonals
are already zero and the associated multipliers are also zero since the elimination procedure is not carried out on those
entries. So, we conclude that (iii) holds.

Remark 6. It can be checked that the computational cost for the bidiagonal decomposition in (10) is of O
(
n2

)
elementary

operations. For the bidiagonal decompositions in (11) and (12) the computational costs are of O
(
k2

)
and of O (k · n)

elementary operations, respectively.

The following corollary characterizes the matrices Pn,λ[x] that are TP.

Corollary 7. Let Pn,λ[x] be the lower triangular matrix given by (9) with x, λ ∈ R and with n ∈ N. Then Pn,λ[x] is a TP matrix
if and only if one of the following conditions holds:

(i) x ≥ (n − 1)|λ|.
(ii) x = k|λ| for k = 0, . . . , n − 1.

Proof. By Theorem 5 we know that Pn,λ[x] admits a factorization as a product of bidiagonal matrices. If (i) or (ii) holds,
then all the bidiagonal matrices are nonnegative and so TP, and hence, its product is also TP (see for example Theorem 3.1
of [8]). Conversely, if Pn,λ[x] is TP, since it is also nonsingular, it admits a unique bidiagonal decomposition by Theorem 1.
Moreover, this bidiagonal decomposition will be given by Theorem 5 and the mij’s will be nonnegative. Hence, either
(i) or (ii) holds.

The previous definition of Pn,λ[x] is generalized in [17] for two variables x, y as follows:

(Pn,λ[x, y])i,j := x(i−j)|λy(j−1)|λ
(
i − 1
j − 1

)
. (13)

Let us also define Pn[x, y] := Pn,0[x, y]. It is straightforward to see that the matrix Pn,λ[x, y] can be expressed as the product
of Pn,λ[x] and a diagonal matrix:

Pn,λ[x, y] = Pn,λ[x] diag(1, y1|λ, . . . , yn|λ). (14)

In [17] a further generalization of Pn,λ[x, y] is given in terms of an arbitrary sequence a = {an}n≥0

(Pn,λ[x, y, a])i,j := aj−1x(i−j)|λy(j−1)|λ
(
i − 1
j − 1

)
, (15)

and so we also derive

Pn,λ[x, y, a] = Pn,λ[x] diag(a0, a1y1|λ, . . . , anyn|λ). (16)

Observe that the matrix Pn,λ[x, y] = Pn,λ[x, y, 1], where 1 is the sequence formed by 1′s. By (16) and Theorem 5, we can
deduce the bidiagonal decomposition of the matrix BD(Pn,λ[x, y, a]). For example, if x ̸= kλ for k = −n+1, . . . , 0, . . . , n−

1, its bidiagonal decomposition is given by

(
BD(Pn,λ[x, y, a])

)
ij =

⎧⎨⎩ aj−1y(j−1)|λ, i = j,
x + (i − 2j)λ, i > j,

0, i < j.
(17)

5



J. Delgado, H. Orera and J.M. Peña Journal of Computational and Applied Mathematics 391 (2021) 113443

3.2. Lattice path matrices

Let Lpn(α, β, γ ) = (kij)1≤i,j≤n+1 be the (n+1)×(n+1) lattice path matrix such that its entries are given by the recurrence
relation

αki,j−1 + βki−1,j + γ ki−1,j−1 = kij, 2 ≤ i, j ≤ n + 1, (18)

with k1j = αj−1 for j ∈ {1, . . . , n + 1} and ki1 = β i−1 for i ∈ {1, . . . , n + 1}. These matrices were considered in [18].
Other related classes of matrices were considered in [23], where it was also shown that some of those matrices are TP.
In Theorem 2.3 of [18] it is also shown that Lpn(α, β, γ ) admits the following factorization

Lpn(α, β, γ ) = Pn[α]Dn
αβ+γ (Pn[β])T , (19)

where Dn
αβ+γ = diag(1, αβ + γ , . . . , (αβ + γ )n) and Pn[δ] = Pn,0[δ]. Observe that the matrix Lpn(α, β, γ ) is nonsingular

if and only if α β + γ ̸= 0. In the following result, we deduce the bidiagonal decomposition of Lpn(α, β, γ ).

Theorem 8. Let Lpn(α, β, γ ) = (kij)1≤i,j≤n+1 be the matrix whose entries are defined by (18) with α β + γ ̸= 0. Then its
bidiagonal decomposition is given by

(BD(Lpn(α, β, γ )))ij =

⎧⎨⎩
(αβ + γ )i−1, if i = j,
α, if i > j,
β, if i < j.

(20)

Proof. By (19), the matrix Lpn(α, β, γ ) can be decomposed as the product of a lower triangular matrix, a diagonal matrix
and an upper triangular matrix. Hence, we can deduce its bidiagonal decomposition from the bidiagonal decomposition
of these three factors. Since Pn[α] = Pn,0[α], by Theorem 5 we have that

(BD(Pn[α]))ij =

⎧⎨⎩
1, if i = j,
α, if i > j,
0, if i < j.

Analogously, the bidiagonal decomposition of (Pn[β])T is given by

(
BD((Pn[β])T )

)
ij =

⎧⎨⎩
1, if i = j,
0, if i > j,
β, if i < j.

Therefore, we conclude that

Lpn(α, β, γ ) = Pn[α]Dn
αβ+γ (Pn[β])T = F̄n · · · F̄1Dn

αβ+γ Ḡ1 · · · Ḡn, (21)

where F̄k is the lower bidiagonal matrix given by (4) with all multipliers equal to α and Ḡk is the upper bidiagonal matrix
given by (5) with all multipliers equal to β . So, (20) holds.

The following corollary considers a case where Lpn(α, β, γ ) is STP and shows that its bidiagonal decomposition can be
computed to HRA.

Corollary 9. Let Lpn(α, β, γ ) = (kij)1≤i,j≤n+1 be the matrix whose entries are defined by (18). If α, β > 0 and αβ + γ > 0,
then Lpn(α, β, γ ) = (kij)1≤i,j≤n+1 is an STP matrix. Moreover, if γ ≥ 0, then its bidiagonal decomposition (20) can be computed
to HRA and it can be used to obtain the eigenvalues, singular values and the inverse of Lpn(α, β, γ ) with HRA as well as the
solution of the linear systems Lpn(α, β, γ )x = b, where b = (b1, . . . , bn+1) has alternating signs.

Proof. By Theorem 2, Lpn(α, β, γ ) = (kij)1≤i,j≤n+1 is an STP matrix. With the additional condition γ ≥ 0, BD(Lpn(α, β, γ ))
can be computed with a subtraction-free algorithm, and hence, with HRA, which in turn guarantees that the algebraic
computations stated in the statement of this corollary can be performed with HRA (see Section 5 or Section 3 of [12]).

Remark 10. In order to compute the bidiagonal decomposition (20), n+ 1 elementary operations are necessary, that is,
a computational cost of O (n) elementary operations.

The class of lattice path matrices, Lpn(α, β, γ ), contains the generalizations of Pascal matrices given by definitions 3
and 4, and so, from their bidiagonal decomposition we can deduce the bidiagonal decomposition of these matrices. In
particular, in Theorem 3.1 of [18] the following relationship was proved:

Lpn(α, β, γ ) =

⎧⎪⎨⎪⎩
Pn[x, y], if α = 0, β = y, γ = x,
Rn[x, y], if α = x, β = y, γ = 0,
Φn[x, y], if α = 0, β = xy, γ = y2,
Ψn[x, y], if α = y/x, β = xy, γ = 0.

(22)

6
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Fig. 1. Relative error for the minimal eigenvalues and singular values of Lpn(
√
2,

√
3,

√
5).

Taking into account (22), we can use Theorem 8 to obtain their bidiagonal decomposition. We can also apply Corollary 9
to study the cases when they are STP and when their bidiagonal decomposition can be obtained with HRA.

Corollary 11.

(i) If x, y > 0, then Rn[x, y] is STP and its bidiagonal decomposition can be computed to HRA.
(ii) If xy > 0, then Ψn[x, y] is STP and its bidiagonal decomposition can be computed to HRA.

4. Numerical experiments

In [11,12], assuming that the parameterization BD(A) of a nonsingular TP matrix A is known, Plamen Koev presented
algorithms to solve the following algebraic problems for A: computation of the eigenvalues and the singular values of A,
computation of A−1 and solution of the systems of linear equations Ax = b. In [24] Marco and Martínez presented another
algorithm for the computation of A−1 from BD(A). If, in addition, BD(A) is known to HRA, then the algorithms solve these
algebraic problems to HRA (in the case of linear systems only when b has a pattern of alternating signs). Koev implemented
the corresponding algorithms for Matlab and Octave, which are available in the software library TNTool in [13]. The
functions are TNEigenValues for the eigenvalues, TNSingularValues for the singular values, TNInverseExpand for
the inverse and TNSolve for the solution of linear system of equations. The functions require as input argument the data
determining the bidiagonal decomposition (3)–(5) of A, or equivalently, BD(A) given by (7), and, in the case of TNSolve,
in addition, the vector b.

Remark 12. The computational cost for both TNSolve and TNInverseExpand is O
(
n2

)
elementary operations (see [12]

and Section 4 of [24]) and for the other two functions, TNEigenValues and TNSingularValues, is O
(
n3

)
elementary

operations. Hence, taking into account Remarks 6 and 10, the total computational cost for solving a linear system or
computing the inverse with the matrices corresponding to these bidiagonal computations is O

(
n2

)
elementary operations,

and so we have fast algorithms, whereas the total computational cost of computing the eigenvalues or the singular values
is O

(
n3

)
elementary operations.

4.1. HRA computations with lattice path matrices

If α, β > 0 and γ ≥ 0, by Corollary 9, the matrices Lpn(α, β, γ ) are STP and their bidiagonal decompositions can be
computed to HRA, and so the algebraic computations mentioned before can also be performed to HRA.

Let us consider the matrices Lpn(
√
2,

√
3,

√
5) for n = 5, 10, . . . , 50. First, we have computed the eigenvalues

and the singular values of these matrices with Mathematica using a precision of 100 digits. We have also computed
approximations to the eigenvalues of those matrices in Matlab with eig and also with TNEigenValues using the
bidiagonal decomposition provided by (20). Then we have computed the relative errors of the approximations obtained
considering the eigenvalues obtained with Mathematica as exact computations.

In Fig. 1(a) we can see the relative error for the minimal eigenvalue of each matrix Lpn(
√
2,

√
3,

√
5), n = 5, 10, . . . , 50,

for both eig and TNEigenValues. We can observe that Matlab function eig does not provide an acceptable approxima-
tion of the minimal eigenvalue of the matrices Lpn(

√
2,

√
3,

√
5) for n ≥ 15 in contrast to the accurate approximations

provided by the HRA computations of TNEigenValues.
We have also computed approximations to the singular values of the matrices Lpn(

√
2,

√
3,

√
5), n = 5, 10, . . . , 50, in

Matlab with svd and also with TNSingularValues. Then we have computed the relative errors of the approximations

7
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Fig. 2. Relative errors for Lpn(
√
2,

√
3,

√
5)−1 , n = 5, 10, . . . , 50.

Fig. 3. Relative errors for the systems Lpn(
√
2,

√
3,

√
5)x = bn , n = 5, 10, . . . , 50.

obtained considering the singular values obtained with Mathematica as exact computations. In Fig. 1(b) we can see the
relative error for the minimal singular value of each matrix Lpn(

√
2,

√
3,

√
5) for both svd and TNSingularValues. As in

the case of the eigenvalues, TNSingularValues provides very accurate approximations to the minimal singular values
in contrast to the poor results provided by svd.

We have also computed with Matlab approximations to the inverses of the matrices Lpn(
√
2,

√
3,

√
5), n = 5, 10, . . . ,

50, with inv and with TNInverseExpand using the bidiagonal decomposition given by (20). The inverses of these ma-
trices have been computed with Mathematica using a precision of 100 digits. Then we have computed the corresponding
componentwise relative errors. Finally we have obtained the mean and maximum componentwise relative errors. Fig. 2(a)
shows the mean relative error and (b) shows the maximum relative error. We can also observe in this case that the results
obtained with TNInverseExpand are much more accurate than those obtained with inv. In fact, the approximations
obtained with inv are not acceptable for n > 15.

Now we consider the linear systems Lpn(
√
2,

√
3,

√
5)x = bn for n = 5, 10, . . . , 50, where bn ∈ Rn has the absolute

value of its entries randomly generated as integers in the interval [1, 1000], but with alternating signs. We have computed
approximations to the solution x of the linear systems with Matlab, the first one using TNSolve and the bidiagonal
decomposition given by (20), and the second one using the Matlab command A\b. By using Mathematica with a precision
of 100 digits we have computed the solution of the systems and then we have computed the componentwise relative
errors for the two approximations obtained with Matlab. Then we have obtained the mean and maximum componentwise
relative error. Fig. 3(a) shows the mean relative error and (b) shows the maximum relative error. Again, the results
obtained with HRA algorithms are very accurate in contrast to the results obtained with the usual Matlab command.

We also consider the linear systems Lpn(
√
2,

√
3,

√
5)x = b̃n for n = 5, 10, . . . , 50, where now b̃n ∈ Rn has its entries

randomly generated as integers in the interval [−1000, 1000]. Fig. 4(a) shows the mean relative error and (b) shows the
maximum relative error. In this case, we cannot guarantee that the solution of the linear systems provided by TNSolve
can be computed to HRA. However, the results obtained with TNSolve are very accurate in contrast to the results obtained
with the usual Matlab command.

4.2. Accurate computations for generalized triangular Pascal matrices

Let us consider the lower triangular matrices Pn,1[3/2] for n = 5, 10, . . . , 50, given by (9) with x = 3/2 and λ = 1.
Unfortunately, by Corollary 7, these matrices are not TP and we cannot assure that their bidiagonal decomposition can
be computed to HRA. So we cannot guarantee that the algebraic computations mentioned above can be performed to

8
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Fig. 4. Relative errors for the systems Lpn(
√
2,

√
3,

√
5)x = b̃n , n = 5, 10, . . . , 50.

Fig. 5. Relative error for the minimal singular values of Pn,1[3/2].

Fig. 6. Relative errors for Pn,1[3/2]−1 , n = 5, 10, . . . , 50.

HRA neither. Nevertheless, let us also compare the numerical accuracy of TNSingularValues, TNInverseExpand and
TNSolve versus the usual Matlab commands svd, inv and \, respectively.

First, we have computed the singular values of these matrices with Mathematica using a precision of 100 digits. We
have also computed approximations to the singular values of the matrices Pn,1[3/2] with Matlab function svd and also
with TNSingularValues and the corresponding BD(Pn,1[3/2]) given in Theorem 5. Then we have computed the relative
errors of the approximations obtained considering the singular values obtained with Mathematica as exact computations.
In Fig. 5 we can see the relative error for the minimal singular value of each matrix for both svd and TNSingularValues.

We have also computed with Matlab approximations to Pn,1[3/2]−1, n = 5, 10, . . . , 50, with inv and with
TNInverseExpand using BD(Pn,1[3/2]). With Mathematica we have computed the inverse of these matrices with exact
arithmetic. Then we have computed the corresponding componentwise relative errors. Finally we have obtained the mean
and maximum componentwise relative error. Fig. 6(a) shows the mean relative error and (b) shows the maximum relative
error. We can also observe in this case that the results obtained with TNInverseExpand are much more accurate than
those obtained with inv.

Finally we consider the linear systems Pn,1[3/2]x = bn, n = 5, 10, . . . , 50, where bn ∈ Rn has its entries randomly
generated as integers in the interval [−1000, 1000]. We have computed approximations to the solution x of the linear
system with Matlab, the first one using TNSolve and BD(Pn,1[3/2]), and the second one using the Matlab command A\b.

9
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Fig. 7. Relative errors for the systems Pn,1[3/2]x = bn , n = 5, 10, . . . , 50.

By using Mathematica with exact arithmetic we have computed the exact solution of the systems and then we have
computed the componentwise relative errors for the two approximations obtained with Matlab. Fig. 7(a) shows the mean
relative error and (b) shows the maximum relative error. Again, the results obtained with TNSolve are very accurate in
contrast to the results obtained with the usual Matlab command.

5. Conclusions

Pascal matrices and some generalizations considered in this paper arise in many applications, as commented in the
introduction. It is well known that Pascal matrices and their generalizations are ill-conditioned (see [20]). However, we
show in this paper that we can compute with HRA all their eigenvalues and all their singular values, and also the inverses
of these matrices as well as the solutions of some linear systems. In fact, our numerical experiments show that we can
considerably improve the accuracy obtained with the usual Matlab commands. The crucial tool has been to obtain the
bidiagonal decomposition of the generalized Pascal matrices with HRA and then apply the corresponding algorithms given
in [11–13]. Let us also remark that, in spite of its much greater accuracy, the procedure presented in this paper has a
computational cost similar to the usual algorithms used to solve these problems.
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Abstract
This article shows that the bidiagonal decomposition of many important matri-
ces of q-integers can be constructed to high relative accuracy (HRA). This
fact can be used to compute with HRA the eigenvalues, singular values, and
inverses of these matrices. These results can be applied to collocation matrices
of q-Laguerre polynomials, q-Pascal matrices, and matrices formed by q-Stirling
numbers. Numerical examples illustrate the theoretical results.
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orthogonal polynomials, total positivity

1 INTRODUCTION

Quantum calculus (see Reference 1) uses q-integers, q-binomial coefficients (see Section 3), and other q-analogues of
classical calculus. In particular, it has led to the use of matrices of q-integers. This article shows that many algebraic
computations (eigenvalues, singular values, and inverses) with these matrices can be performed with high relative accu-
racy (HRA). An important source of these matrices comes from classical matrices very useful in Combinatorics, such
as Pascal matrices or Jacobi–Stirling matrices (see Reference 2). For classical Pascal matrices, it is known how to per-
form accurately the algebraic computations mentioned before (see References 3,4). In this article, we first consider the
accurate computations with q-Pascal matrices. Then we consider matrices formed with q-Stirling numbers (see Ref-
erence 5) of the first and second kind. In this article, we also guarantee the accurate computation for the collocation
matrices of some systems of functions. Let us recall that in Reference 6 this goal was achieved for collocation matri-
ces of q-Bernstein polynomials, in Reference 7 for collocation matrices of h-Bernstein basis and in Reference 8 for
collocation matrices of Laguerre polynomials. In fact, another field where quantum calculus has played an important
role is that of orthogonal polynomials, where quantum orthogonal polynomials have been considered (see Reference
9). Here, we also guarantee HRA for the mentioned algebraic computations with collocation matrices of q-Laguerre
polynomials.

In all cases considered in this article, a key tool has been to prove the total positivity of the matrices. Let us recall
that a matrix is called totally positive (TP) (strictly totally positive [STP], respectively) if all its minors are nonnegative
(positive, respectively). These matrices are also called in the literature totally nonnegative and totally positive, respec-
tively. TP matrices arise in many fields such as approximation theory, statistics, economy, mechanics, computer-aided
geometric design, or combinatorics (see References 10-12). Nonsingular TP matrices satisfy the remarkable property
that they admit a bidiagonal decomposition. This bidiagonal decomposition is the start point for the algorithms of
Reference 13 to carry out the mentioned algebraic computations with HRA. Let us also remark that the bidiagonal
decomposition of the q-Pascal matrices obtained in this article is not (for q≠ 1) as simple as that of Pascal matrices
shown in References 4,14, where all the entries are ones. Finally, in contrast to the HRA computation of the bidiag-
onal decomposition of the collocation matrices of generalized Laguerre polynomials (see Reference 8), its extension

Numer Linear Algebra Appl. 2021;e2383. wileyonlinelibrary.com/journal/nla © 2021 John Wiley & Sons, Ltd. 1 of 20
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to the bidiagonal decomposition of the collocation matrices of generalized q-Laguerre polynomials requires additional
conditions.

The article is organized as follows. Section 2 presents basic notations and auxiliary results concerning the bidi-
agonal decomposition of nonsingular TP matrices. Section 3 is devoted to q-Pascal matrices. Section 4 provides the
bidiagonal decompositions of matrices with q-Stirling numbers and it uses a general result on the bidiagonal decom-
position of the inverse of a triangular TP matrix. Section 5 focuses on accurate computations with collocation matrices
of q-Laguerre polynomials. Section 6 illustrates the theoretical results of the article with numerical experiments.
They show the HRA of the calculation of the inverse, eigenvalues, or singular values of A or the solution of lin-
ear systems Ax = b such that b has alternating signs. Finally, Section 7 summarizes the main conclusions of the
article.

2 AUXILIARY RESULTS

Let D= (dij)1≤ i, j≤n be a diagonal matrix, which can be denoted by D= diag(d1, … , dn), where di:= dii for i= 1, … , n.
Using this notation the n×n identity matrix is defined as In = diag(1, … , 1). Let us denote by Ei(x), with i= 2, … , n, the
n×n lower elementary bidiagonal matrix whose (i, i− 1) entry is x:

Ei(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
⋱

1
x 1

⋱

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

The matrix ET
i (x) = (Ei(x))T is called upper elementary bidiagonal matrix. The matrices Ek(x) satisfy the property

Ei(x)Ej(y) = Ej(y)Ei(x), (2)

unless |i− j|= 1 with xy≠ 0.
Neville elimination (NE) is an alternative procedure to Gaussian elimination that produces zeros in a column of a

matrix by adding to each row an appropriate multiple of the previous one. Given a nonsingular matrix A= (aij)1≤ i, j≤n,
the NE procedure consists of n− 1 steps and leads to the following sequence of matrices:

A =∶ A(1) → Ã(1)
→ A(2) → Ã(2)

→ · · · → A(n) = Ã(n) = U, (3)

where U is an upper triangular matrix.
The matrix Ã(k) = (ã(k)

ij )1≤i,j≤n is obtained from the matrix A(k) = (a(k)
ij )1≤i,j≤n by a row permutation that moves to the

bottom the rows with a zero entry in column k below the main diagonal. For nonsingular TP matrices, it is always possible
to perform NE without row exchanges (see Reference 15). If a row permutation is not necessary at the kth step, we have
that Ã(k) = A(k). The entries of A(k+1) = (a(k+1)

ij )1≤i,j≤n can be obtained from Ã(k) = (ã(k)
ij )1≤i,j≤n using the formula:

a(k+1)
ij =

⎧
⎪⎨⎪⎩

ã(k)
ij − ã(k)

ik

ã(k)
i−1,k

ã(k)
i−1,j, if k ≤ j < i ≤ n and ã(k)

i−1,k ≠ 0,

ã(k)
ij , otherwise,

(4)

for k= 1, … , n− 1. The (i, j) pivot of the NE of A is given by

pij = ã(j)
ij , 1 ≤ j ≤ i ≤ n.
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If i= j we say that pii is a diagonal pivot. The (i, j) multiplier of the NE of A, with 1≤ j≤ i≤n, is defined as

mij =
⎧⎪⎨⎪⎩

ã(j)
ij

ã(j)
i−1,j

= pij

pi−1,j
, if ã(j)

i−1,j ≠ 0,

0, if ã(j)
i−1,j = 0.

The multipliers satisfy that

mij = 0 ⇒ mhj = 0 ∀h > i.

Nonsingular TP matrices can be expressed as a product of nonnegative bidiagonal matrices. The following theorem (see
theorem 4.2 and p. 120 of Reference 16) introduces this representation, which is called the bidiagonal decomposition.

Theorem 1 (cf. theorem 4.2 of Reference 16). Let A= (aij)1≤ i, j≤n be a nonsingular TP matrix. Then A admits the following
representation:

A = Fn−1Fn−2 ⋅ ⋅ ⋅ F1DG1 ⋅ ⋅ ⋅ Gn−2Gn−1, (5)

where D is the diagonal matrix diag(p11, … , pnn) with positive diagonal entries and Fi, Gi are the nonnegative bidiagonal
matrices given by

Fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

⋱ ⋱

0 1
mi+1,1 1

⋱ ⋱

mn,n−i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

Gi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 ⋱

⋱ 0
1 m̃i+1,1

1 ⋱

⋱ m̃n,n−i

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

for all i∈ {1, … , n− 1}. If, in addition, the entries mij and m̃ij satisfy

mij = 0 ⇒ mhj = 0 ∀h > i,
m̃ij = 0 ⇒ m̃hj = 0 ∀h > i,

(8)

then the decomposition is unique.

In the bidiagonal decomposition given by (5)–(7), the entries mij and pii are the multipliers and diagonal pivots, respec-
tively, corresponding to the NE of A (see theorem 4.2 of Reference 16 and the comment below it) and the entries m̃ij are
the multipliers of the NE of AT (see p. 116 of Reference 16). The following result shows that the bidiagonal decomposition
also characterizes STP matrices.

Theorem 2 (cf. theorem 4.3 of Reference 16). A nonsingular n×n matrix A is STP if and only if it can be factorized in
the form (5) with D a diagonal matrix with positive diagonal entries, Fi, Gi given by (6) and (7), and the entries mij and m̃ij
positive numbers. This factorization is unique.

The bidiagonal decomposition can be used to represent more classes of matrices. The following remark shows which
hypotheses of Theorem 1 are sufficient for the uniqueness of a factorization following (5).
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Remark 1. If we consider the factorization given by (5)–(8) without any further requirement than the nonsingularity of
D, by proposition 2.2 of Reference 17 the uniqueness of (5) holds.

In Reference 3, the matrix notation (A) was introduced to represent the bidiagonal decomposition of a nonsingular
TP matrix,

((A))ij =
⎧
⎪⎨⎪⎩

mij, if i > j,
m̃ji, if i < j,
pii, if i = j.

(9)

Throughout this article, (A) will denote the bidiagonal decomposition of a matrix that satisfies the hypotheses
of Remark 1. The following remark gives the relationship between the bidiagonal decompositions of a matrix and of its
transpose.

Remark 2. If A is a TP matrix, then AT is also TP. Transposing formula (5) of Theorem 1 we obtain the unique bidiagonal
decomposition of AT :

AT = GT
n−1 · · ·GT

1 DFT
1 · · ·FT

n−1,

where Fi and Gi, i∈ {1, … , n− 1}, are the bidiagonal lower and upper triangular nonnegative matrices given in (6) and
(7), respectively. It can also be checked that

(AT) = (A)T .

An algorithm can be performed with HRA if it does not include subtractions (except for the initial data), that is, if
it only includes products, divisions, sums of numbers of the same sign, subtractions of numbers of opposite sign and
subtractions of the initial data (cf. References 3,18). In particular, a subtraction-free algorithm provides results with HRA.
In Reference 3, assuming that the parameters of (A) are known with HRA, Koev presented algorithms for computing
the eigenvalues of the matrix A, the singular values of the matrix A, the inverse of the matrix A and the solution of linear
systems of equations Ax = b where b has a pattern of alternating signs to HRA.

In the following sections, we are going to present the bidiagonal decomposition of some matrices of q-integers. This
factorization will allow us to compute to HRA their inverses, singular values, and eigenvalues as well as the solution to
some linear systems of equations.

3 q-INTEGERS AND q-PASCAL MATRICES

Given a positive real number q and a natural number r we define the q-integer [r] (see References 1,9) as

[r] =

{
1 + q + … + qr−1 = 1−qr

1−q
, if q ≠ 1,

r, if q = 1,

the q-factorial [r]! as

[r]! =

{
[r][r − 1] … [1], if q ≠ 1,
r!, if q = 1,

the q-shifted factorial as

(a; q)0 = 1, (a; q)n =
n∏

k=1
(1 − aqk−1), n ∈ N, a ∈ R, q ∈ (0, 1)

and the q-binomial coefficient
[

i
j

]
as

[
i
j

]
= [i]!

[j]![i − j]!
.
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The q-binomial coefficients satisfy the following recurrence relations

[
i
j

]
=
[

i − 1
j − 1

]
+ qj

[
i − 1

j

]
, (10)

[
i
j

]
= qi−j

[
i − 1
j − 1

]
+
[

i − 1
j

]
, (11)

and they also satisfy a q-analogue of the Vandermonde identity:

[m + n
k

]
=

k∑
j=0

q(k−j)(m−j)
[

m
j

] [
n

k − j

]
. (12)

Let us also define the lower triangular matrix of q-binomial coefficients, PL, q, whose nonzero entries are given by

(PL,q)i,j =
[

i − 1
j − 1

]
, 1 ≤ j ≤ i ≤ n + 1, (13)

and its upper triangular counterpart PU,q ∶= PT
L,q. Our first result gives the bidiagonal decomposition of PL, q with HRA.

In particular, it also shows that it is a TP matrix (the total positivity of PL, q was already known, see p. 198 of Reference 19).

Theorem 3. Let PL, q be the (n+ 1)× (n+ 1) matrix given by (13). Then PL, q is TP and the bidiagonal decomposition of PL, q
is given by

((PL,q))i,j =
⎧
⎪⎨⎪⎩

1, i = j,
qj−1, i > j,

0, otherwise,

(14)

which can be computed to HRA.

Proof. We are going to see that the pivots of the NE of PL, q are given by

pij = q(i−j)(j−1), 1 ≤ j ≤ i ≤ n + 1 (15)

and that the multipliers are given by

mij = qj−1, 1 ≤ j < i ≤ n + 1. (16)

Let A :=PL, q and let A(k) = (a(k)
ij )1≤i,j≤n+1 be the matrix obtained after performing k− 1 steps of the NE of A for

k= 2, … , n+ 1. Let us first prove by induction on k∈ {2, … , n+ 1} that

a(k)
ij = q(i−j)(k−1)

[
i − k
j − k

]
, k ≤ j ≤ i ≤ n + 1. (17)

For k= 2, using the first step of NE and (11), we can see that

a(2)
ij = aij −

ai1

ai−1,1
ai−1,j = aij − ai−1,j =

[
i − 1
j − 1

]
−
[

i − 2
j − 1

]
=
[

i − 2
j − 2

]
qi−j,

for 2 ≤ j ≤ i ≤ n+ 1. So, now let us assume that (17) holds for some k∈ {2, … , n} and let us perform the kth step of
the NE to prove that (17) holds for k+ 1:

a(k+1)
ij = a(k)

ij −
a(k)

ik

a(k)
i−1,k

a(k)
i−1,j, k + 1 ≤ j ≤ i ≤ n + 1.
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By the induction hypothesis we have that

a(k+1)
ij = a(k)

ij −
q(i−k)(k−1)

[
i−k
k−k

]

q(i−1−k)(k−1)
[

i−1−k
k−k

]a(k)
i−1,j = q(i−j)(k−1)

[
i − k
j − k

]
− qk−1q(i−1−j)(k−1)

[
i − 1 − k

j − k

]

= q(i−j)(k−1)
([

i − k
j − k

]
−
[

i − 1 − k
j − k

])
.

Applying (11) we deduce that

a(k+1)
ij = q(i−j)k

[
i − (k + 1)
j − (k + 1)

]
,

and hence, (17) holds for k+ 1. Finally, we conclude that the pivot pij = a(j)
ij is given by (17) for k= j. Therefore, since

mij =
pij

pi−1j
for i> j, (15) and (16) hold. Then (PL,q) can be computed through a subtraction-free algorithm by (14). In

addition, by (14) PL, q can be written as a product of bidiagonal nonnegative (and hence TP) matrices and then, by theorem
3.1 of Reference 10, PL, q is TP. ▪

Let us recall that the (n+ 1)× (n+ 1) Pascal matrix P =
((

i+j−2
j−1

))
1≤i,j≤n+1

can be expressed as the product of the

(n+ 1)× (n+ 1) lower triangular Pascal matrix PL

(
whose (i, j) entry is

(
i−1
j−1

))
if i≥ j and its transpose:

P = PLPT
L .

This decomposition can be used to deduce the bidiagonal decomposition of P from (PL). Following the same strategy,
we can deduce the bidiagonal decomposition of the matrix whose (i, j) entry is the q-binomial coefficient [i+ j− 2 i− 1].
Let us define the symmetric matrix of q-binomial coefficients Pq:

(Pq)i,j =
[

i + j − 2
i − 1

]
, 1 ≤ i, j ≤ n + 1. (18)

Proposition 1. Let Pq be the matrix of q-binomial coefficients given by (18). Then Pq is STP and its bidiagonal decomposition
is given by

((Pq))i,j =
⎧
⎪⎨⎪⎩

q(j−1)2 , i = j,
qj−1, i > j,
qi−1, otherwise.

(19)

Proof. By (12) the q-binomial coefficient [i+ j− 2 i− 1] can be written as

[
i + j − 2

i − 1

]
=

i−1∑
r=0

q(i−1−r)2
[ i − 1

r

] [ j − 1
i − 1 − r

]
=

i−1∑
t=0

qt2
[ i − 1

i − 1 − t

] [ j − 1
t

]
=

i−1∑
t=0

qt2
[ i − 1

t

] [ j − 1
t

]
.

This identity implies that the matrix Pq can be factorized as

Pq = PL,qdiag(q(j−1)2)1≤j≤n+1PU,q. (20)

From (20) we can deduce (Pq) since we know the bidiagonal decomposition of the three factors. Formula (14) gives
the bidiagonal decomposition of PL, q. Moreover, (14) jointly with Remark 2 allow us to deduce that

((PU,q))i,j =
⎧
⎪⎨⎪⎩

1, i = j,
0, i > j,

qi−1, i < j.

(21)
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Therefore, (20) can be written as

P = FnFn−1 ⋅ ⋅ ⋅ F1diag(q(j−1)2)1≤j≤n+1G1 ⋅ ⋅ ⋅ Gn−1Gn,

where Fk, Gk are bidiagonal matrices following (6) and (7), respectively, with k= 1, … , n. The multipliers are mij = qj− 1

and m̃ji = qi−1, and hence, by the uniqueness of the bidiagonal decomposition, (19) holds. By Theorem 2, taking into
account that mij, pii, m̃ji > 0, we deduce that Pq is STP. ▪

The bidiagonal decomposition of Pq can be computed to HRA and as a consequence, it serves as a parameterization
to perform some algebraic computations with this matrix to HRA.

Corollary 1. Let Pq be the matrix of q-binomial coefficients given by (18). Then we can compute (Pq) with HRA and
hence, the following computations can be performed with HRA: all the eigenvalues and singular values, the inverse of Pq, and
the solution of the linear systems Pqx = b where b= (b0, … , bn) has alternating signs.

Proof. The subtractions in formula (19) are of integers, and hence, they can be computed in an exact way. Therefore,(Pq) can be computed with HRA and used to perform also with HRA the algebraic computations mentioned in the
statement of this corollary. ▪

In the following section, we are going to present a result that shows the relationship between a triangular TP matrix
and its inverse. This result will be used to deduce the bidiagonal decomposition of P−1

L,q.

4 BIDIAGONAL FACTORIZATION OF THE INVERSE OF A TRIANGULAR
TP MATRIX AND Q-STIRLING NUMBERS

In this section, we shall obtain the accurate bidiagonal decomposition of matrices Sq with some q-analogs of the Stirling
numbers. We start with matrices Cq with the unsigned q-analogs of the Stirling numbers of the first kind. Since the
corresponding matrices Bq of the q-analogs of the Stirling numbers of the second kind are inverses of matrices with the
q-analogs of the Stirling numbers of the first kind, we shall analyze the bidiagonal decomposition of a triangular TP matrix
previously to the bidiagonal decomposition of matrices Bq.

The q-Stirling numbers of the second kind, Bq = (bij)1≤ i, j≤n+ 1, are given by the recurrence relation (see Reference 5)

bij = bi−1,j−1 + [j − 1]bi−1,j, (22)

with b00 = 1, bi0 = 0 for i> 0 and b0j = 0 for j> 0. The q-Stirling numbers of the first kind, Sq = (sij)1≤ i, j≤n+ 1, follow the
relationship (see Reference 5)

sij = si−1,j−1 − [i − 1]si−1,j, (23)

with s00 = 1, si0 = 0 for i> 0 and s0j = 0 for j> 0. Let us define the unsigned q-Stirling numbers of the first kind,
Cq = (cij)1≤ i, j≤n+ 1, by the following relationship

cij = ci−1,j−1 + [i − 1]ci−1,j, (24)

with c00 = 1, ci0 = 0 for i> 0 and c0j = 0 for j> 0. The entries of Sq are equal in absolute value to those of Cq = (cij)1≤ i, j≤n
given by (24). The difference lies on their sign pattern: Sq has a checkerboard pattern of alternating signs while Cq ≥ 0. We
are going to deduce the bidiagonal decomposition of the matrix Cq. In particular, this proposition also serves as a proof
that Cq is a TP matrix.

Proposition 2. Let Cq = (cij)1≤ i, j≤n+ 1 be the matrix whose (i, j) entry is the unsigned q-Stirling number of the first kind cij
given by (24). Then Cq is TP and

(Cq) =
⎧
⎪⎨⎪⎩

1, i = j,
[i − j], i > j,

0, otherwise.
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Proof. Using (24), let us perform the first step of the NE of Cq:

c(2)ij = cij −
ci1

ci−1,1
ci−1,j = cij − [i − 1]ci−1,j = ci−1,j−1, 2 ≤ j ≤ i ≤ n + 1.

We see that p11 = 1 and mi1 = [i− 1] for i> 1. Moreover, the matrix obtained after one step of the NE satisfies that
C(2)

q [2, … ,n + 1] = Cq[1, … ,n]. Hence, we deduce that pjj = 1 and mij = [i− j] for i> j≥ 2. Observe now that the (unique)
bidiagonal factorization of Cq corresponds to (5) with D and all matrices Gi equal to the identity matrix and the matrices
Fi given by (6) and mij = [i− j] for i> j≥ 2. So, Cq is a product of bidiagonal nonnegative (and hence TP) matrices and
then, by theorem 3.1 of Reference 10, Cq is TP. ▪

By using (23) instead of (24), the same proof of Proposition 2 leads to

(Sq) =
⎧⎪⎨⎪⎩

1, i = j,
−[i − j], i > j,

0, otherwise.

