
Trabajo Fin de Grado

Datos en un contenedor

Data in a container

Autor

Jaime Conchello Bauto

Director

Francisco Javier López Pellicer

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2022

Agradecimientos

Me gustaŕıa comenzar dando las gracias Francisco Javier López Pellicer por haberme
ayudado durante todo el proyecto. Sin duda, su esfuerzo y dedicación han sido claves
para sacar adelante este TFG.

También quiero agradecer a todos los compañeros y compañeras que he conocido
durante el transcurso del grado y con los que he pasado muy buenos momentos.

Por último, y en especial, quiero dar las gracias a mi familia por haberme apoyado
siempre que lo necesitaba durante todo estos años.

II

Resumen

Los métodos actuales para distribuir conjuntos de datos se basan principalmente
en la compartición directa de ficheros con la información o en el desarrollo de
una solución integradora que ofrezca una API de acceso para cada caso de uso.
Una ĺınea no explorada todav́ıa es hacer uso de la funcionalidad ofrecida por la
tecnoloǵıa de contenedores Docker. Esta permite empaquetar código junto con todas sus
dependencias y desplegarlo en entornos heterogéneos empleando ficheros que describen
servicios y con una herramienta de ĺınea de comandos. En este Trabajo Fin de Grado, se
desarrollará una herramienta que permita configurar mediante un script la construcción
y despliegue automático de un contenedor Docker que integre y exponga un conjunto
de datos a través de una API tipo Web y una API tipo Remote Procedure Call o
RPC construida en base de la especificación del conjunto de datos. Además, cada
contenedor dispondrá de una página web con información sobre los datos almacenados
y la capacidad de probar las interfaces expuestas de forma interactiva.

La solución propuesta simplifica el proceso de distribución de conjuntos de datos.
A diferencia de las aproximaciones actuales, es posible compartir un único contenedor
que cuente con todo lo necesario para que los distintos tipos de consumidores finales
(aplicaciones web, sistemas de información, etc.) consulten la información que deseen
a través de las diferentes interfaces expuestas. De este modo, no es necesario que los
consumidores procesen manualmente las fuentes de datos, se eliminan los problemas
de compatibilidad al trabajar en entornos heterogéneos y se garantiza la integridad de
la información almacenada.

Como conclusión, el desarrollo del Trabajo Fin de Grado ha permitido desarrollar
una primera aproximación a este modelo de distribución de conjuntos de datos. Supone
un paso importante, ya que, se ha podido comprobar que la propuesta tiene potencial y
ha permitido sentar la base sobre la que continuar trabajando en futuros trabajos. En
el repositorio de Docker Hub https://hub.docker.com/r/776012/diac, se pueden
descargar dos contenedores generados con la herramienta desarrollada en este Trabajo
Fin de Grado y que almacenan y exponen datos abiertos de empresas reales.

III

https://hub.docker.com/r/776012/diac

Índice

1. Introducción 1
1.1. Motivación . 1
1.2. Objetivo del Trabajo Fin de Grado . 3
1.3. Alcance . 3
1.4. Estructura del documento . 4

2. Análisis 5
2.1. Selección de tecnoloǵıas . 5
2.2. Prueba de concepto . 7
2.3. Conclusiones de la fase de análisis . 11

3. Diseño 12
3.1. Arquitectura del sistema . 12
3.2. Diseño de la descripción del contenedor 13

3.2.1. Descripción del modelo de datos 14
3.2.2. Descripción de las consultas . 15
3.2.3. Especificación de las interfaces de acceso 16
3.2.4. Descripción de la construcción 17

3.3. Construcción del contenedor . 18
3.4. Conclusiones de la fase de diseño . 19

4. Desarrollo 20
4.1. Documentación del contenedor . 20
4.2. Gestión de la configuración . 20
4.3. Entorno de ejecución . 21
4.4. Dificultades encontradas . 21

5. Validación 22
5.1. Catálogo de Netflix . 22
5.2. Alojamientos y reseñas de Airbnb . 23
5.3. Conclusiones de la validación . 24

6. Conclusiones 25
6.1. Objetivos alcanzados . 25
6.2. Trabajo futuro . 25
6.3. Reflexiones personales . 26

Acrónimos 27

Glosario 28

Referencias 29

Lista de Tablas 31

Lista de Figuras 32

Lista de Código 33

IV

A. Gestión del proyecto 34

B. Estudio de Kotlin 35
B.1. Soporte para scripts . 35
B.2. Definición de un DSL . 35

C. Desarrollo de la solución 37
C.1. Motor de plantillas . 37
C.2. Ejecución de scripts . 41

D. Prueba catálogo de Netflix 42

E. Prueba publicaciones Airbnb 48

V

1. Introducción

Un contenedor Docker es una tecnoloǵıa que, mediante virtualización a nivel de
sistema operativo, es capaz de encapsular código junto a sus dependencias para ser
ejecutado en entornos heterogéneos. Las simplificaciones que aporta al proceso de
distribución y despliegue de aplicaciones han potenciado su uso durante los últimos
años. Pese a ello, todav́ıa no se ha desarrollado una alternativa que permita integrar y
distribuir conjuntos de datos de forma automática, siendo los desarrolladores quienes
deben crear manualmente sus propias soluciones para cada caso de uso.

El objetivo de este Trabajo Fin de Grado es construir una herramienta mediante
la cual un desarrollador pueda v́ıa un script, configurar la construcción y despliegue
automático de un contenedor Docker que distribuya y despliegue un determinado
conjunto de datos exponiendo, por ejemplo, una API tipo Web y una API tipo Remote
Procedure Call o RPC como interfaces de acceso en modo lectura.

1.1. Motivación

No se puede ignorar que actualmente se potencia cada vez más el desarrollo y
creación de repositorios de recursos abiertos, en los que cada d́ıa se producen ingentes
cantidades de datos [1]. Pese a ello, todav́ıa no existe un método que permita la
distribución de toda esta información de una forma sencilla y eficaz. En la mayoŕıa de
las ocasiones, estos datos son publicados o distribuidos directamente en ficheros [2],
que dif́ıcilmente pueden ser procesados para extraer la información buscada, o es
necesario que se desarrolle una solución a medida para ponerlos a disposición de los
usuarios. Tampoco se debe olvidar que existen ciertos entornos dónde es imprescindible
garantizar la integridad del contenido. Por ejemplo, cuando este haya de ser empleado
por un tercero y sea preciso asegurar su reproducibilidad [3], extremo que es mucho más
dif́ıcil de cumplir en el caso de que se opte por compartir de manera directa un fichero
con la información que corresponda. Ya que, al contrario de un contenedor Docker [4],
formado por diferentes capas de código y dependencias no modificables, un fichero
con datos se puede modificar de forma sencilla. En este último caso, seŕıa necesario
utilizar funciones hash para asegurar la integridad de la información. De este modo,
aunque la compartición directa de ficheros o el desarrollo puntual de una solución
distribuidora pueda resultar útil en entornos dónde se gestionen pequeños volúmenes
de información. Cuando se traslada a ámbitos en los que estos parámetros escalan y
se incluyen relaciones entre los datos, se produce una considerable pérdida de eficiencia.

Todo lo anteriormente comentado ha motivado la realización de este Trabajo
Fin de Grado. Se busca transformar la forma en la que se distribuyen conjuntos de
datos. En vez de compartir uno o varios ficheros con la información pertinente, se
puede poner a disposición del usuario un contenedor que, almacene los datos y ofrezca
diferentes interfaces de acceso en modo lectura a los mismos. Antes de generar la
imagen del contenedor definitiva, se puede configurar todo aquello que es ejecutado
dentro del mismo. De este modo, es posible definir previamente a su distribución todas
las consultas que se consideren más relevantes y aśı ofrecer un acceso estandarizado
que además sea capaz de soportar múltiples consultas concurrentemente. Este formato
de compartición recibe el nombre de Data in a container. Se utiliza este término para
representar la herramienta que recibe un script de configuración y un conjunto de

1

datos como entrada y genera como salida un contenedor. El uso de la tecnoloǵıa Docker
garantiza que los contenedores puedan ser desplegados en entornos heterogéneos y,
gracias a su modo de ejecución aislado del resto del sistema, protege la fuente de
datos almacenada frente a posibles intentos de modificación por parte de los usuarios.
A diferencia de la aproximación actual, donde las soluciones de integración para
distribuir conjuntos de datos deben adaptarse a las dependencias y requisitos de
cada entorno donde se ejecuten, trabajar con contenedores permite eliminar ese
proceso de adaptación y limitarse a la implementación de la solución. Por último, cabe
destacar que Docker cuenta con la plataforma Docker Hub [5] para publicar imágenes de
contenedores y que aśı los usuarios puedan descargarlas de una forma sencilla y directa.

En la Figura 1, se muestra un esquema en alto nivel de la solución propuesta.
Mediante un script de configuración se describe el contenido del contenedor Docker,
que información se almacena, cuál es su modelo de datos, que consultas se definen sobre
esos datos y en que interfaces se exponen. Además, enfocado en su distribución, en el
script de configuración se puede declarar información referente a la licencia, nombre o
fuente de los datos almacenados. Los conjuntos de datos a los que se hace referencia
en el script de configuración deben estar presentes entre los datos que se reciben como
entrada. Basándose en la configuración recibida, se carga la información en un sistema
de almacenamiento embebido, se crea código a medida que expone las interfaces, y todo
ello se empaqueta en el contenedor. Este último expone la información en las interfaces
indicadas y ofrece una página de documentación, accesible una vez que se ha ejecutado
la imagen del contenedor. La creación de esquemas de datos y la generación de código
de forma automática suponen una reducción del trabajo manual, repercutiendo en un
aumento de la productividad. Un ejemplo de su aplicación puede darse en procesos de
migración, donde es necesario exponer con tecnoloǵıas actuales información que hasta
el momento se almacenaba en ficheros de texto o en medios legados. Juntando esta
herramienta y una plataforma como Docker Hub, es posible, por ejemplo, compartir
un conjunto de datos con varias entidades relacionadas entre ellas. Bastaŕıa con definir
en un script el modelo de datos y las consultas e interfaces expuestas, para que aśı se
generara un contenedor que pudiera ser publicado en Docker Hub. En vez de compartir
por separado la fuente de datos y que cada usuario tuviera que implementar su propia
solución para efectuar consultas, se puede distribuir una imagen del contenedor que
contiene todo lo necesario para acceder a los datos de una manera directa y eficaz.

Figura 1: Esquema en alto nivel de la solución propuesta

2

1.2. Objetivo del Trabajo Fin de Grado

El objetivo de este Trabajo Fin de Grado es proponer un método de compartición
de conjuntos de datos que haga uso de la tecnoloǵıa de contenedores. Para ello, se
busca desarrollar una herramienta que, recibiendo como entrada un conjunto de datos
y un script donde se defina el modelo de datos del conjunto y las consultas e interfaces
expuestas. Construya y despliegue de forma automática un contenedor Docker que
distribuya y despliegue el conjunto de datos recibido como entrada, exponiendo las
consultas definidas en las interfaces de acceso indicadas y ofreciendo la documentación
necesaria para que los usuarios puedan consumir los datos almacenados. De la definición
de este objetivo se derivan los siguientes desaf́ıos:

Desarrollo de un lenguaje de dominio espećıfico (DSL): Este DSL debe
facilitar definir en el script el modelo de datos de la información almacenada, las
consultas aplicadas sobre esta información, las interfaces de acceso expuestas al
exterior para ejecutar las consultas e información básica para la distribución del
contenedor.

Implementación de un intérprete del DSL: Esta libreŕıa debe ser capaz
de procesar los scripts en dicho DSL y generar el código necesario, ejecutar los
procesos de construcción de programas, procesar los datos para su uso por dichos
programas y construir contenedores basándose en esa configuración.

Construcción del contenedor: Utilizando el intérprete y las herramientas
de Docker, esta herramienta debe ser capaz de construir un contenedor con
los requisitos extráıdos del procesamiento del script y desplegarlo de forma
automática.

1.3. Alcance

El proyecto desarrollado debe encontrarse dentro de los ĺımites de un Trabajo Fin
de Grado. En este caso, se trata de una primera aproximación al concepto Data in a
container. Aśı, se ha decidido establecer unos requisitos mı́nimos que debeŕıa tener la
solución desarrollada para exponer el potencial del concepto y sentar las bases para
futuros trabajos (ver Tabla 1). A continuación, se exponen y justifican estos requisitos
mı́nimos.