(25)

In spite that Sq is not a TP matrix, it is closely related to this class of matrices since it is the inverse of the matrix Bq.

Theorem 4. (Theorem 3.16 of Reference 5) The two q-Stirling numbers viewed as matrices are inverses of each other:

∑
k

sikbkj = 𝛿ij,

where 𝛿ij ∶= 1 if i= j and 𝛿ij ∶= 0 if i≠ j.

The following result gives the bidiagonal decomposition of the inverse of a lower triangular TP matrix A in terms of(A) whenever the multipliers of the NE of A are nonzero.

Theorem 5. Let A= (aij)1≤ i, j≤n be a lower triangular TP matrix such that

((A))ij =
⎧⎪⎨⎪⎩

mij > 0, i > j,
0, i < j,
1, i = j.

(26)

Then the bidiagonal decomposition of its inverse is given by

((A−1))ij =
⎧
⎪⎨⎪⎩

−mi,i−j, i > j,
0, i < j,
1, i = j.

(27)

Proof. Since D and Gi for i= 1, … , n are equal to the n×n identity matrix In, we can use (5) and (26) to factorize the
matrix A as:

A = Fn−1 … F1 =
{

En(mn,1)
}{

En−1(mn−1,1)En(mn,2)
}
…

{
E2(m2,1) … En(mn,n−1)

}
.

As a direct consequence, A−1 can be written as the following product

A−1 =
{

En(−mn,n−1) … E2(−m2,1)
}{

En(−mn,n−2) … E3(−m3,1)
}
…

{
En(−mn,2) En−1(−mn−1,1)

}{
En(−mn,1)

}
. (28)

Using (2) we can rewrite (28) with a permutation of the matrices Ei(x):

A−1 =
{

En(−mn,n−1) … E3(−m3,2)
}{

En(−mn,n−2) … E4(−m4,2)
}
…{

En(−mn,2)
}{

E2(−m2,1)E3(−m3,1) … En−1(−mn−1,1)En(−mn,1)
}
. (29)



DELGADO et al. 9 of 20

The matrix E2(−m2, 1) … En(−mn, 1) would be the first factor of (A−1). Following this argumentation we can keep
reordering the matrices Ei(x) of (28) until we obtain (27). ▪

An analogous result is true for upper triangular TP matrices.

Corollary 2. Let A be an upper triangular TP matrix such that

((A))ij =
⎧⎪⎨⎪⎩

0, i > j,
m̃ji > 0, i < j,
1, i = j.

(30)

Then the bidiagonal decomposition of its inverse is given by

((A−1))ij =
⎧⎪⎨⎪⎩

0, i > j,
−m̃i−j,i, i < j,
1, i = j.

(31)

Proof. We just need to apply Theorem 5 to AT . ▪

The following example shows that the strict positivity of the multipliers in Theorem 5 (or analogously in Corollary 2)
is necessary.

Example 1. Let A= (aij)1≤ i, j≤ 4 be the matrix:

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
1 1 0 0
1 1 1 0
1 1 2 1

⎞
⎟⎟⎟⎟⎟⎠

.

Applying NE we see that its bidiagonal decomposition is given by

(A) =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0
1 1 0 0
1 0 1 0
1 0 1 1

⎞⎟⎟⎟⎟⎟⎠

,

which means that
A = E4(1)E3(1)E2(1)E4(1). (32)

From (32) we deduce that

A−1 = (E4(1)E3(1)E2(1)E4(1))−1 = E4(−1)E2(−1)E3(−1)E4(−1), (33)

or using the notation (9),

(A−1) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
−1 1 0 0
0 −1 1 0
0 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎠

.

Hence, requiring that the multipliers are nonzero is necessary since (A−1) does not satisfy (27).

By using (25), Theorem 5 and the arguments of the proof of Proposition 2, we deduce the following result.
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Corollary 3. Let Bq = (bij)1≤ i, j≤n+ 1 be the matrix whose (i, j) entry is the q-Stirling number of the second kind bij given by
(22). Then Bq is TP and

(Bq) =
⎧
⎪⎨⎪⎩

1, i = j,
[j], i > j,
0, otherwise.

Theorem 5 can be used to deduce the bidiagonal decomposition of more matrices. For example, applying it to PL, q we see
that

((PL,q)−1) =
⎧
⎪⎨⎪⎩

1, i = j,
−qi−j−1, i > j,

0, otherwise.

The matrix (A) with the bidiagonal factorization of a nonsingular TP matrix A gives also the bidiagonal factoriza-
tion of the matrix A−1. Taking this into account, Marco and Martínez presented in Section 4 of Reference 20 a fast and
accurate algorithm (called TNInverseExpand) for computing A−1 starting from (A). It will be used and recalled
in Section 6.

5 q-LAGUERRE POLYNOMIALS

In this section, we consider the q-Laguerre polynomials L(𝛼)
n,q (see p. 552 of Reference 9). These polynomials are

given by

L(𝛼)
n,q(x) =

(q𝛼+1; q)n

(q; q)n

n∑
k=0

[n
k

]
q𝛼k+k2 (−x)k

(q𝛼+1; q)k
. (34)

Let M ∶= (L(𝛼)
j−1,q(ti−1))1≤i,j≤n+1 be the collocation matrix of the q-Laguerre polynomials at the nodes

(0>)t0 > t1 > … > tn and let Rq,𝛼 , J and Dq be the following (n+ 1)× (n+ 1) diagonal matrices :

Rq,𝛼 = diag((q𝛼+1; q)i−1)1≤i≤n+1, (35)

J = diag((−1)i−1)1≤i≤n+1, (36)

Dq = diag(q𝛼(i−1)+(i−1)2)1≤i≤n+1. (37)

The following result shows the strict total positivity of M and guarantees HRA for many algebraic computations with
M whenever 𝛼 is a nonnegative integer.

Theorem 6. Let M ∶= (L(𝛼)
j−1,q(ti−1))1≤i,j≤n+1 for (0>)t0 > t1 > … > tn with 𝛼 > −1 and 0< q< 1, let PU, q be the

(n+ 1)× (n+ 1) upper triangular matrix given by the transpose of PL, q in (13), and let Rq,𝛼 , J and Dq be the diagonal matrices
given by (35)–(37), respectively. Then

(i) M is an STP matrix.
(ii) If 𝛼 ∈ N ∪ {0}, given the nodes ti (0≤ i≤n) we can compute (M) with HRA and hence, the following computations

can be performed with HRA: all the eigenvalues and singular values, the inverse of M, and the solution of the linear
systems Mx = b where b= (b0, … , bn) has alternating signs.

Proof. Let A= (aij)1≤ i, j≤n+ 1 be the matrix of change of basis between the basis of the q-Laguerre polynomials and the
monomial basis:

(L(𝛼)
0,q(t),L(𝛼)

1,q(t), … ,L(𝛼)
n,q(t)) = (1, t, … , tn)A.
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By (34) its entries are given by

aij =
(q𝛼+1; q)j−1

(q; q)j−1

[
j − 1
i − 1

]
q𝛼(i−1)+(i−1)2

(q𝛼+1; q)i−1
(−1)i−1. (38)

Therefore, we can write A as the following product

A = JDqR−1
q,𝛼PU,qR−1

q,0Rq,𝛼,

and, given V ∶= (tj−1
i−1)1≤i,j≤n+1, the collocation matrix M can be written as

M = VJDqR−1
q,𝛼PU,qR−1

q,0Rq,𝛼. (39)

Since 0<−t0 < … <−tn, VJ = ((− ti− 1)j− 1)1≤ i, j≤n+ 1 is a Vandermonde matrix with strictly increasing positive nodes.
Hence, VJ is STP (see p. 12 of Reference 11). The upper triangular matrix PU, q is a nonsingular TP matrix and so
DqR−1

q,𝛼PU,qR−1
q,0Rq,𝛼 is also nonsingular TP because Dq, R−1

q,𝛼 , R−1
q,0, and Rq,𝛼 are diagonal matrices with positive diagonal

entries. We can write (39) as
M = BC, B ∶= VJ, C ∶= DqR−1

q,𝛼PU,qR−1
q,0Rq,𝛼, (40)

and so, by theorem 3.1 of Reference 10, M is STP because it is the product of an STP matrix and a nonsingular TP matrix
and (i) holds.

Moreover, we can construct the bidiagonal decomposition of a Vandermonde matrix with strictly increasing pos-
itive nodes with HRA (see Section 3 of Reference 14). In our case, we can compute (B) from the parameters
(0<)− t0 < … <−tn with HRA. We need to obtain (C) to compute (BC). In a previous section, we have seen that(PU,q) is given by (21), which means that PU, q can be expressed as the following product

PU,q = G1 … Gn,

where Gk with 1≤ k≤n is the bidiagonal upper triangular matrix

Gk =

⎛⎜⎜⎜⎜⎜⎝

1 g(k)1

⋱ ⋱

⋱ g(k)n

1

⎞⎟⎟⎟⎟⎟⎠

,

with g(k)i = qi−k for i≥ k and g(k)i = 0 for i< k. Since C is a nonsingular triangular TP matrix, it admits by Theorem 1 a
bidiagonal decomposition:

C = DG1 … Gn,

where D is a positive diagonal matrix and Gk (1≤ k≤n) are bidiagonal upper triangular matrices with 1′s on the main
diagonal. We are going to obtain (C) from (PU,q). First, we need to deduce (PU,qD), where D = R−1

q,0Rq,𝛼 . By the
relationship between C and PU, q given by (40) we can write C as

C = DqR−1
q,𝛼G1 … GnR−1

q,0Rq,𝛼. (41)

The factorization (41) only differs from the expression of the bidiagonal decomposition on the right factor D ∶=
R−1

q,0Rq,𝛼 . Let us denote by Gk the bidiagonal upper triangular matrix with 1’s on the main diagonal such that

GkD = DGk.

Using the notation D = diag(d0, d1, … , dn) and g(k)i for the (i, i+ 1) entry of Gk, we have that g(k)i = 0 for i< k and that, for
i≥ k,

g(k)i = di+1

di
qi−k =

(q𝛼+1; q)i

(q; q)i

(q; q)i−1

(q𝛼+1; q)i−1
qi−k =

1 − qi+𝛼

1 − qi qi−k. (42)
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Hence, the factorization (41) has the form

C = DqR−1
q,𝛼DG1 … Gn.

Let us define D ∶= DqR−1
q,𝛼D. Since D = DqR−1

q,𝛼R−1
q,0Rq,𝛼 = DqR−1

q,0 is a diagonal matrix, by the uniqueness of the bidiagonal
decomposition we conclude that (C) is given by

C = DG1 … Gn,

where D = diag
(

q𝛼(i−1)+(i−1)2

(q;q)i−1

)
1≤i≤n+1

and Gk are the bidiagonal upper triangular matrices whose nonzero extradiagonal
entries are defined by (42) for 1≤ k≤n. Finally, let us check that we can compute(C)with HRA whenever 𝛼 ∈ N ∪ {0}.
The diagonal entries of D = DqR−1

q,0 can be obtained with HRA following the definitions (37) and (35). Since 𝛼 ∈ N ∪ {0},
we can rewrite (42) to compute the remaining entries as follows:

g(k)i =
1 − qi+𝛼

1 − qi qi−k =
∑i+𝛼−1

t=0 qt

∑i−1
t=0 qt

qi−k. (43)

Therefore, we can compute (C) with HRA, and since we also know (B) = (VJ) with HRA, we can construct(M) by (40) through the subtraction-free algorithm 5.1 of Reference 3, and hence, with HRA. Finally, we can use(M) to perform the algebraic computations mentioned in the statement (ii) to HRA. ▪

In the following corollary, we extend the cases where Theorem 6 assures the HRA.

Corollary 4. Let M ∶= (L(𝛼)
j−1,q(ti−1))1≤i,j≤n+1 for (0>)t0 > t1 > … > tn with 𝛼 > −1 and 0< q< 1. Given the parametrization

ti (0≤ i≤n), if 𝛼 ∈ Q we can compute (M) with HRA and hence, the following computations can be performed with HRA:
all the eigenvalues and singular values, the inverse of M, and the solution of the linear systems Mx = b where b= (b0, … , bn)
has alternating signs.

Proof. Given the irreducible fraction 𝛼 = a
b

, we can rewrite (42) as

g(k)i =
1 − qi+𝛼

1 − qi qi−k =
∑bi+a−1

t=0 q
t
b

∑bi−1
t=0 q

t
b

qi−k. (44)

Hence, we can compute g(k)i with a subtraction-free algorithm, and, following the argumentation given in the proof
of Theorem 6, we see that we can compute (M) with HRA and use it to compute with HRA the eigenvalues,
singular values, and inverse of M as well as the solution of the linear systems Mx = b whenever b has alternating
signs. ▪

6 NUMERICAL EXPERIMENTS

Assuming that the parameterization (A) of a nonsingular TP matrix A is known with HRA, in Reference 3
Koev devised algorithms to compute the inverse, the eigenvalues and the singular values of A and the solution
of linear systems of equations Ax = b where b has a pattern of alternating signs. In Reference 20 Marco and
Martínez presented another algorithm for the computation of A−1 from (A). These algorithms were imple-
mented to be used with Matlab and Octave in the software library TNTool available in Reference 13. The corre-
sponding functions are TNEigenvalues, TNSingularValues, TNSolve, and TNInverseExpand, respectively.
These four functions require, as input argument, the data determining the bidiagonal decomposition (A) of A
given by (9), to HRA. TNSolve also requires a second argument, the vector b of the linear system Ax = b to
be solved.

The computational cost for both TNSolve and TNInverseExpand is (n2) elementary operations (see Ref-
erence 3 and Section 4 of Reference 20) and for TNEigenValues and TNSingularValues is (n3) elementary
operations.
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6.1 q-Pascal matrices

In Proposition 1, it has been provided the bidiagonal decomposition of the q-Pascal matrices defined by (18). In
Corollary 1, it has been proved that the bidiagonal decomposition can be computed to HRA and so the eigenvalues
and singular values, the inverse of Pq, and the solution of some linear systems with the coefficient matrix Pq. The
pseudocode providing (Pq) to HRA can be seen in Algorithm 1. We have also included the value q= 1, which corre-
sponds to Pascal matrices. In this case, Algorithm 1 provides the bidiagonal decomposition of Pascal matrices to HRA
(see Reference 4).

Algorithm 1. Computation of the bidiagonal decomposition of Pq to HRA

Require: q ∈ (0, 1], order n of the matrix
Ensure: (Pq) bidiagonal decomposition of Pq to HRA

for i = 1 ∶ n do
for j = 1 ∶ i − 1 do

((Pq))ij = qj−1

end for
((Pq))ii = q(i−1)2

for j = i + 1 ∶ n do
((Pq))ij = qi−1

end for
end for

We have implemented the previous algorithm to be used in Matlab and Octave in a function TNBDqPascal. The
bidiagonal decompositions with HRA of q-Pascal matrices obtained with TNBDqPascal can be used with TNInverse-
Expand, TNEigenValues, TNSingularValues, and TNSolve to obtain accurate solutions for the above mentioned
algebraic problems.

Remark 3. It can be checked that the computational cost of Algorithm 1 is of (n2) elementary operations. Taking into
account this fact and the computational cost for the methods TNSolve and TNInverseExpand, TNBDqPascal with
these two functions provides algorithms of (n2) elementary operations to solve a linear system of equations Pqx = b and
to compute the inverse P−1

q , in contrast to the (n3) elementary operations of the standard algorithms for those problems.
For the case of eigenvalues and singular values of Pq, taking into account the computational cost ofTNEigenValues and
TNSingularValues, TNBDqPascal with these two functions provides (n3) algorithms to compute the eigenvalues
and singular values of Pq.

Now we include some numerical experiments illustrating the high accuracy. Let us consider the q-Pascal matrix of
order 21 given by (18) with q= 0.5.

First, we have computed in Matlab, by using TNBDqPascal, the bidiagonal decomposition of the considered
q-Pascal matrix Pq to HRA. Then we have used that bidiagonal decomposition for computing the eigenvalues of Pq
with TNEigenValues. We also compute their approximations with the Matlab function eig. We have also com-
puted the eigenvalues of Pq by using mathematica with a 200 digits precision. Then we compute the relative errors
corresponding to the approximations 𝜆i of the eigenvalues 𝜆i obtained with both methods eig and TNEigen-
Values with TNBDqPascal, considering the eigenvalues provided by Mathematica as exact. We have ordered
the eigenvalues in the following way: 𝜆1 > 𝜆2 … > 𝜆21. In Table 1, the relative errors can be seen. We observe
that the HRA method provides very accurate approximations in contrast to the poor approximations provided by
the usual method for the lower eigenvalues. Recall that, since Pq is symmetric, its singular values coincide with
its eigenvalues.

We have also computed with Matlab approximations to P−1
q with both inv and with TNInverseExpand using

the bidiagonal decomposition given by TNBDqPascal. With mathematica, we have computed the inverse of this
matrix with exact arithmetic. Then we have computed the corresponding componentwise relative errors. Finally, we
have obtained the mean and maximum componentwise relative error for both methods. The results can be seen
in Table 2.
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i |𝝀i−𝝀i|
|𝝀i| HRA |𝝀i−𝝀i|

|𝝀i| eig

1 2.2e− 16 1.0e+ 00

2 4.2e− 16 1.0e+ 00

3 2.5e− 16 1.0e+ 00

4 4.8e− 16 1.0e+ 00

5 7.7e− 16 1.0e+ 00

6 4.3e− 16 1.0e+ 00

7 1.2e− 15 1.0e+ 00

8 1.2e− 16 8.5e− 01

9 4.8e− 16 7.1e+ 03

10 2.5e− 16 1.2e+ 09

11 1.2e− 16 9.2e+ 14

12 2.5e− 16 2.2e+ 21

13 9.1e− 16 3.9e+ 28

14 8.0e− 16 5.6e+ 36

15 1.9e− 15 1.8e+ 48

16 2.4e− 15 2.2e+ 60

17 6.4e− 16 2.9e+ 72

18 2.2e− 15 4.4e+ 84

19 1.1e− 16 7.6e+ 96

20 1.7e− 16 1.5e+ 109

21 9.6e− 16 1.1e+ 123

Abbreviation: HRA, high relative accuracy.

T A B L E 1 Relative errors for the eigenvalues of Pq

HRA method inv

mean rel. error 9.4585e− 17 1.0000

maximum rel. error 5.1298e− 16 1.0000

Abbreviation: HRA, high relative accuracy.

T A B L E 2 Relative errors for P−1
q

HRA method A\b

mean rel. error 1.5656e− 16 1

maximum rel. error 5.5342e− 16 1

Abbreviation: HRA, high relative accuracy.

T A B L E 3 Relative errors for Pqx = b

Now we consider the linear system Pqx = b where b ∈ R21 has the absolute value of its entries randomly generated
as integers in the interval [1, 1000], but with alternating signs. We have computed approximations to the solution x of
the linear system with Matlab, the first one using TNSolve and the bidiagonal decomposition of the q-Pascal matrices
obtained with TNBDqPascal, and the second one using the Matlab command A\b. By using Mathematica with exact
arithmetic we have computed the exact solution of the systems and then we have computed the componentwise relative
errors for the two approximations obtained with Matlab. Then we have obtained the mean componentwise relative error
and the maximum componentwise relative error. Table 3 shows these relative errors. Again, the results obtained with
HRA algorithms are very accurate in contrast to the poor results obtained with the usual Matlab command.
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6.2 Matrices of q-Stirling numbers

In Proposition 2, it has been proved the matrix Cq = (cij)1≤ i, j≤n formed by the unsigned q-Stirling numbers (24) is TP, and
it has also been provided the bidiagonal decomposition of the matrix. This bidiagonal decomposition can be computed to
HRA and so the eigenvalues and singular values, the inverse of Cq, and the solution of some linear systems with coefficient
matrix Cq. The pseudocode providing (Cq) to HRA can be seen in Algorithm 2.

Algorithm 2. Computation of the bidiagonal decomposition of Cq to HRA

Require: q ∈ (0, 1], order n of the matrix
Ensure: (Cq) bidiagonal decomposition of Cq to HRA

for i = 1 ∶ n do
for j = 1 ∶ i − 1 do

((Pq))ij = [i − j]
end for
((Pq))ii = 1
for j = i + 1 ∶ n do

((Pq))ij = 0
end for

end for

We have implemented the previous algorithm to be used in Matlab and Octave in a function TNBDunsQStir1.
The bidiagonal decompositions with HRA of Cq obtained with that function can be used with TNInverseExpand,
TNEigenValues, TNSingularValues, and TNSolve to obtain accurate solutions for the above mentioned algebraic
problems.

Remark 4. Algorithm 2 consists of the computations of [0], [1], … , [n− 1]. Then, taking into account that for q< 1
[r]= q× [r − 1]+ 1, it can be checked that the computational cost of Algorithm 2 is (n) elementary operations. Hence,
TNBDunsQStir1 with TNSolve and TNInverseExpand provides algorithms to solve a linear system Cqx = b and to
compute the inverse C−1

q with (n2) elementary operations. In addition, TNBDunsQStir1 with TNEigenValues and
TNSingularValues provides algorithms for computing the eigenvalues and singular values of Cq with a computational
cost of (n3) elementary operations.

Now we include some numerical experiments illustrating the high accuracy.
Let us consider the matrix Cq of order 20 with q= 0.5. First we have computed in Matlab, by using TNBDun-

sQStir1, the bidiagonal decomposition of the considered matrix Cq to HRA. Then we have used that bidiagonal
decomposition for computing the singular values of Cq with TNSingularValues. We also compute their approx-
imations with the Matlab function svd. We have also computed the singular values of Cq by using Mathematica
with a 200 digits precision. Then we compute the relative errors corresponding to the approximations 𝜎i of the sin-
gular values 𝜎i obtained with both methods svd and TNSingularValues with TNBDunsQStir1, considering
the singular values provided by Mathematica as exact. We have ordered the singular values in the following way:
𝜎1 > 𝜎2 … > 𝜎20. The relative errors can be seen in Table 4. We observe that the HRA method provides very accu-
rate approximations in contrast to the poor approximations provided by the usual method for the lower singular
values.

We have also computed with Matlab approximations to C−1
q with both inv and with TNInverseExpand using

the bidiagonal decomposition given by TNBDunsQStir1. With mathematica, we have computed the inverse of this
matrix with exact arithmetic. Then we have computed the corresponding componentwise relative errors. Finally, we
have obtained the mean and maximum componentwise relative error for both methods. The results can be seen
in Table 5.

Now we consider the linear system Cqx = b where b ∈ R20 has the absolute value of its entries randomly generated as
integers in the interval [1, 1000], but with alternating signs. We have computed approximations to the solution x of the
linear system with Matlab, the first one using TNSolve and the bidiagonal decomposition of the matrices Cq obtained
withTNBDunsQStir1, and the second one using the Matlab commandA\b. By using Mathematica with exact arithmetic
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i |𝝈i−𝝈i|
|𝝈i| HRA |𝝈i−𝝈i|

|𝝈i| svd

1 2.804e− 16 1.402e− 16

2 8.0692e− 16 2.0173e− 16

3 0 3.9227e− 16

4 2.9638e− 16 1.393e− 14

5 7.3461e− 16 5.5096e− 16

6 1.9151e− 16 4.2266e− 13

7 0 4.4546e− 12

8 1.2725e− 16 2.6327e− 11

9 1.5293e− 16 1.7817e− 10

10 4.41709e− 16 1.61523e− 10

11 6.63314e− 16 4.89389e− 09

12 8.30966e− 16 3.74874e− 09

13 9.58919e− 16 3.23951e− 09

14 7.59915e− 16 5.7262e− 09

15 6.81317e− 16 2.55909e− 08

16 3.52401e− 16 1.90929e− 08

17 1.22622e− 16 8.05222e− 08

18 3.17177e− 16 2.92423e− 08

19 6.68987e− 16 5.43857e− 08

20 8.45409e− 16 5.02386e− 09

Abbreviation: HRA, high relative accuracy.

T A B L E 4 Relative errors for the singular values of Cq

HRA method inv

mean rel. error 1.6095e− 18 6.6032e− 06

maximum rel. error 2.1819e− 16 2.1926e− 03

Abbreviation: HRA, high relative accuracy.

T A B L E 5 Relative errors for C−1
q

HRA method A\b

mean rel. error 3.8540e− 17 7.1034e− 12

maximum rel. error 2.1309e− 16 8.4793e− 11

Abbreviation: HRA, high relative accuracy.

T A B L E 6 Relative errors for Cqx = b

we have computed the exact solution of the systems and then we have computed the componentwise relative errors
for the two approximations obtained with Matlab. Then we have obtained the mean componentwise relative error and
the maximum componentwise relative error. Table 6 shows these relative errors. Again, the results obtained with HRA
algorithms are very accurate in contrast to the poor results obtained with the usual Matlab command.

6.3 Collocation matrices of q-Laguerre polynomials

In the proof of Theorem 6 it has been shown how to compute the bidiagonal decomposition of the collocation matrix M ∶=
(L(𝛼)

j−1,q(ti−1))1≤i,j≤n+1 to HRA for (0>)t0 > t1 > … > tn with 𝛼 ∈ N ∪ {0} and 0< q< 1. According to that proof M =B C,
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where B=VJ is a TP Vandermonde matrix with node sequence −t = (−ti)n
i=0. Then, by using TNVandBD(-t) of library

TNTool (VJ) can be obtained to HRA. By formula (43) in the proof, the bidiagonal decomposition of the matrix C can
also be obtained to HRA for the considered parameters. In the library TNTool, Koev also provided the function TNProd-
uct(B1,B2), which, given the bidiagonal decompositions B1 and B2 to HRA of two TP matrices B and C, provides the
bidiagonal decomposition of the TP matrix B C to HRA. Taking into account these facts, the pseudocode providing(M)
to HRA can be seen in Algorithm 3.

Algorithm 3. Computation of the bidiagonal decomposition of M to HRA

Require: t = (ti)n
i=0 such that 0>t0>t1>…>tn, q ∈ (0, 1)and 𝛼 ∈ N ∪ {0}

Ensure: (M) bidiagonal decomposition of M to HRA(B) = TNVandBD(−t)
for i = 1 ∶ n + 1 do

((C))ii = q𝛼∗(i−1)+(i−1)2

(q;q)i−1
end for
for k = 1 ∶ n do

for i = 1 ∶ n − k do
((C))i,i+k =

∑i+k+𝛼−2
r=0 qr

∑i+k−2
r=0 qr

qi−1

end for
end for(M) = TNProduct((B),(C))

We have implemented the previous algorithm to be used in Matlab and Octave in a function TNBDqLaguerre. The
bidiagonal decompositions with HRA of q-Laguerre matrices obtained with TNBDqLaguerre can be used with TNIn-
verseExpand, TNEigenValues, TNSingularValues, and TNSolve to obtain accurate solutions for the above
mentioned algebraic problems.

Remark 5. Taking into account the computation of qn⋅𝛼+n2 , that (q; q)r = (q; q)r − 1 × (1− qr) and that
∑i+k+𝛼−2

r=0 qr = q ×∑i+k+𝛼−3
r=0 qr + 1 it can be deduced that the computational cost of Algorithm 3 is (n(n + 𝛼)) elementary operations.

Now we include some numerical experiments illustrating the high accuracy.
Let us consider the q-Laguerre matrices Mn of order n given by the collocation matrices of the q-Laguerre polynomials

(L(2)
0,q(x), … ,L(2)

n−1,q(x)) at the nodes (− i)1≤ i≤n, that is,

Mn = (L(2)
j−1,q(−i))1≤i,j≤n, (45)

for n= 2, … , 30.
First we have computed in Matlab by using TNBDqLaguerre, the bidiagonal decomposition of the matrices Mn

to HRA. Then we have used that bidiagonal decomposition of Mn for computing their eigenvalues and their singu-
lar values with TNEigenValues and TNSingularValues, respectively. In the case of eigenvalues, we also compute
their approximations with the Matlab function eig. We have also computed the eigenvalues of Mn by using Mathe-
matica with a 500 digits precision. Then we compute the relative errors corresponding to the approximations of the
eigenvalues obtained with both methods eig and TNEigenValues with TNBDqLaguerre, considering the eigen-
values provided by Mathematica as exact. We have observed that the approximations of all the eigenvalues obtained
with TNBDqLaguerre are very accurate, whereas the approximations of the lower eigenvalues obtained with the com-
mand eig are not very accurate. In particular, the lower the eigenvalue is, the more inaccurate the approximation
obtained with eig is. To illustrate this fact, Figure 1 shows the relative errors of the approximations to the low-
est eigenvalue of the matrices M2, … , M30 obtained by both eig and TNEigenValues with TNBDqLaguerre. We
can observe in the figure that our method provides very accurate results in contrast to the very poor results provided
by eig.

For the case of singular values, we have also computed their approximations with the Matlab function svd. To show
the accuracy of the approximations to the singular values computed in both ways we calculate the singular values of the
matrices Mn with Mathematica using a precision of 500 digits. As in the case of eigenvalues, we observed that the lower



18 of 20 DELGADO et al.

0 5 10 15 20 25 30
n

100

1050

10100

10150

10200

R
el

at
iv

e 
er

ro
r

HRA
eig

F I G U R E 1 Relative errors for the lowest eigenvalue of q-Laguerre matrices

0 5 10 15 20 25 30
n

100

1050

10100

10150

R
el

at
iv

e 
er

ro
r

HRA
svd

F I G U R E 2 Relative errors for the lowest singular value of q-Laguerre matrices

the singular value is, the more inaccurate the approximation obtained with svd is, whereas the approximations of all the
singular values provided by the new method are very accurate. Figure 2 shows the relative errors of the approximations to
the lowest singular value of the matrices M2, … , M30 obtained by both svd and TNSingularValueswith TNBDqLa-
guerre. We can observe in the figure that HRA algorithm provides very accurate results. By contrast, svd provides very
inaccurate results.

We have also computed with Matlab approximations to M−1
n , n= 2, … , 30, with inv and with TNInverseExpand

using the bidiagonal decomposition given by TNBDqLaguerre. With mathematica, we have computed the inverse of
these q-Laguerre matrices with exact arithmetic. Then we have computed the corresponding componentwise relative
errors. Finally, we have obtained the mean and maximum componentwise relative error. Figure 3(a) shows the mean
relative error and (b) shows the maximum relative error. We can also observe in this case that the results obtained with
TNInverseExpand are much more accurate than the ones obtained with inv.

Now we consider the linear systems Mnx = bn, n= 2, … , 30, where Mn is the q-Laguerre matrix of order n previously
defined in (45) and bn ∈ Rn has the absolute value of its entries randomly generated as integers in the interval [1, 1000],
but with alternating signs. We have computed approximations to the solution x of the linear system with Matlab, the first
one using TNSolve and the bidiagonal decomposition of the q-Laguerre matrices obtained with TNBDqLaguerre, and
the second one using the Matlab command A\b. By using Mathematica with exact arithmetic we have computed the
exact solution of the systems and then we have computed the componentwise relative errors for the two approximations
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F I G U R E 3 Relative errors for
M−1

n , n= 2, … , 30
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F I G U R E 4 Relative errors for the systems Mnx = bn, n= 2, … , 30

obtained with Matlab. Then we have obtained the mean and maximum componentwise relative error. Figure 4 shows
these mean and maximum relative errors. Again, the results obtained with HRA algorithms are very accurate in contrast
to the results obtained with the usual Matlab command.

7 CONCLUSIONS

The bidiagonal decomposition of a triangular TP matrix can be used to derive explicitly the bidiagonal decomposition
of its inverse. The bidiagonal decomposition of q-Pascal matrices, q-Stirling matrices, and a large family of collocation
matrices of generalized q-Laguerre polynomials are constructed with HRA. They can be used to compute with HRA the
eigenvalues, singular values, and inverses of these matrices, as well as the solutions of linear systems Mx = b, where M is a
matrix of these classes and b is a vector with alternating signs. Numerical examples illustrate the accuracy of the proposed
methods in contrast to the poor results obtained with the corresponding Matlab commands.
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1. Introduction and main results

Given a system of functions u = (u0, . . . , un) defined on I ⊆ R, the collocation matrix of u at t0 < · · · < tm
in I is given by (uj(ti))j=0,...,n

i=0,...,m. If
∑n

i=0 ui(t) = 1 for all t ∈ I, then we say that the system is normalized.
If all collocation matrices of u have all their minors nonnegative, then we say that the system is totally
positive (TP). Normalized totally positive (NTP) systems play a crucial role in Computer Aided Geometric
Design because they lead to shape preserving representations. Among all NTP bases of a space, the basis
with optimal shape preserving properties is the normalized B-basis [1,2]. The Bernstein basis of polynomials
and the B-spline basis are examples of normalized B-bases of their corresponding spaces. In this paper we
extend some optimal properties of normalized B-bases given in [2] to their corresponding tensor products.
Recall that, given two systems u1 = (u1

0, . . . , u
1
m) and u2 = (u2

0, . . . , u
2
n) of functions defined on [a, b] and

[c, d], respectively, the system u1 ⊗ u2 := (u1
i (x) · u2

j (y))
j=0,...,n
i=0,...,m is called a tensor product system and

generates a tensor product surface. The Kronecker product of two square matrices A = (aij)1≤i,j≤m and

✩ This work was partially supported by MCIU/AEI through the Spanish research grant PGC2018-096321-B-I00 and by Gobierno
de Aragón (E41-17R).
∗ Corresponding author.

E-mail addresses: jorgedel@unizar.es (J. Delgado), hectororera@unizar.es (H. Orera), jmpena@unizar.es (J.M. Peña).

https://doi.org/10.1016/j.aml.2021.107473
0893-9659/© 2021 Elsevier Ltd. All rights reserved.



J. Delgado, H. Orera and J.M. Peña Applied Mathematics Letters 121 (2021) 107473

B = (bij)1≤i,j≤n, A⊗B, is defined to be the mn×mn block matrix

A⊗B =

⎛
⎜⎝

a11B · · · a1mB
... . . . ...

am1B · · · ammB

⎞
⎟⎠ .

Given the collocation matrices B1 := (u1
j (xi))0≤i,j≤m and B2 := (u2

j (yi))0≤i,j≤n of u1 and u2, B1 ⊗ B2 is
the collocation matrix of u1 ⊗ u2 at ((xi, yj)j=0,...,n)i=0,...,m.

Given two square real matrices A = (aij)1≤i,j≤n and B = (bij)1≤i,j≤n, A ≤ B denotes that aij ≤ bij for
all i, j. Given a complex matrix C = (cij)1≤i,j≤n, A is said to dominate C if |cij | ≤ aij for all i, j. If matrices
A and B are nonsingular, by Corollary 4.2.11 of [3] we have that A⊗B is nonsingular and

(A⊗B)−1 = A−1 ⊗B−1. (1)

The next result shows the optimal properties of a collocation matrix of the tensor product of normalized
B-bases among all the corresponding collocation matrices of the tensor product of NTP bases of the spaces.

Theorem 1. Let u1 = (u1
0, . . . , u

1
m) be an NTP basis on [a, b] of a space of functions U1, u2 = (u2

0, . . . , u
2
n)

be an NTP basis on [c, d] of a space of functions U2 and let v1 = (v1
0 , . . . , v

1
m) and v2 = (v2

0 , . . . , v
2
n) be the

normalized B-bases of U1 and U2, respectively. Given the increasing sequences of nodes t = (ti)mi=0 on [a, b]
and r = (ri)ni=0 on [c, d], the nonsingular collocation matrices A1 and M1 of the bases u1 and v1, respectively,
at t, and A2 and M2 of the bases u2 and v2, respectively, at r, the following properties hold:

(i) The matrix |(A1 ⊗A2)−1| dominates (M1 ⊗M2)−1.
(ii) The minimal eigenvalue (resp., singular value) of A1 ⊗A2 is bounded above by the minimal eigenvalue

(resp., singular value) of M1 ⊗M2.
(iii) κ∞(M1 ⊗M2) ≤ κ∞(A1 ⊗A2).

Proof.

(i) By Corollary 1 of [2], |A−1
1 | dominates |M−1

1 | and |A−1
2 | dominates |M−1

2 |. Hence, |A−1
1 | ⊗ |A−1

2 | domi-
nates |M−1

1 | ⊗ |M−1
2 |, and, since |(A1 ⊗A2)−1| = |A−1

1 ⊗A−1
2 | = |A−1

1 | ⊗ |A−1
2 | by (1), |(A1 ⊗A2)−1|

dominates (M1 ⊗M2)−1.
(ii) Let B1 be an n × n matrix and B2 an m × m matrix. If λ is an eigenvalue of B1 and µ is an

eigenvalue of B2, then λµ is an eigenvalue of B1 ⊗ B2 and every eigenvalue of B1 ⊗ B2 arises as such
a product of eigenvalues of B1 and B2 (see Theorem 4.2.12 of [3]). By Corollary 2 of [2], we have that
λmin(A1) ≤ λmin(M1) and that λmin(A2) ≤ λmin(M2). Hence,

λmin(M1 ⊗M2) = λmin(M1)λmin(M2) ≥ λmin(A1)λmin(A2) = λmin(A1 ⊗A2).

The case of singular values is analogous to that of eigenvalues recalling that every nonzero singular
value of B1 ⊗ B2 is the product of a singular value of B1 and a singular value of B2 (see Theorem
4.2.15 of [3]).

(iii) First, let us see that the infinity norm of the Kronecker product of two matrices A = (aij)1≤i,j≤m and
B = (bij)1≤i,j≤n satisfies that ∥A⊗B∥∞ = ∥A∥∞∥B∥∞:

∥A⊗B∥∞ = max
0≤i≤nm−1

m∑

j=1
|at+1,j |(

n∑

k=1
|br+1,k|), where t =

[
i

n

]
, r = i− tn. (2)

Denoting Rt :=
∑m

j=1 |atj | and Sr =
∑n

k=1 |brk| we can rewrite (2) as

∥A⊗B∥∞ = max
0≤tn+r≤nm−1

Rt+1Sr+1 = max
1≤t≤m

Rt max
1≤r≤n

Sr = ∥A∥∞∥B∥∞.
2
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Hence, the condition number satisfies by (1) that

κ∞(B1 ⊗B2) = ∥B1 ⊗B2∥∞∥(B1 ⊗B2)−1∥∞
= ∥B1∥∞∥B2∥∞∥B−1

1 ∥∞∥B−1
2 ∥∞ = κ∞(B1)κ∞(B2).

By Corollary 2 of [2], we have that κ∞(M1) ≤ κ∞(A1) and κ∞(M2) ≤ κ∞(A2). So, we conclude that
κ∞(M1 ⊗M2) ≤ κ∞(A1 ⊗A2). □

2. Numerical tests

In this section two numerical examples illustrating the theoretical results will be presented. The first
example will be constructed by performing the tensor product of three different NTP bases un = (un0 , . . . , unn)
of the space Pn([0, 1]) of polynomials of degree not greater than n, which were used in [2]. A second example
will be presented considering the tensor product of rational bases rn = (rn0 , . . . , rnn) constructed from the
three NTP bases considered in the first example with positive weights and the tensor product of rational
monomial bases (the monomial basis is TP in [0, 1]) also with positive weights. In fact, if un is a TP basis, it
can be checked that the rational basis (rn0 , . . . , rnn), rni (x) = wiu

n
i (x)/(

∑n
j=0 wju

n
j (x)), with weights wni > 0,

is NTP. The basis un = (bn0 , . . . , bnn) formed by the Bernstein polynomials of degree n (see Example 6 a)
in [2]) is the normalized B-basis of Pn([0, 1]) and the corresponding rational Bernstein basis rnB defined by
rni (x) = wib

n
i (x)/(

∑n
j=0 wjb

n
j (x)) with wi > 0, i = 0, . . . , n, is the normalized B-basis of its spanned space

⟨rnB⟩.
We will also consider the Said–Ball basis sn = (sn0 , . . . , snn) and the DP basis cn = (cn0 , . . . , cnn), which are

both NTP basis. The Said–Ball basis (see [4]) is defined by

sni (x) =
(⌊n/2⌋+ i

i

)
xi(1− x)⌊n/2⌋+1, 0 ≤ i ≤ ⌊(n− 1)/2⌋,

sni (x) = snn−i(1− x), ⌊n/2⌋+ 1 ≤ i ≤ n, and, if n is even

snn/2(x) =
(

n

n/2

)
xn/2(1− x)n/2,

where ⌊m⌋ is the greatest integer less than or equal to m. The DP basis is given by cn0 (x) = (1 − x)n,
cnn(x) = xn, cni (x) = x(1− x)n−i, 1 ≤ i ≤ ⌊n/2⌋ − 1, cni (x) = xi(1− x), ⌊(n+ 1)/2⌋+ 1 ≤ i ≤ n− 1, and, if
n is even cnn

2
(x) = 1− x

n
2 +1 − (1− x)n2 +1, and, if n is odd,

cn−1
2

(x) = x(1− x)
n+1

2 + 1
2

[
1− x

n+1
2 +1 − (1− x)

n+1
2 +1

]
, cn+1

2
(x) = cn−1

2
(1− x).

Let (tni )n+1
i=1 be the sequence of points given by ti = i/(n + 2) for i = 1, . . . , n + 1. Let us consider the

Kronecker products of the collocation matrices of the Bernstein, Said–Ball and DP bases of Pn([0, 1]) for
n = 3, 4, 5 at (tni )n+1

i=1 by themselves: Mn⊗Mn, Bn
1 ⊗Bn

1 and Bn
2 ⊗Bn

2 , respectively. Then, the computation
of the eigenvalues and the singular values of these matrices have been carried out with Mathematica using a
precision of 100 digits. We can see the corresponding minimal eigenvalues and singular values in Table 1. It
can be observed that the minimal eigenvalue, resp. singular value, of Mn ⊗Mn is higher than the minimal
eigenvalue, resp. singular value, of Bn

1 ⊗Bn
1 and Bn

2 ⊗Bn
2 as Theorem 1 has stated.

We have also computed k∞(Mn ⊗Mn), k∞(Bn
1 ⊗ Bn

1 ) and k∞(Bn
2 ⊗ Bn

2 ) for n = 3, 4, 5. Table 2 shows
the results. It can be observed that k∞(Mn ⊗Mn) ≤ k∞(Bn

i ⊗ Bn
i ) for i = 1, 2, as it has been shown in

Theorem 1.
As it has been said before, the rational Said–Ball, DP and monomial bases with positive weights are NTP.

Taking a sequence of positive weights (wni )ni=0 and taking into account that
∑n

j=0 w
n
j b

n
j (x) ∈ Pn([0, 1]) and

3
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Table 1
The minimal eigenvalue and singular value of Mn ⊗Mn, Bn

1 ⊗ Bn
1 and Bn

2 ⊗ Bn
2 .

n Mn ⊗Mn Bn
1 ⊗ Bn

1 Bn
2 ⊗ Bn

2

λmin σmin λmin σmin λmin σmin

3 2.30e− 03 2.19e− 03 8.28e− 04 8.28e− 04 3.23e− 04 3.20e− 04
4 3.43e− 04 3.23e− 04 2.17e− 04 1.97e− 04 1.92e− 05 1.11e− 05
5 5.10e− 05 4.78e− 05 1.04e− 05 1.03e− 05 3.54e− 07 2.77e− 07

Table 2
Infinity condition number k∞ of Mn ⊗Mn, Bn

1 ⊗ Bn
1 and Bn

2 ⊗ Bn
2 .

n k∞(Mn ⊗Mn) k∞(Bn
1 ⊗ Bn

1 ) k∞(Bn
2 ⊗ Bn

2 )

3 5.1883e+02 1.7361e+03 7.1797e+03
4 3.9690e+03 6.5610e+03 1.6080e+05
5 2.5264e+04 1.3949e+05 6.0028e+06

Table 3
The minimal eigenvalue and singular value of Mn

T , Bn
1,T and Bn

3,T .

n Mn
T Bn

1,T Bn
3,T

λmin σmin λmin σmin λmin σmin

3 1.95e− 03 1.74e− 03 4.06e− 04 3.78e− 04 4.39e− 06 3.82e− 6
4 2.57e− 04 2.05e− 04 1.30e− 04 1.09e− 04 8.86e− 08 2.35e− 08
5 4.75e− 05 4.36e− 05 8.83e− 06 8.66e− 06 2.60e− 10 1.63e− 10

Table 4
Infinity condition number k∞ of Mn

T , Bn
1,T , Bn

2,T and Bn
3,T .

n k∞(Mn
T ) k∞(Bn

1,T ) k∞(Bn
2,T ) k∞(Bn

3,T )

3 8.1049e+02 5.6308e+03 3.5425e+04 5.8525e+05
4 7.1105e+03 1.3484e+04 2.0327e+06 1.3229e+08
5 3.1318e+04 1.6543e+05 4.0614e+07 1.7440e+10

that sn, cn and mn = (1, x, . . . , xn) are bases of Pn([0, 1]), then there exist three sequence of weights (wni )ni=0,
(w̃ni )ni=0 and (ŵni )ni=0 satisfying

n∑

j=0
wnj b

n
j (x) =

n∑

j=0
wnj s

n
j (x) =

n∑

j=0
w̃nj b

n
j (x) =

n∑

j=0
ŵnj c

n
j (x), x ∈ [0, 1]. (3)

Sequences of positive weights (wni )ni=0 have been randomly generated for n = 3, 4, 5, where each wni is an
integer in the interval [1, 1000], until we have obtained a sequence such that there exists positive sequences
(wni )ni=0, (w̃ni )ni=0 and (ŵni )ni=0 satisfying (3). Then we have the normalized B-basis rB , and the NTP rational
bases of ⟨rB⟩ corresponding to the Said–Ball basis, the DP basis and the monomial basis. So, in the second
example we have considered the Kronecker products of the collocation matrices of the generated rational
Bernstein, Said–Ball, DP and monomial bases for n = 3, 4, 5 at (tni )n+1

i=1 by themselves: Mn
T = MRn⊗MRn,

Bn
1,T = BRn

1 ⊗BRn
1 , Bn

2,T = BRn
2 ⊗BRn

2 and Bn
3,T = BRn

3 ⊗BRn
3 , respectively. Then, the computation of

the eigenvalues and the singular values of these matrices have been carried out with Mathematica using a
precision of 100 digits. We can see the corresponding minimal eigenvalues and singular values of Mn

T , Bn
1,T

and Bn
3,T in Table 3. It can be observed that the minimal eigenvalue, resp. singular value, of Mn

T is higher
than the minimal eigenvalue, resp. singular value, of Bn

1,T and Bn
3,T as Theorem 1 has proved.

We have also computed k∞(Mn
T ), k∞(Bn

1,T ), k∞(Bn
2,T ) and k∞(Bn

3,T ) for n = 3, 4, 5 with Mathematica.
The results can be seen in Table 4. It can be observed that k∞(Mn

T ) ≤ k∞(Bn
i,T ) for i = 1, 2, 3 (see

Theorem 1).
4
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ABSTRACT
Tridiagonal Toeplitz P-matrices, M-matrices and totally positive
matrices are characterized. For some classes of tridiagonal matrices
and tridiagonal Toeplitz matrices, it is shown that many algebraic
computations can be performed with high relative accuracy.
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1. Introduction

Toeplitz matrices arise in many important applications, but they provide an example of a
structured class of matrices for which it is not possible to perform some elementary alge-
braic computations with high relative accuracy (HRA). In fact, in [1] it was proved that
the determinant of a general square Toeplitz matrix cannot be calculated with HRA. In
contrast, for other classes of structured matrices, algorithms with HRA for many algebraic
computations, in addition to the determinant, have been found. In this paper, we prove
that, for some classes of tridiagonal Toeplitz matrices, many algebraic computations can
be performed with HRA. Tridiagonal Toeplitz matrices arise in important applications,
such as the solution of ordinary and partial differential equations, time series analysis or
as regularization matrices in Tikhonov regularization for the solution of discrete ill-posed
problems (see [2–7]). Recent results on the total positivity of some Toeplitz matrices and
algorithms for determinants of tridiagonal periodic Toeplitz matrices can be seen in [8,9],
respectively.

Let us now recall some concepts and notations used in this paper. LetA be a real matrix.
We say that A is a nonnegative (positive) matrix and write A ≥ 0 (A > 0) when all the
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Universidad de Zaragoza, Zaragoza 50009, Spain

© 2021 Informa UK Limited, trading as Taylor & Francis Group



2 J. DELGADO ET AL.

entries of A are nonnegative (positive). A square matrix is a P-matrix if all its princi-
pal minors are positive. Let us recall that in a Linear Complementarity Problem, very
important in the field of Optimization, there always exists a unique solution if and only
if the associated matrix is a P-matrix. Some subclasses of P-matrices are very important
in many applications. For instance, nonsingular TP matrices. A matrix A is said to be
totally positive (TP) if all its minors are nonnegative. If all its minors are positive, then
A is called strictly totally positive (STP). TP and STP matrices arise in many applications
in Approximation Theory, Statistics, Economy, Biology and ComputerAided Geometric
Design, among other fields (see [10–12]). A real matrix A is a Z-matrix if all its off-
diagonal entries are nonpositive. The matrix A is called anM-matrix if it can be expressed
in the form A = sI−B, where I is the identity matrix, B ≥ 0 and s ≥ ρ(B), where ρ(B)

is the spectral radius of B. If s > ρ(B), then A is a nonsingular M-matrix. Equivalently, a
Z-matrix A is a nonsingular M-matrix if and only if its inverse is nonnegative (see char-
acterization (N38) in Theorem (2.3) of [13, Ch. 6]). Nonsingular M-matrices arise in the
discretization of partial differential equations and in many applications to Dynamic Sys-
tems, Economy and Optimization (see [13]). We call a square real matrix A = (aij)1≤i,j≤n
sign symmetric (sign skew-symmetric, respectively) if aijaji ≥ 0 (≤ 0, respectively)whenever
i �= j and A is tridiagonal if aij = 0 whenever |i − j| > 1. Given a matrix A = (aij)1≤i,j≤n,
|A| := (bij)1≤i,j≤n denotes thematrix such that bij := |aij| for all 1 ≤ i, j ≤ n. An algorithm
can be performed with HRA (independently of the conditioning of the problem) if all
the included subtractions are of initial data, that is, if it only includes products, divisions,
sums of numbers of the same sign and subtractions of the initial data (cf. [1,14,15]). A
first step to obtain HRA algorithms for a class of matrices is an adequate parametriza-
tion of the matrices. Up to now, HRA algorithms for algebraic computations have been
obtained for some subclasses of P-matrices, in particular for diagonally dominant M-
matrices and for some subclasses of TPmatrices (see, for instance, [14,16–22]). This paper
shows that some classes of tridiagonal Toeplitz matrices can be added to the previous
list.

The paper is organized as follows. Section 2 includes some auxiliary results and presents
the Neville elimination and the bidiagonal factorization, which provide the parametriza-
tion of nonsingular TP matrices that can be used to apply the HRA algorithms of Koev
(see [15,23,24]) for nonsingular TP matrices. With these algorithms and the mentioned
parametrization, one can perform the following algebraic calculations with HRA: inverse,
all singular values, all eigenvalues and the solution of some linear systems. These algo-
rithms will be used in this paper to obtain HRA computations with some tridiagonal
Toeplitzmatrices. In Section 3, we introduce Toeplitzmatrices and characterize tridiagonal
Toeplitz TPmatrices, tridiagonal ToeplitzM-matrices and tridiagonal Toeplitz P-matrices.
Section 4 deals with sign skew-symmetric tridiagonal matrices with positive diagonal
entries. It is shown that their leading principal minors and all minors of their inverses
can be computed with HRA. In Section 5, a condition is provided to calculate the bidi-
agonal decomposition of sign symmetric tridiagonal Toeplitz P-matrices with HRA, and
so their eigenvalues and singular values, as also illustrated with numerical experiments
in Section 6. As shown in Figure 1, our results outperform those obtained with the usual
MATLAB functions. Let us also recall that the eigenvalues of a tridiagonal Toeplitz matrix
are already known (cf. page 59 of [7]), in contrast to singular values. Section 5 also provides
the bidiagonal factorization of the inverse of a tridiagonal ToeplitzM-matrix.
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Figure 1. Relative error for the minimal eigenvalues and singular values of A5, A10, . . . , A100.

2. Auxiliary results

Let us denote by Qk,n the set of strictly increasing sequences of k integers chosen from
{1, . . . , n}. Let α = (α1, . . . ,αk), β = (β1, . . . ,βk) be two sequences of Qk,n. Then A[α|β]
denotes the k × k submatrix of A formed using the rows numbered by α1, . . . ,αk and the
columns numbered by β1, . . . ,βk. Whenever α = β , the submatrixA[α|α] is called a prin-
cipal submatrix and it is denoted by A[α], and detA[1, . . . , k] is called a leading principal
minor of A. For each α ∈ Qk,n, the dispersion number d(α) is defined by

d(α) := αk − α1 − (k − 1). (1)

So, α consists of consecutive integers if and only if d(α) = 0. Let D = (dij)1≤i,j≤n be a
diagonal matrix, which can be denoted by D = diag(d1, . . . , dn), where di := dii for i =
1, . . . , n. Let us denote by Ei(x), with i = 2, . . . , n, the n × n lower elementary bidiagonal
matrix whose (i, i − 1) entry is x:

Ei(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
x 1

. . .
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

In particular, Ei(x) can be identified by its 2 × 2 principal submatrix using the rows and
columns with indices i−1 and i. This submatrix will be denoted by

Ei(x) := (Ei(x))[i − 1, i], i = 2, . . . , n. (3)

The matrix ETi (x) := (Ei(x))T is called upper elementary bidiagonal matrix.
The following two results will allow us to characterize tridiagonal Toeplitz P-matrices.

The next proposition characterizes a P-matrix in terms of the positivity of the real
eigenvalues of its principal submatrices.
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Proposition 2.1 (cf. 2.5.6.5 in p. 120 of [25]): An n × n matrix A is a P-matrix if and only
if every real eigenvalue of every principal submatrix of A is positive.

The following theorem provides a sufficient condition for the total positivity of an n × n
nonnegative tridiagonal matrix using only the positivity of n−1 minors.

Theorem 2.2 (Theorem 7 of [26]): Let A be an n × n (n ≥ 3) tridiagonal nonnegative
matrix. If detA[1, . . . , k] > 0 for k ≤ n − 2 and detA > 0, then A is TP.

Neville elimination (NE) has been very useful to characterize TPmatrices and for paral-
lel computations (cf. [26,27]). Neville elimination is an alternative procedure to Gaussian
elimination that produces zeros in a column of a matrix by adding to each row an appro-
priate multiple of the previous one. Given a nonsingular matrix A = (aij)1≤i,j≤n, the NE
procedure consists of n−1 steps and leads to the following sequence of matrices:

A =: A(1) → Ã(1) → A(2) → Ã(2) → · · · → A(n) = Ã(n) = U, (4)

where U is an upper triangular matrix.
The matrix Ã(k) = (̃a(k)

ij )1≤i,j≤n is obtained from the matrix A(k) = (a(k)
ij )1≤i,j≤n by a

row permutation that moves to the bottom the rows with a zero entry in column k below
the main diagonal. For nonsingular TP matrices, it is always possible to perform NE
without row exchanges (see [28]). If a row permutation is not necessary at the kth step,
we have that Ã(k) = A(k). The entries of A(k+1) = (a(k+1)

ij )1≤i,j≤n can be obtained from

Ã(k) = (̃a(k)
ij )1≤i,j≤n using the formula:

a(k+1)
ij =

⎧⎪⎪⎨⎪⎪⎩
ã(k)
ij − ã(k)

ik

ã(k)
i−1,k

ã(k)
i−1,j, if k ≤ j < i ≤ n and ã(k)

i−1,k �= 0,

ã(k)
ij , otherwise,

(5)

for k = 1, . . . , n − 1. The (i, j) pivot of the NE of A is given by

pij = ã(j)
ij , 1 ≤ j ≤ i ≤ n.

If i = j we say that pii is a diagonal pivot. The (i, j) multiplier of the NE of A, with 1 ≤ j ≤
i ≤ n, is defined as

mij =

⎧⎪⎪⎨⎪⎪⎩
ã(j)
ij

ã(j)
i−1,j

= pij
pi−1,j

, if ã(j)
i−1,j �= 0,

0, if ã(j)
i−1,j = 0.

The multipliers satisfy that

mij = 0 ⇒ mhj = 0 ∀ h > i.

Nonsingular TPmatrices can be expressed as a product of nonnegative bidiagonalmatrices.
The following theorem (see Theorem 4.2 and p. 120 of [29]) introduces this representation,
which is called the bidiagonal decomposition.
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Theorem 2.3 (cf. Theorem 4.2 of [29]): Let A = (aij)1≤i,j≤n be a nonsingular TP matrix.
Then A admits the following representation:

A = Fn−1Fn−2 · · · F1DG1 · · ·Gn−2Gn−1, (6)

where D is the diagonal matrix diag(p11, . . . , pnn) with positive diagonal entries and Fi, Gi
are the nonnegative bidiagonal matrices given by

Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

. . . . . .
0 1

mi+1,1 1
. . . . . .

mn,n−i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

Gi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

1
. . .
. . . 0

1 m̃i+1,1

1
. . .
. . . m̃n,n−i

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

for all i ∈ {1, . . . , n − 1}. If, in addition, the entries mij and m̃ij satisfy

mij = 0 ⇒ mhj = 0 ∀ h > i,
m̃ij = 0 ⇒ m̃hj = 0 ∀ h > i, (9)

then the decomposition is unique.

In the bidiagonal decomposition given by (6), (7) and (8), the entries mij and pii
are the multipliers and diagonal pivots, respectively, corresponding to the NE of A (see
Theorem 4.2 of [29] and the comment below it) and the entries m̃ij are the multipliers
of the NE of AT (see p. 116 of [29]). In general, more classes of matrices can be repre-
sented as a product of bidiagonal matrices. The following remark shows which hypotheses
of Theorem 2.3 are sufficient for the uniqueness of a representation following (6).

Remark 2.4: If we consider the factorization given by (6)–(9) without any further require-
ment than the nonsingularity of D, by Proposition 2.2 of [30] the uniqueness of (6)
holds.
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In [15], the following matrix notation BD(A) was introduced to represent the bidiago-
nal decomposition of a nonsingular TP matrix

(BD(A))ij =

⎧⎪⎨⎪⎩
mij, if i > j,
m̃ji, if i < j,
pii, if i = j.

(10)

Throughout this paper,BD(A)will denote the bidiagonal decomposition of amatrix under
the hypotheses of Remark 2.4.

3. Characterizations of tridiagonal Toeplitz P-matrices

An n × n Toeplitz matrix A = (aij)1≤i,j≤n is a real matrix such that all its diagonals are con-
stant. These matrices can be defined through a sequence of 2n−1 real numbers {αk}n−1

−n+1
with

aij := αi−j, 1 ≤ i, j ≤ n. (11)

If an n × n Toeplitz matrix is also tridiagonal, it can be uniquely represented with 3
parameters,

Tn(a, b, c) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a c

b a
. . .

. . . . . . . . .
. . . . . . c

b a

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

Given a positive matrix A = (aij)1≤i,j≤n, the following condition is sufficient for its total
positivity (see [31] or Section 2.6 of [12]):

aijai+1,j+1 ≥ 4 cos2
(

π

n + 1

)
ai,j+1ai+1,j,

with i, j = 1, . . . , n − 1. If all these inequalities are strict, thenA is STP. In particular, given
an n × n Toeplitz matrix (11) with αi > 0 for i = −n + 1, . . . , 0, . . . , n − 1, the sufficient
condition for a positive matrix A to be TP presents the following form:

α2
i ≥ 4 cos2

(
π

n + 1

)
αi−1αi+1,

with i = −n + 2, . . . , 0, . . . , n − 2. This condition requires the positivity of all the entries
of the matrix. Nevertheless, we are going to prove that a similar condition (jointly with the
nonnegativity of the parameters) is sufficient and also necessary for a tridiagonal Toeplitz
matrix to be TP.

Proposition 3.1: Let A = Tn(a, b, c) be the tridiagonal Toeplitz matrix given by (12). Then
A is TP if and only if

a, b, c ≥ 0, a ≥ 2
√
bc cos

(
π

n + 1

)
. (13)
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Proof: It is known (see p. 59 of [7]) that the eigenvalues of the n × n tridiagonal Toeplitz
matrix Tn(a, b, c) are given by

λk = a + 2
√
bc cos

(
kπ

n + 1

)
, k = 1, . . . , n. (14)

Let us suppose that A is a TP matrix. Then a, b, c ≥ 0 and its eigenvalues are real and
nonnegative (see Corollary 5.5 of [12]). Moreover, since we know that the eigenvalues
satisfy (14), it is sufficient to guarantee that the smallest eigenvalue, λn, is nonnegative:

λn = a + 2
√
bc cos

(
nπ

n + 1

)
= a − 2

√
bc cos

(
π

n + 1

)
≥ 0,

or equivalently,

a ≥ 2
√
bc cos

(
π

n + 1

)
,

which is precisely (14) for k = n.
Let us now suppose that conditions (13) hold. We start with the case where the sec-

ond inequality of (13) is strict. By Theorem 2.2, in order to prove that A is a TP matrix
it is sufficient to check that its leading principal minors of order h are positive for h =
1, . . . , n − 2 and that its determinant is also positive. Due to the structure of A we have
that A[1, . . . , h] = Th(a, b, c) for h = 1, . . . , n. So, let us check the positivity of the minors
by studying the positivity of the eigenvalues of the matrices Th(a, b, c) for h = 1, . . . , n − 2
and for h = n. We can include the case h = n−1. Then the set of eigenvalues to check is
given by λk,h := a + 2

√
bc cos( kπ

h+1 ) with 1 ≤ h ≤ n and k = 1, . . . , h, where h represents
the size of the h × hmatrix whose eigenvalues are given by λk,h.

Since all the eigenvalues are real, it suffices to check that the smallest eigenvalue is
positive in order to assure that λk,h > 0 for all h = 1, . . . , n and for all k = 1, . . . , h:

min
k,h

λk,h = λn,n = a + 2
√
bc cos

(
nπ

n + 1

)
= a − 2

√
bc cos

(
π

n + 1

)
> 0,

which is true by hypothesis. The value of the h × h leading principal minor ofA is equal to
the product of λ1,h, . . . , λh,h, and so it is positive. By Theorem 2.2 A is TP, and so the case
where the strict inequality holds is proven.

Let us finally consider the case where the second inequality of (13) holds as an equal-
ity, a = 2

√
bc cos( π

n+1 ), which corresponds to the singular case. Let us define the set of
matrices Tn(a + ε, b, c) with ε > 0. These matrices satisfy that a + ε > 2

√
bc cos( π

n+1 ),
and so they are TP because of the previous case where the second inequality of (13) was
strict. Moreover, this set of matrices satisfies that limε→0 Tn(a + ε, b, c) = Tn(a, b, c), and
so Tn(a, b, c) is TP because the set of TP matrices is closed (let us recall that this fact
is a direct consequence of the continuity of the determinant as a function of the matrix
entries). �

If we consider parameters b and c with nonpositive sign, we can deduce an analogous
characterization forM-matrices of the form Tn(a, b, c).
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Corollary 3.2: Let A = Tn(a, b, c) be the tridiagonal Toeplitz matrix given by (12). Then A
is an M-matrix if and only if a ≥ 2

√
bc cos( π

n+1 ) and b, c ≤ 0.

Proof: SinceM-matrices are Z-matrices, the condition b, c ≤ 0 is mandatory. Let us recall
that a Z-matrix A is an M-matrix if and only if every real eigenvalue of A is nonnegative
(see characterization (C8) of Theorem (4.6) of [13, Ch. 6]). SinceA is a tridiagonal Toeplitz
matrixwe know (see p. 59 of [7]) that its eigenvalues are real, distinct and that they are given
by (14). Then we only need to check that the smallest eigenvalue, λn, is nonnegative:

λn = a + 2
√
bc cos

(
nπ

n + 1

)
= a − 2

√
bc cos

(
π

n + 1

)
≥ 0,

which is true if and only if a ≥ 2
√
bc cos( π

n+1 ). �

We now consider a third case of tridiagonal Toeplitz matrices Tn(a, b, c) where the
parameters satisfy a>0 and bc ≤ 0. This particular case, where the off-diagonal entries
have opposite sign, verifies that Tn(a, b, c) is a P-matrix without any further requirement.
Moreover, the following result proves that all tridiagonal matrices with positive diagonal
and with an analogous sign pattern are P-matrices.

Proposition 3.3: Let A = (aij)1≤i,j≤n be a tridiagonal matrix. If aii > 0 for i = 1, . . . , n and
ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n − 1, then A is a P-matrix.

Proof: Let us first prove by induction that the leading principal minors of A, θk :=
detA[1, . . . , k] for k = 1, . . . , n, are positive. It is straightforward to see that θ1 = a11 >

0 and that θ2 = a11a22 − a21a12 > 0. Let us suppose that θk−1, θk−2 > 0 for some k ∈
{3, . . . , n} and let us prove that θk > 0. Since A is a tridiagonal matrix, using the Laplace
expansion of a determinant we can write θk as

θk = akkθk−1 − ak,k−1ak−1,kθk−2, (15)

and so θk > 0 by the induction hypothesis. Now let us prove that all principal minors using
consecutive rows and columns are positive. These minors are of the form detA[α] with
α = (s, . . . , r), d(α) = 0 (see (1)) and 1 ≤ s < r ≤ n. Given an index 1 ≤ s ≤ n we con-
sider the principal submatrix As := A[s, . . . , n]. The matrix As is a tridiagonal matrix that
satisfies the hypotheses of this proposition. Hence, we can apply the previous case to As
and deduce that its leading principal minors are positive. These minors can be written as
detAs[1, . . . , p], with 1 ≤ p ≤ n − s + 1, and, since As is a submatrix of A, these minors
satisfy that detAs[1, . . . , p] = detA[s, . . . , p + s − 1] > 0. Then we have as a direct con-
sequence the positivity of all the principal minors using consecutive rows and columns.
Finally, it only remains to study the principal minors detA[α] such that d(α) > 0. Given
α ∈ Qk,n with d(α) > 0, let us consider the decomposition α = (β1, . . . ,βr), with |βi| ≥ 1
and d(βi) = 0 for i = 1, . . . , r, such that d(βj,βj+1) > 0 for all j = 1, . . . , r − 1. ThenA[α]
is a block diagonal matrix such that the determinant of its ith block A[βi] is a principal
minor of A using consecutive rows and columns, and hence, it is positive. So we conclude
that detA[α] = detA[β1] · · · detA[βr] > 0. �
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Observe that the previous result can be stated in the following way. A tridiagonal sign
skew-symmetric matrix with positive diagonal entries is a P-matrix. We now characterize
tridiagonal Toeplitz P-matrices.

Theorem 3.4: Let A = Tn(a, b, c) be the tridiagonal Toeplitz matrix given by (12). Then A
is a P-matrix if and only if one of the following two conditions holds:

(i) bc ≤ 0 and a>0.
(ii) bc ≥ 0 and a > 2

√
bc cos( π

n+1 ).

Proof: If (i) holds, then by Proposition 3.3 A is a P-matrix. Let us now suppose that con-
dition (ii) holds. If b, c ≥ 0, by Proposition 3.1, A is a nonsingular TP matrix, and hence,
a P-matrix because, by Theorem 11.3 of [12], nonsingular TP matrices are P-matrices.
If b, c ≤ 0, by Corollary 3.2, A is a nonsingular M-matrix and so a P-matrix because,
by characterization (A1) of Theorem (2.3) of [13, Ch. 6], nonsingular M-matrices are
P-matrices.

Assume now that A is a P-matrix. We have to see that if (i) does not hold, then (ii)
holds. Since by definition A[1, 1] = a > 0, it is sufficient to consider parameters b, c such
that bc ≥ 0. By Proposition 2.1, the real eigenvalues of all the principal submatrices of A
are positive. Given α ∈ Qh,n, A[α] = Th(a, b, c) whenever d(α) = 0. If d(α) > 0, then we
can consider the decomposition α = (β1, . . . ,βr), with |βi| ≥ 1 and with d(βi) = 0 for
i = 1, . . . , r, such that d(βj,βj+1) > 0 for all j = 1, . . . , r − 1. ThenA[α] is a block diagonal
matrix such that its ith block A[βi] is the tridiagonal Toeplitz matrix T|βi|(a, b, c). In either
case, the eigenvalues of A[α], α ∈ Qh,n, are included in the set λr,h := a + 2

√
bc cos( rπ

h+1 )

with 1 ≤ h ≤ n and with r = 1, . . . , h, where h represents the size of the h × h matrix
whose eigenvalues are given byλr,h (see p. 59 of [7]). Therefore,λr,h > 0 for all h = 1, . . . , n
and r = 1 . . . , h. In particular, minr,h λr,h = λn,n > 0, and hence, a > 2

√
bc cos( π

n+1 ) and
the result holds. �

Remark 3.5: FromProposition 3.1 and Theorem 3.4, we deduce that a tridiagonal Toeplitz
matrixTn(a, b, c) is a nonsingular TPmatrix if and only if a > 2

√
bc cos( π

n+1 ) and b, c ≥ 0.
Analogously, from Corollary 3.2 and Theorem 3.4, we deduce that a tridiagonal Toeplitz
matrix Tn(a, b, c) is a nonsingularM-matrix if and only if a > 2

√
bc cos( π

n+1 ) and b, c ≤ 0.
Then, by Theorem 3.4 a sign symmetric tridiagonal Toeplitz P-matrix is either a nonsin-
gular TPmatrix or a nonsingularM-matrix. Besides, taking into account that a tridiagonal
Toeplitz matrix is either sign symmetric or sign skew-symmetric, we can reformulate
Theorem 3.4 in the following way. A tridiagonal Toeplitz matrix A = Tn(a, b, c) is a
P-matrix if and only if a>0 and, if A is sign symmetric, then a > 2

√
bc cos( π

n+1 ).

In Theorem 3.4 (ii), the condition a > 2
√
bc cos( π

n+1 ) (or analogously, a2 >

4bc cos2( π
n+1 )) has been used to characterize tridiagonal Toeplitz P-matrices. If this con-

dition is satisfied independently of n, we obtain the new condition a2 > 4bc. In fact, this
inequality will play a key role in Section 5 since it is used in order to assure HRA for some
computations with the matrices Tn(a, b, c). In fact, the positive number a2 − 4bc will be
an additional natural parameter to assure the HRA. The case (i) of Theorem 3.4 will be
considered in a more general framework in the following section.
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4. Computing with HRA theminors of sign skew-symmetric tridiagonal
matrices with positive diagonal entries

Whenever a tridiagonal matrix A satisfies the hypotheses of Proposition 3.3 (sign skew-
symmetric with positive diagonal entries), it is possible to compute its bidiagonal decom-
position accurately. Moreover, the bidiagonal decomposition allows us to compute all its
minors and its inverse with HRA. The following result provides the BD(A) for such A.

Proposition 4.1: Let A = (aij)1≤i,j≤n be a tridiagonal matrix such that aii > 0 for
i = 1, . . . , n and ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n − 1. Then

BD(A) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1
a12
δ1

a21
δ1

δ2
. . .

. . . . . . . . .
. . . . . . an−1,n

δn−1an,n−1

δn−1
δn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16)

where δi are the diagonal pivots associated to the NE of A. The diagonal pivots satisfy the
following recurrence relation:

δ1 = a11, δi = aii − ai,i−1ai−1,i

δi−1
i = 2, . . . , n. (17)

If we know the entries of A with HRA, then we can computeBD(A) (16) to HRA, and hence,
the leading principal minors of A to HRA.

Proof: Clearly, for tridiagonal P-matrices, no row exchanges are needed in Neville elim-
ination and Gauss elimination, which coincide. Hence, by Proposition 3.3, δ1, . . . , δn are
also the pivots of the Gauss elimination of A and it is well known that they satisfy that

δk = θk

θk−1
, k = 1, . . . , n, (18)

with θ0 := 1 and θk := A[1, . . . , k] for k = 1, . . . , n. From (15) and (18), we deduce (17).
Since ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n − 1, the diagonal pivots can be computed by (17)
without performing any subtraction. As a consequence, all pivots δk are computed toHRA.
The leading principal minors can be obtained with HRA through the computation θk =
δ1 · · · δk, for k = 1, . . . , n. �

Proposition 4.1 allows us to prove that some computations can be performedwithHRA,
as the following result shows.

Theorem 4.2: Let A = (aij)1≤i,j≤n be a tridiagonal matrix such that aii > 0 for i = 1, . . . , n
and ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n − 1. Then all the minors and the inverse of A can be
computed to HRA.
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Proof: By Proposition 4.1, we can compute the leading principal minors of A to HRA.
Following the proof of Proposition 3.3, it can be deduced that all the principal minors of
A can be obtained without subtractions, and so, with HRA. Given α = (i1, . . . , ik),β =
(j1, . . . , jk) ∈ Qk,n, if |ir − jr| ≥ 2 for any r = 1, . . . , k then detA[i1, . . . , ik|j1, . . . , jk] = 0
and if |is − js| = 1 for an index s = 1, . . . , k, then A[α|β] = A[i1, . . . , is−1|j1, . . . , js−1]
ais,jsA[is+1, . . . , ik|js+1, . . . , jk]. Hence, any nonzero minor of a tridiagonal matrix can be
written as a product of off-diagonal entries and principal minors using consecutive rows
and columns. Then all the entries of A−1 can be computed to HRA as a consequence. For
example, by using formula (1.33) of [10], corresponding to the well-known expression of
the entries of the inverse in terms of determinants. �

An alternative HRA method to obtain A−1 is presented in the following remark.

Remark 4.3: Let A = (aij)1≤i,j≤n be a nonsingular tridiagonal matrix. Then, by (47) of
[32], we can give the following explicit expression of the entries of A−1 := (bij)1≤i,j≤n in
terms of principal minors of A using consecutive rows and columns. In fact,

bij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θi−1θ̂n−j

θn

j−1∏
l=i

−al,l+1, for i < j,

θi−1θ̂n−i

θn
, for i = j,

θj−1θ̂n−i

θn

i−1∏
l=j

−al+1,l, for i > j,

(19)

where θ̂k := detA[n − k + 1, . . . , n] for k = 1, . . . , n. If aii > 0 for i = 1, . . . , n and
ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n − 1, then A−1 can also be computed to HRA by (19).

5. Computations with sign symmetric tridiagonal Toeplitz P-matrices with
HRA

In this section, we guarantee the HRA for the bidiagonal decomposition, and so for
many other algebraic computations, in the case of sign symmetric tridiagonal Toeplitz
P-matrices with the additional parameter a2 − 4bc commented at the end of Section 3.
By Theorem 3.4 and Remark 3.5, the P-matrices corresponding to this case are either
nonsingularM-matrices or nonsingular TP matrices.

From now on, we assume that the parameters a, b, c are always positive:

a, b, c > 0.