La solución debe trabajar con Docker como tecnoloǵıa de contenedores. Se ha
seleccionado porque es una solución de código abierto, ampliamente utilizada y dispone
de la plataforma de distribución Docker Hub. No se ha seleccionado otra tecnoloǵıa

Tecnoloǵıa Requisitos mı́nimos

Tecnoloǵıa de contenedores Docker
Lenguaje de base para el DSL Kotlin
Framework de desarrollo Spring Framework
Modelo de datos soportado CSV
Interfaces expuestas REST API, GraphQL y

gRPC

Tabla 1: Resumen de los requisitos mı́nimos de la solución

3

de contenedores, ya que no se ha encontrado una alternativa que cuente con la misma
funcionalidad y además disponga de un entorno de desarrollo y trabajo como Docker. El
lenguaje de base para el DSL debe ser Kotlin. Su elección se ha basado en la capacidad
de crear DSL definidos ı́ntegramente con funcionalidad nativa del lenguaje gracias a la
tecnoloǵıa Kotlin DSL [6] y la capacidad para ejecutar ficheros con código Kotlin sin
compilación previa gracias a la tecnoloǵıa Kotlin Scripting [7]. No se ha encontrado
ningún otro lenguaje que ofrezca las mismas caracteŕısticas que Kotlin. Por otra parte,
la solución debe caracterizarse por emplear el framework de desarrollo Spring [8]. Esto
se debe a que se trata de una tecnoloǵıa madura que permite simplificar aspectos como
la configuración o el despliegue, entre otros. Respecto a la herramienta en śı, únicamente
se soporta CSV como formato de entrada de los datos almacenados en el contenedor.
Esta decisión se debe a que se trata de una primera aproximación, por lo que se ha
elegido un formato fácil de procesar y que además es muy empleado para publicar
conjuntos de datos en grandes repositorios o por parte de empresas. En lo referente a
las interfaces que debe ofrecer el contenedor para ejecutar las consultas, se usa REST
API [9], GraphQL [10] y gRPC [11] debido a que se trata de tecnoloǵıas estables, bien
documentadas y su uso está extendido en la actualidad. No se han seleccionado otras
interfaces, ya que con esta combinación se garantiza que los datos almacenados pueden
ser accedidos desde multitud de entornos y se considera un conjunto representativo de
las tecnoloǵıas utilizadas actualmente. En caso de desconocer estas tecnoloǵıas, se puede
consultar el glosario, donde se presenta una breve definición de cada una. Relacionado
con las interfaces, la solución debe ofrecer la posibilidad de definir consultas que cuenten
con una única condición de búsqueda y con la posibilidad de filtrar los resultados
devueltos. Se limita a una condición porque se ha determinado que añadir consultas
con condiciones más complejas de filtrado queda fuera del alcance este Trabajo Fin
de Grado. Además, la herramienta debe generar de forma automática para cada
contenedor una página de documentación donde se permita visualizar las entidades y
sus atributos, aśı como probar de forma interactiva las diferentes interfaces expuestas.

Por último, la herramienta debe poderse validar con conjuntos de datos abiertos,
que dispongan de esquemas con diferentes tipos de datos y una o más entidades, con
relaciones entre las mismas cuando sea posible. Se deben definir consultas que sean
expuestas en las tres interfaces descritas anteriormente y el resultado debe poder ser
publicado en la plataforma Docker Hub.

1.4. Estructura del documento

A continuación, se describe como se ha estructurado la memoria del Trabajo Fin de
Grado. En la Sección 2 se explica la fase de análisis del proyecto. La Sección 3 describe
la fase de diseño del sistema. Para ello, se comenta la arquitectura del sistema con
diferentes diagramas. La Sección 4 explica algunos aspectos del proceso de desarrollo.
Seguidamente, la Sección 5 explica como se ha validado el sistema y la Sección 6 expone
las conclusiones del Trabajo Fin de Grado. Finalmente, el Apéndice A resume como
se ha gestionado el proyecto, el Apéndice B describe la fase de estudio de Kotlin, el
Apéndice C comenta algunos detalles de implementación de bajo nivel y el Apéndice D
y Apéndice E muestran información adicional sobre las pruebas de validación.

4

2. Análisis

La fase de análisis de todo proyecto es de vital importancia para poder sentar la
base del desarrollo y evitar futuras dificultades. En este caso, se ha utilizado para
terminar de definir como se debe comportar el sistema, especificar que tecnoloǵıas se
van a emplear, desarrollar una prueba de concepto, aśı como estudiar y conocer el
funcionamiento de diferentes tecnoloǵıas que se utilizan más adelante en el proyecto.

Es importante destacar que, debido a la naturaleza de la herramienta, existen dos
partes bien diferencias en el mismo. Por un parte, el contenedor generado, y por otra,
el sistema encargado de procesar el script de configuración y construir el contenedor.
Por simplicidad, durante esta sección se usará Data in a container para referirse a este
último.

2.1. Selección de tecnoloǵıas

En este apartado se exponen las tecnoloǵıas elegidas para el proyecto. En concreto,
el lenguaje de programación, el sistema gestor de base de datos y las interfaces de
acceso. Para estas últimas, se muestra un ejemplo simple de su funcionamiento.

Tras un análisis de varias posibilidades, se tomó la decisión de desarrollar la
implementación ı́ntegramente en el lenguaje de programación Kotlin [12]. Al comienzo
del proyecto se barajó la posibilidad de utilizar Python [13], pero esta quedó descartada,
ya que Kotlin ofrece una solución interoperable, soporta el extenso abanico de libreŕıas
de Java [14] y cuenta con una sintaxis sencilla de codificar. Esta decisión también se
traslada al código ejecutado dentro del contenedor, donde al igual que en el módulo
Data in a container, se despliega una aplicación en Kotlin con Spring Boot [15] que
expone los datos almacenados a través de diferentes interfaces.

El siguiente paso fue determinar el sistema gestor de bases de datos que se incluye
en el contenedor y donde se almacena la información. En este caso se analizó una única
posibilidad, SQLite [16]. Se trata de una base de datos embebida, que se ejecuta junto
con la aplicación a la que sirve. Su simplicidad, reducido peso, capacidad para ejecutarse
sin la necesidad de un proceso servidor adicional y configuración prácticamente nula,
la convierten en una gran opción para este sistema. Además, exceptuando algunos
aspectos como gestión de permisos, operaciones JOIN de tipo RIGHT y FULL OUTER
y soporte total de triggers y sentencias alter table, ofrece un soporte prácticamente total
del estándar SQL [17].

Tal y como se ha mencionado anteriormente, las interfaces que ofrece el contenedor
para el acceso a datos son REST API [9], GraphQL [10] y gRPC. De esta forma,
tras definir el lenguaje de programación, el sistema de persistencia y las interfaces,
se eligieron las dependencias que deb́ıa tener el proyecto ejecutado en el contenedor.
Como se ha comentado previamente, este es uno de los grandes beneficios de trabajar
con Kotlin, ya que se pueden utilizar todas las libreŕıas que ofrece el framework Spring
o que trabajan sobre el mismo (ver Tabla 2).

Para finalizar este apartado de selección de tecnoloǵıas, se procede a mostrar a partir
de un ejemplo trivial como una misma consulta se expone por REST API, gRPC y
GraphQL. El objetivo es explicar las caracteŕısticas y diferencias de cada una de las
interfaces seleccionadas. Como ejemplo, se supone que existe un conjunto de datos que
almacena información relativa a libros y autores y cuenta con las tuplas mostradas
en la Figura 2. Cada autor tiene su clave primaria, nombre, fecha de nacimiento y

5

Tecnoloǵıa Descripción

Spring Data JPA Framework empleado para modelar y
acceder a las entidades almacenadas en
SQLite [18].

Spring Data REST Framework para exponer una vista REST
de los datos [19].

GraphQL DGS Spring Boot Framework para exponer una vista
GraphQL de los datos [20].

gRPC Spring Boot Starter Framework para ofrecer una vista RPC de
los datos sobre una aplicación que utiliza
Spring Boot [21].

Tabla 2: Libreŕıas utilizadas para la construcción del contenedor.

género literario con el que se identifica. Por otra parte, un libro está definido por su
identificador único (ISBN), la clave extranjera de su autor, el t́ıtulo y la descripción de
la obra.

Figura 2: Tuplas de ejemplo para el modelo de libros y autores

Es posible definir una consulta que nos devuelva la fecha de nacimiento del
autor o autora que escribió un libro con un determinado ISBN. En REST API
esta consulta podŕıa exponerse como una operación de tipo GET sobre el recurso
/libros/{ISBN}/autor. En esta interfaz se devuelve la tupla completa del autor del
libro, no se devuelve únicamente el campo fecha nacimiento.

Consulta:

2 GET /libros/789/autor

4 Resultado:

{

6 "autor_id": 1,

"genero_literario": "Narrativo",

8 "fecha_nacimiento": "14-03-1958",

"nombre" : "X"

10 }

Listado 1: Ejemplo de petición REST API

El caso de GraphQL es diferente al resto. Es posible exponer una consulta
que filtre los libros por el ISBN y especificar en cada ejecución que atributos se

6

quieren obtener. Para este ejemplo se supone que se expone una consulta denominada
obtenerFechaNacimientoAutor que recibe como parámetro de entrada el ISBN del
libro. Como se aprecia en el Listado 2, se pueden especificar los campos que se desean
obtener. GraphQL se limita a obtener toda la información relacionada con el libro con
ese ISBN y después permite filtrar el resultado.

Consulta:

2 obtenerFechaNacimientoAutor("ISBN" : 789) {

autor { fecha_nacimiento }

4 titulo

}

6 Resultado:

{

8 "autor_id" { "fecha_nacimiento": "14-03-1958" }

"titulo" : "Y1"

10 }

Listado 2: Ejemplo de petición GraphQL

En la interfaz gRPC se implementa la consulta como la invocación a una función
de un servicio remoto. El contenido devuelto se encuentra en formato Protobuf, por
lo que es necesario un cliente capaz de procesar ese tipo de peticiones. Para este
caso se supone que existe un servidor gRPC que expone una función denominada
obtenerFechaNacimientoAutor, que recibe como parámetro de entrada el ISBN del
libro y devuelve la fecha del autor. Para su invocación bastaŕıa enviar la petición
obtenerFechaNacimientoAutor(789) al servidor. A diferencia de GraphQL no es posible
especificar los atributos que se quieren obtener, pero tampoco se devuelve toda la
entidad completa como ocurre con REST API.

2.2. Prueba de concepto

Antes de comenzar con el desarrollo del sistema, se realizó una prueba de concepto.
El objetivo era desplegar en un contenedor un conjunto de datos, con una única
entidad, y exponer consultas sobre el mismo a través de las tres interfaces descritas
anteriormente. Cabe destacar que, en esta prueba no se incluye la definición del
script o el despliegue parametrizado del contenedor, es decir, todo se lleva a cabo
de forma manual para verificar que realmente es posible crear un contenedor con esas
caracteŕısticas.

Para el desarrollo de la prueba, se seleccionó un fichero CSV que conteńıa
información sobre el catálogo de t́ıtulos de Netflix [22]. Todo ello publicado en la
plataforma Kaggle [23] bajo la licencia CC0: Public Domain, que permite copiar,
modificar y distribuir el conjunto de datos sin la necesidad de pedir permiso al autor.
En la Figura 3 puede observarse el modelo de datos de la entidad con la que se trabaja.

7

Figura 3: Modelo de datos del catálogo de Netflix

El desarrollo de esta prueba permitió definir los pasos para construir el contenedor,
aśı como la configuración de todas las dependencias necesarias. La estructura se creó
con la herramienta Spring initializr [24], que permite generar un proyecto de Spring
Boot de forma sencilla y automática. En la Figura 4 puede observarse el diagrama de
paquetes y clases del proyecto desarrollado donde vemos, por una parte, los paquetes
kotlin.com.demo.tfg que cuentan con las clases necesarias para arrancar y configurar
la aplicación, la definición de los controladores encargados de gestionar las consultas
en GraphQL y gRPC y el repositorio donde se especifica el modelo de la entidad, el
acceso a datos en el sistema de almacenamiento embebido y el controlador para REST
API. Por otra parte, en el paquete resources, se encuentra la definición de ciertas
variables de configuración y del esquema donde se especifica el servicio expuesto a
través de GraphQL. Finalmente, el paquete proto cuenta con la definición del servicio
expuesto en gRPC. A continuación, se procede a explicar los diferentes aspectos de este
diagrama.

8

Figura 4: Diagrama de paquetes de la prueba de concepto

El modelado y acceso a los datos se desarrolla en las clases Entity y Repository

respectivamente. La primera relaciona la entidad en la base de datos con una clase
de Kotlin a través del mapeo objeto-relacional, desarrollado por Hibernate [25] y
que implementa la API de persistencia de Java (JPA). La segunda, implementa
el repositorio donde se definen las consultas sobre la entidad. Este, extiende la
funcionalidad de una interfaz que por defecto permite contar con las operaciones básicas
de CRUD, aunque en este caso se ha limitado para exponer únicamente acceso en modo
lectura, aśı como con paginación y ordenación de resultados.

La incorporación de REST API al proyecto es directa al trabajar con la libreŕıa
Spring Data REST, tan solo basta con etiquetar el repositorio creado con la anotación
@RepositoryRestResource y configurar la ruta donde se expondrá el servicio.

En el caso de GraphQL, es necesario definir un esquema que incluya la entidad con
la que se trabaja y especificar las consultas que se van a implementar. En la prueba,
esto se incluye en schema.graphqls. Un fragmento de este fichero puede observarse
en el Listado 3, donde se define primero el tipo Query con todas las consultas que se
exponen en la interfaz y después se especifica la entidad con la que se trabaja, en este
caso TitleEntity. Además, se debe crear un controlador, TitleGraphQlController,
que relacione las consultas definidas en el esquema con las implementadas en el
repositorio comentado anteriormente. Esto se debe a que GraphQL no exige un sistema
de almacenamiento concreto, actúa como una capa intermedia entre el repositorio de
información y el cliente.

9

type Query {

2 titlesByReleaseYear(yearFilter: Int): [TitleEntity]

titleByShowId(showId : String) : TitleEntity

4 allTitles : [TitleEntity]

}

6 type TitleEntity {

showId: ID

8 releaseYear: Int

...

10 }

Listado 3: Fragmento de código de la definición del esquema para GraphQL

Finalmente, para incorporar el soporte de gRPC, hay que seguir un proceso similar
al de GraphQL. Primero, se define el servicio, schema.proto, con las operaciones que
se van a exponer y los mensajes necesarios para invocarlas. Después, se implementa
el controlador para el servidor que recibirá y procesará las peticiones, en este caso
TitleGrpcService.

service TitleService {

2 rpc titleByShowId (ById) returns (Title);

rpc allTitles(ListTitles) returns (stream Title);

4 rpc titlesByReleaseYear(ByReleaseYear) returns (stream Title);

}

6

message ListTitles {}

8 message ById { string id = 1 ;}

message ByReleaseYear { int32 year = 1; }

10

message Title {

12 string id = 1;

int32 releaseYear = 2;

14 string rating = 3;

...