Let us recall that the inverse of a nonsingular tridiagonalM-matrix is TP (see [33]). We are
going to obtain the bidiagonal decomposition of an M-matrix A = Tn(a,−b,−c). From
the BD(A) obtained in Theorem 5.1, in Theorem 5.5 we shall deduce BD(A−1). Besides,
by Remark 5.4, if we know BD(A) to HRA, then we can also perform many algebraic
computations with A to HRA.
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It is well known (see p. 99 of [12]) that the principal minors of a tridiagonal matrix
A = (aij)1≤i,j≤n satisfy:

detA = detA[1, . . . , i] detA[i + 1, . . . , n]

− ai,i+1ai+1,i detA[1, . . . , i − 1] detA[i + 2, . . . , n]. (20)

From (20), we deduce that the leading principal minors of a tridiagonal Toeplitz matrix A,
θj := detA[1, . . . , j] with j = 1, . . . , n, satisfy the following relation:

θn = θjθn−j − bcθj−1θn−j−1, with θ−1 = 0, θ0 = 1, j = 1, . . . , n. (21)

Theorem 5.1: Let A = Tn(a,−b,−c) be a nonsingular M-matrix given by (12). Then

BD(A) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1 − c
δ1

− b
δ1

δ2
. . .

. . . . . . . . .
. . . . . . − c

δn−1

− b
δn−1

δn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22)

where δi are the diagonal pivots associated to the NE of A and are given by:

δ1 = a, δi = a − bc
δi−1

with i = 2, . . . , n. (23)

Moreover, if we know a, b, c with HRA and a2 − 4bc is a positive number known with HRA,
then we can compute BD(A) (22) to HRA.

Proof: Since nonsingular M-matrices are P-matrices (see characterization (A1) of
Theorem 2.3 of [13, Ch. 6]), the principal minors of A are positive, and so, θi > 0 for
i = 1, . . . , n. Since A is a tridiagonal Toeplitz matrix, its leading principal minors satisfy

θi = aθi−1 − bcθi−2, with θ−1 = 0, θ0 = 1, i = 1, . . . , n (24)

by (15). Moreover, (23) is a consequence of (24) and (18). There is an explicit expression
for the leading principal minors of A (see p. 15 of [34]):

θi = (
√
bc)iUi

(
a

2
√
bc

)
, (25)

where Ui(x) is the ith Chebyshev polynomial of the second kind. We can evaluate Ui(x)
through (see Section 3 of [34]):

Ui(x) = ri+1
+ (x) − ri+1

− (x)
r+(x) − r−(x)

,

with r+(x) := x +
√
x2 − 1 and r−(x) := x −

√
x2 − 1. (26)
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Let us denote s+ := r+( a
2
√
bc

) and s− := r−( a
2
√
bc

). By (25) and (27), we canwrite the pivots
δi as:

δi = θi

θi−1
=

√
bc
si+1
+ − si+1

−
si+ − si−

=
√
bc s+

1 + s−
s+ + · · · + si−

si+

1 + s−
s+ + · · · + si−1

−
si−1
+

.

If we obtain s+ and s−
s+ with HRA, then we can compute δi for i = 1, . . . , n to HRA, and as

a direct consequence, BD(A) to HRA. We can compute s+ by

s+ = a
2
√
bc

+
√

a2

4bc
− 1 = a + √

a2 − 4bc
2
√
bc

,

and the quotient s−
s+ by

s−
s+

= s−s+
s2+

= 4bc
2a2 − 4bc + 2a

√
a2 − 4bc

= 4bc
a2 + (a2 − 4bc) + 2a

√
a2 − 4bc

.

Since a2 − 4bc is known with HRA by hypothesis,BD(A) can be obtained with HRA. �

Remark 5.2: The computational cost of obtaining BD(A) following Theorem 5.1 is of 6n
elementary operations, as can be checked from its proof.

Corollary 5.3: Let A := Tn(a,−b,−c) be a nonsingular M-matrix. If we know a, b, c and
a − 2max{b, c} with HRA and a − 2max{b, c} ≥ 0, then we can compute BD(A) (22) to
HRA.

Proof: Without loss of generality, let us suppose that b ≥ c. Thenwe can write the quantity
a2 − 4bc as

a2 − 4bc = (a − 2b)(a + 2c) + 2a(b − c). (27)

Taking into account that, by hypothesis, a−2b is known to HRA and that b−c is a subtrac-
tion of initial data, a2 − 4bc can also be computed to HRA. As a consequence, s+ and s−

s+
can be obtained with HRA. Finally, following the proof of Theorem 5.1 we can compute
BD(A) to HRA. �

The bidiagonal decomposition of a nonsingularM-matrix is unique by Remark 2.4. IfA
is a tridiagonalM-matrix, then BD(A) allows us to perform some algebraic computations
with A to HRA.

Remark 5.4: Let A be a tridiagonal Toeplitz M-matrix such that we know BD(A) to
HRA. In this case, we also know the bidiagonal decomposition to HRA of |A| = JnAJn,
where Jn = diag(1,−1, . . . , (−1)n−1). Since |A| is TP by Proposition 3.1, we can apply the
HRA algorithms for TP matrices to BD(|A|) = |BD(A)|. For instance, in Section 6, we
comment how to compute the singular values and eigenvalues of A to HRA.

The following result provides the bidiagonal decomposition of the inverse of a nonsin-
gular tridiagonal ToeplitzM-matrix.
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Theorem 5.5: Let A = Tn(a,−b,−c) be a nonsingularM-matrix. Then A−1 is a TPmatrix
and

BD(A−1) =

⎛⎜⎜⎜⎜⎜⎜⎝

1/δn c/δn−1 c/δn−2 · · · c/δ1
b/δn−1 1/δn−1 0 · · · 0

b/δn−2 0 1/δn−2
. . .

...
...

...
. . . . . . 0

b/δ1 0 . . . 0 1/δ1

⎞⎟⎟⎟⎟⎟⎟⎠ , (28)

where δi are the diagonal pivots associated to the NE of A for i = 1, . . . , n.

Proof: A−1 is TP because it is the inverse of a tridiagonal M-matrix (see Theorem 2.2 of
[33]). Let us define D := diag(δ1, . . . , δn). By Theorem 5.1, we can write A as

A = E2
(−b

δ1

)
· · · En

( −b
δn−1

)
DETn

( −c
δn−1

)
· · · ET2

(−c
δ1

)
,

and so

A−1 = ET2

(
c
δ1

)
· · · ETn

(
c

δn−1

)
D−1En

(
b

δn−1

)
· · · E2

(
b
δ1

)
. (29)

The factorization (29) is different from the bidiagonal decomposition (6). In order to obtain
BD(A−1) from (29), we first need to rewrite ETn ( c

δn−1
)D−1En( b

δn−1
) as the product of a

lower elementary bidiagonal matrix En(α), a diagonal matrix and an upper elementary
bidiagonal matrix ETn (β), with α,β ∈ R.

Let us start by computing the following product:

ETn

(
c

δn−1

)
D−1En

(
b

δn−1

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
δ1

. . .
1

δn−2
1

δn−1
+ bc

δ2n−1δn

c
δn−1δn

b
δn−1δn

1
δn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (30)

By (23) for i = 1, n, the (n − 1, n − 1) entry of (30) can be written as

1
δn−1

+ bc
δ2n−1δn

= 1
δn−1δn

(
δn + bc

δn−1

)
= 1

δn−1δn

(
a − bc

δn−1
+ bc

δn−1

)
= δ1

δn−1δn
.

The effect of thematrices En(α),ETn (β) overD is restricted to the submatrixD−1[n − 1, n].
Hence, using the notation (3), we can decompose the principal submatrix of (30) using the
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n−1, n rows as⎛⎜⎝
δ1

δn−1δn

c
δn−1δn

b
δn−1δn

1
δn

⎞⎟⎠ = En
(
b
δ1

) ⎛⎜⎝
δ1

δn−1δn
1
δn

− cb
δn−1δnδ1

⎞⎟⎠ETn

(
c
δ1

)
. (31)

Then by (31) we have that the required elementary matrices are En( b
δ1

) and ETn ( c
δ1

).
Moreover, using again (23) we can write the last entry of the diagonal matrix in (31) as

1
δn

− cb
δn−1δnδ1

= 1
δ1δn

(
δ1 − bc

δn−1

)
= δn

δ1δn
= 1

δ1
.

If we denote by D(2) := diag(δ−1
1 , . . . , δ−1

n−2,
δ1

δnδn−1
, δ−1

1 ), then, by (31), we have that

En
(
b
δ1

)
D(2)ETn

(
c
δ1

)
= ETn

(
c

δn−1

)
D−1En

(
b

δn−1

)
,

and so we have achieved our first goal. Let us now express A−1 as the following matrix
product:

A−1 = ET2

(
c
δ1

)
· · · ETn−1

(
c

δn−2

)
En

(
b
δ1

)
D(2)ETn

(
c
δ1

)
En−1

(
b

δn−2

)
· · · E2

(
b
δ1

)
.

(32)
Since the elementary bidiagonal matrices satisfy that Ej(αj)ETn (αn) = ETn (αn)Ej(αj) when-
ever j<n, we can reorder the matrices in (32) and deduce that

A−1 = En
(
b
δ1

)
ET2

(
c
δ1

)
· · · ETn−1

(
c

δn−2

)
D(2)En−1

(
b

δn−2

)
· · · E2

(
b
δ1

)
ETn

(
c
δ1

)
.

(33)
After rearranging thematrices we arrive at an analogous problem to (30). Hence, our aim is
now expressing ETn−1(

c
δn−2

)D(2)En−1(
b

δn−2
) as the product of a matrix En−1(α), a diagonal

matrix that will be denoted by D(3) and a matrix ETn−1(β). Then we could rearrange again
the elementary bidiagonal matrices as we did in (33). In general, after performing this
procedure k−1 times we would obtain the following factorization:

A−1 = En
(
b
δ1

)
· · · En−k+2

(
b

δk−1

)
ET2

(
c
δ1

)
· · · ETn−k+1

(
c

δn−k

)
D(k)

· En−k+1

(
b

δn−k

)
· · · E2

(
b
δ1

)
ETn−k+2

(
c

δk−1

)
· · · ETn

(
c
δ1

)
, (34)

where D(k) = diag(δ−1
1 , . . . , δ−1

n−k,
θk−1θn−k

θn
, δ−1

k−1, . . . , δ
−1
1 ).

When k = n, (34) coincides with the decomposition (28). Therefore, let us prove
that (34) holds by induction on k ∈ {2, . . . , n}. We have already checked the first step,
k = 2. So, let us assume that (34) holds for k ∈ {2, . . . , n − 1} and let us prove that it also
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holds for k+ 1. Let us first see that

ETn−k+1

(
c

δn−k

)
D(k)En−k+1

(
b

δn−k

)
= En−k+1

(
b
δk

)
D(k+1)ETn−k+1

(
c

δn−k

)
.

In general, the effect of the matrices En−k+1(α),ETn−k+1(β) is restricted to the submatrix
D(k)[n − k, n − k + 1]. Using the notation (3), we deduce that

ETn−k+1

(
c

δn−k

) ⎛⎜⎝
1

δn−k
θk−1θn−k

θn

⎞⎟⎠En−k+1

(
b

δn−k

)

=

⎛⎜⎜⎝
θn−k−1

θn−k
+ bcθk−1θ

2
n−k−1

θnθn−k

θk−1θn−k−1

θn
c

θk−1θn−k−1

θn
b

θk−1θn−k

θn

⎞⎟⎟⎠ . (35)

By (21) with j = k, the first diagonal entry of (36) can be written as

θn−k−1θn + bcθk−1θ
2
n−k−1

θnθn−k
= θ2n−k−1

θnθn−k

(
θn

θn−k+1
+ bcθk−1

)
= θ2n−k−1

θnθn−k

(
θk

θn−k

θn−k−1
− bcθk−1 + bcθk−1

)
= θkθn−k−1

θn
.

Applying Gauss elimination to the submatrix (35) we obtain, by (18), the following
multiplier

θk−1θn−k−1θn

θn−k−1θkθn
b = θk−1

θk
b = b

δk
.

Analogously, applying Gauss elimination to the transpose of that submatrix we obtain the
multiplier c

δk
. Hence, we can decompose (35) as

En−k+1

(
b
δk

) ⎛⎜⎝
θkθn−k−1

θn
θk−1θn−k

θn
− bc

θk−1θn−k−1

θnδk

⎞⎟⎠ETn−k+1

(
c
δk

)
. (36)

Using (21), we express the last entry of the diagonal matrix in (36) in terms of the diagonal
pivots

θk−1

θnδk

(
θn−k

θk

θk−1
− bcθn−k−1

)
= θn

θnδk
= 1

δk
.

Thenwe have deduced thatD(k+1) = diag(δ−1
1 , . . . , δ−1

n−k−1,
θkθn−k−1

θn
, δ−1

k , . . . , δ−1
1 ), and so

we can factorize A−1 as

A−1 = En
(
b
δ1

)
· · · En−k+2

(
b

δk−1

)
ET2

(
c
δ1

)
· · · ETn−k

(
c

δn−k−1

)
En−k+1

(
b
δk

)
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· D(k+1)ETn−k+1

(
c
δk

)
En−k

(
b

δn−k−1

)
· · · E2

(
b
δ1

)
ETn−k+2

(
c

δk−1

)
· · · ETn

(
c
δ1

)
.

(37)

Finally, reordering the elementary bidiagonal matrices of (37) we deduce (34) for k+ 1.
Therefore, (34) holds for k = 2, . . . , n, and, taking k = n in (34), we deduce that

A−1 = En
(
b
δ1

)
· · · E2

(
b

δn−1

)
D(n)ET2

(
c

δn−1

)
· · · ETn

(
c
δ1

)
with D(n) = diag(δ−1

n , . . . , δ−1
1 ), which is precisely BD(A−1). �

6. Numerical experiments

In [15,23], assuming that the parameterization BD(A) of an square TP matrix A is known
with HRA, Plamen Koev presented algorithms to solve some algebraic problems for A to
HRA. Let us focus on the computation of the eigenvalues and the singular values. Koev
implemented these algorithms in order to be used with Matlab and Octave in the software
library TNTool available in [24]. The corresponding functions are TNEigenValues and
TNSingularValues, respectively. The functions require as input argument the data
determining the bidiagonal decomposition (6) of A, BD(A) given by (10), to HRA.

Let

A = Tn(a,−b,−c), a, b, c > 0,

be a tridiagonal Toeplitzmatrix satisfying a2 ≥ 4bc cos2( π
n+1 ). Let us denote by Jn then × n

matrix diag(1,−1, . . . , (−1)n−1). Then, by Proposition 3.1, thematrix JnAJn = |A| is TP. In
addition, taking into account that J−1

n = Jn, the matrix A is similar to the TP matrix |A| =
JnAJn. Thus, A and |A| have the same eigenvalues and, since Jn is unitary, also the same
singular values. InAlgorithm1, the pseudocode for the computation ofBD(A) toHRAcan
be seen. Taking into account thatBD(|A|) = |BD(A)|, the eigenvalues and singular values
of A can be computed to HRA by using Koev’s algorithms and Algorithm 1 if a2 − 4bc is
known to HRA.

In order to illustrate the accuracy of TNEigenValues and TNSingularValues
with Algorithm 1, the sequence of matrices A5,A10, . . . ,A100, given by An = Tn(4,−1/4,
−15), has been considered. First, we have computed the eigenvalues and the singular values
of these matrices withMathematica using a precision of 100 digits.We have also computed
approximations to the eigenvalues of those matrices in Matlab with eig and also with
TNEigenValues using the absolute value of the bidiagonal decomposition provided by
Algorithm 1. Then we have computed the relative errors of the approximations obtained
considering the eigenvalues obtained with Mathematica as exact computations.

In Figure 1 (a), we can see the relative error for the minimal eigenvalue of each matrix
A5,A10, . . . ,A100 for both eig and TNEigenValues.

We have also computed approximations to the singular values of the matrices
A5, . . . ,A100 inMatlab with svd and also with TNSingularValues using the absolute
value of the bidiagonal decomposition provided by Algorithm 1. Then we have com-
puted the relative errors of the approximations obtained considering the singular values
obtained with Mathematica as exact computations. In Figure 1 (b), we can see the relative
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Algorithm 1 Computation of the bidiagonal decomposition of A to HRA.
Require: n, a > 0, b, c < 0 such thatm = a2 − 4bc > 0, andm known to HRA
Ensure: The n × n BD(A) of A = Tn(a,−b,−c) to HRA

s−
s+ = 4bc

a2+m+2a
√
m

s+ = a+√
m

2
√
bc

num = 1 + s−
s+

den = 1
for i = 0 : n do

δi = √
bc s+ num

den
den = num
num = nums−

s+ + 1
end for
(BD(A))ij = 0 for 1 ≤ i, j ≤ n
(BD(A))11 = δ1
(BD(A))12 = − c

δ1
for i=2:n-1 do

(BD(A))i,i−1 = − b
δi−1

(BD(A))ii = δi
(BD(A))i+1,i = − c

δi
end for
(BD(A))n,n−1 = − b

δn−1
(BD(A))nn = δn

error for the minimal singular value of each matrix A5,A10, . . . ,A100 for both svd and
TNSingularValues.
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performed with high relative accuracy (HRA) if it does not include subtractions (except 
of the initial data), that is, if it only includes products, divisions, sums of numbers of the 

same sign, and subtractions of the initial data (cf. [6]). So, in particular, a subtraction-
free algorithm can be carried out with HRA. Performing an algorithm with HRA is a 

very desirable goal because it implies that the relative errors of the computations are 

of the order of the machine precision even for ill-conditioned matrices. Up to know, 
only for a few classes of matrices HRA algorithms for their algebraic computations have 

been found. This paper contributes to this field providing adequate parametrizations and 

the corresponding HRA algorithms to compute with HRA the determinant of matrices 
belonging to several classes of matrices.

One of the classes of matrices considered in this paper is formed by Nekrasov matrices 
(see Section 3), which generalizes the class of strictly diagonally dominant matrices. On 

recent applications of Nekrasov matrices, see [8,15,17,22]. A second class of matrices 
considered is formed by B-matrices (see Section 2). In contrast to Nekrasov matrices, 
B-matrices can be very far from diagonal dominance (see the example given by (15)). 
However, they can also be applied to the localization of eigenvalues (see [18]). Finally, 
it is also considered the class of B-Nekrasov matrices (see Section 4), which contains 
B-matrices and Nekrasov Z-matrices with positive diagonal entries. Applications of B-
Nekrasov matrices to linear complementarity problems can be seen in [3,4,9–11,13].

Let us now recall some related classes of matrices. A matrix A = (aij)1≤i,j≤n is 
strictly diagonally dominant (diagonally dominant, respectively) if |aii| >

∑
j �=i |aij |

(|aii| ≥
∑

j �=i |aij |, respectively) for all i = 1, . . . , n. A real matrix A is a Z-matrix if 
all its off–diagonal entries are nonpositive. A Z-matrix A is a nonsingular M -matrix
if its inverse is nonnegative. Given a complex matrix A = (aij)1≤i,j≤n, its comparison 

matrix M(A) = (ãij)1≤i,j≤n satisfies that ãii := |aii| and ãij := −|aij | for all j �= i and 

i, j = 1, . . . , n. Finally, we say that a complex matrix is an H-matrix if its comparison 

matrix is a nonsingular M -matrix. A more general definition of H-matrix can be found 

in [2].
The paper is organized as follows. In Section 2, we provide a method of O(n3) ele-

mentary operations to compute with HRA the determinant of an n × n B-matrix from 

an adequate parametrization of the B-matrix. Section 3 uses the parametrization given 

in [16] to obtain a subtraction-free (and so with HRA) method of O(n3) elementary 

operations to compute the determinant of an n × n Nekrasov Z-matrix with positive 

diagonal entries. Let us recall that a method to construct the inverse of such a matrix 

was presented in [16]. Section 4 provides a method of O(n3) elementary operations to 

compute with HRA the determinant of an n × n B-Nekrasov matrix. Section 5 includes 
algorithms used in our methods and presents numerical examples that illustrate their 
great accuracy. Finally, Section 6 summarized the main conclusions of the paper and 

comments some related problems and their difficulties.
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2. Accurate determinants of B-matrices

Let us start by recalling the definition of a B-matrix [18].

Definition 2.1. A square real matrix A := (aij)1≤i,j≤n with positive row sums is a B-
matrix if all its off-diagonal elements are bounded above by the corresponding row means, 
i.e., for all i = 1, . . . , n,

n∑

j=1
aij > 0, 1

n

(
n∑

k=1
aik

)
> aij ∀j �= i. (1)

Let us now recall a useful decomposition of B-matrices. For this purpose, we first 
introduce the following notation. Given a real matrix B = (bij)1≤i,j≤n, let us define for 
each i = 1, . . . , n, r+

i := maxj �=i{0, bij}. Then B can be decomposed in the form

B = B+ + C, (2)

B+ =

⎛
⎜⎝

b11 − r+
1 . . . b1n − r+

1
...

...
bn1 − r+

n . . . bnn − r+
n

⎞
⎟⎠ , C =

⎛
⎜⎝

r+
1 . . . r+

1
...

...
r+
n . . . r+

n

⎞
⎟⎠ . (3)

Observe that, if B is a B-matrix, then B+ is a strictly diagonally dominant Z-matrix 
(cf. Prop 2.3 of [18]). Therefore, for each i = 1, . . . , n,

dii =
n∑

j=1
(bij − r+

i ) > 0. (4)

Let us recall that, given a diagonally dominant Z-matrix A = (aij)1≤i,j≤n, the n2 param-
eters given to assure that many algebraic computations can be performed with HRA are 
the off-diagonal entries of A and the n (nonnegative) row sums of A. These n2 parameters 
were called the DD-parameters in [16]

{
aij , i �= j,

si :=
∑n

j=1 aij , i = j.
(5)

The n2 parameters of a B-matrix B = (bij)1≤i,j≤n that will be used to compute its 
determinant with HRA will be again its off-diagonal entries (as with diagonally dominant 
Z-matrices and with Nekrasov Z-matrices, see [16]) and the n positive parameters given 
by (4). We call these n2 parameters of a B-matrix its B-parameters

{
bij , i �= j,
dii, i = j.

(6)
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Theorem 2.2. Let B = (bij)1≤i,j≤n be a B-matrix. Given its B-parameters (see (6)) we 
can compute detB with HRA.

Proof. As commented earlier, the decomposition (2) of the matrix B = B+ +C satisfies 
that A := B+ is a strictly diagonally dominant Z-matrix and that C = reT , where 
r := (r+

1 , . . . , r+
n )T and e := (1, . . . , 1)T .

Let us first check that the DD-parameters of the diagonally dominant Z-matrix A
can be computed with HRA. The n row sums of A coincide with the n B-parameters 
given by (4). Besides, the n2 − n remaining DD-parameters of A are bij − r+

i (i �=
j), which can be computed with HRA because they are subtractions of initial data, 
in fact of off-diagonal entries of B, which belong to the B-parameters given by (6). 
Since we can compute the DD-parameters of a diagonally dominant Z-matrix A with 
HRA and, by Proposition 2.4 of [16], we can use them to compute A−1 through a 
subtraction-free algorithm (and so with HRA), we conclude that we can compute A−1

with HRA. Since A is a strictly diagonally dominant Z-matrix with positive row sums, by 
the characterization of Theorem 2.3 of Chapter 6 of [1] it is a nonsingular M -matrix and 
so A−1 is a nonnegative matrix. Hence A−1r is a vector with all components nonnegative 
and so eTA−1r is nonnegative. Therefore 1 + eTA−1r �= 0 and we can apply the matrix 
determinant lemma (see formula (13) of [20]) to B = B+ + C = A + reT to derive

detB = det(A + reT ) = (1 + eTA−1r) detA. (7)

Since we can compute A−1 to HRA and e, A−1 and r are nonnegative, we can compute 
1 + eTA−1r with HRA. Since we know the DD-parameters of A with HRA and detA

can be computed from the DD-parameters of A with a subtraction-free algorithm, we 
conclude that we can compute detA with HRA. For instance, it can be obtained with 
the proof of Proposition 2.4 of [16] (alternative procedures using pivoting strategies can 
be found in [7] or in [19]). In fact, it is sufficient to compute the upper triangular matrix 
U in the proof of Proposition 2.4 of [16] and detA coincides with the product of the 
diagonal entries of U . In conclusion, we can compute detB by (7) with HRA. �
Remark 2.3. The computational cost of the algorithm suggested by the proof of Theo-
rem 2.2 to compute detB with HRA for an n × n B-matrix B has O(n3) elementary 
operations. In fact, calculating A = B+ requires n2 subtractions, the computation of 
detA and A−1 using the procedure of Proposition 2.4 of [16] requires O(n3) elementary 
operations and, finally, the computations of (7) require O(n2) elementary operations.

3. Accurate determinants of Nekrasov Z-matrices with positive diagonal entries

Let N := {1, . . . , n}. Given a complex matrix A = (aij)1≤i,j≤n with aii �= 0 for all 
i ∈ N , let us define
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h1(A) :=
∑

j �=1
|a1j |, hi(A) :=

i−1∑

j=1
|aij |

hj(A)
|ajj |

+
n∑

j=i+1
|aij |, i = 2, . . . , n. (8)

The matrix A is called a Nekrasov matrix if |aii| > hi(A) for all i ∈ N (see [21]). Nekrasov 
matrices are nonsingular H-matrices. In particular, a Nekrasov Z-matrix with positive 
diagonal entries is a nonsingular M -matrix.

The parametrization that we consider for an n ×n Nekrasov Z-matrix A = (aij)1≤i,j≤n

with positive diagonal is given by the following n2 parameters, which were called N-
parameters in [16]:

{
aij , i �= j,

Δj(A) := ajj − hj(A), j ∈ N.
(9)

Let us also recall that the diagonal matrix

S =

⎛
⎜⎜⎜⎜⎝

h1(A)
a11

h2(A)
a22

. . .
hn(A)
ann

⎞
⎟⎟⎟⎟⎠

(10)

holds that AS is diagonally dominant (see Lemma 2.2 of [16]).

Lemma 3.1 (Lemma 3.1 of [16]). Let A = (aij)1≤i,j≤n be a Nekrasov matrix, and let 
J = {i1, . . . , ik} ⊆ N (i1 < i2 < · · · < ik) be the ordered set of indices such that 
hij (A) = 0. Then at least n − j off–diagonal entries of the row ij are zero for all 
j = 1, . . . , k.

In the following result we denote by J := {i1, . . . , ik} ⊆ N (i1 < i2 < · · · < ik) the 
ordered set of indices such that hij (A) = 0. Given a set of indices α ⊆ N , A(α) := A[αc], 
where αc is the complement set of α.

Theorem 3.2. Let A = (aij)1≤i,j≤n be a Nekrasov Z-matrix with positive diagonal entries. 
If we know its n2 N-parameters (9), then we can compute its determinant to HRA using 
a subtraction–free algorithm of O(n3) elementary operations.

Proof. Let us start by computing h1(A), a11, . . . , hn(A), ann by (8) and (9) using the 
N -parameters of A. These computations require O(n2) elementary operations, but they 
do not require any subtraction. Then we build the ordered set I ⊆ N given by the 
increasing sequence of indices such that hi(A) �= 0. Let us first consider the case I �= N . 
By Lemma 3.1 we know that the off-diagonal entries of the row i1 /∈ I are zero. Using 
the cofactor expansion of the determinant we see that

detA = ai1i1 detA(i1). (11)
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If we apply again Lemma 3.1, we see that the row i2 /∈ I has n − 2 zeros. In fact, those 
are the off-diagonal entries of the row i2 − 1 of the matrix A(i1). Therefore,

detA = ai1i1ai2i2 detA(i1, i2) (12)

Following this argumentation with all the indices of J = N\I we deduce that

detA = detA[I]
n−|I|∏

k=1
aikik . (13)

Hence, computing detA[I] to HRA, gives detA also with HRA through (13).
Let S be the diagonal matrix given by (10) and let us define the submatrix B :=

(AS)[I]. Since B is a principal submatrix of AS it is a diagonally dominant matrix. 
Let us prove that we can compute its determinant with O(n3) elementary operations 
without performing any subtraction. The first step consists on obtaining an adequate 
parametrization of B with a subtraction-free algorithm. The required parameters are 
its DD-parameters (5), i.e., its off–diagonal entries, aij

hj(A)
ajj

, and its row sums. By the 
choice of I, formulae (8), (9) and the sign pattern of a Z-matrix the row sums can be 
written as:

si =
∑

j∈I,j �=i

aij
hj(A)
ajj

+ hi(A) =
i−1∑

j=1
aij

hj(A)
ajj

+ hi(A) +
n∑

j=i+1
aij

hj(A)
ajj

=
n∑

j=i+1
(−aij)(1 − hj(A)

ajj
) =

n∑

j=i+1
|aij |

ajj − hj(A)
ajj

=
n∑

j=i+1
|aij |

Δj(A)
ajj

.

Therefore, we can obtain the DD-parametrization of B from (9) by a subtraction-free 
procedure that requires O(n2) elementary operations. With these DD-parameters, we 
can obtain detB using a subtraction-free algorithm of O(|I|3) elementary operations. 
Then it only remains to compute accurately detA[I] = detB(detS[I])−1 and use (13)
to compute detA to HRA.

If I = N , the matrix B = AS is a diagonally dominant M -matrix and we can compute 
its off-diagonal entries and its row sums with HRA by Theorem 2.3 of [16]. In fact, 
we can obtain its DD-parametrization (5) by a subtraction-free procedure and O(n2)
elementary operations. Analogously to the previous case, we can use these parameters 
to compute detB with a subtraction-free algorithm and O(n3) elementary operations 
following the proof of Proposition 2.4 of [16]. Finally, we can use detB to obtain detA =
detB(detS)−1. �
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4. Accurate determinants of B-Nekrasov matrices

Given a real matrix B = (bij)1≤i,j≤n, let us consider the decomposition given by (2)
and (3). Then we say that B is a B-Nekrasov matrix if the matrix B+ given by (3) is a 
Nekrasov Z-matrix with positive diagonal entries.

Let us recall that the classes of matrices studied in the previous sections are also 
B-Nekrasov matrices. It is straightforward to see that Nekrasov Z-matrices admit the 
decomposition (2) with C = 0 and so Nekrasov Z-matrices with positive diagonal entries 
are B-Nekrasov matrices. On the other hand, given the decomposition (2) of a B-matrix, 
since B+ is a strictly diagonally dominant Z-matrix with positive diagonal entries, it 
is also a Nekrasov Z-matrix with positive diagonal entries. Hence, a B-matrix is also a 
B-Nekrasov matrix.

We have seen that it is possible to compute the determinants of these two classes of 
matrices to HRA whenever the adequate parametrization is known with HRA. In this 
section, our aim is to extend these results to the wider class of B-Nekrasov matrices. 
Hence, we first introduce the following parametrization for this class. We call these n2

parameters of a B-Nekrasov matrix its BN -parameters

{
bij , i �= j,

Δj(B+), j ∈ N.
(14)

Theorem 4.1. Let B = (bij)1≤i,j≤n be a B-Nekrasov matrix. Given its BN -parameters 
(see (14)) we can compute detB with HRA.

Proof. The decomposition (2) of the matrix B = B+ + C satisfies that A := B+ is 
a Nekrasov Z-matrix with positive diagonal entries and that C = reT , where r :=
(r+

1 , . . . , r+
n )T and e := (1, . . . , 1)T .

Let us first check that the N -parameters (9) of A can be computed with HRA. The N -
parameters Δi(A) are also BN -parameters of B and the n2 −n remaining N -parameters 
are the off-diagonal entries of A, bij −r+

i (i �= j). All the N -parameters of A are subtrac-
tions of the initial data provided by the BN -parameters (14) of B, and hence, they can 
be computed with HRA. Since we can compute the N -parameters of A with HRA, by 
Theorem 3.2 of [16] we can use these parameters to compute A−1 through a subtraction-
free algorithm (and so with HRA). Moreover, since Nekrasov matrices are nonsingular 
H-matrices (see [21]) and A is a Nekrasov Z-matrix with positive diagonal entries, we 
deduce that A is a nonsingular M -matrix and that A−1 is a nonnegative matrix. Hence, 
A−1r is a vector with all components nonnegative and eTA−1r is nonnegative. Therefore 
1 + eTA−1r �= 0 and we can apply the matrix determinant lemma (see formula (13) of 
[20]) to B = B+ + C = A + reT to derive (7). Since we can compute A−1 to HRA and 
e, A−1 and r are nonnegative, we can compute 1 + eTA−1r with HRA. By Theorem 3.2
we can also compute detA with a SF algorithm (and so, with HRA). In conclusion, we 
can compute detB by (7) with HRA. �
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In subsection 5.2 we introduce an implementation of the algorithm suggested by the 
proof of Theorem 4.1 to compute the determinant of a B-Nekrasov matrix to HRA.

Remark 4.2. The computational cost to compute detB with HRA for an n ×n B-Nekrasov 
matrix B following the proof of Theorem 4.1 is of O(n3) elementary operations. In fact, 
calculating A = B+ requires n2 subtractions and the computation of detA and A−1

following the proofs of Theorem 3.2 and Proposition 2.4 of [16] requires O(n3) elementary 
operations. Finally, the computation of (7) requires O(n2) elementary operations.

5. Algorithms and numerical experiments

In the previous sections we have seen that it is possible to compute the determinant 
of a B-matrix, a Nekrasov Z-matrix with positive diagonal entries or a B-Nekrasov 
matrix to HRA, whenever an adequate parametrization is known with HRA. In fact, 
we can build efficient algorithms to compute these determinants to HRA following the 
argumentation given by the proofs of Theorems 2.2, 3.2 and 4.1.

First, let us recall that, if we know the DD-parameters (5) of a diagonally dominant 
Z-matrix with positive diagonal entries with HRA, then we can compute its inverse also 
to HRA using a modified version of Gauss-Jordan elimination that is subtraction-free 
(see Proposition 2.4 of [16]). Moreover, with this method we can obtain the determinant 
of this matrix to HRA. In Algorithm 1, we introduce an implementation of Gauss-
Jordan elimination without pivoting that computes the inverse and the determinant of 
a diagonally dominant Z-matrix to HRA from its DD-parameters.

Algorithm 1 Adapted G-J elimination.
Require: The DD-parameters: A = (aij)(i �= j) , s = (si)n

i=1
Ensure: det A and A−1 = P to HRA

P = In

for k = 1 : n − 1 do
akk = sk −∑n

j=k+1 akj

for i = k + 1 : n do
p = aik/akk

si = si − p ∗ sk

aik = 0
for j = k + 1 : n do

If i �= j then aij = aij − p ∗ akj

end for
P (i, :) = P (i, :) − p ∗ P (k, :)

end for
end for
ann = sn

det A = ∏n
i=1 aii

for k = n : −1 : 2 do
for i = k − 1 : −1 : 1 do

p = aik/akk

P (i, :) = P (i, :) − p ∗ P (k, :)
end for

end for
for i = 1 : n do

P (i, :) = P (i, :)/aii

end for
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Table 1
Relative error of det B30.

ε = 10−3 ε = 10−6 ε = 10−9

κ∞(Bn) 58001 5.8 ∗ 107 5.8 ∗ 1010

HRA 8.33401 ∗ 10−16 1.07732 ∗ 10−15 1.20346 ∗ 10−15

MATLAB 3.22764 ∗ 10−12 2.9085 ∗ 10−9 2.40044 ∗ 10−6

5.1. B-matrices

In Algorithm 2 we have implemented a method to compute the determinant of a 
B-matrix to HRA following the argumentation given by the proof of Theorem 2.2. This al-
gorithm takes the B-parameters (6) as input. It starts by computing the DD-parameters 
of the matrix B+ given by the decomposition (2), then computes (B+)−1 and detB+

using the adapted version of Gauss-Jordan elimination given by Algorithm 1 and finally 
it calculates the determinant through formula (7).

Algorithm 2 Computation of the determinant of a B-matrix to HRA.
Require: The B-parameters (6): B = (bij)(i �= j) , d = (dii)n

i=1
Ensure: det B to HRA

for i = 1 : n do
ri = maxi�=j{bij , 0}
for j = 1 : i − 1 do

aij = bij − ri

end for
for j = i + 1 : n do

aij = bij − ri

end for
end for
Build the vector r = (ri)1≤i≤n

[det A, A−1]=G-J(A, d) � Algorithm 1
det B = (1 + eT A−1r) det A

In order to test Algorithm 2 we have defined the family of B-matrices Bn =
(bij)1≤i,j≤n with

bij =
{

1, i �= j,
1 + ε, i = j.

(15)

Observe that the B-parameters (6) of B are provided by 1, corresponding to the off-
diagonal entries of Bn, and ε.

We have implemented Algorithm 2 in Matlab to compute detB30 for different values 
of ε. We have also computed these determinants with the usual Matlab function det and 
in Mathematica using exact arithmetic. In Table 1, we compare the relative error of our 
approximations with those obtained using det.
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5.2. B-Nekrasov matrices

In this subsection we introduce Algorithm 5 to compute the determinant of a B-
Nekrasov matrix from its BN -parameters (14). Let us consider the decomposition of a 
B-Nekrasov matrix B = B+ + C given by (2). Algorithm 5 starts by computing the 
parametrization of B+ using the function BNtoDD given by Algorithm 3. Then this 
function identifies the indices i ∈ N such that hi(B) �= 0 and computes the parametriza-
tion of the diagonally dominant Z-matrix B+[I]S as well as the vector r (see the proofs 
of Theorems 3.2 and 4.1). Then Gauss-Jordan elimination is applied to this submatrix 

Algorithm 3 BNtoDD.
Require: The BN-parameters (14): B = (bij)(i �= j) , Δj(B+)
Ensure: Parametrization of A := B+, S, I, r

for i = 1 : n do
ri = maxi�=j{bij , 0}
for j = 1 : i − 1 do

aij = bij − ri

end for
for j = i + 1 : n do

aij = bij − ri

end for
end for
Build the vector r = (ri)1≤i≤n

for i = 1 : n do
hi = − ∑i−1

j=1 aijkj −∑n
j=i+1 aij

aii = Δi + hi

ki = hi/aii

end for
Build I, the set of indices such that hi(A) �= 0.
if |I| > 1 then

for i = I do
aii = − ∑n

j=i+1 aijΔj/ajj

for j = I\{i} do
aij = aijkj

end for
end for
Build S, the |I| × |I| diagonal matrix whose diagonal entries are kj , j ∈ I.

else if |I| = 1 then
aII = 1/aII

else
ann = 1/ann

I = [n]
end if

in order to compute its inverse and determinant. After multiplying this inverse by an 
appropriate scaling matrix, Algorithm 4 is used to compute the inverse and determinant 
of the whole matrix. If we consider only the case I = N , then Algorithm 4 would not be 
necessary. Finally, the determinant is computed through (7).