16 }

Listado 4: Fragmento de código de la definición del servicio y mensajes de gRPC en la
prueba de concepto

Con el desarrollo de la prueba de concepto, se pudo verificar que era posible construir
un contenedor con las caracteŕısticas buscadas. Algunos detalles destacables de esta
primera aproximación fueron los siguientes:

En un principio se decidió cargar los datos del CSV al iniciar la aplicación,
pero rápidamente se detectó que esto ralentizaba el proceso de arranque. Como
solución, se optó por emplear un script SQL que definiera la tabla e importara
los datos directamente a la base de datos. De este forma, se generaba un fichero
con toda la información, que pod́ıa ser accedido directamente por la aplicación,
y no era necesario repetir el proceso de carga con cada arranque del sistema.

El servicio encargado de ofrecer la interfaz gRPC se genera gracias al plugin
protoc-gen-grpc-java [26]. Este, tomando como entrada el fichero con la definición
del servicio y sus mensajes, schema.proto, define las clases y los stubs necesarios.

10

Finalmente, se debe crear un controlador, para cada uno de los servicios
definidos, que extienda la clase creada por protoc-gen-grpc-java e implemente
las operaciones definidas en el servicio. En la Figura 5, se puede apreciar un
esquema del funcionamiento de este plugin.

En esta primera versión, la construcción del contenedor se realiza mediante un
script de bash que carga los datos en un fichero mediante sqlite3, un cliente en
terminal para acceder a SQLite, y junto con el archivo Java (JAR) de la aplicación
genera la imagen del contenedor.

Figura 5: Esquema de la generación del servicio gRPC

En el Apéndice B se comentan pruebas adicionales que se realizaron durante esta
fase para analizar la viabilidad de Kotlin en el proyecto. En particular, se estudió la
ejecución de scripts y la definición de un DSL en el lenguaje.

2.3. Conclusiones de la fase de análisis

La realización de esta fase de análisis permitió confirmar que el conjunto de
tecnoloǵıas seleccionadas para el desarrollo de la herramienta eran las idóneas. Además,
se pudo definir como deb́ıa ser el flujo de trabajo seguido para transformar la
construcción descrita en el script de configuración en un contenedor con los requisitos
necesarios. A su vez, se extrajeron las siguientes conclusiones. Del proceso de estudio de
Kotlin y el desarrollo de la prueba de concepto, se detectó la necesidad de diseñar una
arquitectura modular que facilitara incorporar las diferentes funcionalidades con las que
deb́ıa contar la herramienta y permitiera en un futuro añadir nuevas caracteŕısticas
de una forma sencilla. Además, en esta fase se determinó que era necesario que la
documentación generada para cada contenedor estuviera centralizada en un único
punto. Aśı, es posible ofrecer a los usuarios que reciben un contenedor creado con esta
herramienta, un modo para conocer la estructura de los datos almacenados y probar
las diferentes interfaces de acceso de forma estandarizada. De este modo, si es necesario
construir otro programa o herramienta que trabaje sobre las interfaces del contenedor,
se puede verificar el funcionamiento de las mismas antes de comenzar el desarrollo.
Finalmente, desde un punto de vista de gestión del proyecto, esta fase ayudó a definir
de manera clara los ĺımites hasta los que resultaba viable llegar con el Trabajo Fin de
Grado. En particular, fue muy importante el desarrollo de la prueba de concepto, ya
que permitió sentar la base sobre la que poco a poco se añadiŕıa funcionalidad para
soportar una construcción paramétrica.

11

3. Diseño

En esta sección se describe el diseño del sistema. Esta fase debe establecer como
se va a alcanzar los objetivos definidos anteriormente. Para ello, se muestra el sistema
desde una vista f́ısica. En este caso se definen los diagramas de clases y paquetes
necesarios para construir la solución.

3.1. Arquitectura del sistema

Por la naturaleza de la herramienta, y sus funcionalidades bien diferenciadas, se ha
decidido implementar un proyecto multi-módulo. En la Figura 6 se puede observar el
diagrama de paquetes del sistema. Se ha optado por mostrar una vista en alto nivel
del mismo para explicar los detalles más importantes en este primer apartado.

Módulo core: Incluye la lógica para, a partir de una configuración, construir la
aplicación que se ejecutará en el contenedor.

Módulo dsl: Define el DSL para describir la construcción del contenedor y
configura e invoca al módulo core. Este DSL es el utilizado en los scripts que
procesa el módulo host.

Módulo script: Define como se deben procesar y ejecutar los scripts que recibe el
módulo host y especifica las dependencias del módulo dsl que se deben importar
por defecto al ejecutar un script.

Módulo host: Actúa como punto de entrada al sistema. Recibe scripts con código
Kotlin y los compila y ejecuta según la definición del módulo script. Durante
esta ejecución invoca funcionalidad de los módulos dsl y core.

Figura 6: Diagrama de paquetes del sistema

En los siguientes apartados se explica más en detalle los módulos core y dsl. Se
han añadido diagramas para acompañar la descripción de los mismos y aśı facilitar
su comprensión. El diseño de los módulos script y host no se comentará, ya que es
muy sencillo y está basado en la implementación oficial desarrollada por Kotlin para
el soporte de scripts.

12

3.2. Diseño de la descripción del contenedor

El módulo dsl se comporta como la piedra angular del sistema. De forma similar
a la mostrada en el Apéndice B, donde se comenta como especificar un DSL en
Kotlin, define el lenguaje utilizado para describir como se debe construir el contenedor.
Una vez que esta definición se ha completado, se encarga de invocar al módulo core

con una configuración espećıfica, para que, mediante plantillas, cree un proyecto con
las caracteŕısticas indicadas en la configuración y listo para ser desplegado en un
contenedor.

En la Figura 7 se muestra una vista simplificada del módulo dsl. En particular,
se ha eliminado de este diagrama el resto del contenido del paquete entities, ya
que si no resultaba complejo de comprender. Como solución se ha creado un segundo
diagrama (Figura 8), donde únicamente se encuentran las clases y paquetes del paquete
entities. Más adelante, se procede a analizar cada uno de los diferentes aspectos de
estas vistas.

Figura 7: Diagrama de clases y paquetes del módulo DSL simplificado

Figura 8: Diagrama de clases y paquetes del paquete entities

13

La arquitectura de este módulo se ha desarrollado siguiendo el siguiente
razonamiento: Todos los contenedores descritos con el DSL deben almacenar y exponer
un conjunto de datos y contar con una serie de variables para describir mı́nimamente
la información almacenada. Esto se representa en la clase dataAsContainerBuilder,
que cuenta con los atributos apropiados y la función para describir la información que
se guarda.

A su vez, los datos almacenados en el contenedor pueden ser importados al mismo
a través de diferentes medios. En este caso, únicamente se trabaja con ficheros CSV,
pero dada la arquitectura del sistema, no seŕıa complicado añadir uno nuevo. Dentro
de la clase FileBuilder, es posible definir múltiples ficheros que serán empleados
como fuente de datos. Cada uno de los ficheros definidos se asocia con una entidad,
EntityBuilder. No es posible definir dos entidades en el mismo fichero. Tal y como
ocurre en el modelo relacional, toda entidad cuenta con una serie de atributos, esto se
representa en el paquete schemas. Adicionalmente, para la construcción del contenedor,
es necesario definir las consultas que se van a aplicar sobre los atributos de la entidad,
paquete operations, y las interfaces en las que se va a exponer la entidad y sus
consultas, paquete modules. A continuación, se procede a explicar detalladamente los
paquetes schemas, modules y operations.

3.2.1. Descripción del modelo de datos

En el siguiente apartado se explica como se ha diseñado el paquete schema,
encargado de definir el modelo de datos de una entidad, incluyendo atributos y
propiedades de los mismos. Como ocurre en el modelo relacional, una entidad puede
contar con un número indeterminado de atributos. La clase EntityField se utiliza para
representar un atributo en la entidad. Cada uno de estos atributos puede ser del tipo
entero o cadena de texto. Al tratarse de un prototipo, se ha optado por no incorporar
tipos adicionales, pero con el diseño actual se podŕıan añadir nuevos de forma casi
directa en caso de que fuera necesario. Además, se soporta la definición de claves
extranjeras y de clave primaria. A modo de ejemplo se muestran como se especificaŕıan
los atributos de una entidad perteneciente a un fichero previamente definido.

schema {

2 <var_name > type <var_type > property isPrimaryKey

<var_name > type <var_type >

4 <var_name > type <var_type > references <table > column <colName >

}

Listado 5: Definición del esquema de una entidad con un atributo básico, una clave
primaria y una clave extranjera

Como se puede apreciar en el fragmento de código superior, se hace uso de diferentes
palabras clave para definir las propiedades de cada uno de los atributos de un esquema.
Pese a su apariencia, esas palabras representan invocaciones a funciones de la clase
SchemaBuilder. En concreto, esta funcionalidad se trata del soporte para la notación
de infijo que implementa Kotlin. Permite invocar a funciones sin la necesidad de escribir
los paréntesis, incluso cuando se pasa un parámetro de entrada. De esta forma, y
encadenando invocaciones, se puede conseguir asignar todas las caracteŕısticas de un
atributo en una misma ĺınea y de una forma muy similar a como se realiza en el estándar
SQL. La utilidad de las funciones definidas es la siguiente:

14

type: Permite determinar el tipo de dato del atributo. Como se ha comentado
anteriormente, únicamente se soportan cadenas de texto y enteros.

property: Especifica una propiedad del atributo. En este caso se puede indicar
que se trata de la clave primaria, con el parámetro isPrimaryKey o de un atributo
no nulo, con el parámetro isNotNull. La implementación actual no soporta el
uso de claves primarias compuestas, esto podŕıa ser un añadido de cara a un
posible futuro trabajo.

references y column: Para definir claves extranjeras, es necesario concatenar
dos funciones. Primero, se debe utilizar references para indicar con que otra
entidad está relacionada la actual y column para el atributo en concreto que
se referencia. Se ha diseñado de tal forma que no es posible indicar primero
la columna y luego la tabla. De esta manera se fuerza al usuario a especificar
una sintaxis lo más parecido posible al estándar SQL a la hora de definir claves
extranjeras. Como detalle de implementación, internamente Spring JPA permite
definir una clave extranjera como un objeto del tipo al que apunta. De este modo,
se simplifica la navegación entre relaciones y se puede acceder a todos los atributos
de la entidad a la que se hace referencia sin necesidad de una segunda consulta.

Finalmente, un aspecto a destacar de este paquete es que es posible definir una entidad
sin esquema. Para ello, es obligatorio que la primera fila del fichero contenga la cabecera
de las columnas y no sea necesario especificar claves primarias y/o extranjeras. Si esos
requisitos se cumplen, se extraen automáticamente los nombres de las columnas y se
supone que todos los campos son de tipo cadena de texto no nula.

3.2.2. Descripción de las consultas

En este apartado se explica como se ha diseñado el paquete operations, encargado
de definir las consultas sobre el conjunto de datos que expondrá el contenedor. Es
importante mencionar que las consultas se especifican sobre una entidad, es decir, no
se definen a nivel global. De este modo, cada entidad cuenta con sus propias consultas.
Las operaciones de consulta propuestas soportan la búsqueda por único atributo. Por
ejemplo, suponiendo una entidad como la mostrada en la prueba de concepto donde se
almacena información sobre peĺıculas, una consulta seŕıa: Obtener todas las peĺıculas
publicadas en el año 2021. No se permite una consulta como: Obtener todas las peĺıculas
publicadas en el año 2021 y del director X. De nuevo, se trata de una funcionalidad que
podŕıa ser parte de una segunda fase de desarrollo de este proyecto. Respecto a detalles
más espećıficos del diseño, para cada una de las operaciones de consulta se permiten
configurar los siguientes parámetros:

Nombre de la consulta.

Atributo por el que se realiza la búsqueda.

Indicar si se desea que soporte ordenación de resultados y/o paginación.

Especificar, en caso de ser posible, si los resultados se deben ordenar de forma
ascendente o descendente según un atributo de la entidad.

Limitar el número de resultados devueltos

15

Especificar si los resultados devueltos deben ser únicos.

Indicar las interfaces en las que se expone esta operación.

Respecto al diseño arquitectural del módulo, se ha creado teniendo en cuenta que
para cada consulta, puede darse el caso de que sea necesario generar la configuración
para tres interfaces distintas, REST API, GraphQL y gRPC. A continuación, se
muestra un ejemplo de como se especifica una operación, sobre una entidad previamente
definida, que soporta paginación, devuelve el resultado ordenado ascendentemente y
está expuesta en las interfaces gRPC y REST API. Cabe destacar que, en caso de que
no se especifique ninguna interfaz al definir la operación, se expone por defecto en las
tres. El resto de parámetros no tienen ningún valor por defecto.

operations {

2 create <Query >(<query_name >) {

parameters = L[<var_name >, Pageable (), Sort()]

4 sorted = asc(<var_name >)

limit = first(<integer >)

6 distinct = <boolean >

platforms = L[grpc ,rest]

8 }

}

Listado 6: Definición de una operación que soporta paginación y ordenación de
resultados y se expone en gRPC y REST API

Como se puede comprobar en el fragmento de código superior, se crea una operación
del tipo Query. Esta actúa como una plantilla para definir consultas compatibles con
la libreŕıa Spring Data JPA, que es la interfaz utilizada para dar soporte al acceso a
datos desde la aplicación.