Remark 5.1. We have omitted an implementation specific for Z-Nekrasov matrices with 
positive diagonal entries because Algorithm 5 can be used to compute the determinant of 
this class of matrices whenever its N -parameters (9) are known to HRA. In that case, 
the decomposition B = B+ + C given by (2) would be trivial since C = 0 and B = B+. 
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Algorithm 4 buildnekinv.
Require: A, I � A[I] contains A[I]−1

Ensure: A−1, t
Build the set of ordered indices J := Ic = {j1, . . . , jk} such that j1 > j2 > . . . > jk.
t = 1
for i = J do

t = t ∗ aii

aii = 1/aii

A[I|i] = −A[I](A[I|i]. ∗ aii) � .∗ means component–wise multiplication
I = I ∪ {i} (ordered)

end for

Algorithm 5 Computation of the determinant of a BN -matrix to HRA.
Require: The BN-parameters (14): B = (bij)(i �= j) , Δj(B+)
Ensure: det B to HRA

[A, S, I, r] = BNtoDD((bij)(i �= j), Δj(B+)) � Algorithm 3
if |I| > 1 then

[det(A[I]), (A[I])−1] = G-J(A[I]) � Algorithm 1
d = det(A[I])/(det S)
A[I] = S ∗ (A[I])−1

else if |I| = 1 then
d = 1/aII

end if
[A−1, t] = buildnekinv(A, I) � Algorithm 4
det A = d ∗ t
det B = (1 + eT A−1r) det A

Moreover, the BN -parameters of a Z-Nekrasov matrix are its N -parameters. This fact 
implies that r = 0 and that the last line of Algorithm 5 would be redundant for these 
matrices.

The next example provides a family of B-Nekrasov matrices. Given a parameter M >

5, let us consider the matrices Cn = (cij)1≤i,j≤n with

c11 = 2M − 4, cii = M + 2 + 1
M for 2 ≤ i ≤ n − 1, c1j = 4 for 2 ≤ j ≤ n,

cnn = M + 1 + 1
M , ci,i+1 = M − 1 for 1 ≤ i ≤ n − 1, cij = M elsewhere,

Cn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2M − 4 M − 1 M M · · · M
4 M + 2 + 1

M M − 1 M · · · M

4 M M + 2 + 1
M M − 1 . . . ...

...
... . . . . . . . . . M

...
... . . . M M + 2 + 1

M M − 1
4 M · · · M M M + 1 + 1

M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The BN -parameters (14) of Cn are given by

⎧
⎨
⎩

cij , i �= j,
M − 5, i = j = 1,

1
M , 2 ≤ i ≤ n.

(16)
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Table 2
Relative error of det C30.

M = 103 M = 106 M = 109 M = 1012

κ∞(Cn) 51522.9 5.15776 ∗ 107 5.15776 ∗ 1010 5.15776 ∗ 1013

HRA 1.01742 ∗ 10−15 3.63682 ∗ 10−15 2.96607 ∗ 10−15 3.70256 ∗ 10−15

MATLAB 2.77755 ∗ 10−13 3.21688 ∗ 10−10 1.69452 ∗ 10−7 0.000261219

Table 3
Relative error of det C200.

M = 103 M = 106 M = 109 M = 1012

κ∞(Cn) 397553 3.97959 ∗ 108 3.9796 ∗ 1011 3.9796 ∗ 1014

HRA 4.08576 ∗ 10−15 5.80975 ∗ 10−14 5.94435 ∗ 10−14 3.31511 ∗ 10−14

MATLAB 8.77075 ∗ 10−13 7.72472 ∗ 10−10 1.44196 ∗ 10−6 0.00638139

We have computed detC30 from its BN -parameters using the HRA Algorithm 5 for 
different values of M . In Table 2 we compare our results with the determinants obtained 
using the Matlab function det. The relative error has been computed considering the 
determinant obtained with Mathematica using exact arithmetic.

In Table 3 we also show the results obtained computing detC200 from the BN -
parameters with the HRA Algorithm 5 and we compare the results with the determinants 
computed with the Matlab function det.

6. Conclusions and some related open problems

HRA algorithms to compute the determinants of B-matrices, Nekrasov Z-matrices 
with positive diagonal entries and B-Nekrasov matrices, from adequate parametriza-
tions, are provided. These algorithms have a computational cost of O(n3) elementary 
operations for n × n matrices. In contrast to the high relative accuracy of our algo-
rithms, our numerical experiments show that the usual Matlab function det can be very 
inaccurate for some ill-conditioned examples of these matrices.

We now comment some open problems related with the results and techniques included 
in this manuscript. First, we comment in the next two paragraphs two possible ways of 
extending the computations of determinants with HRA to other classes of matrices. 
Finally, we comment the problem of extending, in a natural way, our techniques for 
computing the determinants with HRA to the problem of computing inverses with HRA.

As it was pointed out in Remark 2.5 of [16], the version of Gauss-Jordan elimination 
given by Algorithm 1 can be adapted to produce the determinant and the inverse of a 
nonsingular M -matrix A with HRA whenever the following parameters are known to 
HRA: the n2 − n off-diagonal entries of A, the n entries of a vector z > 0 such that 
s := Az > 0 and the n entries of the vector s. For diagonally dominant M -matrices and 
Nekrasov Z-matrices with positive diagonal entries, it has been possible to find a repre-
sentation of n2 parameters that can be used to achieve HRA for these computations. The 
problem of finding suitable parametrizations for HRA of other subclasses of nonsingular 
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M -matrices remains open. For example, for the class of QN -matrices (quasi-Nekrasov 
matrices) introduced in [12], it is known a possible vector z such that Az > 0 under 
some additional hypothesis for the matrix entries, as it is shown in Theorem 2.2 of [5]. 
For a general QN-matrix, how to achieve the accurate computation of the determinant 
remains as an open problem.

Let us now consider the class of matrices such that the matrix B+ from the decompo-
sition B = B+ +C given by (2) and (3) is a nonsingular M -matrix. These matrices were 
introduced in [14] and they were called MB-matrices. Let us suppose that B+ belongs 
to a subclass of nonsingular M -matrices with a known vector z > 0 such that Az > 0. 
If we know the n2 − n off-diagonal entries of B, the n entries of the vector z > 0 such 
that s := B+z > 0 and the n entries of s, then we can compute the determinant of B to 
HRA. We can compute the off-diagonal entries of B+ with subtractions of initial data. 
Using an adapted version of Gauss-Jordan elimination (as commented in the previous 
paragraph), we can compute both the inverse and the determinant of B+ to HRA. Since 
B+ is a nonsingular M -matrix, its inverse is nonnegative and therefore we can obtain 
detB with HRA using (7). Hence, it could be possible looking for parametrizations for 
other subclasses of MB-matrices to compute their determinants to HRA.

Finally, another open problem would be finding a method to compute the inverses of 
B-matrices and B-Nekrasov matrices to HRA. Based on the decomposition B = B+ +C

given by (2) and (3), a natural choice would be using the Sherman-Morrison formula to 
compute the inverse,

(A + uvT )−1 = A−1 − A−1uvtA−1

1 + vtA−1u
,

instead of the matrix determinant formula (7) that we have used to compute the de-
terminants with HRA. However, this method implies subtractions and we cannot assure 
the computation of the inverse to HRA. So it seems that new approaches are convenient 
for this problem.
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Abstract
It is proved that any BR

π -matrix has positive determinant. For π > 0, norm bounds for the
inverses of BR

π -matrices and error bounds for linear complementarity problems associated
with BR

π -matrices are provided. In this last case, the bounds are simpler than previous bounds
and also have the advantage that they can be used without previously knowing whether we
have a BR

π -matrix. Some numerical examples show that these newbounds can be considerably
sharper than previous ones.
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1 Introduction

This paper provides error bounds for linear complementarity problems (LCPs) associatedwith
BR

π -matrices as well as norms for the inverses of these matrices. The LCP (see Sect. 4) has
many important applications, for instance, to problems in linear and quadratic programming,
network equilibrium problems, or to the Nash equilibrium of a bimatrix game (see Berman
and Plemmons 1994; Chen and Xiang 2006; Cottle et al. 1992; Schäffer 2004). A principal
minor is the determinant of a submatrix involving the same rows and columns, and P-matrices
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are squarematriceswith all their principalminors positive. Let us recall a remarkable property
of P-matrices: the solution to a LCP exists and is unique if and only if its associated matrix
is a P-matrix (Cottle et al. 1992).

Error bounds for LCPs associated with several subclasses of P-matrices are presented
in Chen and Xiang (2006), Chen et al. (2015), Dai et al. (2016, 2019a, 2019b), Gao and
Li (2017), García-Esnaola and Peña (2009, 2012, 2014, 2019), Li et al. (2020) and Wang
(2017). In particular, error bounds for LCPs associated with BR

π -matrices with π > 0 were
presented in Gao et al. (2019) and García-Esnaola and Peña (2017). The class of BR

π -matrices
was introduced by Neumann et al. (2013), generalizing the class of B-matrices (see Gao and
Li 2017; García-Esnaola and Peña 2009; Mendes and Mendes-Gonçalves 2019; Peña 2001).
If we do not know whether a given matrix is a BR

π -matrix with a fixed π > 0, then we cannot
apply the bounds of Gao et al. (2019) and García-Esnaola and Peña (2017). In this paper, we
shall provide alternative bounds for any matrix with positive row sums that is a BR

π -matrix
with π ≥ 0. Moreover, we shall characterize BR

π -matrices with π ≥ 0 and provide π > 0. In
contrast to Gao et al. (2019) and García-Esnaola and Peña (2017), our new bound does not
depend on an additional parameter ε, so that its application is simpler. In addition, we show in
Sect. 4 with some test matrices used in Gao et al. (2019) and García-Esnaola and Peña (2017)
that our new bound considerably improves those of Gao et al. (2019) and García-Esnaola
and Peña (2017).

In Sect. 2, we first introduce BR
π -matrices and clarify a result of Neumann et al. (2013),

where it was claimed that any BR
π -matrix is a P-matrix but the proof assumed that π ≥ 0.We

show in Example 1 that there exist BR
π -matrices that are not P-matriceswhenπ has a negative

component. However, Theorem 2 proves that any BR
π -matrix has positive determinant. We

also present in Sect. 2 a characterization to determine whether a given matrix is a BR
π -matrix

with π ≥ 0. This characterization also provides a positive vector π . Section 3 is devoted to
bound the infinity norm of the inverse of BR

π -matrices. Results of Sect. 3 are used in Sect. 4
to derive the new error bounds of LCPs associated with BR

π -matrices with π > 0. Numerical
examples are included at the end of Sect. 4.

Finally, let us recall some matrix definitions. We say that a matrix A is nonnegative
(respectively, positive) if all its entries are nonnegative (respectively, positive) and we write
A ≥ 0 (respectively, A > 0). The same notation applies to vectors considering them as
column matrices. A matrix M = (mi j )1≤i, j≤n is a strictly diagonally dominant matrix
if |mii | >

∑
j �=i |mi j |, for each i = 1, . . . , n. A Z-matrix is a square real matrix with

nonpositive off-diagonal entries. A nonsingular M-matrix is a Z -matrix with nonnegative
inverse. Nonsingular M-matrices form an important subclass of P-matrices and some fields
where these matrices arise are dynamic systems, economics or the discretization of partial
differential equations.

2 Some basic results on BR�-matrices

Let us start by recalling the definition of a BR
π -matrix given in Neumann et al. (2013).

Definition 1 Let π = (π1, . . . , πn)
T be a vector such that

0 <

n∑

j=1

π j ≤ 1. (1)

123
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Let M = (mi j )1≤i, j≤n be a real matrix with positive row sums and let R = (R1, . . . , Rn)
T

be the vector formed by the row sums of M . Then we say that M is a BR
π -matrix if for all

i = 1, . . . , n,
π j Ri > mi j , ∀ j �= i . (2)

When π j = 1/n for all j , the previous definition coincides with that of a B-matrix (see
Peña 2001). The close relationship of P-matrices with the LCP was recalled in Introduction.
In fact, in Theorem 3.4 of Neumann et al. (2013) it was proved that a BR

π -matrix is also a
P-matrix whenever the vector π is nonnegative. However, the condition on the sign of π is
omitted as a hypothesis in the statement of that theorem. Precisely, as was commented in
page 251 of Orera and Peña (2019), the nonnegativity of the vector π is sufficient to ensure
that a BR

π -matrix is also a P-matrix. So, we state the result that was proved in fact in Theorem
3.4 of Neumann et al. (2013).

Theorem 1 If A is a BR
π -matrix with π ≥ 0, then A is a P-matrix.

With the following example we show that the condition π ≥ 0 can not be omitted to
assure that a BR

π -matrix is a P-matrix.

Example 1 Let us consider the vector π = (1.1,−2.9, 2.1)T. Then the matrix

A :=
⎛

⎝
2 −3 2

−1 1 1
0.1 −1 1

⎞

⎠

is a BR
π -matrix. However, A is not a P-matrix since the principal minor using the first and

second rows and columns is −1.

Let us also mention that, to derive bounds for LCPs associated with BR
π -matrices, the con-

dition π > 0 was used in Gao et al. (2019) and García-Esnaola and Peña (2017) as well as
in the bounds that we shall present later. In contrast to the loss of the property of being a
P-matrix seen in Example 1, we can see that det A > 0 holds for any BR

π -matrix A for any
vector π .

Theorem 2 Let M = (mi j )1≤i, j≤n be a real matrix with positive row sums. If M is a BR
π -

matrix, then det M > 0.

Proof By (1) there exists k ∈ {1, . . . , n} such that πk > 0. Let us choose ε > 0 such that
πk − ε > 0 andmik − (πk − ε)Ri < 0 for i �= k. Then we can define a new parameter vector
π̂ = (π̂1, . . . , π̂n)

T with

π̂i =
{

πi , i �= k,
πk − ε, i = k,

and use it to decompose M as

M = B+ + C, B+ := (mi j − π̂ j Ri )1≤i, j≤n, C := Rπ̂T. (3)

Then B+ is a Z -matrix with row sums R̄ = (R̄1, . . . , R̄n)
T. Observe that, by (1) and the

definition of π̂ ,
∑n

j=1 π̂ j < 1. Hence, for i = 1, . . . , n, the row sum R̄i is given by

R̄i =
n∑

j=1

(mi j − π̂ j Ri ) = Ri

⎛

⎝1 −
n∑

j=1

π̂ j

⎞

⎠ > 0. (4)

123
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Since B+ is a Z -matrix with positive diagonal entries, the positivity of its row sums implies
that it is also strictly diagonally dominant. Hence, B+ is a nonsingular M-matrix and so
det(B+) > 0. By the decomposition (3) and the relationship between R and R̄ given by (4),
we have that

det M = det(B+ + C) = det(B+ + Rπ̂T) = det(B+)(1 + π̂T(B+)−1R)

= det(B+)

⎛

⎜
⎝1 + π̂T(B+)−1

⎛

⎝1 −
n∑

j=1

π̂ j

⎞

⎠

−1

R̄

⎞

⎟
⎠ .

Given e = (1, . . . , 1)T, observe that B+e = R̄, and so

det M = det(B+)

⎛

⎜
⎝1 + π̂T(B+)−1

⎛

⎝1 −
n∑

j=1

π̂ j

⎞

⎠

−1

B+e

⎞

⎟
⎠ .

Therefore, we deduce that

det M = det(B+)

⎛

⎜
⎝1 + π̂T

⎛

⎝1 −
n∑

j=1

π̂ j

⎞

⎠

−1

e

⎞

⎟
⎠ = det(B+)

⎛

⎜
⎝1 +

n∑

j=1

π̂ j

⎛

⎝1 −
n∑

j=1

π̂ j

⎞

⎠

−1
⎞

⎟
⎠

= det(B+)

⎛

⎝1 −
n∑

j=1

π̂ j

⎞

⎠

−1

,

and, since det(B+) > 0, we conclude that det M > 0. ��
By Proposition 3.5 of Neumann et al. (2013), the class of matrices satisfying Definition 1

is closed under positive linear combinations. Then, by Theorem 2, it has positive determinant.
Finally, Theorem 1 gives a sufficient condition to assure that the positive combination is a
P-matrix. This information is gathered in the following corollary.

Corollary 1 Let A = (ai j )1≤i, j≤n and B = (bi j )1≤i, j≤n be a BR
π -matrix and a BR

ψ -matrix,
respectively. Let s and t be nonnegative numbers with s + t > 0. Then

(i) det(s A + t B) > 0.
(ii) If π,ψ > 0, then s A + tB is a P-matrix.

We now present a characterization that allows us to determine whether a given matrix is
a BR

π -matrix with π ≥ 0 and so, in the affirmative case, that it is in particular a P-matrix.
Moreover, the characterization gives a suitable positive vector π satisfying (1) and so we can
apply the bounds that will be presented later. This characterization will allow us to obtain
bounds for BR

π -matrices whenever the vector π is unknown. A characterization of a BR
π -

matrix for any π was obtained in Observation 3.2 of Neumann et al. (2013), but we are going
to adapt it by imposing the additional condition π ≥ 0.

Proposition 1 Let A be a square matrix with positive row sums and let R = (R1, . . . , Rn)
T

be the vector formed from the row sums of A. Then there exists a nonnegative vector π

satisfying (1) such as A is a BR
π -matrix if and only if

n∑

j=1

max
i �= j

(
ai j
Ri

, 0

)

< 1. (5)
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Proof Let us first suppose that A is a BR
π -matrix for a given nonnegative vector π satisfying

(1). By (1) there exists k ∈ {1, . . . , n} such thatπk > 0. Thenwe have thatmaxi �=k

(
aik
Ri

, 0
)

<

πk and, since maxi �= j

(
ai j
Ri

, 0
)

≤ π j for all j �= k, we also have that

n∑

j=1

max
i �= j

(
ai j
Ri

, 0

)

<

n∑

j=1

π j ≤ 1. (6)

Conversely, let us now suppose that (5) holds. If we define

k := 1 −
n∑

j=1

max
i �= j

(
ai j
Ri

, 0

)

, (7)

then we have that the vector π = (π1, . . . , πn) with

π j := max
i �= j

(
ai j
Ri

, 0

)

+ k

n
for j = 1, . . . , n (8)

is positive and satisfies (1). Hence, A is a BR
π -matrix. ��

Remark 1 Let us observe that the choice of π in (8) agrees with the natural parameter vector
π = ( 1n , . . . , 1

n )T of an n × n B-matrix in some extremal examples of B-matrices (see
Neumann et al. 2013). A first example of these B-matrices is provided by any positive
diagonal matrix. In this case, (7) gives k = 1 and so (8) gives π j = 1

n for all j = 1, . . . , n.
The other extremal example of a B-matrix is provided by a matrix of the form

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 + ε 1 . . . 1

1 1 + ε
. . .

...
...

. . .
. . . 1

1 . . . 1 1 + ε

⎞

⎟
⎟
⎟
⎟
⎠

,

where ε > 0. In this case,
ai j
Ri

= 1
n+ε

for any i �= j , and so (7) gives k = 1 − n
n+ε

= ε
n+ε

and (8) gives π j = 1
n+ε

+ ε
n(n+ε)

= 1
n for all j = 1, . . . , n.

Remark 2 Observe that in the proof of Proposition 1, we prove that, if the matrix A satisfies
(5), then the vector π given by (8) is positive.

3 Norm bounds for the inverses of BR�-matrices

Given a BR
π -matrix M = (mi j )1≤i, j≤n , in García-Esnaola and Peña (2017) a decomposition

of M depending on a parameter ε was obtained and applied to derive error bounds of LCPs
when the involved matrix is a BR

π -matrix with π j > 0 for all j . In the following result, we
provide another decomposition of a BR

π -matrix with π j > 0 for all j , which will not depend
on any parameter and which will be very useful in this paper.

Proposition 2 Let M = (mi j )1≤i, j≤n be a BR
π -matrix with π j > 0 for all j and for each

i = 1, . . . , n let γi := max j �=i {0, mi j
π j

}. Then we can write M = B+ + C, where B+ :=
(mi j −π jγi )1≤i, j≤n is a strictly diagonally dominant Z-matrix with positive diagonal entries
and C is the rank one matrix given by C := (γ1, . . . , γn)

T(π1, . . . , πn).
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Proof We only have to prove that the Z -matrix B+ has positive row sums. As usual, let us
denote by R = (R1, . . . , Rn) the vector of row sums of M , which are positive because M is
a BR

π -matrix. For each i = 1, . . . , n, from (1) we deduce that the sum of the i th row of B+
is Ri − γi (

∑n
j=1 π j ) ≥ Ri − γi . Then, by definition of γi , we conclude that it is bounded

below by either Ri (and so, it is positive) or by Ri − mi j
π j

for some j ∈ {1, . . . , n} (which is
also positive by (2)). ��

The following result gives an upper bound for ‖M−1‖∞.

Theorem 3 Let M = (mi j )1≤i, j≤n be a BR
π -matrix with π j > 0 for all j and let R j , γ j be

given as in Definition 1 and Proposition 2, respectively. Then

‖M−1‖∞ ≤
max1≤i≤n

{
1
πi

− 1
}

min1≤i≤n

{
Ri − γi

∑n
j=1 π j

} . (9)

Proof By Proposition 2 and Theorem (2.3) of Chapter 6 of Berman and Plemmons (1994),
B+ is a nonsingular M-matrix. So, we can write (B+)−1 =: (b̄i j )1≤i, j≤n with b̄i j ≥ 0 for
all i, j . Then we can express M = B+(I + (B+)−1C) and so

‖M−1‖∞ ≤ ‖(I + (B+)−1C)−1‖∞‖(B+)−1‖∞. (10)

Let us now provide an upper bound for ‖(B+)−1‖∞. By Proposition 2, B+ is a strictly
diagonally dominant matrix with positive diagonal entries and so it has positive row sums:

Ri − γi

n∑

j=1

π j > 0, i = 1, . . . , n.

By Theorem 1 of Varah (1975), we deduce that

‖(B+)−1‖∞ ≤ 1

min1≤i≤n

{
Ri − γi

∑n
j=1 π j

} . (11)

Now we bound the other factor of (10). Observe that

I + (B+)−1C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + a1π1 a1π2 . . . a1πn

a2π1 1 + a2π2 . . . a2πn
...

...
...

...
...

...
...

...

anπ1 anπ2 . . . 1 + anπn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (12)

where ai := ∑n
j=1 b̄i jγ j ≥ 0 for i = 1, . . . , n. Then (12) can be written as

I + (B+)−1C = I + AP, (13)

where A := (a1, . . . , an)TeT(≥ 0), P := diag(π1, π2, . . . , πn) and e := (1, . . . , 1)T. By
our hypothesis on π , P is nonsingular and so I + AP = P−1(I + PA)P. Denoting by
C̄ := PA, we have

(I + AP)−1 = P−1(I + C̄)−1P. (14)
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Observe that C̄ = āeT, where āi := πi ai ≥ 0, for each i = 2, . . . , n and ā := (ā1, . . . , ān)T.
So, since eTā = ∑n

i=1 āi ≥ 0, we can derive from the Sherman–Morrison formula (see
formula (2.1.5) of page 65 of Golub and Van Loan 2013)

(I + C̄)−1 = (I + āeT)−1 = I − āeT

1 + eTā
. (15)

Hence, by (14), we get that

(I + AP)−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − ā1
1+∑n

i=1 āi
π2
π1

( −ā1
1+∑n

i=1 āi
) . . . πn

π1
( −ā1
1+∑n

i=1 āi
)

π1
π2

( −ā2
1+∑n

i=1 āi
) 1 − ā2

1+∑n
i=1 āi

. . . πn
π2

( −ā2
1+∑n

i=1 āi
)

...
...

...
...

...
...

...
...

π1
πn

( −ān
1+∑n

i=1 āi
) π2

πn
( −ān
1+∑n

i=1 āi
) . . . 1 − ān

1+∑n
i=1 āi

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

Then since āi ≥ 0 for all i = 1, . . . , n, we conclude that ‖(I + AP)−1‖∞ is given by

‖(I + AP)−1‖∞ = 1 − āi
1 + ∑n

j=1 ā j
+

∑

j �=i

π j

πi

āi
1 + ∑n

j=1 ā j
(17)

for some i = 1, . . . , n. Since
∑n

j=1 π j ≤ 1 and āi ≥ 0 for all i , formula (17) can be bounded
above by

āi
1 + ∑n

j=1 ā j

⎛

⎝
∑

j �=i

π j

πi
− 1

⎞

⎠ + 1 ≤ 1 − πi

πi
− 1 + 1 = 1 − πi

πi

and so,

‖(I + AP)−1‖∞ ≤ max
i

{
1

πi
− 1

}

. (18)

Now the result follows from (10), (11), (13) and (18). ��
Proposition 1, Remark 2 and Theorem 3 allow us to deduce the following corollary.

Corollary 2 Let M be a square matrix with positive row sums R = (R1, . . . , Rn)
T satisfying

(5), let π = (π1, . . . , πn) be the positive vector given by (8) and let γ j be given as in
Proposition 2 for j = 1, . . . , n. Then M is a BR

π -matrix and formula (9) holds.

In the proof of Theorem 3, we have bounded the second factor of (10) using Varah’s bound
for strictly diagonally dominant matrices of Theorem 1 of Varah (1975). If we use a sharper
bound, thenwe obtain sharper bounds for the norm of the inverse of a BR

π -matrix. To illustrate
this fact, we are going to use the bound introduced inKolotilina (2014) for Nekrasovmatrices,
which in particular improves Varah’s bound for SDD matrices (as proven in Theorem 2.4 of
Kolotilina 2014):

∥
∥A−1

∥
∥∞ ≤ max

i∈N
zi (A)

|aii | − hi (A)
, (19)

where zi (A) and hi (A) are defined recursively for i = 1, . . . , n by

z1(A) := 1, zi (A) :=
i−1∑

j=1

|ai j | z j (A)

|a j j | + 1, i = 2, . . . , n.
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Table 1 Examples of BR
π -matrices with their parameter vector π

Matrix π Source

A1(8) (19/50, 19/50, 6/25) García-Esnaola and Peña (2017)

M1(21/25) (7/24, 7/24, 1/4, 1/6) Gao et al. (2019)

M2(8/9) (3/8, 3/8, 1/4) Gao et al. (2019)

M3(1/2) (9/24, 7/24, 1/6, 1/6) Gao et al. (2019)

h1(A) :=
∑

j �=1

|a1 j |, hi (A) :=
i−1∑

j=1

|ai j |h j (A)

|a j j | +
n∑

j=i+1

|ai j |, i = 2, . . . , n.

In particular, if we apply bound (19) to the second factor of (10) we deduce the following
result:

Theorem 4 Let M = (mi j )1≤i, j≤n be a BR
π -matrix with π j > 0 for all j and let R j , γ j be

given as in Definition 1 and Proposition 2, respectively. Then

‖M−1‖∞ ≤ max
1≤i≤n

{
1

πi
− 1

}

max
1≤i≤n

zi (B+)

mii − γiπi − hi (B+)
, (20)

where B+ is given in Proposition 2, hi (B+) = ∑i−1
j=1

γiπ j−mi j
m j j−γ jπ j

h j (B+) + ∑n
j=i+1(γiπ j −

mi j ) and zi (B+) = ∑i−1
j=1

γiπ j−mi j
m j j−γ jπ j

z j (B+) + 1.

The next result follows from Proposition 1, Remark 2 and Theorem 4.

Corollary 3 Let M be a square matrix with positive row sums R = (R1, . . . , Rn)
T satisfying

(5), let π = (π1, . . . , πn) be the positive vector given by (8) and let γ j be given as in
Proposition 2 for j = 1, . . . , n. Then M is a BR

π -matrix and formula (20) holds.

We now present some numerical examples to illustrate our new results. Our test matrices
were introduced in previous articles that studied error bounds for LCPs of BR

π -matrices.
The matrix A1(m) corresponds to Example 1 from García-Esnaola and Peña (2017). M1(k),
M2(h) and M3(m) are examples from Gao et al. (2019):

A1(m) =
⎛

⎝
10m −10m 1

−10m + 1 10m 0
2 3 3

⎞

⎠ , M1(k) =

⎛

⎜
⎜
⎝

4k k 0 −k
k 6k 0 0
0 k 4k −k
k 0 −k 7k

⎞

⎟
⎟
⎠ ,

M2(h) =
⎛

⎝
3h h −h
3h 10h 3h
−h h 3h

⎞

⎠ , M3(m) =

⎛

⎜
⎜
⎝

3m m 0 0
0.5m 4m 0 −0.5m
0.5m m 3m −0.5m
0.5m m −0.5m 3m

⎞

⎟
⎟
⎠ .

We have computed bounds for the infinity norm of the inverse using Theorems 3 and 4 and
Corollaries 2 and 3. The previous theorems need a given vector π , so we are going to use the
parameter vectors given in the original articles. In Table 1, we gather these parameters and
we present our results in Table 2.

We can see that Theorem4 only improves Theorem3 for thematrix A1 and that Corollary 2
(and Corollary 3) considerably improve Theorems 3 and 4.
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Table 2 Bounds to ||A−1||∞ Matrix A1(8) M1(21/25) M2(8/9) M3(1/2)

||A−1||∞ 2.0000 0.40668 0.8839 1.0333

Theorem 3 30.083 10.4167 10.1250 17.500

Theorem 4 27.226 10.4167 10.1250 17.500

Corollary 2 7 4.4025 4.1720 7.0200

Corollary 3 7 4.4025 4.1720 7.0200

4 Error bounds for LCPs involving BR�-matrices

Let us recall that the linear complementarity problem (LCP) looks for a vector x ∈ Rn such
that

x ≥ 0, Mx + q ≥ 0, xT(Mx + q) = 0, (21)

where M is the n × n associated real matrix and q ∈ Rn . Some important applications of
this problem have been mentioned in the Introduction.

By Theorem 2.3 of Chen and Xiang (2006), if M is a P-matrix, then the solution x∗ of
the LCP (21) satisfies

‖x − x∗‖∞ ≤ maxd∈[0,1]n‖M−1
D ‖∞‖r(x)‖∞, (22)

where
MD := I − D + DM, (23)

I is the n × n identity matrix, D is the diagonal matrix diag(di ) with 0 ≤ di ≤ 1, for all i =
1, . . . , n and r(x) := min(x, Mx + q), where the min operator denotes the componentwise
minimum of two vectors.

In García-Esnaola and Peña (2017), another decomposition of a BR
π -matrix involving a

parameter ε was obtained and applied to derive bounds for the error of the LCP when the
associated matrix is a BR

π -matrix with π j > 0 for all j . It was also used in Gao et al. (2019).
Let us now recall it to compare it with our new decomposition.

Given a BR
π -matrix M = (mi j )1≤i, j≤n , by (1), there exists j ∈ {1, . . . , n} such that

π j > 0. By (2), there exists an ε > 0 such that

π j − ε > 0 and mi j − (π j − ε)Ri < 0, ∀ i �= j . (24)

Then we can write
M = B+(ε) + C(ε), (25)

where

B+(ε) =

⎛

⎜
⎜
⎜
⎜
⎝

m11 − π1R1 . . . m1 j − (π j − ε)R1 . . . m1n − πn R1
...

...
...

...
...

...

mn1 − π1Rn . . . mnj − (π j − ε)Rn . . . mnn − πn Rn

⎞

⎟
⎟
⎟
⎟
⎠

(26)
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and

C(ε) =

⎛

⎜
⎜
⎜
⎜
⎝

π1R1 . . . π j−1R1 (π j − ε)R1 π j+1R1 . . . πn R1
...

...
...

...
...

...
...

...
...

...

π1Rn . . . π j−1Rn (π j − ε)Rn π j+1Rn . . . πn Rn

⎞

⎟
⎟
⎟
⎟
⎠

. (27)

To bound the error of the corresponding LCP, we have to provide an upper bound for
‖M−1

D ‖∞, where MD is given by (23) and M is a BR
π -matrix for a vector π = (π1, . . . , πn)

with πi > 0 for all i = 1, . . . , n. Let B+(ε) and C(ε) be the matrices given by (26) and (27)
and let

CD := DC(ε), B+
D := I − D + DB+(ε). (28)

By Proposition 2 of García-Esnaola and Peña (2017), B+
D(ε) is a strictly diagonally dominant

Z -matrixwith positive diagonal entries and so it has positive row sums. For each i = 1, . . . , n,
let us denote byβi > 0 the sumof the entries of the i th rowof B+

D(ε) and letβ(ε) := mini {βi }.
The following result shows the mentioned upper bound for maxd∈[0,1]n‖M−1

D ‖∞ given in
Theorem 1 of García-Esnaola and Peña (2017). It uses the parameter ε.

Theorem 5 Let M be a BR
π -matrix for a vector π = (π1, . . . , πn) with πi > 0 for all

i = 1, . . . , n and let MD,CD, and B+
D be given by (23), (28) and B+(ε) =: (bi j )1≤i, j≤n .

Then

maxd∈[0,1]n‖M−1
D ‖∞ ≤

maxi
{

1
πi

− 1
}

min{β(ε), 1} , (29)

where β(ε) := mini {βi } and βi := bii − ∑
j �=i |bi j |, i = 1, . . . , n.

In this section,wepresent a newbound for the error of theLCPassociatedwith a BR
π -matrix

for a vector π = (π1, . . . , πn) with πi > 0 for all i = 1, . . . , n using the decomposition of
Proposition 2. In contrast to the previous bound, it will not depend on a parameter.

Given M , a BR
π -matrix for a vector π = (π1, . . . , πn) with πi > 0 for all i = 1, . . . , n,

we can define again MD = (m̄i j )1≤i, j≤n by (23) for any diagonal matrix D = diag(di ) with
0 ≤ di ≤ 1 for all i = 1, . . . , n . If B+ and C are the matrices given by the decomposition
of M given in Proposition 2, then we can define the corresponding matrices B+

D ,CD by

CD := DC, B+
D := I − D + DB+, B+ = (bi j )1≤i, j≤n . (30)

The following result gives an upper bound for ‖M−1
D ‖∞.

Theorem 6 Suppose that M = (mi j )1≤i, j≤n is a BR
π -matrix for a vector π with πi > 0 for

all i = 1, . . . , n and let MD = (m̄i j )1≤i, j≤n,CD and B+
D be the matrices given by (23) and

(30). Then B+
D is a strictly diagonally dominant Z-matrix with positive diagonal entries and

maxd∈[0,1]n‖M−1
D ‖∞ ≤

max1≤i≤n

{
1
πi

− 1
}

min1≤i≤n

{
1, Ri − γi

∑n
j=1 π j

} , (31)

where, for each i = 1, . . . , n, Ri and γi are given by Definition 1 and Proposition 2,
respectively.
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Proof It is easy to check that MD is a BR̄
π -matrix where R̄ = (R̄1, . . . , R̄n)

T and that
R̄i = (1− di ) + di Ri for each i = 1, . . . , n. We can observe that the decomposition (10) of
MD is given by the matrices B+

D and CD of (30). Then

maxd∈[0,1]n‖M−1
D ‖∞ ≤ maxd∈[0,1]n‖(I +(B+

D)−1CD)−1‖∞maxd∈[0,1]n‖(B+
D)−1‖∞. (32)

Following the argumentation given in the proof of Theorem 3, we can give the same bound
for the first factor of (32). So, we have that

maxd∈[0,1]n‖(I + (B+
D)−1CD)−1‖∞ ≤ max

1≤i≤n

{
1

πi
− 1

}

. (33)

The matrix B+
D is a strictly diagonally dominant Z -matrix with positive diagonal entries,

and so, taking into account (30), we can write

αD
i = (1 − di ) + dibii −

n∑

j �=i

di |bi j | = 1 − di + di

n∑

j=1

(mi j − γiπ j ) > 0.

By Theorem 1 of Varah (1975), we deduce that

‖(B+
D)−1‖∞ ≤ 1

min1≤i≤n αD
i

= 1

min1≤i≤n{1 − di + di
∑n

j=1(mi j − γiπ j )} . (34)

Let us consider an index k ∈ N such that αD
k = mini {αD

i }. Then

αD
k = 1 − dk + dk

n∑

j=1

(mkj − γkπ j ) = 1 − dk + dk

⎛

⎝Rk −
n∑

j=1

γkπ j

⎞

⎠ .

If Rk − ∑n
j=1 γkπ j ≥ 1, then αD

k ≥ 1 for any dk ∈ [0, 1], and so, ‖(B+
D)−1‖∞ ≤ 1.

Otherwise, we have that αD
k ≤ Rk − ∑n

j=1 γkπ j for any dk ∈ [0, 1]. Taking into account
these cases, we can bound (34) as follows:

‖(B+
D)−1‖∞ ≤ 1

min1≤i≤n

{
1, Ri − γi

∑n
j=1 π j

} . (35)

So we conclude that (31) holds since it is the product of the bound (35) for ‖(B+
D)−1‖∞

and the bound (33) for ‖(I + (B+
D)−1CD)−1‖∞. ��

We can deduce the next result from Proposition 1, Remark 2 and Theorem 6.