Pese a que en la implementación actual únicamente se cuenta con un tipo de consulta
soportada, se ha optado por un diseño modular que facilite en un futuro añadir nuevos
tipos de consultas, por ejemplo, aquellas que tienen asociada una sentencia SQL. Esto
se puede ver reflejado en la interfaz DefaultQueryBuilder del diagrama de paquetes y
clases del módulo (Figura 8), cuya finalidad es definir los atributos y funcionalidad base
que deben tener todos los tipos de consultas definidas y que puede ser implementada
de diferentes formas.

3.2.3. Especificación de las interfaces de acceso

En el siguiente apartado se describe el diseño desarrollado en el paquete modules.
Este permite especificar a través de que interfaces se va a exponer cada una de las
entidades. En relación con el módulo operations, para que una consulta sea accesible
desde una interfaz concreta, es necesario que la entidad sobre la que se realiza la
consulta haya sido declarada espećıficamente como accesible a través de esa interfaz.
En caso contrario, la operación no se expondrá a través de esa interfaz.

Al igual que con las consultas, se ha aplicado un diseño que facilita la incorporación
de nuevas interfaces. En particular, para las que se encuentran incorporadas al proyecto,
REST API, GraphQL y gRPC se permiten los siguientes parámetros de configuración:

16

REST API: Nombre y ruta donde se expone la interfaz.

GraphQL: Nombre del controlador que implementa la vista GraphQL de los
datos.

gRPC: Nombre del servicio que expone la vista RPC de los datos.

En el fragmento de código inferior, se muestra un ejemplo donde, para una entidad
definida previamente, se indica que se va a exponer a través de las tres interfaces y se
configura su implementación.

modules {

2 install(restApi) {

collectionResourceRel = <collection_name >

4 path = <path_name >

}

6 install(graphqlApi) { controllerName = <controller_name > }

install(grpcApi) { serviceName = <service_name > }

8 }

Listado 7: Definición de las interfaces que exponen una entidad

3.2.4. Descripción de la construcción

El objetivo de este apartado es mostrar un ejemplo donde se describa la
estructura de construcción de un contenedor y se haga uso de forma conjunta de
toda la funcionalidad comentada en el módulo dsl. Cabe destacar que, gracias a la
implementación desarrollada por Kotlin, la creación del DSL se deriva directamente
de la definición de las clases comentada anteriormente. Es por ello por lo que se ha
decidido incorporar en esta sección la descripción de construcciones. A continuación,
se muestra un fragmento de código con la estructura en concreto.

dac {

2 name = <...>

fullName = <...>

4 desc = <...>

license = <...>

6 homepage = <...>

packageName = <...>

8 mainClass = <...>

buildDir = <...>

10 data {

files {

12 <entityName > {

src = <file_path >

14 schema { ... }

operations { ... }

16 modules { ... }

}

18 <otherEntityName > { ... }

}

20 }

}

Listado 8: Ejemplo de definición de la construcción de un contenedor

17

Como se puede observar, la descripción comienza con la invocación a la función
dac, esta inicializa todos los objetos necesarios para configurar un contenedor y antes
de finalizar su ejecución, invoca al módulo core con la configuración que ha recibido y
procesado. En el cuerpo de la función, se asigna un valor a las siguientes variables:

name: Nombre de la imagen de Docker generada con el proyecto.

fullName: Nombre de la fuente de datos almacenada.

desc: Descripción de la fuente de datos almacenada.

license: Licencia de la fuente de datos almacenada.

homepage: Enlace al sitio donde se ha obtenido la fuente de datos.

packageName: Nombre del paquete donde se crea el proyecto en Kotlin
encargado de exponer la fuente de datos.

mainClass: Nombre de la clase principal del proyecto generado.

buildDir: Directorio donde se genera el proyecto

Es obligatorio asignar un valor para los campos name, packageName y mainClass.
En el caso de que el campo buildDir quede sin valor, se le asigna uno por defecto. El
resto de valores no es necesario que tengan un valor asignado siempre. Una vez definidas
estas variables, se procede a especificar los datos almacenados en el contenedor. Para
ello, se invoca a la función data. Seguidamente, y como solo se soporta el uso de ficheros
CSV, se llama a la función files para indicar cuáles son esos ficheros. Esto se realiza
de la siguiente forma, primero, se señala el nombre de la entidad que se generará al
procesar el fichero. Después, mediante la variable src, se marca la ruta hasta el fichero
en concreto y posteriormente se invoca a las funciones schema, operations y modules.
Como la estructura de estas últimas ya ha sido descrita anteriormente, se han obviado
en este caso. A modo de ejemplo se muestra también como se definiŕıa una segunda
entidad, que se configuraŕıa de la misma manera que la anterior.

3.3. Construcción del contenedor

El módulo core es el encargado de generar el proyecto ejecutado en el contenedor.
Es invocado por el módulo dsl, que lo configura según la descripción que ha sido
extráıda del script. Basándose en esta configuración y en el uso de plantillas, genera
la estructura necesaria. En la Figura 9 se muestra el diagrama de clases y paquetes
del módulo. Al igual que en secciones anteriores, se ha optado por mostrar una vista
simplificada del mismo para facilitar su comprensión y explicación.

18

Figura 9: Diagrama de clases y paquetes del módulo core

Se ha definido una clase denominada DataAsContainer. Esta se comporta como el
punto de entrada al módulo. Recibe la configuración de la construcción del contenedor
desde el módulo dsl e invoca a la clase TreeWalk para que construya el proyecto
ejecutado en el contenedor según esa configuración. Además, antes de terminar su
ejecución, se encarga de poner en funcionamiento el contenedor generado.

De este modo, la clase TreeWalk, bajo las órdenes de la clase DataAsContainer,
es quien construye realmente el contenedor. Para ello, hace uso de una estructura
de ficheros y directorios previamente definida, que cuenta con una serie de plantillas
que son completadas según la configuración recibida desde el módulo dsl. El paquete
config expone dos objetos estáticos, uno con todas las constantes utilizadas a lo
largo del módulo y otro con la configuración necesaria para utilizar las plantillas.
Antes de finalizar con este módulo, cabe destacar que el diseño aplicado soporta
múltiples arquitecturas de contenedores. La herramienta debe ser capaz de detectar
la arquitectura del sistema donde se está ejecutando y construir un contenedor que
sea compatible con la misma. En la Subsección C.1 se explica en detalle la estructura
de directorios y ficheros creada, aśı como, el funcionamiento del motor de plantillas
seleccionado para esta tarea.

3.4. Conclusiones de la fase de diseño

El desarrollo de la fase de diseño puso de manifiesto la importancia de todo el
trabajo realizado durante el periodo de análisis y permitió confirmar que el desarrollo
de un proyecto multi-módulo es la opción más viable. Ha sido posible diseñar con
mayor independencia cada uno de los cuatro módulos y el resultado garantiza la
mantenibilidad y la facilidad para incorporar nueva funcionalidad en un futuro. Durante
esta fase también se ha terminado de consolidar que Kotlin es el lenguaje idóneo para
este desarrollo, gracias a la simplicidad con la que se pueden definir DSL y ejecutar
scripts. Respecto al diseño de los propios módulos, destaca dsl porque se ha podido
plasmar el razonamiento lógico seguido para idear la solución en el diseño f́ısico y core

por la separación clara de tareas entre las clases DataAsContainer y TreeWalk, que
favorece la transformación de los datos de configuración recibidos desde el módulo dsl

en un contenedor Docker.

19

4. Desarrollo

En esta sección se describen algunos aspectos del proceso de desarrollo del sistema.
En particular, se comentan detalles de la generación de la página de documentación
para cada contenedor, la gestión de las variables de configuración y la creación de un
entorno de ejecución. Finalmente, se explican las principales dificultades encontradas
durante esta fase. En el Apéndice C se comentan detalles de implementación de la
ejecución de scripts y el motor de plantillas.

4.1. Documentación del contenedor

El siguiente apartado comenta la documentación generada en formato HTML para
cada construcción. Esta se incluye en el proyecto lanzando en el contenedor y se puede
acceder desde cualquier navegador. Para el aspecto visual y la organización de la página,
se tomó como referencia el ejemplo propuesto por la agencia del gobierno de los Estados
Unidos, General Services Administration para la documentación de API [27].

Los menús de la página de documentación desarrollada son:

Overview: Esta sección actúa como página de inicio. Incluye una breve
descripción de la información almacenada en el contenedor. Es aqúı donde se
muestran las variables configuradas en el script para especificar aspectos como
la licencia, nombre de los datos, etc. Además, se muestra información sobre el
contenido de las otras dos secciones, API calls y Field reference.

API calls: Esta sección permite explorar las interfaces de acceso a datos de
forma interactiva. En el caso de GraphQL, se utiliza un entorno de desarrollo
denominado GraphiQL [28]. Este se despliega en el mismo contenedor y permite
descubrir que consultas son accesibles a través de esa interfaz y ejecutar las que se
desee. Para probar REST API, se ha empleado la especificación OpenAPI 3 [29]
para describir el servicio y la interfaz gráfica de Swagger-ui [30] para generar de
modo visual esta documentación y poder enviar peticiones de prueba. Todo ello se
ha efectuado mediante anotaciones a través de la libreŕıa springdoc-openapi [31],
que permite automatizar este proceso. Finalmente, para gRPC ha sido necesario
crear un controlador adicional que permite transformar peticiones HTTP en
invocaciones al servicio gRPC y devuelve el resultado de las mismas en formato
JSON. El motivo de esta decisión se explica más adelante.

Field reference: Esta sección se encarga de mostrar para las diferentes entidades
almacenadas en el contenedor, el nombre y el tipo de cada uno de sus atributos.

4.2. Gestión de la configuración

En este apartado se explica como se ha gestionado la definición de todas las
constantes empleadas en el módulo core. Se ha optado por trabajar con la notación
Human-Optimized Config Object Notation (HOCON) [32]. Esta permite asignar desde
un fichero de configuración externo valores para atributos de objetos de Kotlin. La
arquitectura desarrollada para dar soporte a este modelo se encuentra en el paquete
config del diagrama de clases y paquetes mostrado anteriormente (Figura 9). Se ha
trabajado con la libreŕıa config4k [33], que incorpora el soporte para a esta notación en

20

Kotlin. En particular, se ha empleado para asignar, desde un fichero con la extensión
conf, valores para los atributos de la clase ConfigurationProperties. Por otro lado,
la clase ConfigLoader se encarga de cargar esos valores en un objeto estático que se
expone al resto de clases del módulo para que accedan a las constantes que necesiten.

4.3. Entorno de ejecución

En este apartado se explica el entorno de ejecución que se ha creado para facilitar el
uso de la herramienta. Suponiendo que el proyecto ha sido compilado y se ha generado
su ejecutable. Es posible definir un directorio cualquiera, que su a vez cuente con: un
fichero de Kotlin con el nombre build.diac.kts donde se defina la construcción del
contenedor con el DSL y un subdirectorio denominado data donde se encuentren los
ficheros CSV necesarios. De este modo, asumiendo que existe un alias hasta la ruta del
ejecutable y se ha generado la estructura comentada, basta con invocar al binario, sin
especificar ningún argumento, desde el directorio creado para que se genere dentro del
directorio un nuevo subdirectorio denominado build con el código fuente del proyecto
y se lance el contenedor de forma automática.

4.4. Dificultades encontradas

Configuración del contenedor. Respecto al módulo dsl, uno de los obstáculos
detectados estuvo relacionado con el paso de toda la información extráıda del script al
módulo core. Como se ha comentado anteriormente, el módulo dsl define el lenguaje
de descripción de contenedores y, basándose en la información que recibe desde el script,
genera una configuración u otra. El problema surge para generar la estructura de datos
adecuada para enviar esta configuración al módulo core en una forma que facilite su
posterior uso en el motor de plantillas. Como solución, se decidió transformar las clases
creadas para definir el dsl y su configuración en una tabla hash como la que utiliza
el motor de plantillas para sustituir las variables. Para una explicación detallada del
motor de plantillas se puede consultar el anexo C.1. La conversión se realizó con la
libreŕıa Jackson [34], especializada en ese tipo de transformaciones.

Cliente para el servicio gRPC. Se encontraron también dificultades para enviar
peticiones al servidor gRPC desde la página de documentación. Durante todo el
desarrollo del proyecto, se hab́ıa trabajado con la herramienta grpcurl [35], ya que
abstrae la complejidad de la interfaz. El problema surgió cuando se intentó conectar
con este servicio a través de una petición HTTP, debido a que no es viable desplegar
un cliente gRPC junto con el propio contenedor. Ante este problema, se optó por, para
cada consulta expuesta a través del servicio gRPC, crear su homóloga en la interfaz
REST API. La implementación se realiza con la operación de tipo POST para aśı
emular el cuerpo del mensaje en el mismo formato que en las peticiones gRPC. De este
modo, y con la descripción del servicio que se ofrece en la página de documentación, es
posible a través de Swagger-ui enviar peticiones POST que se comunican directamente
con el servicio gRPC. Internamente, las peticiones recibidas en formato JSON se
transforman mediante un proceso de marshalling a su correspondiente estructura en
Protocol Buffers. Seguidamente, se invoca al stub del servicio con la petición recibida
y se espera hasta obtener el resultado para devolverlo en formato JSON. El proceso de
marshalling se realiza con la libreŕıa protobuf-jackson [36].