Corollary 4 Let M be a square matrix with positive row sums R = (R1, . . . , Rn)
T satisfying

(5), let π = (π1, . . . , πn) be the positive vector given by (8) and let γ j be given as in
Proposition 2 for j = 1, . . . , n. Then M is a BR

π -matrix and formula (31) holds.

Finally, we are going to present some numerical examples to compare our new results
with previous ones. The test matrices are those used in the previous section. In this case,
we have computed bounds for the error of the LCP using Theorem 6 (that used the given
vector π in Table 1) and Corollary 4. We show the results obtained following this approach
in the third and fourth rows of Table 3. We compare the results with those obtained using
the bounds introduced in García-Esnaola and Peña (2017) and Gao et al. (2019), which are
included in the first two rows of Table 3. We borrowed the data from the original articles
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Table 3 Bounds for the LCP

Matrix A1(8) M1(21/25) M2(8/9) M3(1/2)

LCP García-Esnaola and Peña (2017) 26.389 10 6 10

LCP Gao et al. (2019) 20.192 9.9125 6.6667 9

Theorem 6 30.083 10.4167 10.1250 17.500

Corollary 4 7 5.5882 4.1720 7.0200

whenever possible, and we computed the corresponding bound when it was not available.
These bounds also use the parameter vector π given by Table 1.

Table 3 shows that the bounds obtained with Theorem 6 using a given vector π are not
necessarily sharper. However, we can see that the new bounds given by Corollary 4 are
sharper in all cases. Moreover, another advantage of this approach is that it can be applied to
any matrix with positive row sums to first identify if it is a BR

π -matrix. If so, it computes a
compatible vector π and then we can apply our new bounds without further modifications.
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Chapter 4

Totally positive matrices

This chapter shows the thematic unit of the articles on totally positive matrices [16–20] and
the article about tridiagonal Toeplitz P-matrices [21]:

[17] Article 1: J. Delgado, H. Orera and J. M. Peña. Accurate computations with Laguerre
matrices. Numer. Linear Algebra Appl. 26 (2019), e2217, 10 pp.

[16] Article 2: J. Delgado, H. Orera and J. M. Peña. Accurate algorithms for Bessel matri-
ces. J. Sci. Comput. 80 (2019), 1264-1278.

[18] Article 6: J. Delgado, H. Orera and J. M. Peña. Accurate bidiagonal decomposition
and computations with generalized Pascal matrices. J. Comput. Appl. Math. 391
(2021), Paper No. 113443, 10 pp.

[20] Article 7 : J. Delgado, H. Orera and J. M. Peña. High relative accuracy with matrices
of q-integers. Numer. Linear Algebra Appl. 28 (2021), Paper No. e2383, 20 pp.

[19] Article 8: J. Delgado, H. Orera and J. M. Peña. Optimal properties of tensor product
of B-bases. Appl. Math. Lett. 121 (2021), Paper No. 107473, 5 pp.

[21] Article 9: J. Delgado, H. Orera and J. M. Peña. Characterizations and accurate compu-
tations for tridiagonal Toeplitz matrices, Linear and Multilinear Algebra (2021), Pub-
lished online, DOI: 10.1080/03081087.2021.1884180.

Totally positive (TP) matrices are matrices whose minors are all nonnegative. Even
though this definition might sound too restrictive, they appear in plenty of applications and
its strong structure translates into many useful properties [3, 36, 89]. For example, TP ma-
trices appear in Approximation Theory, Combinatorics, Graph Theory and Computer Aided
Geometric Design (CAGD) . One of the nice properties that justifies their role in CAGD and
approximation theory is their shape preserving properties. In fact, TP matrices present varia-
tion diminishing properties, i.e., linear transformations given by TP matrices do not increase
the number of sign changes of their input vector (see Chapter 3 of [89] or Chapter 4 of [36]
for formal definitions on variation diminishing properties).
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This chapter is organized as follows. Section 4.1 recalls the basic results and tools used
to assure HRA with TP matrices. In particular, it presents the bidiagonal decomposition
and the functions that can be used to achieve accurate computation if this representation
is known accurately. Then it is divided in subsections that introduce our new results for
different classes of matrices. First, we introduce collocation matrices of generalized Laguerre
polynomials [17], of Bessel polynomials and of reverse Bessel polynomials [16]. We have
characterized when these matrices are TP and shown that their bidiagonal decomposition can
be computed to HRA, and, hence, that it is possible to compute their eigenvalues, singular
values, inverses as well as the solution to some linear systems of equations with HRA. Then
we have considered some extensions of the Pascal matrix appearing in Combinatorics [18].
We have deduced the bidiagonal decomposition of these classes of matrices and, depending
on the sign of the multipliers of this representation, we have characterized whether they are
TP or not. And, in the case that they are TP, we have also studied when the bidiagonal
decomposition can be computed accurately and used as a parametrization to assure HRA.
Our last examples of TP matrices come from q-calculus [54]. We included a section devoted
to the introduction of some q-analogues such as the q-Pascal matrix, matrices of q-Stirling
numbers and an extension of generalized Laguerre polynomials [20]. We have shown that
these matrices are TP and how to compute their bidiagonal decomposition to HRA. In Section
4.2, we introduce optimal properties on the minimal singular value, eigenvalue and condition
number of tensor products of B-bases [19] compared to the tensor product of other NTP
bases of their generated space of functions (see Section 3.3). Finally, Section 4.3 presents
our results about tridiagonal Toeplitz matrices. We have characterized the cases when these
matrices are TP, M-matrices or general P-matrices. We also show how to perform accurate
computations in some cases. In particular, that it is possible to compute the determinants and
inverse accurately of skew-symmetric sign tridiagonal P-matrices as well as the bidiagonal
decomposition of nonsingular tridiagonal Toeplitz TP matrices and nonsingular tridiagonal
Toeplitz M-matrices. In this particular case, both cases are closely related. The bidiagonal
decomposition allows us to achieve accurate computations with both classes of matrices.
Moreover, the inverses of nonsingular tridiagonal Toeplitz M-matrices are TP matrices, and
we have also obtained the bidiagonal decomposition of these TP inverses.

4.1 Accurate computations with TP matrices
In Section 3.3 we have introduced the class of TP matrices and we provided a short survey on
some of the properties that are used to achieve accurate computations. The work on accurate
computations presented in [16–18, 20] takes as a basis the representation of a nonsingular TP
matrix given by its bidiagonal decomposition. Let us recall that any nonsingular TP matrix
can be expressed in terms of the unique bidiagonal decomposition given by the following
theorem.

Theorem 4.1. (cf. Theorem 4.2 of [47]). Let A be a nonsingular n× n TP matrix. Then A
admits a decomposition of the form

A = Fn−1 · · ·F1DG1 · · ·Gn−1, (4.1)
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where Fi and Gi, i ∈ {1, . . . ,n−1}, are the lower and upper triangular nonnegative bidiago-
nal matrices given by

Fi =


1
0 1

. . . . . .
0 1

mi+1,1 1
. . . . . .

mn,n−i 1

 , GT
i =


1
0 1

. . . . . .
0 1

m̃i+1,1 1
. . . . . .

m̃n,n−i 1

 , (4.2)

and D a diagonal matrix diag(p11, . . . , pnn) with positive diagonal entries. If, in addition, the
entries mi j, m̃i j satisfy

mi j = 0⇒ mh j = 0 ∀h > i

and
m̃i j = 0⇒ mik = 0 ∀k > j,

then the decomposition (4.1) is unique.

The bidiagonal decomposition given by (4.1) and (4.2) is defined by n2 parameters and
can be represented by the following abbreviated notation introduced in [60]:

(BD(A))i j =


mi j, if i > j,
m̃ ji, if i < j,
pii, if i = j.

(4.3)

As we mentioned in Section 3.3, the parameters mi j, m̃ ji and pii from the bidiagonal
decomposition (4.3) are the multipliers and pivots associated to an elimination procedure
called Neville elimination (3.11). For 1 ≤ j < i ≤ n, mi j and pii are the multipliers and the
diagonal pivots when applying Neville elimination to A and m̃i j are the multipliers when
applying Neville elimination to AT .

For nonsingular totally positive matrices, the bidiagonal decomposition can be used as
a parametrization to achieve accurate computations. In [59, 60], Plamen Koev devised al-
gorithms to solve many algebraic problems with nonsingular TP matrices to high relative
accuracy using the bidiagonal decomposition as input. He implemented these algorithms and
they are available in the library TNTool to be used in Matlab and Octave. The library can be
downloaded from Koev’s personal webpage [58], and it also includes subsequent contribu-
tions of more authors. Some of the functions from the library that have been key to achieving
high relative accuracy in our work are the following:

• TNEigenvalues: Computes the eigenvalues of A to HRA from BD(A).

• TNSingularValues Computes the singular values of A to HRA from BD(A).

• TNInverseExpand Computes the explicit inverse A−1 to HRA from BD(A). This
function was contributed by Ana Marco and José Javier Martínez [77].

• TNSolve Computes the solution to the linear system of equations Ax = b and assures
the HRA whenever b has an alternating sign pattern. It takes as input BD(A) and b.
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• TNProduct Computes BD(AB), the bidiagonal decomposition of the product of two
nonsingular TP matrices A and B, from BD(A) and BD(B) to HRA.

• TNVandBD Computes the bidiagonal decomposition of the Vandermonde matrix on the
points t1 < .. . < tn to HRA. It requires the nodes as input.

Thanks to these algorithms, we can achieve accurate computations with nonsingular TP
matrices if we know their bidiagonal decomposition accurately. Therefore, apparently it
seems that we have all the ingredients necessary to achieve HRA for a nonsingular TP ma-
trix. Let us remember that obtaining the bidiagonal decomposition through NE implies sub-
tractions, and hence, we cannot assure HRA for it. Moreover, many TP matrices are ill-
conditioned in the traditional sense. Therefore, we need to find a different method to obtain
the bidiagonal decomposition accurately in order to take advantage of the high relative accu-
racy of the functions provided by the library TNTool.

One method for deriving the bidiagonal decomposition accurately could be using (3.14) if
we know the explicit expression of the minors of the nonsingular TP matrix with HRA. This
idea has been sometimes used for obtaining the bidiagonal decomposition of TP matrices.

4.1.1 Accurate computations with Laguerre matrices
Our first new class of nonsingular TP matrices comes from collocation matrices (3.20) of
generalized Laguerre polynomials. Let us recall that, for α > −1, the generalized Laguerre
polynomials are given by

L(α)
n (t) =

n

∑
k=0

(−1)k
(

n+α

n− k

)
tk

k!
, n = 0,1,2, . . . . (4.4)

They are orthogonal polynomials on [0,∞) with respect to the weight function xαe−x. Let
us observe that α = 0 corresponds to the classical Laguerre polynomials. These polynomials
appear in many applications, like in the use of Gaussian quadrature rules to numerically com-
pute integrals. Moreover, these polynomials and their extension have important applications
in Quantum Mechanics (see [62]).

Given a real number x and a positive integer k, let us denote the corresponding falling
factorial by

xk) := x(x−1)(x−2) · · ·(x− k+1). (4.5)

Let us also denote x0) := 1. Let M :=
(

L(α)
j−1(ti−1)

)
1≤i, j≤n+1

be the collocation matrix of the

generalized Laguerre polynomials at (0 >)t0 > t1 > .. . > tn, let PU be the (n+ 1)× (n+ 1)
upper triangular Pascal matrix with

( j−1
i−1

)
as its (i, j)-entry for j ≥ i and let Sα and J be the

(n+1)× (n+1) diagonal matrices:

Sα := diag
(
(α + i)i)

)
0≤i≤n

, J := diag
(
(−1)i)

0≤i≤n . (4.6)

The following result assures that, given the parameters (0 >)t0 > t1 > .. . > tn, many
algebraic computations with these collocation matrices M can be performed with HRA. It also
shows that these matrices are STP and it gives a particular factorization for these matrices.
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Theorem 4.2. (Theorem 2 of [17]) Let M :=
(

L(α)
j−1(ti−1)

)
1≤i, j≤n+1

for (0>)t0 > t1 > .. . > tn

with α > −1, let PU be the (n+ 1)× (n+ 1) upper triangular Pascal matrix, let Sα and J
be the (n+1)× (n+1) diagonal matrices given by (4.6) and let V := (t j−1

i−1 )1≤i, j≤n+1. Then
M = V JS−1

α PU S−1
0 Sα is an STP matrix and, given the parametrization ti (0 ≤ i ≤ n), the

following computations can be performed with HRA: all the eigenvalues, all the singular
values and the inverse of M, as well as the solution of the linear systems Mx = b, where
b = (b0, . . . ,bn)

T has alternating signs.

In particular, Theorem 4.2 includes the collocation matrices of classical Laguerre poly-
nomials when α = 0. One of the main ideas used in the proof of the previous Theorem will
be used in other of our results on accurate computations with collocation matrices. For a
collocation matrix of the generalized Laguerre polynomials M, we have seen that M = BC,
with B =V J being a Vandermonde matrix and C = S−1

α PU S−1
0 Sα (see proof of Theorem 2 in

[17]). In fact, for computing the bidiagonal decomposition of M to HRA we first compute
accurately both BD(B) and BD(C), and then we compute the bidiagonal decomposition
of their product using the function TNProduct from the library TNTool (corresponding to
Algorithm 5.1 in [60]). Since B is a Vandermonde matrix, BD(B) is known and it can be
computed accurately (in fact, this can be done with the function TNVandBD available in
TNTool). We can derive BD(C) using the fact that the bidiagonal decomposition of the up-
per triangular Pascal matrix is known. From the decomposition C = S−1

α PU S−1
0 Sα , we first

factorize PU using its bidiagonal decomposition (as the product of upper bidiagonal matrices
with nonzero off-diagonal entries equal to one) and we “move” the diagonal matrices so we
end up rewriting C as a product of upper bidiagonal matrices and a diagonal matrix satisfying
the hypotheses of Theorem 4.1.

Then, from BD(B) and BD(C) we can compute BD(M) accurately with TNProduct.
In fact, this reasoning could be applied to other polynomial basis. If we want to compute
the bidiagonal decomposition of its collocation matrices to high relative accuracy (so we
can obtain accurate results using the functions from TNTool), we need to find the accurate
bidiagonal decomposition of the matrix of change of basis between the polynomial basis
object of study and the monomials.

For the matrix of change of basis C appearing in Theorem 4.2, we have that its bidiagonal
decomposition is given by

(BD(C))i j =


0, if i < j,
i+α

i , if i > j,
(i−1)!, if i = j.

(4.7)

4.1.2 Accurate computations with Bessel matrices

In [16] we studied the collocation matrices of Bessel polynomials: we proved that their matrix
of change of basis between the monomial basis and the Bessel polynomials is TP, we obtained
its bidiagonal decomposition and we used it to solve many algebraic problems with HRA
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using the library TNTool. The Bessel polynomials are defined by

Bn(x) =
n

∑
k=0

(n+ k)!
2k(n− k)!k!

xk, n = 0,1,2 . . . , (4.8)

Bessel polynomials occur in many different areas such as number theory, partial differen-
tial equations and statistics (see [48]). These polynomials are also very important for some
problems of Static Potentials, Signal Processing and Electronics.

Let A = (ai j)1≤i, j≤n be the matrix of change of basis between the Bessel polynomials and
the monomial basis,

(B0(x),B1(x), . . . ,Bn−1(x))T = A(1,x, . . . ,xn−1)T , (4.9)

that is, the lower triangular matrix A is defined by

ai j :=

{
(i+ j−2)!

2 j−1(i− j)!( j−1)! =
(2 j−2)!

2 j−1( j−1)!

(i+ j−2
i− j

)
, if i≥ j,

0, if i < j.
(4.10)

We proved the total positivity of the matrix of change of basis A and we obtained BD(A).

Theorem 4.3. (Theorem 3 of [16]) Let A = (ai j)1≤i, j≤n be the lower triangular matrix in
(4.9) defined by (4.10). Then we have that

(i) the pivots of the NE of A are given by

pi j =
1

2 j−1
(i−1)!
(i− j)! ∏

j−1
r=1

(2i−r−1)
(i− j+r) , 1≤ j ≤ i≤ n, (4.11)

and the multipliers by

mi j =
(2i−2)(2i−3)

(2i− j−1)(2i− j−2) , 1≤ j < i≤ n, (4.12)

(ii) A is a nonsingular TP matrix

(iii) and the bidiagonal factorization of A is given by

BD(A)i j =


(2i−2)(2i−3)

(2i− j−1)(2i− j−2) , if i > j,
1, if i = j = 1,
(2i−3)!!, if i = j > 1,
0, if i < j,

(4.13)

and can be computed to HRA. The notation “!!” corresponds to the semifactorial given
by n!! = ∏

[n/2]−1
k=0 (n−2k).

As a consequence of Theorem 4.3, we have that the system of functions formed by the
Bessel polynomials of degree less than n on (0,∞) is an STP system.

Given a sequence of parameters 0 < t0 < t1 < · · · < tn−1, we call the collocation matrix
of the Bessel polynomials (B0, . . . ,Bn−1) at that sequence a Bessel matrix:

M = M
(

B0, . . . ,Bn−1
t0, . . . , tn−1

)
= (B j−1(ti−1))1≤i, j≤n, (4.14)
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Theorem 4.4. (Theorem 4 of [16]) Given a sequence of parameters 0 < t0 < t1 < · · ·< tn−1,
the corresponding Bessel matrix M is an STP matrix and given the parametrization ti (0 ≤
i≤ n−1), we can compute its bidiagonal decomposition to HRA.

By formula (4.9) we have that M =VAT , where M is the Bessel matrix at t0, . . . , tn−1, A is
the lower triangular matrix defined by (4.10) and V is the Vandermonde matrix corresponding
to the collocation matrix of the monomial basis of degree n− 1 at t0, . . . , tn−1. BD(V ) is
known and can be computed to HRA using the function TNVandBD from TNTool. Then, we
can compute BD(M) from BD(V ) and, by (3.19), from BD(A)T using TNProduct.

Reversing the order of the coefficients of Bn(x) in (4.8) we can define the reverse Bessel
polynomials:

Br
n(x) =

n

∑
k=0

(n+ k)!
2k(n− k)!k!

xn−k, n = 0,1,2 . . . , (4.15)

The reverse Bessel polynomials occur in applications such as Electrical Engineering. In
particular, they play a key role in network analysis of electrical circuits (see page 145 of [48]
and references therein). Their coefficients are known as signless Bessel numbers of the first
kind in Combinatorics. They are closely related to the Stirling numbers [49, 98].

Let C = (ci j)1≤i, j≤n be the matrix of change of basis between the reverse Bessel polyno-
mials and the monomial basis,

(Br
0(x),B

r
1(x), . . . ,B

r
n−1(x))

T =C(1,x, . . . ,xn−1)T , (4.16)

i.e., the lower triangular matrix C defined by

ci j =

{
(2i− j−1)!

2i− j( j−1)!(i− j)! , i≥ j,
0, i < j.

(4.17)

Theorem 4.5 proves the total positivity of C, and provides BD(C). In addition, its proof
gives the explicit form of all the entries of the matrices C(k) computed through the NE of C.

Theorem 4.5. (Theorem 5 of [16]) Let C = (ci j)1≤i, j≤n be the lower triangular matrix in
(4.16) defined by (4.17). Then, we have that

(i) the pivots of the NE of C are given by

pi j =
(2i−2 j)!

2i− j(i− j)! 1≤ j ≤ i≤ n if j is odd,
pi j = 0 1≤ j < i≤ n, p j j = 1 1≤ j ≤ n if j is even,

(4.18)

and the multipliers by

mi j = 2i−1−2 j 1≤ j < i≤ n if j is odd,
mi j = 0, 1≤ j < i≤ n if j is even, (4.19)

(ii) C is a nonsingular TP matrix
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(iii) and the bidiagonal factorization of C is given by

BD(C)i j =


2i−2 j−1, if i > j with j odd,
1, if i = j,
0, otherwise,

(4.20)

and can be computed to HRA.

Given a sequence of parameters 0 < t0 < t1 < · · · < tn−1, we call the collocation matrix
of the reverse Bessel polynomials (Br

0, . . . ,B
r
n−1) at that sequence a reverse Bessel matrix:

Mr = M
(

Br
0, . . . ,B

r
n−1

t0, . . . , tn−1

)
= (Br

j−1(ti−1))1≤i, j≤n. (4.21)

The following result proves that the reverse Bessel matrices are STP and that some usual
algebraic problems with these matrices can be solved to HRA.

Theorem 4.6. (Theorem 6 of [16]) Given a sequence of parameters 0 < t0 < t1 < · · · <
tn−1, the corresponding reverse Bessel matrix Mr (4.21) is an STP matrix and given the
parametrization ti (0≤ i≤ n−1), its bidiagonal decomposition can be computed to HRA.

We can build an algorithm to compute the bidiagonal decomposition of the reverse Bessel
matrices to HRA following the same strategy used with the Bessel matrices.

4.1.3 Accurate bidiagonal decomposition and computations with
generalized Pascal matrices

In Section 3.5 we introduced Pascal matrices as an example of TP matrices that are ill-
conditioned but have a really simple representation in terms of the bidiagonal decomposition.
Let us recall that the lower triangular Pascal matrix PL = (pi j)1≤i, j≤n has entries pi j :=

( i−1
j−1

)
for 1≤ j ≤ i≤ n+1 and pi j := 0 whenever j > i and the symmetric Pascal matrix R = (ri j)

has entries ri j :=
(i+ j−2

j−1

)
. These matrices satisfy that R = PLPT

L and their bidiagonal decom-
position is given by:

BD(PL) =

{
1, if i≥ j,
0, otherwise, (4.22)

and BD(R) = (1)1≤i, j≤n (see [2, 60]). In [18], we considered some classical extensions of
Pascal matrices. These classes of generalized Pascal matrices appear in applications such
as Filter Design, Probability, Combinatorics, Signal Processing or Electrical Engineering
(see [66] and references therein). We have obtained their bidiagonal decomposition and we
have studied the cases when these extensions of Pascal matrices are TP and their bidiagonal
decomposition can be computed to HRA. Let us start by giving the definitions of the matrices
that we have considered:
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Definition 4.7. (see [57, 100]) For a real number x, the generalized Pascal matrix of the first
kind, Pn[x], is defined as the (n+ 1)× (n+ 1) lower triangular matrix with 1′s on the main
diagonal and

(Pn[x])i j := xi− j
(

i−1
j−1

)
, 1≤ j ≤ i≤ n+1

and the symmetric generalized Pascal (n+1)× (n+1) matrix Rn[x] is given by

(Rn[x])i j := xi+ j−2
(

i+ j−2
j−1

)
, 1≤ i, j ≤ n+1.

For x,y ∈ R, the (n+1)× (n+1) matrix Rn[x,y] is given by

(Rn[x,y])i j := x j−1yi−1
(

i+ j−2
j−1

)
, 1≤ i, j ≤ n+1.

Let us notice how these matrices and the classical Pascal matrices are related: Rn[x] =
Rn[x,x], Pn[1] is the lower triangular Pascal matrix and Rn[1] is the symmetric Pascal matrix.
The following definition gives other families of matrices that we have also studied.

Definition 4.8. (see [101]) For x,y ∈ R, the extended generalized Pascal matrix Φn[x,y] is
defined as

(Φn[x,y])i j = xi− jyi+ j−2
(

i−1
j−1

)
, 1≤ j ≤ i≤ n+1

and the extended generalized symmetric Pascal matrix Ψn[x,y] is given by

(Ψn[x,y])i j = xi− jyi+ j−2
(

i+ j−2
j−1

)
, 1≤ i, j ≤ n+1.

We have found the bidiagonal decomposition of the matrices given by definitions 4.7 and
4.8 as particular cases of two wider classes of matrices, one related to the triangular matrices
and the other related to the symmetric ones. Given two real numbers x, λ and a nonnegative
integer n, we define the notation xn|λ as:

xn|λ :=
{

x(x+λ ) · · ·(x+(n−1)λ ), if n > 0,
1, if n = 0. (4.23)

In [5], the generalized lower triangular Pascal matrix Pn,λ [x] is defined by

(Pn,λ [x])i, j := x(i− j)|λ
(

i−1
j−1

)
, 1≤ j ≤ i≤ n+1, (4.24)

where n is a natural number and λ and x are both real numbers. The case λ = 0 leads to the
generalized Pascal matrix of the first kind Pn,0[x] = Pn[x]. The following result provides the
bidiagonal decomposition of the generalized Pascal matrix Pn,λ [x].

Theorem 4.9. (Theorem 5 of [18]) Given x,λ ∈R and n∈N, let Pn,λ [x] be the (n+1)×(n+
1) lower triangular matrix given by (4.24).
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i) If x 6= kλ for k =−n+1, . . . ,0, . . . ,n−1, we have that

(
BD(Pn,λ [x])

)
i j =


1, i = j,

x+(i−2 j)λ , i > j,
0, i < j.

(4.25)

ii) If x = kλ for some k ∈ {0, . . . ,n−1}, we have that

(
BD(Pn,λ [x])

)
i j =


1, i = j,

x+(i−2 j)λ , i > j, j ≤ k,
0, otherwise.

(4.26)

iii) If x =−kλ for some k ∈ {0, . . . ,n−1}, we have that

(
BD(Pn,λ [x])

)
i j =


1, i = j,

x+(i−2 j)λ , 0 < i− j ≤ k,
0, otherwise.

(4.27)

Let us notice that we have computed the bidiagonal decomposition of Pn,λ [x] in general,
so for some values of its parameters the matrix is not totally positive. The following result
characterizes the values of the parameters x and λ for which Pn,λ [x] is a TP matrix.

Proposition 4.10. (Corollary 7 of [18]) Let Pn,λ [x] be the lower triangular matrix given by
(4.24) with x,λ ∈ R and with n ∈ N. Then Pn,λ [x] is a TP matrix if and only if one of the
following conditions holds:

i) x≥ (n−1)|λ |.

ii) x = k|λ | for k = 0, . . . ,n−1.

In [5], a generalization of Pn,λ [x] is given in terms of a second real number y and an
arbitrary sequence a = {an}n≥0:

(Pn,λ [x,y,a])i, j := a j−1x(i− j)|λ y( j−1)|λ
(

i−1
j−1

)
. (4.28)

Let us notice that we can write this matrix as a product of Pn,λ [x] and a diagonal matrix:

Pn,λ [x,y,a] = Pn,λ [x] diag(a0,a1y1|λ , . . . ,anyn|λ ). (4.29)

By (4.29) and Theorem 4.9, we can deduce the bidiagonal decomposition of the matrix
BD(Pn,λ [x,y,a]). For example, if x 6= kλ for k = −n+ 1, . . . ,0, . . . ,n− 1, its bidiagonal
decomposition is given by

(
BD(Pn,λ [x,y,a])

)
i j =

 a j−1y( j−1)|λ , i = j,
x+(i−2 j)λ , i > j,

0, i < j.
(4.30)
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We also studied the families given in definitions 4.7 and 4.8 as particular cases of the
lattice path matrices. We obtained their bidiagonal decomposition and characterized whether
they are total positive in terms of the parameters defining them. Let us now introduce the
(n+1)× (n+1) lattice path matrix Lpn(α,β ,γ) = (ki j)1≤i, j≤n+1, whose entries are given by
the recurrence relation

αki, j−1 +βki−1, j + γki−1, j−1 = ki j, 2≤ i, j ≤ n+1, (4.31)

with k1 j = α j−1 for j ∈ {1, . . . ,n+1} and ki1 = β i−1 for i ∈ {1, . . . ,n+1}. These matrices
were studied in [57]. In Theorem 2.3 of [57] it is shown that Lpn(α,β ,γ) admits the following
factorization

Lpn(α,β ,γ) = Pn[α]Dn
αβ+γ

(Pn[β ])
T , (4.32)

where Dn
αβ+γ

= diag(1,αβ + γ, . . . ,(αβ + γ)n) and Pn[δ ] = Pn,0[δ ]. Observe that the matrix
Lpn(α,β ,γ) is nonsingular if and only if α β + γ 6= 0. Based on the LDU decomposition
given by (4.32), we obtained the bidiagonal decomposition of Lpn(α,β ,γ).

Theorem 4.11. (Theorem 8 of [18]) Let Lpn(α,β ,γ) = (ki j)1≤i, j≤n+1 be the matrix whose
entries are defined by (4.31) with α β + γ 6= 0. Then its bidiagonal decomposition is given by

(BD(Lpn(α,β ,γ)))i j =


(αβ + γ)i−1, if i = j,
α, if i > j,
β , if i < j.

(4.33)

As it was the case with matrices Pn,λ [x], the lattice path matrices are not always totally
positive. The following proposition introduces a case where these matrices are TP and its
bidiagonal decomposition can be computed to high relative accuracy.

Proposition 4.12. (Corollary 9 of [18]) Let Lpn(α,β ,γ)= (ki j)1≤i, j≤n+1 be the matrix whose
entries are defined by (4.31). If α,β > 0 and αβ +γ > 0, then Lpn(α,β ,γ)= (ki j)1≤i, j≤n+1 is
an STP matrix. Moreover, if γ ≥ 0, then its bidiagonal decomposition (4.33) can be computed
to HRA and it can be used to obtain the eigenvalues, singular values and the inverse of
Lpn(α,β ,γ) with HRA as well as the solution of the linear systems Lpn(α,β ,γ)x = b, where
b = (b1, . . . ,bn+1) has alternating signs.

As we have mentioned earlier, the matrices Lpn(α,β ,γ) have the generalizations of Pas-
cal matrices given in definitions 4.7 and 4.8 as particular cases. Hence, Theorem 4.11 can be
used to obtain the bidiagonal decomposition of those classes of matrices. In fact, Theorem
3.1 of [57] gives the following relationship between the classes that can be used to obtain
their bidiagonal decompositions from Theorem 4.11.

Lpn(α,β ,γ) =


Pn[x,y], if α = 0,β = y,γ = x,
Rn[x,y], if α = x,β = y,γ = 0,
Φn[x,y], if α = 0,β = xy,γ = y2,
Ψn[x,y], if α = y/x,β = xy,γ = 0.

(4.34)

There is another interesting extension of Pascal matrices in terms of the q-integers. In
the following section we have considered this extension as well as other q-analogues of well-
known TP matrices.
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4.1.4 High relative accuracy with matrices of q-integers
Some of the recent examples of TP matrices whose bidiagonal decomposition has been ob-
tained to HRA come from quantum calculus [54]. These matrices are usually q-analogues of
other well-known families of matrices, such as Pascal matrices or Jacobi-Stirling matrices.
There are also examples from other areas, like from extensions of orthogonal polynomials.
Given a positive real number q and a natural number r we define the q-integer [r] as

[r] :=

{
1+q+ · · ·+qr−1 = 1−qr

1−q , if q 6= 1,
r, if q = 1.

Let us define the following q-analogues in terms of the q-integers. The q-factorial [r]! (see
[54]) is given by

[r]! :=
{

[r][r−1] · · · [1], if q 6= 1,
r!, if q = 1,

and the q-binomial coefficient
[ i

j

]
is defined as[

i
j

]
:=

[i]!
[ j]![i− j]!

(4.35)

if i≥ j ≥ 0 and as 0 otherwise. Let us recall the recurrence relation that defines the classical
binomial coefficients

(n
k

)
, (

n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
. (4.36)

The q-binomial coefficients satisfy the following recurrence relations, which are q-analogues
of (4.36): [

i
j

]
=

[
i−1
j−1

]
+q j

[
i−1

j

]
, (4.37)[

i
j

]
= qi− j

[
i−1
j−1

]
+

[
i−1

j

]
. (4.38)

They also satisfy a q-analogue of the Vandermonde identity:[
m+n

k

]
=

k

∑
j=0

q(k− j)(m− j)
[

m
j

][
n

k− j

]
. (4.39)

Let us also define the lower triangular matrix of q-binomial coefficients, PL,q, whose
nonzero entries are given by

(PL,q)i, j =

[
i−1
j−1

]
, 1≤ j ≤ i≤ n+1, (4.40)

and its upper triangular counterpart PU,q := PT
L,q. The matrix PL,q is a TP matrix (see page 198

of [7]) and we obtained the following bidiagonal decomposition
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Theorem 4.13. (Theorem 3 of [20]) Let PL,q be the (n+1)× (n+1) matrix given by (4.40).
Then PL,q is TP and its bidiagonal decomposition is given by

(BD(PL,q))i, j =


1, i = j,

q j−1, i > j,
0, otherwise,

(4.41)

which can be computed to HRA.

We see that q= 1 gives the bidiagonal decomposition of the lower triangular Pascal matrix
PL. Let us now define the symmetric matrix of q-binomial coefficients Pq:

(Pq)i, j =

[
i+ j−2

i−1

]
, 1≤ i, j ≤ n+1. (4.42)

The matrix Pq is the q-analogue of the Pascal matrix R defined in the previous section. We
can derive the bidiagonal decomposition of this matrix from BD(PL,q).

Proposition 4.14. (Proposition 1 of [20]) Let Pq be the matrix of q-binomial coefficients
given by (4.42). Then Pq is STP and its bidiagonal decomposition is given by

(BD(Pq))i, j =

q( j−1)2
, i = j,

q j−1, i > j,
qi−1, otherwise,

(4.43)

which can be computed to HRA.

We can also check that the case q = 1 gives the bidiagonal decomposition of the symmet-
rical classical Pascal matrix.

Our next family of examples comes from q-analogues of the Stirling numbers of the first
and the second kind [4]. The bidiagonal decomposition of the matrices formed by the Stirling
numbers (called Stirling matrices) was studied in [25]. The q-Stirling numbers of the second
kind, Bq = (bi j)1≤i, j≤n+1, are given by the recurrence relation (see [35])

bi j = bi−1, j−1 +[ j−1]bi−1, j, (4.44)

with b00 = 1,bi0 = 0 for i > 0 and b0 j = 0 for j > 0. The q-Stirling numbers of the first kind,
Sq = (si j)1≤i, j≤n+1, follow the relationship (see [35])

si j = si−1, j−1− [i−1]si−1, j, (4.45)

with s00 = 1,si0 = 0 for i > 0 and s0 j = 0 for j > 0. Let us define the unsigned q-Stirling
numbers of the first kind, Cq = (ci j)1≤i, j≤n+1, by the following relationship

ci j = ci−1, j−1 +[i−1]ci−1, j, (4.46)

with c00 = 1,ci0 = 0 for i > 0 and c0 j = 0 for j > 0. The entries of Sq are equal in absolute
value to those of Cq. The difference lies on their sign pattern: Sq has a checkerboard pattern of
alternating signs while Cq≥ 0. The following proposition gives the bidiagonal decomposition
of Cq.
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Proposition 4.15. Let Cq = (ci j)1≤i, j≤n+1 be the matrix whose (i, j) entry is the unsigned
q-Stirling number of the first kind ci j given by (4.46). Then Cq is TP and

BD(Cq) =


1, i = j,

[i− j], i > j,
0, otherwise.

By using (4.45) instead of (4.46), the same proof of Proposition 4.15 leads to the bidiag-
onal decomposition of Sq

BD(Sq) =


1, i = j,

−[i− j], i > j,
0, otherwise.

(4.47)

In spite that Sq is not a TP matrix, it is closely related to this class of matrices since it is
the inverse of the matrix Bq (by Theorem 3.16 of [35]). Based on that fact, from (4.47) we
deduced BD(Bq).

Proposition 4.16. (Corollary 3 of [20]) Let Bq = (bi j)1≤i, j≤n+1 be the matrix whose (i, j)
entry is the q-Stirling number of the second kind bi j given by (4.44). Then Bq is TP and

BD(Bq) =


1, i = j,
[ j], i > j,
0, otherwise.

Finally, we have considered a q-analogue of the Laguerre polynomials. Let us define the
q-Laguerre polynomials L(α)

n,q (see p. 552 of [52]):

L(α)
n,q (x) :=

(qα+1;q)n

(q;q)n

n

∑
k=0

[
n
k

]
qαk+k2 (−x)k

(qα+1;q)k
. (4.48)

The following result shows the strict total positivity of collocation matrices M of q-
Laguerre polynomials and guarantees HRA for many algebraic computations with whenever
α >−1 is a rational number.