21

5. Validación

En esta sección se describe como se ha desarrollado la validación del sistema. En
particular, se han ejecutado pruebas con conjuntos de datos con una y vaŕıas tablas.
Las imágenes de los contenedores generados durante esta fase de validación pueden ser
descargadas para su uso en el repositorio de Docker Hub https://hub.docker.com/

r/776012/diac. Solo se han publicado las correspondientes con la arquitectura amd64.
La decisión de utilizar esta arquitectura se explica en el anexo C.1

5.1. Catálogo de Netflix

En este apartado se explica la prueba realizada con un conjunto de datos con
una única tabla. El objetivo de este primer experimento es verificar que el proyecto
construido de forma manual en la prueba de concepto se puede replicar únicamente
describiendo la construcción en un script. Por ello, se utilizan de nuevo los datos
sobre el catálogo de t́ıtulos de Netflix. Estos se pueden visualizar en el apartado de
desarrollo de la prueba de concepto 2.2. Para la realización de la prueba se ha creado
un directorio, netflix test, que contiene el script, build.diac.kts, y el subdirectorio
data con el fichero CSV de los datos. Tanto el script desarrollado para esta prueba,
la documentación generada y las consultas expuestas en las tres interfaces, se pueden
consultar en el Anexo D. A continuación, se procede a describir el contenido del script
de descripción del contenedor.

Inicialmente, se define información básica del contenedor y del conjunto de datos
almacenado con las variables espećıficas. Seguidamente, se determina la entidad que
se va a crear para almacenar el contenido. Para ello, se fija el nombre de title y
se indica la ruta hasta el fichero CSV. Como se trabaja desde el directorio descrito
anteriormente, la herramienta se encarga de buscar en data para encontrar el fichero.
Una vez definida la información básica de la entidad, se comienza a definir el esquema
de la misma. En este caso, se trabaja únicamente con atributos del tipo cadena de
texto. Es por eso que todos los atributos son del tipo Text. Además, show id actúa
como clave primaŕıa de la entidad.

A continuación, se procede a explicar las operaciones creadas:

findByReleaseYear: Consulta que devuelve los diez primeros t́ıtulos distintos
ordenados ascendentemente por su nombre y que han sido publicados en un año
concreto. Soporta paginación y se expone en las interfaces gRPC y REST API.

/

netflix test

build.diac.kts

data

netflix titles.csv

build

gensrc

<Proyecto>

Figura 10: Directorio utilizado para la ejecución de la prueba del catálogo de Netflix

22

https://hub.docker.com/r/776012/diac
https://hub.docker.com/r/776012/diac

findByDirector: Consulta que devuelve todos los t́ıtulos de un director concreto.
Al no especificar ninguna plataforma, se expone en las tres interfaces, REST API,
gRPC y GraphQL.

findByType: Consulta que devuelve los veinticinco primeros t́ıtulos distintos
ordenados descendentemente por el año en él fueron publicados y que son de un
tipo concreto (peĺıcula, serie, etc.). Se expone en las interfaces GraphQL y REST
API.

findByShowId: Consulta que devuelve un t́ıtulo por su identificador. Expuesta
en las tres interfaces.

Aunque no se especifique en el script, para todas las entidades se genera
automáticamente la operación que devuelve todas las entradas de una tabla.
En este caso devuelve todos los t́ıtulos, sin posibilidad de filtrar la respuesta y se
expone en todas las interfaces que se especifiquen en la sección de módulos.

Finalmente, la especificación de los módulos. En esta prueba se instalan las tres
interfaces. Como se puede apreciar en el anexo, no se fijan valores para todas las
variables que se permiten configurar en cada interfaz. Si esto ocurre, aquellas que
han quedado sin designar son asignadas automáticamente según el nombre que se ha
especificado para la entidad. Para este contenedor, se ha fijado la ruta title para la
interfaz REST API. De esta forma se podrá acceder en http://container ip:8080/title.

En la interfaz GraphQL se detalla el nombre para el controlador encargado de
gestionar las peticiones recibidas. Por último, para gRPC no se especifica ningún valor
de configuración, por lo que el nombre del servicio será TitleService.

5.2. Alojamientos y reseñas de Airbnb

Este apartado se emplea para comentar la prueba ejecutada con un conjunto de
datos formado por dos tablas con una relación entre ellas. Se ha utilizado información
publicada por la empresa Airbnb, especializada en el alquiler de alojamientos. En
particular, se trabaja con los datos sobre alojamientos de la ciudad de Barcelona y
las reseñas de los mismos [37]. Toda la información ha sido publicada bajo la licencia
CC0 1.0 Universal Public Domain Dedication.

El modelo de datos de la información almacenada cuenta con dos entidades,
listing y review. La primera se corresponde con todas las publicaciones de alojamiento
de Barcelona en el último cuarto de año. Para cada una se almacena su nombre,
identificador del casero/a, identificador de la zona donde se encuentra, nombre del
barrio, tipo de alojamiento, precio de una noche, número mı́nimo de noches que se debe
alquilar y número de reseñas que ha recibido. La segunda representa una reseña emitida
para un alojamiento en concreto. En este caso, únicamente se almacena la fecha en la
que se realizó y la clave extranjera del alojamiento reseñado. Un alojamiento puede
tener un número indeterminado de reseñas. Cabe destacar que, por no sobrecargar
el sistema en exceso, ya que el número de reseñas supera las seiscientos mil, se ha
eliminado el campo donde se guarda el mensaje de la reseña, puesto que algunas son
extremadamente largas y no aportan nada útil al experimento. Respecto al entorno de
ejecución, exceptuando el subdirectorio data, donde es necesario guardar los ficheros
correspondientes con las dos entidades, la estructura del directorio para esta prueba
debe ser idéntica a la comentada en la prueba con una única tabla.

23

/

airbnb test

build.diac.kts

data

listings.csv

reviews.csv

build

gensrc

<Proyecto>

Figura 11: Directorio utilizado para la ejecución de la prueba de alojamientos y reseñas
de Airbnb

El modelo de datos de la información, el script desarrollado para esta prueba,
la documentación generada y las consultas expuestas en las tres interfaces se pueden
consultar en el Anexo E. Respecto al contenido del script build.diac.kts, la principal
diferencia con la prueba de una única tabla se encuentra en la declaración de las
entidades. La declaración de las variables con la información básica del contenedor se
realiza igual, aunque cambiando el contenido.

De la misma forma que ocurre en el estándar SQL, cuando se trabaja con tablas con
una relación entre ellas. Se debe dejar para el final la declaración de aquella que tiene
como atributo la clave extranjera. De este modo, en el script de la prueba, primero se
define la entidad listing y por último review. A continuación se procede a explicar
la estructura y consultas de cada una de ellas.

A diferencia de la prueba con los t́ıtulos de Netflix, donde se trabaja tan solo com
atributos de tipo cadena de texto. Listing hace uso del tipo entero para los atributos
listing id, host id, price, minimum nights y number of reviews. Además, define
una consulta, findByPrice, que devuelve todos los alojamientos que tienen un precio
determinado y se expone en las tres interfaces, REST API, GraphQL y gRPC.

Por otro lado, review, cuenta con la definición de la clave extranjera. En este caso
se crea una consulta, expuesta en las tres interfaces, que devuelve una reseña según el
identificador indicado. Como se ha comentado en la sección de desarrollo, esta clave
extranjera se transforma internamente en un objeto de la clase Listing. Aśı, es posible
acceder a toda la información del alojamiento al que hace referencia una reseña sin la
necesidad de ejecutar una segunda consulta.

5.3. Conclusiones de la validación

Con el desarrollo de estas dos pruebas se ha verificado que la herramienta cumple
con los objetivos marcados al comienzo del Trabajo Fin de Grado. Es capaz de construir
y desplegar contenedores Docker que exponen consultas sobre modelos de datos simples
en las interfaces definidas. Esta fase ha puesto de manifiesto que el sistema creado para
ejecutar la herramienta, con la creación de un directorio que cuente con el script de
configuración y los datos, reduce la dificultad de uso de la misma y facilita trabajar con
ella. Además, ha resultado importante la verificación de que se soporta correctamente
el uso de claves extranjeras, ya que su implementación supuso un salto importante de
dificultad en el desarrollo de la solución.

24

6. Conclusiones

6.1. Objetivos alcanzados

Se considera que el desarrollo del Trabajo Fin de Grado ha cumplido con los
objetivos establecidos al comienzo del mismo. La herramienta creada, pese a no contar
con toda la funcionalidad de la que podŕıa disponer en un entorno de producción,
supone una buena base sobre la que continuar trabajando y permite distribuir y
desplegar conjuntos de datos con modelos simples en entornos heterogéneos. El DSL
desarrollado para definir la construcción del contenedor simplifica en gran parte este
proceso y permite que el usuario se limite a configurar el contenedor. La validación
realizada demuestra que el concepto tiene un gran potencial y realmente simplifica la
distribución y acceso a los datos. Además, ha permitido comprobar que la distribución
de los contenedores a través de plataformas como Docker Hub es una opción viable y
que puede ser explotada en el futuro. El esfuerzo dedicado para alcanzar estos objetivos
puede consultarse en el Apéndice A.

6.2. Trabajo futuro

De cara a una posible continuación de la herramienta, se presentan una serie de
propuestas de trabajo:

Incluir soporte para consultas más complejas. Actualmente, solo se pueden
realizar búsquedas según el valor de un único atributo.

Capacidad para inferir automáticamente los tipos de datos de los atributos
declarados en un fichero, ya que la implementación actual supone que todos son
cadena de texto si no se indica el esquema.

Posibilidad de definir más propiedades de los atributos de las entidades. Por
ejemplo, rangos de valores aceptados o condiciones de mayor complejidad. El
objetivo seŕıa replicar en la medida de lo posible la definición de tablas del
estándar SQL.

Soportar la carga de datos desde otros formatos de almacenamiento. Incluyendo
la posibilidad de acceder a recursos publicados en un servicio remoto.

Definir en un mismo contenedor diferentes conjuntos de datos. Aunque en el
estado actual se permite trabajar con varias tablas, se trata de información
relacionada. Una posible mejora podŕıa permitir almacenar, y exponer, conjuntos
de temática distinta.

Ofrecer una interfaz gráfica para configurar la descripción del contenedor sin la
necesidad de codificar directamente el script. De este modo, la herramienta podŕıa
ser empleada por un mayor número de usuarios.

Añadir, si fuera necesario, el soporte para otras interfaces de acceso.

25

6.3. Reflexiones personales

En lo personal, este Trabajo Fin de Grado me ha permitido poner en práctica
muchos de los conocimientos adquiridos durante todo el grado. Además, he podido
trabajar con un buen abanico de tecnoloǵıas y herramientas muy interesantes. Algunas
de las cuales nunca hab́ıa utilizado, y pienso que su conocimiento puede resultar
de gran utilidad en mi futuro profesional. Como cualquier trabajo académico de
estas caracteŕısticas, han existido dificultades a lo largo del desarrollo. Principalmente
relacionadas con la incorporación al proyecto de tecnoloǵıas o técnicas desconocidas.
Por último, creo que una de las claves detrás de este Trabajo Fin de Grado es la forma
en la que se ha organizado su desarrollo. Definiendo tareas muy espećıficas y de no
gran tamaño. Esto redujo la dificultad durante las fases del desarrollo y además ha
permitido llevar un buen control de todo el proyecto.

26

Acrónimos

API Application programming interface.

CSV Comma-separated values.

DSL Domain-specific language (en castellano, Lenguaje espećıfico de dominio).

HOCON Human-Optimized Config Object Notation.

HTTP Hypertext Transfer Protocol.

ISBN International Standard Book Number.

JAR Java Archive.

JPA Java Persistence API.

JSON JavaScript Object Notation.

REST Representational State Transfer.

RPC Remote Procedure Call.

SQL Structured Query Language.

27

Glosario

Docker Se trata de una plataforma para desplegar aplicaciones en entornos
heterogéneos. Fue publicada en el año 2013 bajo la licencia Apache License 2.0.
Docker trabaja con contenedores, que se corresponde con software empaquetado
junto a todas sus dependencias. Estos contenedores se ejecutan sobre el sistema
operativo en un entorno aislado y pueden ser desplegados en diferentes máquinas
que soporten Docker [38].

GraphQL Lenguaje de consultas orientado a dar soporte al acceso a datos en
aplicaciones clientes-servidor. Desarrollado internamente por Facebook en el año
2012 y publicado en el 2015, cuenta con su propio motor para ejecutar las
consultas y soporta introspección de tipos desde el cliente [10].

gRPC Tecnoloǵıa que permite invocar métodos en sistemas distribuidos como si
se tratara de una llamada local [11]. Desarrollado inicialmente por Google y
publicado en el año 2015, posibilita que un servidor defina un servicio donde se
especifiquen los métodos que se pueden invocar remotamente y los parámetros
y tipos devueltos. Estos pueden ser accedidos por clientes gRPC mediante
peticiones serializadas con Protocol Buffers [39].

Lenguaje espećıfico de dominio Lenguaje creado para resolver un problema
espećıfico en un dominio concreto. En este Trabajo Fin de Grado se utiliza para
describir como se debe construir el contenedor generado.

REST API Interfaz de un servicio web que responde a las peticiones de los clientes
según el estilo REST. Definido este último como un estilo arquitectural para
sistemas hipermedia distribuidos [9].

Script Fichero que incluye código en un lenguaje de programación que puede ser
ejecutado sin necesidad de compilación previa.

28

Referencias

[1] J Berends y col. Reusing open data : a study on companies transforming open
data into economic and societal value. European Union, Publications Office, 2020.
doi: doi/10.2830/876679.

[2] Antonio Bello-Garćıa. ((Datos abiertos y participación en el gobierno social)). En:
Economı́a industrial 405 (oct. de 2017), págs. 99-111.

[3] Carl Boettiger. ((An Introduction to Docker for Reproducible Research)). En:
SIGOPS Oper. Syst. Rev. 49.1 (ene. de 2015), págs. 71-79. issn: 0163-5980. doi:
10.1145/2723872.2723882.

[4] Docker. https://www.docker.com. Accedido: 09-06-2022.

[5] Docker Hub. https://hub.docker.com. Accedido: 07-06-2022.

[6] Type-safe builders. https://kotlinlang.org/docs/type-safe-builders.
html. Accedido: 20-06-2022.

[7] Get started with Kotlin custom scripting – tutorial. https://kotlinlang.org/
docs/custom-script-deps-tutorial.html. Accedido: 26-05-2022.

[8] Spring. https://spring.io. Accedido: 09-06-2022.

[9] Roy T Fielding y Richard N Taylor. ((Principled design of the modern web
architecture)). En: ACM Transactions on Internet Technology (TOIT) 2.2 (2002),
págs. 115-150.

[10] GraphQL. https://spec.graphql.org/October2021/. Accedido: 26-05-2022.

[11] gRPC. https://grpc.io. Accedido: 08-06-2022.

[12] Kotlin Programming Language. https : / / kotlinlang . org. Accedido:
06-06-2022.

[13] Python. https://www.python.org. Accedido: 06-06-2022.

[14] Java Oracle. https://www.java.com. Accedido: 06-06-2022.

[15] Spring Boot. https : / / spring . io / projects / spring - boot. Accedido:
06-06-2022.

[16] SQLite. https://www.sqlite.org. Accedido: 06-06-2022.

[17] SQL Features That SQLite Does Not Implement. https://www.sqlite.org/
omitted.html. Accedido: 26-05-2022.

[18] Spring Data JPA. https://spring.io/projects/spring-data-jpa. Accedido:
06-06-2022.

[19] Spring Data REST. https : / / spring . io / projects / spring - data - rest.
Accedido: 06-06-2022.

[20] Netflix. GraphQL for Java with Spring Boot made easy. Ver. 4.9.24. Mar. de 2021.
url: https://github.com/netflix/dgs-framework.

[21] Michael Zhang. Spring Boot starter module for gRPC framework. Ver. 2.31.13.
Ene. de 2022. url: https://github.com/yidongnan/grpc-spring-boot-
starte.

[22] Netflix Movies and TV Shows. https://www.kaggle.com/datasets/shivamb/
netflix-shows. Accedido: 01-06-2022.

29

https://doi.org/doi/10.2830/876679
https://doi.org/10.1145/2723872.2723882
https://www.docker.com
https://hub.docker.com
https://kotlinlang.org/docs/type-safe-builders.html
https://kotlinlang.org/docs/type-safe-builders.html
https://kotlinlang.org/docs/custom-script-deps-tutorial.html
https://kotlinlang.org/docs/custom-script-deps-tutorial.html
https://spring.io
https://spec.graphql.org/October2021/
https://grpc.io
https://kotlinlang.org
https://www.python.org
https://www.java.com
https://spring.io/projects/spring-boot
https://www.sqlite.org
https://www.sqlite.org/omitted.html
https://www.sqlite.org/omitted.html
https://spring.io/projects/spring-data-jpa
https://spring.io/projects/spring-data-rest
https://github.com/netflix/dgs-framework
https://github.com/yidongnan/grpc-spring-boot-starte
https://github.com/yidongnan/grpc-spring-boot-starte
https://www.kaggle.com/datasets/shivamb/netflix-shows
https://www.kaggle.com/datasets/shivamb/netflix-shows

[23] Kaggle. https://www.kaggle.com. Accedido: 07-06-2022.

[24] Spring Initializr. https://start.spring.io. Accedido: 07-06-2022.

[25] Hibernate. https://hibernate.org. Accedido: 09-06-2022.

[26] gRPC. The Java gRPC implementation. HTTP/2 based RPC. Ver. 1.45.0.
Mar. de 2022. url: https://github.com/grpc/grpc-java.

[27] Example API documentation. https://gsa.github.io/api-documentation-
template/api-docs/. Accedido: 30-05-2022.

[28] GraphQL. GraphiQL & the GraphQL LSP Reference Ecosystem for building
browser & IDE tools. Ver. 1.7.2. Mar. de 2022. url: https://github.com/
graphql/graphiql.

[29] Open API 3. https://swagger.io/specification/. Accedido: 30-05-2022.

[30] Swagger UI. https://swagger.io/tools/swagger-ui/. Accedido: 30-05-2022.

[31] OpenAPI3 library for Spring-boot. https : / / springdoc . org/. Accedido:
30-05-2022.

[32] HOCON. github.com/lightbend/config/blob/main/HOCON.md. Accedido:
20-06-2022.

[33] Config4k. A Kotlin wrapper for Typesafe Config. Ver. 0.4.2. Feb. de 2020. url:
https://github.com/config4k/config4k.

[34] FasterXML. Jackson Project. Ver. 2.3.12. Sep. de 2021. url: https://github.
com/FasterXML/jackson.

[35] Fullstory. Command-line tool for interacting with gRPC servers. Ver. 1.8.6.
Feb. de 2022. url: https://github.com/fullstorydev/grpcurl.

[36] Curioswitch. High performance protobuf JSON marshaler based on Jackson.
Ver. 2.0.0. Ene. de 2022. url: https://github.com/curioswitch/protobuf-
jackson.

[37] Inside Airbnb: Get the Data. http://insideairbnb.com/get- the- data/.
Accedido: 31-05-2022.

[38] Babak Bashari Rad, Harrison John Bhatti y Mohammad Ahmadi. ((An
introduction to docker and analysis of its performance)). En: International Journal
of Computer Science and Network Security (IJCSNS) 17.3 (2017), pág. 228.

[39] Protocol buffers. https : / / developers . google . com / protocol - buffers.
Accedido: 26-05-2022.

[40] FreeMarker Java Template Engine. https : / / freemarker . apache . org/.
Accedido: 29-05-2022.

[41] Gradle Build Tool. https://gradle.org/. Accedido: 30-05-2022.

[42] Curl. https://curl.se. Accedido: 08-06-2022.

30

https://www.kaggle.com
https://start.spring.io
https://hibernate.org
https://github.com/grpc/grpc-java
https://gsa.github.io/api-documentation-template/api-docs/
https://gsa.github.io/api-documentation-template/api-docs/
https://github.com/graphql/graphiql
https://github.com/graphql/graphiql
https://swagger.io/specification/
https://swagger.io/tools/swagger-ui/
https://springdoc.org/
github.com/lightbend/config/blob/main/HOCON.md
https://github.com/config4k/config4k
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/fullstorydev/grpcurl
https://github.com/curioswitch/protobuf-jackson
https://github.com/curioswitch/protobuf-jackson
http://insideairbnb.com/get-the-data/
https://developers.google.com/protocol-buffers
https://freemarker.apache.org/
https://gradle.org/
https://curl.se

Lista de Tablas

1. Resumen de los requisitos mı́nimos de la solución 3
2. Libreŕıas utilizadas para la construcción del contenedor. 6
3. Esfuerzo dedicado a cada fase del Trabajo Fin de Grado 34

31

Lista de Figuras

1. Esquema en alto nivel de la solución propuesta 2
2. Tuplas de ejemplo para el modelo de libros y autores 6
3. Modelo de datos del catálogo de Netflix 8
4. Diagrama de paquetes de la prueba de concepto 9
5. Esquema de la generación del servicio gRPC 11
6. Diagrama de paquetes del sistema . 12
7. Diagrama de clases y paquetes del módulo DSL simplificado 13
8. Diagrama de clases y paquetes del paquete entities 13
9. Diagrama de clases y paquetes del módulo core 19
10. Directorio utilizado para la ejecución de la prueba del catálogo de Netflix 22
11. Directorio utilizado para la ejecución de la prueba de alojamientos y

reseñas de Airbnb . 24
12. Estructura de directorios para la generación de proyectos 38
13. Esquema de funcionamiento de FreeMarker 39
14. Página de inicio de documentación para la prueba del catálogo de Netflix 45
15. Ejemplo de petición enviada al contenedor desde el entorno GraphiQL

para la prueba del catálogo de Netflix 46
16. Descripción de los atributos de la entidad para la prueba del catálogo

de Netflix generado con el motor de plantillas 46
17. Interfaz de Swagger para REST API y cliente gRPC-REST en la prueba

del catálogo de Netflix . 47
18. Modelo de datos de la información de Airbnb Barcelona 49
19. Página de inicio de la documentación para la prueba de Airbnb 52
20. Interfaz de Swagger para REST API y cliente gRPC-REST para la

prueba de Airbnb . 52
21. Ejemplo de petición a través de la interfaz de Swagger en la prueba de

Airbnb . 53
22. Descripción de los atributos de la tabla Listing para la prueba de Airbnb 54
23. Descripción de los atributos de la tabla Review para la prueba de Airbnb 54

32

Lista de Código

1. Ejemplo de petición REST API . 6
2. Ejemplo de petición GraphQL . 7
3. Fragmento de código de la definición del esquema para GraphQL 10
4. Fragmento de código de la definición del servicio y mensajes de gRPC

en la prueba de concepto . 10
5. Definición del esquema de una entidad con un atributo básico, una clave

primaria y una clave extranjera . 14
6. Definición de una operación que soporta paginación y ordenación de

resultados y se expone en gRPC y REST API 16
7. Definición de las interfaces que exponen una entidad 17
8. Ejemplo de definición de la construcción de un contenedor 17
9. Fragmento de código de ejemplo de funciones lambda en Kotlin 36
10. Script con la descripción del contenedor para la prueba del catálogo de

Netflix . 42
11. Descripción del esquema de GraphQL para la prueba del catálogo de

Netflix . 43
12. Consultas expuestas a través de GraphQL para la prueba del catálogo

de Netflix . 43
13. Ejemplo de peticiones REST API para la prueba del catálogo de Netflix 44
14. Descripción del servicio gRPC para la prueba del catálogo de Netflix . 44
15. Ejemplo de peticiones al adaptador de gRPC para la prueba del catálogo

de Netflix . 45
16. Script con la descripción del contenedor para la prueba de Airbnb . . . 48
17. Descripción del esquema de GraphQL para la prueba de Airbnb 49
18. Consultas expuestas a través de GraphQL para la prueba de Airbnb . . 50
19. Ejemplo de peticiones REST API para la prueba de Airbnb 50
20. Descripción del servicio gRPC para la prueba de Airbnb 51
21. Ejemplo de peticiones al adaptador de gRPC para la prueba de Airbnb 51

33

A. Gestión del proyecto

El siguiente apéndice se utiliza para describir como se ha llevado a cabo la gestión del
proyecto. En concreto, se detalla el esfuerzo dedicado y el uso del sistema de control
de versiones Github para organizar todo el desarrollo del Trabajo Fin de Grado. El
control de esfuerzos se ha efectuado a través de una hoja de cálculo. Cada d́ıa que se
trabajaba en el proyecto se registraba el tiempo invertido. El registro se ha organizado
según las fases definidas en el cronograma.

Crear prototipo: Incluye la fase de análisis y la puesta en marcha del entorno
de desarrollo.

Crear la estructura base del proyecto: Crear proyecto multi-módulo con la
funcionalidad básica para crear un contenedor con muy poca configuración.

Implementar construcción y despliegue parametrizado: Desarrollo total
del DSL y soporte para la construcción del contenedor según la descripción del
script.

Validación del sistema: Incluye la realización de las dos pruebas descritas en
este documento, limpieza de código y refactorizado de la arquitectura.

Elaboración de documentación y ejemplos: Redacción de esta memoria y
preparación de ejemplo para la presentación.

Fases del trabajo Horas
Crear prototipo 35
Crear la estructura base del proyecto 49
Implementar construcción y despliegue parametrizado 152
Validación del sistema 24
Redacción de la memoria 42
Esfuerzo total 302

Tabla 3: Esfuerzo dedicado a cada fase del Trabajo Fin de Grado

Durante todo el proyecto se ha utilizado la plataforma GitHub para contar con un
control de versiones y además para organizar las tareas en issues donde se defińıan
objetivos y se manteńıa una conversación constante entre el director del proyecto y el
desarrollador sobre como continuar con el Trabajo Fin de Grado y posibles mejoras al
sistema desarrollado. También se han llevado a cabo reuniones presenciales al comienzo
de las fases descritas anteriormente para establecer los ĺımites de la siguiente tarea y
fijar hasta donde se queŕıa llegar.

34

B. Estudio de Kotlin

En este anexo se explican una serie de pruebas realizadas durante la fase de análisis
para comprobar si Kotlin era el lenguaje indicado para el desarrollo del Trabajo
Fin de Grado. Todo este proceso ha permitido familiarizarse más con el lenguaje de
programación y ha servido como un aprendizaje previo a comenzar con el desarrollo
de la solución definitiva.