Theorem 4.17. (Theorem 6 and Corollary 4 of [20]) Let M := (L(α)
j−1,q(ti−1))1≤i, j≤n+1 be the

collocation matrix of the q-Laguerre polynomials at the nodes (0 >)t0 > t1 > .. . > tn with
α >−1 and 0 < q < 1. Then

i) M is an STP matrix.

ii) If α ∈Q, given the nodes ti (0≤ i≤ n) we can compute BD(M) with HRA and hence,
the following computations can be performed with HRA: all the eigenvalues and sin-
gular values, the inverse of M, and the solution of the linear systems Mx = b where
b = (b0, . . . ,bn) has alternating signs.
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4.2 Optimal properties of tensor products of B-bases

In Section 3.3 we introduced totally positive bases and the concept of B-basis. Normalized
B-bases have the optimal shape preserving properties with respect to all the other NTP bases
of their spanned function space. In [28], it was shown that the minimal eigenvalue and singu-
lar value of a collocation matrix of the normalized B-basis of a space of functions is bounded
below by the minimal eigenvalue and singular value, respectively, of the corresponding col-
location matrix of any other normalized totally positive basis of the same space. It is also
proved that the collocation matrix of the normalized B-basis of a space of functions has op-
timal conditioning in the ∞-norm with respect to all the normalized TP bases of the space.
In [19], we have considered the collocation matrices of the tensor product of normalized B-
bases. Given two systems of functions u1 = (u1

0, . . . ,u
1
m) and u2 = (u2

0, . . . ,u
2
n) defined in [a,b]

and [c,d], respectively, the system u1⊗u2 := (u1
i (x) ·u2

j(y))
j=0,...,n
i=0,...,m is called a tensor product

system and generates a tensor product surface. Let us consider two increasing sequences of
nodes t = (ti)m

i=0 in [a,b] and r = (ri)
n
i=0 in [c,d] and the collocation matrices A1 and A2 of

the bases u1 and u2 at t and r, respectively. Then the collocation matrix of the system u1⊗u2

at the points (ti,r j) with i = 0, . . . ,m and j = 0, . . . ,n can be formed directly from A1 and A2
using the Kronecker product. The Kronecker product of two matrices A = (ai j)∈Rm1×n1 and
B = (bi j) ∈ Rm2×n2 is defined to be the m1m2×n1n2 block matrix

A⊗B :=

 a11B · · · a1n1B
... . . . ...

am11B · · · am1n1B

 . (4.49)

The Kronecker product presents a lot of useful properties. It serves as a great tool for study-
ing high dimensional problems taking advantage of the theory and techniques known for the
lower dimensional case. Many of the fundamental structures and properties desired for ma-
trices are inherited by the Kronecker product if both of the smaller factors present them. For
instance, this is true for the Kronecker product of two nonsingular matrices, of two symmet-
ric or triangular matrices, of two positive definite matrices, or of two orthogonal matrices
(see [96]). Besides, the eigenvalues and singular values of the Kronecker product are given
by products of the eigenvalues and singular values of the smaller matrices defining it. Also,
whenever A and B are nonsingular, we have that (A⊗B)−1 = A−1⊗B−1. Unfortunately,
total positivity or the structure of a P-matrix is in general not inherited by the Kronecker
product of two TP matrices or of two P-matrices, respectively. In our work, exploiting the
nice properties of the Kronecker product has allowed us to obtain the following result for the
optimality of the tensor product of normalized B-bases.

Theorem 4.18. (Theorem 1 of [19]) Let u1 = (u1
0, . . . ,u

1
m) be an NTP basis on [a,b] of a

space of functions U1, u2 = (u2
0, . . . ,u

2
n) be an NTP basis on [c,d] of a space of functions

U2 and let v1 = (v1
0, . . . ,v

1
m) and v2 = (v2

0, . . . ,v
2
n) be the normalized B-bases of U1 and U2,

respectively. Given the increasing sequences of nodes t = (ti)m
i=0 on [a,b] and r = (ri)

n
i=0 on

[c,d], the nonsingular collocation matrices A1 and M1 of the bases u1 and v1, respectively, at
t, and A2 and M2 of the bases u2 and v2, respectively, at r, the following properties hold



222 CHAPTER 4. TOTALLY POSITIVE MATRICES

i) The matrix |(A1⊗A2)
−1| dominates (M1⊗M2)

−1.

ii) The minimal eigenvalue (resp., singular value) of A1⊗A2 is bounded above by the
minimal eigenvalue (resp., singular value) of M1⊗M2.

iii) κ∞(M1⊗M2)≤ κ∞(A1⊗A2).

In [19] we have also included a section with numerical experiments that illustrate the re-
sults from Theorem 4.18. We have compared the minimal singular values, minimal eigenval-
ues and the condition number using the ∞-norm of the Kronecker product of two collocation
matrices of the Bernstein polynomials on [0,1] with the Kronecker product of two colloca-
tion matrices of the DP basis [23] and two collocation matrices of the Said-Ball basis [91].
For the comparison, all the collocation matrices have been built using the same sequences of
increasing positive nodes. We have also compared the case of collocation matrices of rational
Bernstein basis with the associated rational basis of the other studied NTP bases. In this case,
the weights defining the rational functions where chosen such as the space generated by all
the rational bases was always the same, so we were under the hypotheses of Theorem 4.18
and the results were comparable. In both cases, we checked that the minimal eigenvalues
and singular values for the Kronecker product of the normalized B-bases are larger than the
minimal eigenvalue and the minimal singular value, respectively, of the other matrices. We
also showed that the ∞-norm condition number of the Kronecker product of the collocation
matrices of B-bases is smaller than the ∞-norm condition number of the Kronecker product
of the collocation matrices of the other normalized TP bases.

4.3 Tridiagonal Toeplitz P-matrices

In spite of the fact that, for a general Toeplitz matrix, we cannot assure the HRA for a simple
algebraic computation such as the determinant (see Section 3.5), in [21] we show that this fact
changes if the Toeplitz matrix is also tridiagonal. Let us recall that an n× n Toeplitz matrix
A = (ai j)1≤i, j≤n is a real matrix such that all its diagonals are constant. These matrices can
be defined through a sequence of 2n−1 real numbers {αk}n−1

−n+1 with

ai j := αi− j, 1≤ i, j ≤ n. (4.50)

If an n× n Toeplitz matrix is also tridiagonal, it can be uniquely represented with 3 pa-
rameters:

Tn(a,b,c) :=


a c

b a . . .
. . . . . . . . .

. . . . . . c
b a

 . (4.51)
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Given a positive matrix A = (ai j)1≤i, j≤n, the following condition is sufficient for its total
positivity (see [56] or section 2.6 of [89]):

ai jai+1, j+1 ≥ 4cos2
(

π

n+1

)
ai, j+1ai+1, j, (4.52)

with i, j = 1, . . . ,n−1. If all these inequalities are strict, then A is STP. In the following propo-
sition we have characterized whenever the tridiagonal Toeplitz matrix Tn(a,b,c) is TP or an
M-matrix. The condition that characterizes these classes is closely related to the condition
given by (4.52).

Proposition 4.19. (Proposition 3.1 and Corollary 3.2 of [21]) Let A = Tn(a,b,c) be the
tridiagonal Toeplitz matrix given by (4.51). Then A is TP if and only if

a,b,c≥ 0, a≥ 2
√

bccos
(

π

n+1

)
, (4.53)

and A is an M-matrix if and only if

a≥ 2
√

bccos
(

π

n+1

)
and b,c≤ 0. (4.54)

It is known (see page 59 of [92]) that the eigenvalues of the n× n tridiagonal Toeplitz
matrix Tn(a,b,c) are given by

λk = a+2
√

bccos
(

kπ

n+1

)
, k = 1, . . . ,n. (4.55)

As it can be seen in the proof of Proposition 3.1 of [21], the conditions (4.53) and (4.54)
correspond to the condition that all the eigenvalues of Tn(a,b,c) are positive. Finally, we
have also studied the cases where Tn(a,b,c) is a P-matrix. By the definition of P-matrix we
always have that a > 0. The conditions on b and c are summarized in the following theorem.

Theorem 4.20. (Theorem 3.4 of [21]) Let A = Tn(a,b,c) be the tridiagonal Toeplitz matrix
given by (4.51). Then A is a P-matrix if and only if one of the following two conditions holds:

(i) bc≤ 0 and a > 0.

(ii) bc≥ 0 and a > 2
√

bccos
(

π

n+1

)
.

Until now, we have achieved HRA with TP matrices. For the case of tridiagonal P-
matrices, it is possible to achieve accurate computations in more cases. For the case of a sign
skew-symmetric tridiagonal matrix, it is possible to compute its bidiagonal decomposition,
all its minors and its inverse with HRA.
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Theorem 4.21. (Proposition 4.1 and Theorem 4.2 of [21]) Let A = (ai j)1≤i, j≤n be a tridiag-
onal matrix such that aii > 0 for i = 1, . . . ,n and ai+1,iai,i+1 ≤ 0 for i = 1, . . . ,n−1. Then

BD(A) =



δ1
a12
δ1

a21
δ1

δ2
. . .

. . . . . . . . .
. . . . . . an−1,n

δn−1an,n−1
δn−1

δn


, (4.56)

where δi are the diagonal pivots associated to the NE of A. The diagonal pivots satisfy the
following recurrence relation:

δ1 = a11, δi = aii−
ai,i−1ai−1,i

δi−1
i = 2, . . . ,n. (4.57)

If we know the entries of A with HRA then we can compute BD(A) (4.56) to HRA, and hence,
all the minors and the inverse of A can be computed to HRA.

Let us notice that Theorem 4.21 is the only result for tridiagonal matrices that are not
necessarily Toeplitz matrices. Finally, we have also considered the case where Tn(a,b,c) is a
sign symmetric tridiagonal Toeplitz P-matrix. By Theorem 4.19, the P-matrices correspond-
ing to this case are either nonsingular M-matrices or nonsingular TP matrices. In this case,
we require the additional parameter a2−4bc to be positive and known to HRA.

Let us recall that the inverse of a nonsingular tridiagonal M-matrix is TP (see [84]). We
are going to obtain the bidiagonal decomposition of an M-matrix A = Tn(a,−b,−c). From
the BD(A) obtained in Theorem 4.22, in Theorem 4.23 we shall deduce BD(A−1).

Theorem 4.22. Let A = Tn(a,−b,−c) be a nonsingular M-matrix given by (4.51). Then

BD(A) =



δ1 − c
δ1

− b
δ1

δ2
. . .

. . . . . . . . .
. . . . . . − c

δn−1

− b
δn−1

δn


, (4.58)

where δi are the diagonal pivots associated to the NE of A and are given by:

δ1 = a, δi = a− bc
δi−1

with i = 2, . . . ,n. (4.59)

Moreover, if we know a,b,c with HRA and a2− 4bc is a positive number known with HRA,
then we can compute BD(A) (4.58) to HRA.

The following result provides the bidiagonal decomposition of the inverse of a nonsingu-
lar tridiagonal Toeplitz M-matrix.
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Theorem 4.23. Let A = Tn(a,−b,−c) be a nonsingular M-matrix. Then A−1 is a TP matrix
and

BD(A−1) =


1/δn c/δn−1 c/δn−2 · · · c/δ1

b/δn−1 1/δn−1 0 · · · 0

b/δn−2 0 1/δn−2
. . . ...

...
... . . . . . . 0

b/δ1 0 . . . 0 1/δ1

 , (4.60)

where δi are the diagonal pivots associated to the NE of A for i = 1, . . . ,n.

Finally, let us notice that we can get the bidiagonal decomposition of a TP matrix Tn(a,b,c)
from Theorem 4.22. In that case, we could get the following result

Theorem 4.24. Let A = Tn(a,b,c) be a nonsingular TP matrix given by (4.51). Then

BD(A) =



δ1
c
δ1

b
δ1

δ2
. . .

. . . . . . . . .
. . . . . . c

δn−1
b

δn−1
δn


, (4.61)

where δi are the diagonal pivots associated to the NE of A and are given by:

δ1 = a, δi = a− bc
δi−1

with i = 2, . . . ,n. (4.62)

Moreover, if we know a,b,c with HRA and a2− 4bc is a positive number known with HRA,
then we can compute BD(A) (4.58) to HRA.

As we can see, for tridiagonal Toeplitz matrices the difference between TP matrices and
M-matrices lies on the sign of the off-diagonal entries, or analogously, on the sign of the
multipliers of their associated bidiagonal decomposition.





Chapter 5

M-matrices and related problems

Let us recall that the core of this thesis is formed by a collection of publications that can
be divided into two main groups: articles on M-matrices and problems related to them and
articles on TP matrices. In this chapter we provide the thematic unit of the articles [79–83],
belonging to the first class:

[79] Article 3: H. Orera and J. M. Peña. Accurate inverses of Nekrasov Z-matrices. Linear
Algebra Appl. 574 (2019), 46-59.

[81] Article 4: H. Orera and J. M. Peña. Infinity norm bounds for the inverse of Nekrasov
matrices using scaling matrices. Appl. Math. Comput. 358 (2019), 119-127.

[80] Article 5: H. Orera and J. M. Peña. BR
π -tensors. Linear Algebra Appl. 581 (2019),

247-259.

[82] Article 10: H. Orera and J. M. Peña. Accurate determinants of some classes of
matrices. Linear Algebra Appl. 630 (2021), 1-14.

[83] Article 11: H. Orera and J. M. Peña. Error bounds for linear complementarity prob-
lems of BR

π -matrices. Comput. Appl. Math. 40 (2021), Paper No. 94, 13 pp.

We introduced M-matrices in Section 3.2. Let us recall that M-matrices have a particular
sign structure: nonnegative diagonal entries and nonpositive off-diagonal entries. Moreover,
nonsingular M-matrices have an entrywise nonnegative inverse and can be characterized by
a wide range of properties (see Theorem 3.7). They play an important role in many applica-
tions, which credits the interest that raised in their study for theoretical reasons and practical
use. For example, they are studied for the establishment of convergence criteria for iterative
methods used to solve large sparse systems of linear equations, in the solution of the linear
complementarity problem or in economics when considering a Leontief’s input-output anal-
ysis. One of the great properties discovered for this class is the one object of study in this
dissertation: their structure can be exploited to achieve HRA while solving some of the more
commons problems in linear algebra. In [1] it was shown that, even though an M-matrix
might be ill-conditioned in the traditional sense, if we know its row sums and off-diagonal
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entries with enough accuracy we can assure that the determinant, the inverse and the smallest
eigenvalue can be computed accurately. For that, we will use an algorithm that takes as input
this different representation of the matrix. In Section 3.5 we introduced this representation
and we called it the DD-parameters (3.32).

One of our main objectives was extending the classes of M-matrices for which computa-
tions with HRA can be achieved. In [79, 82] we found new classes and we discussed adequate
parametrizations for achieving high relative accuracy. In the next two sections we will intro-
duce these classes of matrices, the parametrizations and the problems that can be solved to
HRA. Section 5.3 introduces the error bounds for the LCP of Nekrasov matrices as well as
the infinity norm bounds for their inverses obtained in [81]. Finally, Section 5.4 is devoted to
BR

π -matrices and their extension to the higher order case. It presents the error bounds for the
LCP of BR

π -matrices from [83] as well as the class of BR
π -tensors and the theoretical properties

of this class obtained in [80].

5.1 High relative accuracy for Nekrasov Z-matrices with
positive diagonal entries

The first class of matrices that we have studied is called Nekrasov matrices. Let N :=
{1, . . . ,n}. Given a complex matrix A = (ai j)1≤i, j≤n with aii 6= 0 for all i ∈ N, let us de-
fine

h1(A) := ∑
j 6=1
|a1 j|, hi(A) :=

i−1

∑
j=1
|ai j|

h j(A)
|a j j|

+
n

∑
j=i+1

|ai j|, i = 2, . . . ,n. (5.1)

The matrix A is called a Nekrasov matrix if |aii| > hi(A) for all i ∈ N (see [13–15, 94]).
Nekrasov matrices are nonsingular H-matrices. A Nekrasov Z-matrix with positive diagonal
entries is a nonsingular M-matrix.

The parametrization that we consider for an n× n Nekrasov Z-matrix A = (ai j)1≤i, j≤n
with positive diagonal entries is given by the following n2 parameters, which we introduced
with the name N-parameters in [79]:{

ai j, i 6= j,
∆ j(A) := a j j−h j(A), j ∈ N.

(5.2)

As we have seen in Theorem 3.9 of Section 3.2, any H-matrix A is characterized by the
existence of a positive diagonal matrix D such as AD is SDD. And, if the matrix A has the
sign structure of a Z-matrix with positive diagonal entries, then it is an M-matrix.

The idea of finding a good scaling diagonal matrix for an M-matrix gave us a hint about
finding good representations for more classes of matrices. In fact, if we can exploit this
property with the right scaling matrix, we can apply the accurate algorithms known for non-
singular DD M-matrices to more classes of nonsingular M-matrices. For achieving this goal,
we do not require that the product is SDD, but only DD and nonsingular (which made the
development of the HRA methods easier in our experience). For a Nekrasov matrix A, the
simple diagonal matrix
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S =


h1(A)
a11

h2(A)
a22

. . .
hn(A)
ann

 (5.3)

holds that AS is a DD matrix (see Lemma 2.2 of [79]). The following theorem (Theorem 2.3
of [79]) shows that we can compute the DD-parameters of the DD M-matrix AS if we know
the N-parameters (5.2) of a Nekrasov Z-matrix A with positive diagonal entries. Hence, it
serves as a base for developing accurate algorithms for this new class of matrices based on
the techniques known for DD M-matrices.

Theorem 5.1. (Theorem 2.3 of [79]) Let A = (ai j)1≤i, j≤n be a Nekrasov Z-matrix with pos-
itive diagonal entries and let S be the matrix given by (5.3). Given the n2 N-parameters
(5.2), we can compute the row sums and the off-diagonal entries of AS (its DD-parameters
(3.32)) by a SF algorithm (and so, with HRA), with at most 3n(n−1)/2 additions, 2n(n−1)
multiplications and 2n−1 quotients.

So, computing the DD-parameters of AS takes O(n2) elementary operations. Using these
parameters as input, we can adapt Gaussian elimination (or Gauss-Jordan elimination) to
compute the inverse of A, its determinant and the solution to linear systems of equations
Ax = b with b ≥ 0 to HRA. In [79], we introduced the algorithm for computing the inverse
and the solution of linear systems of equations to HRA. In [82], we showed that we can also
compute the determinant to HRA, and based on that method we computed the determinants of
B-Nekrasov matrices (see Section 3.2) to HRA. Algorithm 1 of [82] showed how an adapted
version of Gauss-Jordan elimination can be implemented to work with the DD-parameters
of a nonsingular DD M-matrix. The following result combines Theorem 3.2 of [79] and
Theorem 3.2 of [82].

Theorem 5.2. Let A = (ai j)1≤i, j≤n be a Nekrasov Z-matrix with positive diagonal entries.
If we know its n2 N-parameters (5.2), then we can compute its determinant or its inverse to
HRA using a SF algorithm of O(n3) elementary operations.

As a consequence, we can also compute to HRA the solution to linear systems of equa-
tions Ax = b whenever b≥ 0, since A being a nonsingular M-matrix implies that A−1 ≥ 0. In
[79], we implemented and tested the accuracy of the HRA methods for computing the inverse
and the solution to these particular linear systems of equations. We compared the results to
the ones obtained with the Matlab functions inv for computing the inverse and \ for solving
linear systems of equations that use the original matrix (instead of the N-parameters) as input.

5.2 Accurate computation of the determinant of
B-matrices

In [82] we considered the problem of computing the determinant of two classes of matrices:
B-matrices and B-Nekrasov matrices to HRA. The techniques and discussion developed in
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that manuscript are a direct continuation of the work started in [79].
Let us first present the classes of matrices studied. B-matrices were introduced in [85],

where they were used to develop criteria for the localization of eigenvalues. One of the
advantages of this class is that it gives an easy to check condition to identify some P-matrices.
We have introduced P-matrices in Section 3.1. One of the underlying problems for this
class is that they are difficult to identify in practice. Algorithms for checking that a general
matrix is a P-matrix usually have a huge computational cost, so looking for good criteria
for identifying them is an interesting research topic. Moreover, this problem also extends
to the higher dimension case: the identification of classes of tensors (hypermatrices) having
similar properties has an even higher computational cost. So, simple criteria for identifying
subclasses of P-matrices can be of interest in this area, as they could also be extended to
identify some classes of tensors as P-tensors taking a reasonable computational effort. Let us
start by recalling the definition of a B-matrix [85].

Definition 5.1. A square real matrix A := (ai j)1≤i, j≤n with positive row sums is a B-matrix
if all its off-diagonal elements are bounded above by the corresponding row means, i.e., for
all i = 1, . . . ,n,

n

∑
j=1

ai j > 0,
1
n

(
n

∑
k=1

aik

)
> ai j ∀ j 6= i. (5.4)

B-matrices admit the following decomposition, which we will use to achieve accurate
computations with them. Let us first introduce the following notation. Given a real matrix B=
(bi j)1≤i, j≤n, we define for each i= 1, . . . ,n, r+i :=max j 6=i{0,bi j}. Then B can be decomposed
in the form

B = B++C, (5.5)

B+ =

b11− r+1 . . . b1n− r+1
...

...
bn1− r+n . . . bnn− r+n

 , C =

r+1 . . . r+1
...

...
r+n . . . r+n

 . (5.6)

Observe that, if B is a B-matrix, then B+ is an SDD Z-matrix (see Proposition 3.11).
Therefore, for each i = 1, . . . ,n,

dii =
n

∑
j=1

(bi j− r+i )> 0. (5.7)

Given a DD Z-matrix A = (ai j)1≤i, j≤n, the n2 parameters used to assure that many al-
gebraic computations can be performed with HRA are the off-diagonal entries of A and the
n (nonnegative) row sums of A (i.e., the DD-parameters (3.32)). The n2 parameters of a
B-matrix B = (bi j)1≤i, j≤n that will be used to compute its determinant with HRA will be
again its off-diagonal entries (as with diagonally dominant Z-matrices and with Nekrasov
Z-matrices) and the n positive parameters given by (5.7). We called these n2 parameters of a
B-matrix its B-parameters in [82]: {

bi j, i 6= j,
dii, i ∈ N.

(5.8)
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If we know the B-parameters of a B-matrix with HRA, then we can compute its determi-
nant to HRA.

Theorem 5.2. (Theorem 2.2. of [82]) Let B = (bi j)1≤i, j≤n be a B-matrix. Given its B-
parameters (see (5.8)) we can compute detB with HRA.

Moreover, the method developed in [82] for computing the determinant of a B-matrix to
HRA has a computational cost of O(n3) elementary operations. It is described in Algorithm
2 of [82].

We could have defined B-matrices from the decomposition given by (5.5) and (5.6), say-
ing that a B-matrix is any matrix that can be written in the form (5.5) with C being a nonneg-
ative matrix and B+ being an SDD Z-matrix with positive diagonal entries. This definition
shows the close relationship between B-matrices and SDD M-matrices. In fact, from this
point of view new classes of matrices have been defined imposing different conditions than
diagonal dominance on B+. If that condition implies that the Z-matrix B+ is also an M-
matrix, some of the nice properties of B-matrices can also be derived for the new class of
matrices. For example, this is the case for the class of B-Nekrasov matrices [43].

We say that B is a B-Nekrasov matrix if given the decomposition defined by (5.5) and
(5.6), the matrix B+ in (5.6) is a Nekrasov Z-matrix with positive diagonal entries. This class
of matrices includes both B-matrices and Nekrasov matrices.

We have seen that it is possible to compute the determinants of those two classes of ma-
trices to HRA whenever the adequate parametrization is known with HRA. For B-Nekrasov
matrices, we found the following n2 parameters that we called BN-parameters in [82]:{

bi j, i 6= j,
∆ j(B+), j ∈ N,

(5.9)

where ∆ j(·) is given by (5.1) and (5.2). Based on this parametrization we obtained the fol-
lowing result for B-Nekrasov matrices.

Theorem 5.3. (Theorem 4.1 of [82]) Let B = (bi j)1≤i, j≤n be a B-Nekrasov matrix. Given its
BN-parameters (see (5.9)) we can compute detB with HRA.

As it was the case with B-matrices and Nekrasov matrices, our method for computing the
determinant of a B-Nekrasov matrix to HRA has a computational cost of O(n3) elementary
operations. The method for computing the determinant of a B-Nekrasov matrix to HRA is
described in pseudocode in Algorithm 5 of [82].

5.3 Bounds based on diagonal scaling for Nekrasov
matrices

Finding an appropriate scaling matrix S for a Nekrasov M-matrix has allowed us to achieve
the accurate computation of the inverse, the determinant and the solution of some linear
systems of equations. We considered the application of this scaling matrix to more problems.
With a modification, these scaling matrices can be used to derive upper bounds for the norm
of the inverse of a Nekrasov matrix. In this case, the bound is achieved for any sign structure,
not only that of an M-matrix, and so we have considered H-matrices.
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5.3.1 Infinity norm bounds for the inverse of Nekrasov matrices

SDD matrices are a clear example of H-matrices (see Theorem 3.9). In [97], the following
simple bound for the norm of the inverse of an SDD matrix was introduced.

Theorem 5.4. Let A be an SDD matrix and let α := mink(|akk|−∑ j 6=k |ak j|). T hen∥∥A−1
∥∥

∞
< 1/α.

An H-matrix A is characterized by the existence of a diagonal scaling matrix S such
that AS is SDD. If we know such a matrix S for a subclass of H-matrices, then we can
take advantage of Theorem 5.4 to develop bounds for the norm of the inverse of matrices
belonging in that class. A simple way to achieve this would be:∥∥A−1∥∥

∞
=
∥∥S(S−1A−1)

∥∥
∞
=
∥∥S(AS)−1∥∥

∞
≤ ‖S‖

∞

∥∥(AS)−1∥∥
∞
, (5.10)

which corresponds to equation (3) in the proof of Theorem 3.2 of [81]. Precisely, in [81]
we studied the use of this technique for finding suitable bounds for Nekrasov matrices. Our
starting point was the diagonal matrix S (5.3) that we used in [79] to develop accurate methods
for Nekrasov M-matrices. However, that matrix only satisfied that its product with a Nekrasov
matrix is DD, so it needed a modification.

With that idea, we considered the diagonal matrices introduced in Theorem 2.1 and Theo-
rem 2.2 of [81]. The following result introduces the two diagonal scaling matrices considered
in the theorems.

Theorem 5.5. (Theorem 2.1 and Theorem 2.2 of [81]) Let A = (ai j)1≤i, j≤n be a Nekrasov
matrix. Then the diagonal matrix

S1 =


h1(A)+ε1
|a11|

. . .
hn(A)+εn
|ann|

 ,

with {
ε1 > 0,
0 < εi ≤ |aii|−hi(A), εi > ∑

i−1
j=1
|ai j|ε j
|a j j| for i = 2, . . . ,n,

(5.11)

is a positive diagonal matrix such that AS1 is SDD.
Let k ∈ N be the first index such that there does not exist j > k with ak j 6= 0. Then the

diagonal matrix

S2 =


h1(A)+ε1
|a11|

. . .
hn(A)+εn
|ann|

 ,
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with {
εi = 0, for i = 1, . . . ,k−1,
0 < εi < |aii|−hi(A), εi > ∑

i−1
j=k
|ai j|ε j
|a j j| , for i = k, . . . ,n.

(5.12)

is a positive diagonal matrix such that AS2 is SDD.

The particular case k = n for the diagonal matrix S2 corresponds to a diagonal matrix
that was already introduced in [41] to derive error bounds for LCPs of Nekrasov matrices.
We have used the matrices introduced in Theorem 5.5 to derive the following bounds for the
infinity norm of the inverse of a Nekrasov matrix.

Theorem 5.6. (Theorem 3.2 of [81]) Let A = (ai j)1≤i, j≤n be a Nekrasov matrix. Then

∥∥A−1∥∥
∞
≤

maxi∈N

(
hi(A)+εi
|aii|

)
mini∈N(εi−wi + pi)

, (5.13)

where (ε1, . . . ,εn) are given either by (5.11) or (5.12) from Theorem 5.5 , wi := ∑
i−1
j=1 |ai j| ε j

|a j j| ,

and pi := ∑
n
j=i+1 |ai j| |a j j|−h j(A)−ε j

|a j j| for all i ∈ N.

Bounds from Theorem 5.6 are based on the bound given in Theorem 5.4 for SDD matrices
combined with the use of an adequate diagonal matrix. If we use the same diagonal matrices
but we take a better bound for SDD matrices, we can derive tighter bounds for Nekrasov
matrices. In [79] we have illustrated this fact using as bound for SDD matrices the bound
introduced in [61] for Nekrasov matrices, where it is shown that it gives better results when
applied to an SDD matrix than the bound presented in Theorem 5.4.

5.3.2 Error bounds for the LCP of Nekrasov matrices

In Chapter 3 we have seen the strong relationship between P-matrices and the LCP. By The-
orem 2.3 of [10], if M is a P-matrix, then the solution x∗ of the LCP (3.3) satisfies

‖x− x∗‖∞ ≤maxd∈[0,1]n‖M−1
D ‖∞‖r(x)‖∞, (5.14)

where
MD := I−D+DM, (5.15)

I is the n× n identity matrix, D is the diagonal matrix diag(di) with 0 ≤ di ≤ 1, for all
i = 1, . . . ,n and r(x) := min(x,Mx+q), where the min operator denotes the componentwise
minimum of two vectors. Any H-matrix with positive diagonal entries is a P-matrix, so
we will be able to apply this result to any Nekrasov matrix with positive diagonal entries.
Moreover, if we know the right diagonal scaling matrix to transform an H-matrix into an
SDD matrix, we can apply the following bound introduced in [40].
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Theorem 5.7. (Theorem 2.1 of [40]) Suppose that A = (ai j)1≤i, j≤n is an H-matrix with all
its diagonal entries positive. Let S = diag(si)

n
i=1,si > 0 for all i ∈ N, be a diagonal matrix

such that AS is SDD. For any i = 1, . . . ,n, let βi := aiisi−∑ j 6=i | ai j | s j. Then

maxd∈[0,1]n‖(I−D+DA)−1‖∞ ≤max
{

maxi{si}
mini{βi}

,
maxi{si}
mini{si}

}
. (5.16)

Using Theorem 5.7 and the scaling matrix S2 introduced in Theorem 5.5, we obtained the
following bound for Nekrasov matrices.

Theorem 5.8. (Theorem 5.2 of [81]) Let A = (ai j)1≤i, j≤n be a Nekrasov matrix with all its
diagonal entries positive. Let S2 = diag(si)

n
i=1 and εi (i ∈ N) be the diagonal matrix and

positive real numbers, respectively, defined in Theorem 5.5. Then

maxd∈[0,1]n‖(I−D+DA)−1‖∞ ≤max
{

1
mini{εi−wi + pi}

,
1

mini{si}

}
, (5.17)

where, for each i ∈ N, pi and wi are defined in Theorem 5.6.

We also included numerical experiments that illustrate our new bounds and we compared
them with some of the error bounds already known in the literature for Nekrasov matrices.
Let us notice that the bound for the infinity norm of the inverse of an SDD matrix given by
Theorem 5.4 can be arbitrarily large depending just on the behaviour of any of the matrix
rows because of its dependency on the quantities |akk|−∑ j 6=k |ak j| for all k = 1, . . . ,n. For the
bounds on Nekrasov matrices, this behaviour can be observed with respect to the differences
|akk| − hk(A) for some sets of indices k ∈ N. For the bound given by Theorem 5.8, we can
expect that the closeness to zero of the condition |akk|− hk(A) will not affect the quality of
the bound for any indices k ∈ N\{n}. And so, we can expect to obtain useful bounds for
Nekrasov matrices that could be troublesome for the other known bounds.

5.4 BR
π-matrices and BR

π-tensors

The class of BR
π -matrices was introduced in [78], giving a new class of matrices with positive

determinant that contains the class of B-matrices.

Definition 5.9. Let π = (π1, . . . ,πn)
T be a vector such that

0 <
n

∑
j=1

π j ≤ 1. (5.18)

Let M = (mi j)1≤i, j≤n be a real matrix with positive row sums and let R = (R1, . . . ,Rn)
T be the

vector formed by the row sums of M. Then we say that M is a BR
π -matrix if for all i = 1, . . . ,n,

π jRi > mi j, ∀ j 6= i. (5.19)
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Moreover, this new class is a subset of P-matrices whenever π ≥ 0 (Theorem 3.4 of [78]),
so it gives a new easily checkable condition to identify some P-matrices. The definition of P-
matrices is an extension of the definition of strictly positive definiteness: a symmetric matrix
is positive definite if and only if it is a P-matrix. Precisely, the interest of the P-problem
motivated the extension of the class of B-matrices to the multidimensional case (see [90]).
After that, some related classes of matrices have also been defined for the multidimensional
case, such as double B-tensors [63] and MB-tensors [64]. We considered an extension of
BR

π -matrices to the higher dimensional case and studied its properties and characterized the
cases where these tensors are P-tensors.

5.4.1 BR
π-tensors

Let us start by introducing some basic concepts about tensors that we can think of as an
extension of the matrix definitions. A real m-th order n-dimensional tensor A = (ai1···im) ∈
R[m,n] is a multi-array of real entries ai1···im ∈ R, where ik ∈ N := {1, . . . ,n} for k = 1, . . . ,m.
We say that A is a symmetric tensor if its entries are invariant under any permutation of its
indices. A tensor A is called diagonally dominant if

|ai···i| ≥
n

∑
i2,...,im 6=(i,...,i)

|aii2···im |, i ∈ N. (5.20)

If (5.20) holds strictly, then A is called strictly diagonally dominant. We say that A =
(ai1···im) ∈ R[m,n] is a B-tensor (B0-tensor) if

Ri(A )> 0 (≥ 0), i ∈ N, (5.21)

and
Ri(A )

nm−1 > ai j2··· jm (≥ ai j2··· jm), ∀( j2, . . . , jm) 6= (i, . . . , i). (5.22)

We say that a tensor is nonnegative if all its entries are nonnegative, and that it is a Z-
tensor if all its off-diagonal entries are nonpositive. Let us also define the identity tensor
I , whose entries are ones on the main diagonal (i.e., entries such that i1 = . . . = im ) and
zeros elsewhere. A tensor A = (ai1···im) ∈ R[m,n] is called an (a strong) M-tensor if there
exists a nonnegative tensor B = (bi1···im) ∈ R[m,n] and a positive scalar s ≥ ρ(B) (> ρ(B))
such that A = sI −B, where ρ(B) is the spectral radius of B (see page 15 of [90]).
(Strictly) diagonally dominant Z-tensors are also (strong) M-tensors (as it happened in the
2-dimensional case with SDD Z-matrices and nonsingular M-matrices).

A tensor A is called positive semidefinite (definite) if for each (nonzero) x ∈ Rn

A xm ≥ 0 (> 0),

where A xm = ∑
n
i1,...,im=1 ai1i2···imxi1 · · ·xim . There are not any nontrivial positive semidefinite

tensors when m is odd. Let us recall that, given an m-th order tensor A = (ai1···im) ∈ R[m,n]

and x ∈ Rn, then A xm−1 ∈ Rn is given by(
A xm−1)

i :=
n

∑
i2,...,im=1

aii2···imxi2 · · ·xim, for each i = 1, . . . ,n.



236 CHAPTER 5. M-MATRICES AND RELATED PROBLEMS

Definition 5.10. (see [34] or page 192 of [90]) A tensor A ∈R[m,n] is called a P-tensor if for
each nonzero x ∈ Rn there exists an index i ∈ N such that

xm−1
i (A xm−1)i > 0. (5.23)

A tensor A ∈ R[m,n] is called a P0-tensor if for each nonzero x ∈ Rn there exists some index
i ∈ N such that

xi 6= 0 and xm−1
i (A xm−1)i ≥ 0. (5.24)

In [93] it was shown that in the even order case a symmetric tensor is positive definite
(semidefinite) if and only if it is a P-tensor (P0-tensor). Finally, let us introduce the defi-
nition of BR

π -tensor from [80].

Definition 5.11. Let π = (π1, . . . ,πn) be a nonnegative vector satisfying (5.18), let i1, . . . , im ∈
N and let πi1i2···ik := πi1πi2 · · ·πik with k ≤ m. Given a tensor A = (ai1···im) ∈ R[m,n] and the
vector R = (Ri)i∈N formed by its row sums, we say that A is a BR

π -tensor ((BR
π)0-tensor) if R

is positive (nonnegative) and, for all k ∈ N,

πi2···imRk > aki2···im (≥ aki2···im), with δki2···im = 0. (5.25)

When π j =
1
n for j ∈ N this definition of a BR

π -tensor ((BR
π)0-tensor) coincides with that

of a B-tensor (B0-tensor).
BR

π -tensors give a new subclass of P-tensors whenever they have odd order and of positive
definite tensors whenever they are symmetric with even order. The key to prove these results
lies on the use of the right decomposition of the tensor. Our first result gives a decomposition
that relates BR

π -tensors to SDD M-tensors.

Theorem 5.12. (Theorem 3.1 of [80]) Let A ∈ R[m,n] be a BR
π -tensor. Then we can write A

as
A = B+C ,

where B is a strictly diagonally dominant M-tensor and C is a nonnegative rank-one tensor.

Let Π = πm ∈R[m,n] and let J ⊆ N. Then we denote by ΠJ a tensor A = (ai1···im) ∈R[m,n]

such that ai1···im = (πm)i1···im = πi1 · · ·πim whenever i j ∈ J for all j = 1, . . . ,m and such that
all its remaining entries are zero. The tensors ΠJ play a key role in the new decomposition
for symmetric BR

π -tensors introduced in [80]. This decomposition was used to prove that a
symmetric BR

π -tensor of even order is positive definite.

Theorem 5.13. (Theorem 3.3 of [80]) Let A ∈R[m,n] be a symmetric BR
π -tensor. Then either

A is a strictly diagonally dominant symmetric Z-tensor or it can be written as

A = M +
s

∑
i=1

hiΠ
Ji, (5.26)

where M is a strictly diagonally dominant Z-tensor, s is a positive integer, hk > 0, Jk ⊆ N for
k = 1, . . . ,s and Js ( Js−1 ( . . .( J1.
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Based on the decompositions introduced in Theorem 5.12 and Theorem 5.13, we have the
following theorem for BR

π -tensors that presents the main results from [80].

Theorem 5.14. (Theorem 4.1 and Theorem 4.3 of [80]) Let A ∈R[m,n] be a BR
π -tensor. Then

we have that:

i) A is a P-tensor whenever it has odd order.

ii) if A is a symmetric tensor of even order, then it is positive definite. In that case, A is
also a P-tensor.

Hence, our extension of BR
π -matrices to the higher order case provides a condition based

on the tensor entries to identify P-tensors and positive definite tensors in some new cases.