B.1. Soporte para scripts

Uno de los aspectos analizado durante la fase de análisis, fue la capacidad para
ejecutar código Kotlin sin compilación previa, como si se tratara de un script. El
objetivo era emplear esta técnica para describir la construcción del contenedor. Se trata
de una funcionalidad creada por JetBrains, desarrolladora oficial de Kotlin, pero que
todav́ıa se encuentra en fase experimental. Actualmente, no existe una gran cantidad
de documentación al respecto, por lo que durante los inicios de esta fase de análisis
aparecieron dificultades asociadas precisamente a esa falta de información. Al igual que
con la creación del contenedor de ejemplo, se generó un proyecto de prueba para analizar
la viabilidad de esta idea. De este desarrollo se extrajeron las siguientes conclusiones:

Toda aplicación que ejecuta scripts con código Kotlin debe contar con una clase
abstracta que actúa como superclase para todos los scripts del mismo tipo. Se
consideran del mismo tipo aquellos que tienen el mismo nombre, por ejemplo
example.kts. Para ello, es necesario crear una clase anotada con la etiqueta
@KotlinScript donde se definan aspectos espećıficos de la compilación de ese
tipo de scripts [7]. De este modo, es posible añadir una serie de dependencias por
defecto o limitar las rutas desde las que se puede ejecutar el script.

Además de la definición del script, debe implementarse una clase que sea la
encargada de evaluar y ejecutar un fichero con código Kotlin tomando como
referencia la definición previamente creada.

B.2. Definición de un DSL

Por otra parte, con la especificación de un DSL se busca simplificar la creación del
contenedor, de modo que no sea necesario un conocimiento avanzado de Kotlin para
realizar la misma y se pueda llevar a cabo de una forma lo más similar posible al
lenguaje natural.

La implementación del DSL se basa principalmente en el uso de funciones anónimas,
también conocidas como expresiones lambda. Se comportan como si se tratará de
una función de la cual se pasa directamente el cuerpo de la misma, sin especificar
su declaración. Además, Kotlin permite que estas se puedan utilizar como parámetro
de entrada a otras funciones. En particular, es posible invocar a una función que recibe
como parámetro una función lambda sin la necesidad de especificar los paréntesis. En
el fragmento de código inferior se muestra un ejemplo de esta caracteŕıstica.

funcion({expresion-lambda}) → Invocación habitual
funcion{ expresion-lambda } → Invocación soportada por Kotlin

35

Esta funcionalidad toma especial importancia si se hace uso de las denominadas
expresiones lambda con receptores. Se trata de funciones anónimas que están asociadas
a un objeto concreto, es decir, pueden acceder a las funciones o atributos del mismo
en el cuerpo de la función lambda.

En el siguiente fragmento de código, se puede apreciar un breve ejemplo donde se
hace uso de esta funcionalidad. En concreto, se define una clase MyType, que cuenta
únicamente con un atributo de tipo String y una función, doSomething. Seguidamente,
se especifica una función, test, que devuelve un objeto de tipo MyType y recibe
como parámetro de entrada una función anónima. Esta última, denominada init,
se corresponde con una expresión lambda que no devuelve nada y cuenta con el tipo
MyType como receptor. En el cuerpo de la expresión lambda init, será posible acceder
a los atributos y funciones de la instancia del tipo MyType.

Finalmente, se muestra un ejemplo de su uso en la función main. Tal y como se
puede observar, basta con invocar a la función test para obtener un objeto del tipo
Mytype con el valor indicado en el atributo bar y que además invoque a la función
doSomething. Cabe destacar que, para aportar mayor contexto al fragmento de código
y de forma opcional, el objeto devuelto por la función test se guarda en la variable
type del tipo myType.

class MyType {

2 lateinit var bar : String

4 fun doSomething () { ... }

}

6

fun test(init: MyType .() -> Unit) : MyType {

8 return MyType ().apply(init)

}

10

fun main() {

12 var type : MyType = test {

bar = "prueba"

14 doSomething ()

}

16 }

Listado 9: Fragmento de código de ejemplo de funciones lambda en Kotlin

Mediante el desarrollo de estas pruebas, tanto el proyecto para construir el
contenedor comentando en la sección de análisis, como los ejemplos para ejecutar
scripts y diseñar un DSL en Kotlin, se pudo verificar que la propuesta era viable y
Kotlin era el lenguaje apropiado para realizarlo. Esta fase, pese haberla alargado más
de lo esperado, sirvió para asentar conocimientos sobre Kotlin, ya que no se contaba
con la experiencia suficiente y creó la base necesaria para comenzar con la fase de
desarrollo.

36

C. Desarrollo de la solución

En este anexo se explica en detalle algunos aspectos de más bajo nivel relacionados
con la implementación de la solución. En particular, se describe el motor de plantillas
utilizado y como se lleva a cabo la ejecución de scripts en la herramienta.

C.1. Motor de plantillas

Este apartado describe el uso de un motor de plantillas para generar nuevos
contenedores basándose en la descripción especificada en el script. Para ello, se combina
un árbol de directorios, que cuenta con la estructura necesaria para un proyecto con
esos requisitos, con el empleo de plantillas que son completadas con la configuración
recibida. La estructura de directorios y plantillas comentada a lo largo de este apartado
se puede observar en la Figura 12.

Como ya se ha comentado anteriormente, durante la fase de análisis se generó un
proyecto de ejemplo para analizar si era viable construir una aplicación que expusiera
un conjunto de datos de la forma requerida. Este ejemplo resultó muy útil en la
fase de desarrollo, ya que permitió extraer la estructura de directorios y ficheros que
habŕıa que utilizar en el proyecto cuando este se generara de un modo paramétrico y
automático. La principal diferencia con la prueba de concepto, es que en este caso no
todos los proyectos tienen porque contar con la estructura completa. Es decir, es posible
configurar el script de modo que algunas interfaces de acceso no estén disponibles y,
por lo tanto, no sea necesario incorporar al proyecto cierta funcionalidad.

Con esta premisa en mente, se decidió organizar la estructura de directorios y
ficheros según la interfaz con la que estaban relacionados. De esta forma, se crearon
los siguientes directorios base:

common: Contiene la estructura común a todas las interfaces. Es la base del
proyecto y la encargada de arrancar la aplicación.

graphql: Ficheros espećıficos para la interfaz de acceso GraphQL.

grpc: Ficheros espećıficos para la interfaz de acceso gRPC.

rest: Ficheros espećıficos para la interfaz de acceso REST API.

Antes de comenzar con la explicación en detalle de la estructura de directorios,
se procede a explicar el uso de plantillas. Como motor de plantillas se ha utilizado
FreeMarker [40], se trata de una libreŕıa de Java, con soporte para Kotlin. Permite
completar plantillas al combinarlas con objetos de Kotlin donde se asocia un valor
para las variables definidas en la plantilla. Los ficheros creados como plantillas deben
estar codificados con el lenguaje FreeMarker Template Language (FTL) y emplear la
extensión ftlh. En la Figura 13 se muestra un esquema con el funcionamiento del motor
de plantillas. Como se puede apreciar, las variables se representan con el śımbolo $
seguido del nombre de la misma. En este caso, example.kt.ftlh se corresponde con
una plantilla de FreeMarker que enmascara a un fichero de Kotlin. Este último define
una variable, aux, a la que se le asigna el valor que tenga en ese momento la variable de
la plantilla $value. De esa manera, si el motor, a la hora de procesar example.kt.ftlh,
recibe un objeto de tipo tabla hash donde se asocia un valor concreto para la clave

37

/

common

data

insert data.sql.ftlh

gradle

wrapper

gradle-wrapper.jar

gradle-wrapper.properties

src

main

kotlin

ApplicationConfiguration.kt.ftlh

mainClass.kt.ftlh

repository

Entities.kt.ftlh

resources

application.properties.ftlh

static

index.html.ftlh

css

js

build.gradle.kts.ftlh

Dockerfile.ftlh

gradlew

settings.gradle.kts

graphql

kotlin

controller

GraphQlController.kt.ftlh

resources

schema

schema.graphqls.ftlh

grpc

src

main

kotlin

controller

GrpcService.kt.ftlh

GrpcServiceClient.kt.ftlh

proto

schema.proto.ftlh

rest

src

main

kotlin

repository

Repositories.kt.ftlh

Figura 12: Estructura de directorios para la generación de proyectos

38

value. Sustituirá la variable y generará el fichero example.kt en la ruta que se haya
indicado en la configuración del mismo.

Figura 13: Esquema de funcionamiento de FreeMarker

A continuación, se continúa con la explicación de la estructura de directorios. El
directorio common contiene:

Directorio data: Incluye la plantilla del script SQL encargado de poblar el
fichero de SQLite que actuará como base de datos. Además, en este directorio se
almacenan los ficheros CSV especificados en la descripción del contenedor.

Directorio gradle: Incluye los ficheros necesarios para incorporar al proyecto la
herramienta de automatización Gradle [41]. En los proyectos generados se utiliza
para definir las dependencias del mismo, aśı como para crear tareas que permitan
de forma automática compilar y desempaquetar los ejecutables, crear y cargar la
base de datos y lanzar el contenedor con la imagen generada.

build.gradle.kts.ftlh: Plantilla donde se especifican las dependencias y tareas
de gradle del proyecto.

DockerFile.ftlh: Plantilla para crear el documento donde se definen todos los
comandos que hay que ejecutar para crear la imagen del contenedor Docker. Todos
los contenedores se construyen con la imagen base de Java Runtime Environment
11.0.11 9. Internamente, se configura para que se use una versión compatible con
la arquitectura amd64 o arm64-v8a, en función del equipo donde se ejecuta la
herramienta. Amd64 se corresponde con la especificación de 64 bits desarrollada

39

por la compañ́ıa AMD del conjunto de instrucciones x86, mientras que arm64
es la especificación de 64 bits de la arquitectura ARM. La elección de estas
arquitecturas se debe a que para el desarrollo del Trabajo Fin de Grado se han
empleado dos equipos que contaban con una arquitectura distinta y de este modo
se pod́ıa desplegar de manera directa en ambos sistemas.

gradlew: Script encargado de ejecutar la herramienta gradle.

settings.gradle.kts: Se utiliza para definir aspectos de configuración. En este
caso fijar el nombre del proyecto.

Directorio src: En esta ruta es donde se almacena el código fuente de la
aplicación. La estructura cuenta únicamente con los paquetes src/main/kotlin,
pero se expande con el nombre de paquete indicado en el script. Es decir, si en
la descripción del contenedor se especifica como paquete com.example.tfg, la
ruta de estos directorios será src/main/kotlin/com/example/tfg. El resto de
ficheros contenidos en el directorio src son los siguientes:

• ApplicationConfiguration.kt.ftlh: Plantilla de la clase donde se
configura el controlador necesario para conectar la aplicación con SQLite.

• mainClass.kt.ftlh: Plantilla de la clase encargada de arrancar la aplicación.

• repository/Entities.kt.ftlh: Contenida en el directorio repository, se
encuentra la plantilla donde se definen las entidades JPA. Estas se
corresponden con las definidas en la descripción del contenedor y cada una
se asocia con un único fichero CSV.

• Directorio resources: Este directorio almacena, por un lado, la plantilla
application.properties.ftlh, que se encarga de definir diferentes
aspectos de configuración del sistema. Por otra parte, en el subdirectorio
static, se encuentra una plantilla de un fichero HTML junto con los ficheros
CSS y JavaScript necesarios para crear una página donde, una vez lanzado
el contenedor, se pueda consultar documentación sobre las fuentes de datos
almacenada en el mismo, aśı como, probar de forma interactiva las interfaces
de acceso. Más adelante, se explica en detalle como se genera todo ello.

El directorio graphql contiene las plantillas para definir los controladores y el
esquema necesario para dar soporte a la interfaz GraphQL. El directorio grpc se encarga
de lo mismo para la interfaz gRPC. En este caso contiene la plantilla para definir el
servicio expuesto por el servidor y la plantilla para un servicio cliente. Finalmente,
el directorio rest contiene la plantilla encargada de definir el repositorio de acceso a
datos. Como aspecto destacable, este fichero debe estar presente siempre en el proyecto
generado, ya que es ah́ı donde se definen las consultas que interaccionan con la base de
datos directamente. En caso de que la descripción del contenedor indiqué que se debe
utilizar REST API, se añadirá a la plantilla la etiqueta correspondiente para añadir
esa funcionalidad, como ya se ha comentado en la prueba de concepto. Como se puede
apreciar, los directorios y plantillas se han estructurado de la misma forma en la que
estaŕıan en el proyecto definitivo, esto se debe a una decisión de implementación que
se detalla a continuación.

Tal y como se ha descrito en la sección de diseño. La clase TreeWalk del módulo
core (Figura 9) es quien construye el contenedor según la configuración que le indica la

40

clase DataAsContainer. Para realizar esta tarea, fusiona los directorios necesarios en
función de los requisitos del proyecto y rellena las plantillas con los valores adecuados.
De esta forma, según las interfaces de acceso que hayan sido especificadas en el script
de construcción, se copian unos u otros ficheros y directorios de la estructura base en
el proyecto generado. Para acceder estos ficheros, recorre la estructura de directorios
copiando y completando plantillas con las variables que se han recibido desde el módulo
dsl. De la implementación de la clase TreeWalk, es de donde aparece la necesidad de
declarar las plantillas con todos los directorios donde están contenidas. Esto se debe a
que se realiza un recorrido en profundidad del árbol y se extrae la ruta de cada nodo
para aśı copiarlo directamente en la localización del proyecto generado.

C.2. Ejecución de scripts

A continuación, se detallan aspectos de la implementación de los módulos host y
script, comentados en la sección de diseño 3. Al estar muy relacionados entre śı, se
ha optado por agruparlos en un único apartado. Cabe destacar que los scripts a los
que se hace referencia a lo largo de este documento, se corresponden con ficheros de la
extensión kts escritos con el DSL desarrollado en este Trabajo Fin de Grado.