5.4.2 Error bounds for LCPs of BR
π-matrices

As we recalled earlier, the class of BR
π -matrices was introduced in [78] and proven to be a

class with positive determinant and of P-matrices whenever π ≥ 0. This condition is not
required in the definition of a BR

π -matrix (see Definition 5.9), but it was used when proving
these properties. In fact, it is a necessary condition for the class to be P-matrices, but not for
the weaker condition of being a class of matrices with positive determinant. We revised these
properties in [83].

Theorem 5.15. (Theorem 1 of [83]) If A is a BR
π -matrix with π ≥ 0, then A is a P-matrix.

The condition π ≥ 0 seems to be a general requirement to work with this class of ma-
trices. In fact, since BR

π -matrices are P-matrices whenever π ≥ 0, they have been studied
in the context of the LCP. Both [42] and [38] presented bounds for LCPs associated to BR

π -
matrices whenever π > 0. But, any BR

π -matrix for any vector π satisfying (5.18) has positive
determinant.

Theorem 5.16. (Theorem 2 of [83]) Let A = (ai j)1≤i, j≤n be a real matrix with positive row
sums. If A is a BR

π -matrix, then detA > 0.

In [83] we focused on the study of BR
π -matrices with π ≥ 0. For that, we started by

presenting a characterization of BR
π -matrices that gives a method for recognizing the class

under the additional condition π ≥ 0. Our characterization also gives a suitable vector π

satisfying (5.18) that can be used to compute bounds for the norm of the inverses of these
matrices as well as bounds for the error of the associated LCPs.

Proposition 5.17. (Proposition 1 of [83]) Let A be a square matrix with positive row sums
and let R = (R1, . . . , ,Rn)

T be the vector formed by the row sums of A. Then there exists a
nonnegative vector π satisfying (5.18) such as A is a BR

π -matrix if and only if

n

∑
j=1

max
i 6= j

(
ai j

Ri
,0
)
< 1. (5.27)
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Remark 5.18. The proof of Proposition 1 in [83] also gives a suitable vector π for a BR
π -

matrix A = (ai j)1≤i, j≤n. This vector is defined as π := (π1, . . . ,πn) with

π j := max
i 6= j

(
ai j

Ri
,0
)
+

k
n

for j = 1, . . . ,n, (5.28)

where k is defined as

k := 1−
n

∑
j=1

max
i 6= j

(
ai j

Ri
,0
)
. (5.29)

As we did with Nekrasov matrices in [81], we have considered two problems with BR
π -

matrices: finding bounds for the norm of their inverses and finding error bounds for the LCP.
The first step for approaching both problems has been finding an appropriate decomposition
for these matrices. The main difference with the decomposition introduced in [42] is that their
decomposition, and also their error bounds for the LCP, depended on an additional parameter
ε .

Proposition 5.19. (Proposition 2 of [83]) Let A = (ai j)1≤i, j≤n be a BR
π -matrix with π j > 0 for

all j and for each i = 1, . . . ,n let γi := max j 6=i {0, mi j
π j
}. Then we can write M = B++C, where

B+ := (mi j−π jγi)1≤i, j≤n is a strictly diagonally dominant Z-matrix with positive diagonal
entries and C is the rank one matrix given by C := (γ1, . . . ,γn)

T (π1, . . . ,πn).

Based on the decomposition given by Proposition 5.19, we obtained the following bound
for the infinity norm of the inverse.

Theorem 5.20. (Theorem 3 of [83]) Let M = (mi j)1≤i, j≤n be a BR
π -matrix with π j > 0 for all

j and let R j,γ j be given as in Definition 5.9 and Proposition 5.19, respectively. Then

‖M−1‖∞ ≤
max1≤i≤n

{
1
πi
−1
}

min1≤i≤n

{
Ri− γi ∑

n
j=1 π j

} . (5.30)

Let us notice that we can apply Theorem 5.20 to any BR
π -matrix satisfying (5.27) using

the vector π given by (5.28). The bound presented in Theorem 5.20 is based on the bound of
Theorem 5.4 for SDD matrices, as it was the case with the bound given by Theorem 5.6 for
Nekrasov matrices. As we did in [81], we also considered using a different bound for SDD
matrices that it is always as good as the one introduced in Theorem 5.4.

Theorem 5.21. (Theorem 4 of [83]) Let M = (mi j)1≤i, j≤n be a BR
π -matrix with π j > 0 for all

j and let R j,γ j be given as in Definition 5.9 and Proposition 5.19, respectively. Then

‖M−1‖∞ ≤ max
1≤i≤n

{
1
πi
−1
}

max
1≤i≤n

zi(B+)

mii− γiπi−hi(B+)
, (5.31)

where B+ is given in Proposition 5.19, hi(B+) = ∑
i−1
j=1

γiπ j−mi j
m j j−γ jπ j

h j(B+)+∑
n
j=i+1(γiπ j−mi j)

and zi(B+) = ∑
i−1
j=1

γiπ j−mi j
m j j−γ jπ j

z j(B+)+1.
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Let us recall that the error of the solution of a LCP (3.3) satisfies bound (5.14) (given
by Theorem 2.3 of [10]) if the matrix defining the LCP is a P-matrix. Hence, the problem
of looking for an error bound transforms into the problem of finding an upper bound for the
infinity norm of the matrix M−1

D given by (5.15).
Given M, a BR

π -matrix for a vector π = (π1, . . . ,πn) with πi > 0 for all i = 1, . . . ,n, we
can define MD = (m̄i j)1≤i, j≤n by (5.15) for any diagonal matrix D = diag(di) with 0≤ di ≤ 1
for all i = 1, . . . ,n . If B+ and C are the matrices given by the decomposition of M given in
Proposition 5.19, then we can define the corresponding matrices B+

D,CD by

CD := DC, B+
D := I−D+DB+. (5.32)

Hence, in [83] we presented the following upper bound for ‖M−1
D ‖∞.

Theorem 5.22. (Theorem 6 of [83]) Suppose that M = (mi j)1≤i, j≤n is a BR
π -matrix for a

vector π with πi > 0 for all i = 1, . . . ,n and let MD = (m̄i j)1≤i, j≤n,CD and B+
D be the matrices

given by (5.15) and (5.32). Then B+
D is a strictly diagonally dominant Z-matrix with positive

diagonal entries and

maxd∈[0,1]n‖M−1
D ‖∞ ≤

max1≤i≤n

{
1
πi
−1
}

min1≤i≤n

{
1,Ri− γi ∑

n
j=1 π j

} , (5.33)

where, for each i = 1, . . . ,n, Ri and γi are given by Definition 5.9 and Proposition 5.19,
respectively.
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Chapter 6

Conclusions and future work

The main topic of the work presented in this dissertation has been the development of efficient
and accurate methods to work with structured classes of matrices. The considered problems
are very common in linear algebra, like solving linear systems of equations, computing eigen-
values, singular values, inverses or determinants. We considered special classes of matrices
and showed how their structure can be exploited to develop methods that can perform much
better than the general ones for those matrices. This comparison does not mean that the usual
methods are not valid, but for structured matrices better methods can be developed. The usual
methods in linear algebra are fundamental and widely used in many applications in industry,
science, engineering... In fact, the ubiquitous presence of numerical linear algebra translates
into many different challenges for researchers. For example, overcoming numerical errors,
dealing with data dimensionality and looking for efficiency. In every case, it seems that one
way to face the incoming challenges in this area should be exploiting all the information
available while developing new methods so that they can be optimized to their particular
framework. In this dissertation, we illustrate this fact computing to high relative accuracy
with subclasses of P-matrices. For us, the key lies in the proper use of the structure of these
matrices. For nonsingular totally positive matrices and nonsingular M-matrices, the use of
the right parametrization means that we can develop methods that avoid subtractions. And
as we have showed with the numerical experiments included in the articles, the error of the
solutions computed this way stays very close to the order of the unit roundoff of the floating
point arithmetic. In double precision, that is of the order of 10−16. We have also consid-
ered more problems, either with these classes of matrices or with some closely related ones.
Some of these problems are finding infinity norm bounds for the inverses, error bounds for
the linear complementarity problem, the study of simple conditions that assure the positivity
of the determinant or the optimal properties of the collocation matrices of tensor products of
normalized B-bases. We also studied the generalization of some classes of matrices to the
higher order case with the objective of finding new simple criteria to identify P-tensors and
positive definite tensors. We now give a summary of the conclusions of the work presented
in this dissertation.

It is known that nonsingular totally positive matrices can be characterized by the ex-

243
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istence of a bidiagonal decomposition. The bidiagonal decomposition provides a natural
parametrization for this class of matrices that has some interesting applications. For instance,
if this factorization is known accurately, it serves as a parametrization to compute the eigen-
values, singular values, the inverse or the solution to some linear systems of equations to high
relative accuracy. Hence, finding a method to compute accurately the bidiagonal decomposi-
tion of a nonsingular totally positive matrix gives a method to solve these problems to high
relative accuracy. Moreover, finding that a class of matrices admits a bidiagonal decomposi-
tion under the right hypotheses gives a way to prove that the class is formed by nonsingular
totally positive matrices. Our main contributions in this area have been the following:

• We have studied the collocation matrices of generalized Laguerre polynomials at de-
creasingly ordered negative nodes. We have proved that these matrices are totally pos-
itive, we have obtained their bidiagonal decomposition and we have showed that it can
be computed to high relative accuracy. See Article 1, [17].

• We have studied the collocation matrices of Bessel polynomials and of reverse Bessel
polynomials at increasingly ordered positive nodes. In both cases, we showed that these
matrices are totally positive and that their bidiagonal decomposition can be computed
to high relative accuracy. See Article 2, [16].

• We have also found the bidiagonal decomposition of multiple generalizations of the
Pascal matrix arising in Combinatorics. We identified when these extensions are totally
positive and when their bidiagonal decomposition can be computed to high relative
accuracy. See Article 6, [18].

• We also considered some matrices based on the q-integers. Some of these matrices are
q-analogues of some well-known examples of totally positive matrices. For instance,
we obtained the bidiagonal decomposition of the q-analogue of the triangular Pascal
matrices and of the symmetrical Pascal matrix and we showed that it can be computed
accurately. We also derived the bidiagonal decomposition of matrices formed by the q-
analogues of the Stirling numbers and we showed that they are totally positive. Finally,
we considered an extension of the generalized Laguerre polynomials based on the q-
integers. We showed that these matrices are totally positive under the same hypotheses
introduced for the generalized Laguerre polynomials and we studied the cases where
their bidiagonal decomposition can be computed to high relative accuracy. See Article
7, [20].

In each of these articles there are numerical experiments that illustrate the great accuracy
achievable using the bidiagonal decomposition. However, for many families of totally pos-
itive matrices, finding a method to compute the bidiagonal decomposition to high relative
accuracy is still an open question. In the presented work we have showcased some tech-
niques that could give a way for finding this representation with the required accuracy for
more matrices, and hence, give a method to solve many problems with them with high rela-
tive accuracy.
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Some important examples of totally positive matrices come from Computer Aided Ge-
ometric Design, where normalized B-bases are fundamental because of their optimal shape
preserving properties. It was recently shown that the collocation matrices of these bases also
satisfy that their minimal eigenvalue and singular value is larger than the minimal eigenvalue
or singular value, respectively, of any collocation matrix of any other normalized totally pos-
itive basis of the same space of functions at the same nodes. Moreover, the ∞-norm condition
number of these collocation matrices is a lower bound for the ∞-norm condition number of
the collocation matrices of any other normalized totally positive basis at the same nodes.

• We showed the optimal conditioning of the collocation matrices of the tensor product
of normalized B-bases with respect to the collocation matrices of tensor products of all
normalized totally positive bases of its spanned function space. Moreover, we proved
that the minimal singular value and eigenvalue of these matrices are larger than the
minimal singular value and eigenvalue, respectively, of any other collocation matrix of
any tensor product of normalized totally positive bases of that space. See Article 8,
[19].

Nonsingular M-matrices are another important subclass of P-matrices. It is known that
the row sums and off-diagonal entries of a nonsingular diagonally dominant M-matrix serves
as a parametrization that can be used to compute their inverse, determinant or singular values
to high relative accuracy. We searched for more classes of nonsingular M-matrices that ad-
mitted a representation in terms of a parametrization that could be used to achieve accurate
computations. Our main contributions in this area are the following:

• We found a parametrization for n× n Nekrasov Z-matrices with positive diagonal en-
tries that can be used to compute the determinant and the inverse of these matrices to
high relative accuracy with a computational cost of O(n3) elementary operations. See
Article 3, [79].

• We also found a parametrization for n×n B-matrices that can be used to compute their
determinant to high relative accuracy and we showed that this can be achieved with
a computational cost of O(n3) elementary operations. Based on this method and the
techniques that we studied for Nekrasov Z-matrices, we derived a parametrization for
B-Nekrasov matrices and a method to compute the determinant of this class to high
relative accuracy. In this case, the computational cost is also of the order of O(n3)
elementary operations. See Article 10, [82].

We can see that our parametrization for Nekrasov matrices resembles the one known for
diagonally dominant M-matrices. In fact, these classes are connected by the existence of a di-
agonal scaling matrix that can be used to transform a Nekrasov matrix into a diagonally dom-
inant (or a strictly diagonally dominant) matrix. We took advantage of this relationship to de-
velop accurate methods for Nekrasov matrices based on the techniques known for diagonally
dominant M-matrices. The existence of such a scaling matrix is a general property that char-
acterizes H-matrices. In general, this property would let us derive a method to perform ac-
curate computations with more subclasses of M-matrices if the right scaling/parametrization
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is available. For example, the class of QN-matrices (Quasi-Nekrasov matrices) gives an ex-
tension of Nekrasov matrices and an adequate scaling matrix has been found under certain
additional hypotheses, so this would give a good starting point for the search of more condi-
tions that assure computations with high relative accuracy. The family of B-matrices and their
extensions are also closely related to M-matrices. Based on this relationship, we managed to
find a good parametrization that allowed us to compute the determinant of this family and of
B-Nekrasov matrices to high relative accuracy. For these classes, our algorithms are based on
a decomposition of the form B=B++C, where C is a rank one matrix. From this decomposi-
tion, we based our method on the well-known lemma for the computation of the determinant
of a matrix with a rank-one perturbation. However, we can not assure high relative accuracy
for the computation of the inverse following the same approach. The natural way of comput-
ing the inverse from that decomposition would be using the Sherman-Morrison formula for
the inverse. However, it implies subtractions, and hence, the high relative accuracy is not as-
sured anymore. Therefore, the question of whether it is possible to compute accurate inverses
for these classes from our suggested parametrizations (or from different ones) remains open.

One interesting question arising in the study of the linear complementarity problem would
be developing good error bounds whenever the matrix defining it is a P-matrix, since in
that case the existence and uniqueness of its solution is assured. For the particular case of
subclasses of nonsingular M-matrices, the knowledge of adequate scaling matrices can be
used to derive new error bounds for this problem.

• We introduced two different scaling matrices whose product with a Nekrasov matrix
is a strictly diagonally dominant matrix. Based on these scaling matrices, we devel-
oped new bounds for the infinity norm of the inverses of Nekrasov matrices as well as
new error bounds for linear complementarity problems whose associated matrices are
Nekrasov. See Article 4, [81].

• We also considered another subclass of P-matrices that extends the class of B-matrices
called BR

π -matrices. For this class, we showed that a simple decomposition can be used
to derive infinity norm bounds for their inverses as well as error bounds for the linear
complementarity problem. We also revised some theoretical results on the class, we
proved that they have positive determinant and that they are P-matrices whenever the
vector π that defines the class is nonnegative. See Article 11, [83].

In many applications, the underlying data structure might encourage the use of tensors
(hypermatrices) to capture special features. Some of the classical problems encountered
working with matrices can be amplified when we consider a higher order case. For example,
recognizing a general P-matrix is already a tasking problem and the cost increases when we
consider the recognition of P-tensors. Hence, it is of interest to find easy criteria based on
the tensor entries that can be used to recognize some subclasses of P-tensors and of positive
definite tensors in polynomial time. In fact, this problem was one of the motivations for the
extension of the class of B-matrices to B-tensors.

• We defined the class of BR
π -tensors as a extension of BR

π -matrices to the higher order
case. Our main results for the class are that BR

π -tensors of odd order are P-tensors and
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that symmetric BR
π -tensors of even order are P-tensors or, equivalently, positive definite.

See Article 5, [80].

A related open problem is finding other classes of matrices with positive determinant that
can be extended to the higher order case, providing new subclasses of P-tensors and positive
definite tensors. However, this is not always possible. Some matrix definitions do not have
a tensor counterpart that inherits the desired properties. There are important classes of ma-
trices, not related to the class of B-matrices, that could have applications in this area. For
instance, we are interested in the study of the extension of simple conditions related to the
family of totally positive matrices. For example, the family of T P2 matrices are characterized
by the sign of their 2× 2 minors, which are all nonnegative. We would like to consider the
extension of conditions of this kind based on the use of hyperdeterminants and see if they
could be used to find useful eigenvalue localization criteria for tensors.

Another example of well-known structured matrices is given by Toeplitz matrices, which
are matrices with constant diagonals. The case of tridiagonal Toeplitz matrices is quite illus-
trative in our work because any totally positive tridiagonal Toeplitz matrix can be transformed
into an nonsingular M-matrix just by changing the sign of its off-diagonal entries. For the
family of tridiagonal Toeplitz matrices, we have studied and classified when they are exam-
ples of P-matrices. We also considered the bidiagonal decomposition of both M-matrices and
totally positive matrices of this class, showed the condition that assures that it can be com-
puted to high relative accuracy and used this decomposition to solve many problems to high
relative accuracy. As another remarkable property, the inverse of a nonsingular tridiagonal
Toeplitz M-matrix is a totally positive matrix, so we also derived the bidiagonal decomposi-
tion of those inverses. Finally, we showed that we can compute the bidiagonal decomposition
of any sign skew-symmetric tridiagonal matrix with positive diagonal entries to high relative
accuracy. These matrices are always P-matrices, and we showed that the bidiagonal decom-
position can be used to compute their inverse and all their minors to HRA. See Article 9, [21].

The Kronecker product has proven to be an incredibly useful tool that can be used to
build fast and practical numerical methods. We showcased its good properties when deriving
optimal properties for the tensor product of normalized B-bases. The Kronecker product can
be used for computing approximations for matrices and tensors whose size can be out of any
manageable range, which is usually one of the main challenges found in applications that
deal with a lot of data. The right use of approximation techniques should allow us to keep the
fundamental structure and information from the data while providing a noticeable reduction
on the order of the problem. For that purpose, the Kronecker product can be used to find
approximations with good properties. One of the future tasks involves developing a method
that allows us to compute approximations of the Fisher matrix associated to the probability
distribution of a deep neural network. The size of this matrix of the square of the number of
parameters of the net, which can be of the order of millions in recent networks. Hence, we
would like to find techniques that let us approximate this matrix by the Kronecker product of
smaller ones, in a way that the resulting matrix is positive semidefinite and can be used as
regularization while training a network. The interest on this problem comes from my research
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stay at FORWISS (University of Passau).

The Bernstein polynomials in one and multiple variables have been fundamental in the
development of Computer Aided Geometric Design. Different extensions of these bases
have been proposed by many authors, looking for good properties useful in the context of
design and approximation. For example, the q-Bernstein polynomials have been introduced
as an alternative based on the q-integers for the approximation of functions of one variable.
Following our work studying totally positive matrices based on the q-integers, we started
the study of an extension of q-Bernstein polynomials to a triangular domain. Our aim is
introducing a corner cutting algorithm that can be used in the design of surfaces based on
these polynomials with a shape parameter.



Chapter 7

Conclusiones y trabajo futuro

El tema principal del trabajo de investigación presentado en esta memoria ha sido el desarro-
llo de métodos numéricos eficientes y precisos para trabajar con clases de matrices estructura-
das. Los problemas considerados son muy comunes en álgebra lineal, como resolver sistemas
de ecuaciones lineales, calcular valores propios, valores singulares, inversas o determinantes.
Hemos estudiado clases de matrices especiales y hemos mostrado cómo se puede aprovechar
su estructura al desarrollar métodos numéricos para obtener resultados mucho mejores que
los que se obtendrían utilizando los métodos generales. Esta comparación no quiere decir que
los métodos comunes no sirvan, pero cuando se trabaja con este tipo de matrices su estructura
especial permite desarrollar métodos con mejores propiedades. Las técnicas habituales en ál-
gebra lineal numérica son fundamentales en muchas aplicaciones en industria, ciencia, inge-
niería... De hecho, la presencia generalizada del álgebra lineal numérica se traduce en nuevos
desafíos para los investigadores, como son controlar el efecto de los errores numéricos, lidiar
con el problema de la dimensionalidad de los datos o la búsqueda de la eficiencia en los méto-
dos desarrollados. En cualquier caso, una forma adecuada de afrontar estos desafíos debería
ser aprovechar toda la información de la que se dispone para desarrollar métodos numéricos
optimizados y adaptados a su contexto particular. En esta tesis, hemos desarrollado métodos
que buscan aprovechar la estructura conocida de matrices especiales para lograr cálculos con
alta precisión relativa. En todo caso, las matrices consideradas son subclases de P-matrices.
Para nosotros, la clave ha sido utilizar una representación o parametrización distinta de estas
matrices. Para las matrices totalmente positivas no singulares así como para las M-matrices
diagonal dominantes, la utilización de una parametrización adecuada implica que podemos
desarrollar métodos numéricos que evitan restas. Y, como se muestra en los experimentos
numéricos presentados en los artículos, el error de las soluciones calculadas siguiendo esta
estrategia permanece muy próximo al orden de la unidad de redondeo de la aritmética de pun-
to flotante utilizada. En doble precisión, eso se traduce en un valor próximo a 10−16. Además
de obtener resultados con alta precisión relativa, también hemos estudiado otros problemas
con estas matrices o con otras clases muy relacionadas. Algunos de los problemas considera-
dos son la obtención de cotas para la norma infinito de la inversa, el desarrollo de cotas para
el error del problema de complementariedad lineal, la búsqueda de condiciones sencillas que
aseguren la positividad del determinante o el estudio de propiedades óptimas de las matrices
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de colocación del producto tensorial de B-bases normalizadas. También hemos estudiado la
extensión de clases de matrices al caso de mayor dimensión con el objetivo de desarrollar
nuevas condiciones para identificar clases de P-tensores y de tensores definidos positivos. A
continuación damos un resumen de las principales conclusiones obtenidas en el trabajo de
investigación presentado en esta memoria.

Las matrices totalmente positivas no singulares se caracterizan por la existencia de una
factorización bidiagonal. Esta factorización bidiagonal sirve como parametrización natural de
la clase y puede ser de mucha utilidad para trabajar con ella. En particular, si esta represen-
tación es conocida de forma precisa, sirve como parametrización para el cálculo de valores
propios, valores singulares, inversas así como para el cálculo de la solución de ciertos sis-
temas de ecuaciones lineales con alta precisión relativa. Por tanto, encontrar un método que
permita obtener la factorización bidiagonal de una matriz totalmente positiva no singular con
alta precisión relativa nos da una forma de resolver los problemas mencionados previamente
también con alta precisión relativa. Además, la factorización bidiagonal también puede servir
como herramienta para identificar nuevas clases de matrices totalmente positivas, puesto que
la existencia de una descomposición de este estilo bajo las hipótesis adecuadas caracteriza a
la clase. Nuestra aportación en este área ha sido la siguiente:

• Hemos estudiado las matrices de colocación de los polinomios de Laguerre generaliza-
dos en nodos negativos ordenados de forma decreciente. Hemos demostrado que estas
matrices son totalmente positivas, hemos obtenido su factorización bidiagonal y hemos
mostrado como se puede obtener con alta precisión relativa. Ver Article 1, [17].

• Se han estudiado las matrices de colocación de los polinomios de Bessel y de los poli-
nomios de Bessel reversos en nodos positivos ordenados de forma creciente. En ambos
casos, hemos visto que estas matrices son totalmente positivas y que su factorización
bidiagonal puede calcularse con alta precisión relativa. Ver Article 2, [16].

• Hemos obtenido la factorización bidiagonal de diversas generalizaciones de la matriz
de Pascal utilizadas en Combinatoria. Hemos identificado los casos en los que estas ge-
neralizaciones son matrices totalmente positivas y los casos en los que su factorización
bidiagonal puede ser calculada con alta precisión relativa. Ver Article 6, [18].

• También hemos estudiado varias clases de matrices de q-enteros. Algunas de estas ma-
trices son q-análogos de matrices totalmente positivas muy conocidas. En particular,
hemos obtenido la factorización bidiagonal del q-análogo de la matriz triangular de
Pascal así como de la matriz de Pascal simétrica y hemos mostrado que se puede calcu-
lar de forma precisa. También hemos mostrado que se puede calcular la factorización
bidiagonal de matrices formadas por q-análogos de los números de Stirling con al-
ta precisión relativa y que estas matrices son totalmente positivas. Finalmente, hemos
estudiado una extensión de los polinomios de Laguerre generalizados basada en los
q-enteros. Hemos demostrado que estas matrices son totalmente positivas bajo las mis-
mas hipótesis utilizadas al estudiar los polinomios generalizados de Laguerre y hemos
identificado los casos en los que su factorización bidiagonal puede ser calculada con
alta precisión relativa. Ver Article 7, [20].
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En cada uno de estos artículos se han incluido experimentos numéricos que ilustran la
gran precisión que se puede lograr partiendo de la factorización bidiagonal. Sin embargo,
para muchas clases de matrices totalmente positivas todavía no se ha encontrado un método
para conseguir esta parametrización con alta precisión relativa. En esta memoria hemos mos-
trado técnicas que pueden servir para obtener esta representación de forma precisa al estudiar
nuevas clases de matrices totalmente positivas, y, por tanto, de lograr un método para realizar
cálculos con alta precisión relativa al trabajar con dichas clases.

Algunos de los ejemplos más importantes de matrices totalmente positivas vienen del
campo del Diseño Geométrico Asistido por Ordenador, donde las B-bases normalizadas jue-
gan un papel fundamental debido a sus óptimas propiedades de preservación de forma. Re-
cientemente, se ha demostrado que las matrices de colocación de estas bases también cum-
plen que su valor propio y su valor singular más pequeños son una cota superior de los valores
propios y valores singulares más pequeños, respectivamente, de las matrices de colocación
(utilizando los mismos nodos) de cualquier otra base totalmente positiva normalizada del es-
pacio de funciones que genera dicha B-base. Además, el número de condición en la norma
infinito de estas matrices de colocación es una cota inferior del número de condición en nor-
ma infinito de todas las matrices de colocación (en los mismos nodos) de bases totalmente
positivas normalizadas de ese espacio de funciones.

• Hemos mostrado el condicionamiento óptimo de las matrices de colocación del pro-
ducto tensorial de B-bases normalizadas con respecto a las matrices de colocación de
productos tensoriales de cualquier base totalmente positiva normalizada de su espacio
de funciones generado. Además, hemos demostrado que el valor singular y el valor
propio más pequeños de estas matrices son mayores que los valores singulares y va-
lores propios más pequeños, respectivamente, de cualquier matriz de colocación de
un producto tensorial de bases totalmente positivas normalizadas de dicho espacio de
funciones. Ver Article 8, [19].

Las M-matrices no singulares forman otra subclase muy importante de las P-matrices. Es
conocido que las sumas de filas y las entradas extradiagonales de una M-matriz no singu-
lar diagonal dominante sirve como parametrización para calcular su inversa, determinante y
valores singulares con alta precisión relativa. Hemos buscado nuevas clases de M-matrices
que permitan una representación en términos de una parametrización que se pueda utilizar
para lograr cálculos con alta precisión relativa. Nuestros resultados en este área han sido los
siguientes:

• Hemos obtenido una parametrización para Z-matrices de Nekrasov n×n con entradas
diagonales positivas que se puede utilizar para calcular el determinante y la inversa de
estas matrices con alta precisión relativa con un coste computacional de O(n3) opera-
ciones elementales. Ver Article 3, [79].

• También hemos obtenido una parametrización para las B-matrices n× n que se puede
utilizar para calcular su determinante con alta precisión relativa y hemos demostrado
que se puede lograr con un método con un coste computacional de O(n3) operaciones
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elementales. Basándonos en este método y en las técnicas que hemos estudiado para
las Z-matrices de Nekrasov, hemos obtenido una parametrización adecuada para las
matrices B-Nekrasov y un método que, partiendo de dicha parametrización, permite
calcular su determinante con alta precisión relativa con un coste computacional también
del orden de O(n3) operaciones elementales. Ver Article 10, [82].

Podemos ver que nuestra parametrización se asemeja a la parametrización utilizada con
las M-matrices diagonal dominantes. De hecho, estas clases están conectadas por la existen-
cia de una matriz diagonal de escalado que puede utilizarse para transformar una matriz de
Nekrasov en una matriz diagonal dominante (o estrictamente diagonal dominante). Nos he-
mos aprovechado de esta relación para lograr métodos que aseguren la alta precisión relativa
al trabajar con matrices de Nekrasov basándonos en las técnicas conocidas para M-matrices
diagonal dominantes. La existencia de una matriz de escalado de esta forma es una propiedad
que caracteriza las H-matrices. En general, esta propiedad nos debería permitir desarrollar
métodos precisos para más subclases de M-matrices no singulares si conocemos un escalado
o parametrización adecuados. Por ejemplo, la clase formada por las QN-matrices (matrices
cuasi Nekrasov) proporciona una generalización de las matrices Nekrasov para la que se ha
encontrado una matriz de escalado adecuada bajo ciertas hipótesis adicionales, por lo que ser-
viría como un buen punto de partida en la búsqueda de más condiciones que permitan lograr
métodos con alta precisión relativa. La familia de B-matrices y sus generalizaciones están
muy relacionadas con las M-matrices. Apoyándonos en esa relación, obtuvimos una parame-
trización para las B-matrices y otra para las matrices B-Nekrasov que nos permite calcular
sus determinantes con alta precisión relativa. Para estas clases, nuestros algoritmos parten de
una descomposición de la forma B = B++C, donde C es una matriz de rango uno. Partiendo
de dicha descomposición, desarrollamos métodos numéricos muy precisos basándonos en la
conocida fórmula para el cálculo del determinante de una matriz a la que se ha aplicado una
perturbación de rango uno. Sin embargo, no podemos asegurar la alta precisión relativa para
el cálculo de la inversa siguiendo una estrategia similar. La forma natural de calcular la inver-
sa partiendo de dicha descomposición sería utilizar la fórmula de Sherman-Morrison para la
inversa. Sin embargo, la utilización de esta fórmula acarrea restas, por lo que ya no se podría
asegurar que el cálculo se llevara a cabo con alta precisión relativa. Por tanto, la cuestión de
si es posible calcular la inversa de las matrices pertenecientes a estas clases con alta precisión
relativa permanece abierto.

En el estudio del problema de complementariedad lineal, un problema que atrae mucha
atención es el desarrollo de buenas cotas para el error cuando la matriz asociada es una P-
matriz, puesto que en este caso la existencia y unicidad de la solución está asegurada. Para el
caso particular de subclases de M-matrices no singulares, el conocimiento de una matriz de
escalado adecuada puede ser utilizada para obtener nuevas cotas de error para este problema.

• Hemos introducido dos matrices de escalado diferentes cuyo producto con una matriz
de Nekrasov es una matriz estrictamente diagonal dominante. Basándonos en estas ma-
trices de escalado, hemos desarrollado nuevas cotas para la norma infinito de la inversa
de una matriz Nekrasov así como nuevas cotas del error del problema de complemen-
tariedad lineal cuando su matriz asociada es una matriz Nekrasov. Ver Article 4, [81].
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• También hemos trabajado con otra subclase de las P-matrices, que extiende la clase
de las B-matrices, llamada BR

π -matrices. Para esta clase, hemos conseguido una sen-
cilla descomposición que puede ser usada para obtener cotas de la norma infinito de
sus inversas así como cotas para el error del problema de complementariedad lineal.
Además revisamos varios resultados teóricos sobre la clase. Demostramos que tienen
determinante positivo y que son P-matrices siempre que el vector π que define la clase
sea no negativo. Ver Article 11, [83].

En muchas aplicaciones, la utilización de tensores (hipermatrices) permite capturar pro-
piedades estructurales importantes de los datos con los que se trabaja. Pero, al considerar este
caso de mayor orden, algunos de los problemas comunes encontrados al trabajar con matrices
se ven amplificados. Por ejemplo, el problema de reconocer un P-tensor general es aún más
complejo que el problema de reconocer una P-matriz. Por tanto, es interesante desarrollar
criterios sencillos basados en las entradas del tensor que puedan ser usados para reconocer
más clases de P-tensores y de tensores definidos positivos con un coste computacional de
orden polinómico. De hecho, este problema fue una de las principales razones que motivó la
extensión de la definición de la clase de las B-matrices a B-tensores.

• Hemos definido BR
π -tensor, dando una extensión de la clase formada por las BR

π -matrices
al caso tensorial. Nuestros resultados principales para esta nueva clase de tensores son
que los BR

π -tensores de orden impar son P-tensores y que los BR
π -tensores simétricos

de orden par son P-tensores y, de forma equivalente, definidos positivos. Ver Article 5,
[80].

Un problema abierto relacionado sería buscar más clases de matrices con determinante
positivo que puedan ser extendidas al caso tensorial, de forma que proporcionen nuevas cla-
ses de P-tensores y/o de de tensores definidos positivos. Sin embargo, esto no es siempre
posible. Algunas definiciones matriciales no tienen un análogo para tensores que herede las
propiedades deseadas. Por otro lado, hay clases muy importantes de matrices, no relacionadas
con las B-matrices, que podrían tener aplicaciones potenciales en este campo. En particular,
estamos interesados en el estudio de la extensión de condiciones sencillas relacionadas con
las matrices totalmente positivas. Por ejemplo, las matrices T P2 se caracterizan por el signo
de sus menores 2×2, que son todos no negativos. Nos gustaría considerar la extensión de con-
diciones de este estilo basadas en el uso de hiperdeterminantes para comprobar si se podrían
aplicar en el desarrollo de criterios útiles de localización de valores propios para tensores.

Otro ejemplo de matriz estructurada muy conocido es el de las matrices de Toeplitz, ca-
racterizadas porque en sus diagonales se repite siempre el mismo elemento. El caso de las
matrices tridiagonales de Toeplitz es muy ilustrativo en este trabajo porque cualquier matriz
tridiagonal de Toeplitz que sea totalmente positiva puede ser transformada en una M-matriz
cambiando simplemente el signo de sus entradas extradiagonales. Hemos estudiado y clasifi-
cado los casos en los que las matrices de Toeplitz tridiagonales son ejemplos de P-matrices.
También hemos estudiado la factorización bidiagonal tanto de las M-matrices como de las
matrices totalmente positivas de esta clase, hemos hallado la condición que nos permite ase-
gurar que esta parametrización se puede conseguir con alta precisión relativa y la hemos uti-
lizado para resolver diversos problemas con alta precisión relativa. Otra propiedad notoria de
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esta clase es que la inversa de una M-matriz de Toeplitz tridiagonal no singular es una matriz
totalmente positiva, por lo que también hemos obtenido la factorización bidiagonal de esas
inversas. Finalmente, hemos demostrado que se puede obtener la factorización bidiagonal de
cualquier matriz tridiagonal con estructura de signos antisimétrica y entradas diagonales po-
sitivas con alta precisión relativa. Estas matrices son siempre P-matrices, y hemos mostrado
cómo se puede utilizar su factorización bidiagonal para calcular sus inversas y todos sus me-
nores con alta precisión relativa. Ver Article 9, [21].

El producto de Kronecker proporciona una herramienta muy útil para el desarrollo de
métodos numéricos rápidos y prácticos. En esta memoria hemos mostrado alguna de las muy
buenas propiedades del producto de Kronecker utilizándolo para demostrar propiedades óp-
timas del producto tensorial de B-bases normalizadas. El producto de Kronecker se puede
utilizar para calcular aproximaciones manejables de matrices y tensores cuyo tamaño ori-
ginal excede el límite manejable en nuestro contexto, que suele ser uno de las dificultades
más comunes encontradas en aplicaciones que manejan grandes cantidades de datos. El uso
adecuado de técnicas de aproximación nos debería permitir mantener la estructura e infor-
mación fundamentales de nuestros datos proporcionándonos a la vez una reducción notable
en el orden del problema. Con este fin, el producto de Kronecker es una herramienta con
muchos usos potenciales. Una de las tareas futuras consistirá en el desarrollo de un método
que nos permita calcular aproximaciones de la matriz de información de Fisher asociada a la
distribución de probabilidad de una red neuronal. El tamaño de esta matriz es el cuadrado del
número de parámetros empleados en la red, lo que puede ser del orden de millones en aplica-
ciones actuales. Por tanto, nos gustaría desarrollar técnicas que nos permitan aproximar esta
matriz por el producto de Kronecker de otras más pequeñas, de modo que la aproximación
resultante sea semidefinida positiva y pueda ser utilizada como regularización al reentrenar
una red neuronal. El interés en el estudio de este problema surgió durante mi estancia en el
instituto FORWISS, en la Universidad de Passau.

Los polinomios de Bernstein en una y varias variables han sido fundamentales en el desa-
rrollo del Diseño Geométrico asistido por Ordenador. Muchos autores han estudiado dis-
tintas extensiones de estos polinomios buscando nuevas bases con buenas propiedades en
el contexto del diseño y la aproximación. Por ejemplo, los polinomios de q-Bernstein han
proporcionado una alternativa basada en los q-enteros para la aproximación de funciones de
una variable. Continuando nuestro trabajo sobre matrices totalmente positivas de q-enteros,
hemos comenzado el estudio de una extensión de los polinomios de q-Bernstein al caso de
dominio triangular. Nuestro objetivo es desarrollar un algoritmo de corte de esquinas que
permita diseñar superficies basadas en estos polinomios con un parámetro de forma.
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