Como se ha comentado previamente, el módulo host es el encargado de ejecutar los
scripts. Para su desarrollo, se ha trabajado con la libreŕıa kotlin.script, que, en la fecha
de desarrollo del proyecto, todav́ıa se encuentra en estado experimental. Por otra parte,
el módulo script permite especificar aspectos como la extensión de los ficheros que
puede ejecutar el módulo host, en este caso build.diac.kts, y las clases que se van a
utilizar para evaluar y compilar el script. Esto último se ha empleado para indicar las
dependencias que se importan por defecto del módulo dsl al ejecutar el script. De este
modo, no es necesario conocer las clases usadas a la hora de describir una construcción
y el usuario puede limitarse a codificar la especificación del contenedor.

41

D. Prueba catálogo de Netflix

En este anexo se muestra todo el contenido relacionado con la prueba ejecutada
con el catálogo de Netflix. La descripción de la misma puede consultarse en
la Subsección 5.1. En el Listado 10 se puede apreciar el contenido del script
build.diac.kts. Este se utiliza para describir la construcción del contenedor.

dac {

2 name = "Demo"

fullName = "Demo application"

4 desc = "Contenedor con informacion sobre catalogo de Netflix"

license = "Apache -2.0 "

6 homepage = "https ://www.kaggle.com/shivamb/netflix -shows"

packageName = "com.simplificada.tfg"

8 mainClass = "SimplificadaTest"

data {

10 files {

"title" {

12 src = "netflix_titles.csv"

schema {

14 "show_id" type text property isPrimaryKey

"type" type text

16 "title" type text

"director" type text

18 "cast" type text

"country" type text

20 "date_added" type text

"release_year" type text

22 "rating" type text

"duration" type text

24 "listed_in" type text

"description" type text

26 }

operations {

28 create <Query >("findByReleaseYear") {

parameters = L["releaseYear", Pageable (), Sort()]

30 sorted = asc("title")

limit = first(10)

32 distinct = true

platforms = L[grpc ,rest]

34 }

create <Query >("findByDirector", "director")

36 create <Query >("findByType",

"type",

38 desc("releaseYear"),

first(25),

40 true ,

L[graphql ,rest])

42 create <Query >("findByShowId"){parameters="showId"}

}

44 modules {

install(restApi) { path = "title" }

46 install(graphqlApi) { controllerName = "title" }

install(grpcApi) {}

48 } } } } }

Listado 10: Script con la descripción del contenedor para la prueba del catálogo de
Netflix

42

En el Listado 11 puede observarse el código generado, de forma automática y según
el script del Listado 10, para definir la interfaz GraphQL en el contenedor. Se definen
las consultas expuestas en la interfaz en el tipo Query y posteriormente se define la
entidad con la que se trabaja, en este caso, TitleEntity.

type Query {

2 allTitles : [TitleEntity]

findByDirector(director : String) : [TitleEntity]

4 findDistinctFirst25ByTypeOrderByReleaseYearDesc(type : String)

: [TitleEntity]

6 findByShowId(showId : String) : [TitleEntity]

}

8 type TitleEntity {

showId : String

10 type : String

title : String

12 director : String

cast : String

14 country : String

dateAdded : String

16 releaseYear : String

rating : String

18 duration : String

listedIn : String

20 description : String

}

Listado 11: Descripción del esquema de GraphQL para la prueba del catálogo de Netflix

El Listado 12 muestra un ejemplo de como se codificaŕıa cada una de las consultas
expuestas en GraphQL. Cabe destacar el caso de la consulta allTitles, que devuelve
todos los t́ıtulos del catálogo y ha sido creada de forma automática. Sin necesidad de
especificarlo en el script. Esto se expande también a REST API y gRPC.

{

2 allTitles {

type

4 }

findByDirector(director : "Quentin Tarantino") {

6 releaseYear

cast

8 }

findDistinctFirst25ByTypeOrderByReleaseYearDesc(type:"TV Show"){

10 rating

duration

12 }

findByShowId(showId : "s108") {

14 title

country

16 description

}

18 }

Listado 12: Consultas expuestas a través de GraphQL para la prueba del catálogo de
Netflix

43

En el Listado 13 puede observarse una petición de ejemplo para cada una de las
consultas expuestas en REST API. Aunque estas pueden ser ejecutadas de una forma
más sencilla desde la página de documentación, gracias a swagger-ui, se han decidido
mostrar también con la herramienta curl [42].

curl -X GET http://localhost:8080/title/search/findByDirector\

2 ?director=Martin %20Scorsese

4 curl -X GET http://localhost:8080/title

6 curl -X GET http://localhost:8080/title/search/findByShowId?showId=s190

8 curl -X GET http://localhost:8080/title/search/\

findDistinctFirst10ByReleaseYearOrderByTitleAsc?releaseYear=2020

10

curl -X GET http://localhost:8080/title/search/\

12 findDistinctFirst25ByTypeOrderByReleaseYearDesc?type=Movie

14 curl -X GET http://localhost:8080/title/s305

Listado 13: Ejemplo de peticiones REST API para la prueba del catálogo de Netflix

A continuación, en el Listado 14, se muestra la definición del servicio expuesto en
gRPC. De nuevo, todo el código mostrado se ha generado de forma automática según
la descripción del script. La estructura es muy similar a la del esquema de GraphQL.
Primero, se definen las consultas y los mensajes necesarios para invocarlas, y después,
se especifica la entidad con la que se trabaja. En este caso Title.

syntax = "proto3";

package proto;

import "google/protobuf/wrappers.proto";

import "google/protobuf/timestamp.proto";

import "google/protobuf/struct.proto";

service TitleService {

rpc findDistinctFirst10ByReleaseYearOrderByTitleAsc

(findByReleaseYearRequest) returns (stream Title);

rpc allTitles(allTitleRequest) returns (stream Title);

rpc findByDirector(findByDirectorRequest) returns (stream Title);

rpc findByShowId(findByShowIdRequest) returns (stream Title);

}

message findByReleaseYearRequest { string releaseYear = 1; }

message allTitleRequest {}

message findByDirectorRequest { string director = 1; }

message findByShowIdRequest { string showId = 1; }

message Title {

string showId = 1;

string type = 2;

string title = 3;

string director = 4;

string cast = 5;

string country = 6;

string dateAdded = 7;

44

string releaseYear = 8;

string rating = 9;

string duration = 10;

string listedIn = 11;

string description = 12;

}

Listado 14: Descripción del servicio gRPC para la prueba del catálogo de Netflix

Para finalizar con gRPC, se enseña un ejemplo de las peticiones HTTP que se
pueden enviar al contenedor para consular el servicio de gRPC en caso de no tener
un cliente capaz de trabajar con Protocol Buffers. Como ocurre con el caso de REST
API, estas peticiones se pueden enviar también desde la página de documentación a
través de swagger-ui. Por simplicidad, en las peticiones mostradas en el Listado 15, no
se muestra el flag -H ’Content-Type: application/json’.

curl -X POST http://localhost:8080/grpc/findByDirector \

2 -d '{"director" : "Steven Spielberg"}'
curl -X POST http://localhost:8080/grpc/\

4 findDistinctFirst10ByReleaseYearOrderByTitleAsc -d '{"releaseYear" : "2020"}'
curl -X POST http://localhost:8080/grpc/findByShowId \

6 -d '{"showId" : "s408"}'
curl -X POST http://localhost:8080/grpc/allTitles

Listado 15: Ejemplo de peticiones al adaptador de gRPC para la prueba del catálogo
de Netflix

Por último, se muestran capturas de la página de documentación para el contenedor
generado durante la prueba. Cabe destacar que, solo se puede acceder a ella una vez
que se ha lanzado la imagen del contenedor. La Figura 14 se corresponde con la vista de
la sección Overview y se comporta como la página de inicio. En la zona de la izquierda
se puede apreciar un menú que permite navegar al resto de secciones disponibles en la
página.

Figura 14: Página de inicio de documentación para la prueba del catálogo de Netflix

45

El apartado API calls permite probar las diferentes interfaces. Expone un enlace
para acceder al entorno GraphiQL y una serie de desplegables de swagger-ui desde
donde se puede configurar y ejecutar las consultas a través de REST API y el adaptador
para gRPC-REST. La Figura 15 enseña una petición de ejemplo desde el entorno
GraphiQL. En la zona de la izquierda se encuentra la definición de la consulta y en la
derecha el resultado de la misma. La zona superior permite, entre otras cosas, ejecutar
la consulta y ver un histórico de las consultas ejecutadas. En la Figura 16 se puede
apreciar una versión reducida de la entidad. El objetivo es que el usuario disponga
de una sección donde pueda consultar la entidad almacenada en el contenedor. Cabe
destacar que la tabla se genera con el motor de plantillas según el contenido del script
de configuración. La Figura 17, muestra una vista reducida de los desplegables de
swagger-ui. Estos han sido generados de forma automática gracias a la descripción del
servicio en Open API 3.

Figura 15: Ejemplo de petición enviada al contenedor desde el entorno GraphiQL para
la prueba del catálogo de Netflix

Figura 16: Descripción de los atributos de la entidad para la prueba del catálogo de
Netflix generado con el motor de plantillas

46

Figura 17: Interfaz de Swagger para REST API y cliente gRPC-REST en la prueba
del catálogo de Netflix

47

E. Prueba publicaciones Airbnb

El siguiente anexo muestra el contenido relacionado con la prueba ejecutada con los
datos de Airbnb sobre alojamientos y reseñas en la ciudad de Barcelona. La explicación
en detalle de la misma puede consultarse en la sección 5.2. El modelo de datos se
muestra en la Figura 18. El Listado 16 muestra el contenido del script build.diac.kts.
Utilizado para describir la construcción del contenedor.

dac {

2 name = "airbnb"

fullName = "Airbnb -bcn"

4 desc = "Informacion sobre Airbnb barcelona"

license = "Apache -2.0 "

6 homepage = "http :// insideairbnb.com/get -the -data/"

packageName = "com.manyToOne.tfg"

8 mainClass = "ManyToOneTest"

data {

10 files {

"listing" {

12 src = "listings.csv"

schema {

14 "listing_id" type integer property isPrimaryKey

"name" type text

16 "host_id" type integer

"neighbourhood_group" type text

18 "neighbourhood" type text

"room_type" type text

20 "price" type integer

"minimum_nights" type integer

22 "number_of_reviews" type integer

}

24 operations { create <Query >("findByPrice", "price") }

modules {

26 install(restApi) { collectionResourceRel = "listing" }

install(graphqlApi) {}

28 install(grpcApi) { serviceName = "ListingService" }

}

30 }

"review" {

32 src = "reviews.csv"

schema {

34 "review_id" type integer property isPrimaryKey

"listing_reviewed" type integer references "listing"

36 column "listingId"

"date" type text

38 }

operations {

40 create <Query >("findByReviewId", "reviewId")

}

42 modules {

install(restApi) { path = "review" }

44 install(graphqlApi) { controllerName = "review" }

install(grpcApi) {}

46 } } }

}

48 }

Listado 16: Script con la descripción del contenedor para la prueba de Airbnb

48

Figura 18: Modelo de datos de la información de Airbnb Barcelona

En el Listado 17 se puede apreciar la descripción del esquema de GraphQL. Se
encarga de exponer las consultas indicadas a través de la interfaz y de definir las
entidades que se almacenan, ListingEntity y ReviewEntity. En este caso, cabe
destacar el atributo listingReviewed, que hace referencia a la clave extranjera definida
en el script (Listado 16).

type Query {

2 findByPrice(price : Int) : [ListingEntity]

allListings : [ListingEntity]

4 findByReviewId(reviewId : Int) : [ReviewEntity]

allReviews : [ReviewEntity]

6 }

8 type ListingEntity {

listingId : Int

10 name : String

hostId : Int

12 neighbourhoodGroup : String

neighbourhood : String

14 roomType : String

price : Int

16 minimumNights : Int

numberOfReviews : Int

18 }

type ReviewEntity {

20 reviewId : Int

listingReviewed : ListingEntity

22 date : String

}

Listado 17: Descripción del esquema de GraphQL para la prueba de Airbnb

En el Listado 18 se puede observar un ejemplo de como se definiŕıan las consultas
expuestas en GraphQL. De nuevo, al igual que en la prueba con el catálogo de Netflix,
se han generado automáticamente las consultas allListings y allReviews.

49

{

2 findByPrice(price : 140) {

neighbourhoodGroup

4 roomType

}

6

allListings{

8 price

hostId

10 }

12 findByReviewId(reviewId: 4) {

date

14 listingReviewed {

minimumNights

16 }

}

18

allReviews{

20 date

}

22 }

Listado 18: Consultas expuestas a través de GraphQL para la prueba de Airbnb

En el Listado 19 se pueden apreciar ejemplos de peticiones para las consultas
expuestas en REST API. De nuevo, es posible ejecutarlas también desde la página
de documentación a través de swagger-ui.

curl -X GET http://localhost:8080/ListingServices/search/findByPrice?price=170

2 curl -X GET http://localhost:8080/ListingServices

curl -X GET http://localhost:8080/ListingServices/582364

4

curl -X GET http://localhost:8080/review/search/findByReviewId?reviewId=100

6 curl -X GET http://localhost:8080/review

curl -X GET http://localhost:8080/review/2

8 curl -X GET http://localhost:8080/review/2/listingReviewed

Listado 19: Ejemplo de peticiones REST API para la prueba de Airbnb

Seguidamente, en el Listado 20, se muestra la definición de los servicios expuestos
en gRPC. Se especifica uno por cada entidad, Listing y Review. Al igual que ocurŕıa
en el esquema de GraphQL, el atributo listingReviewed de la entidad Review permite
tratar una clave extranjera como un objeto de la entidad a la que se hace referencia.

50

syntax = "proto3";

package proto;

import "google/protobuf/wrappers.proto";

import "google/protobuf/timestamp.proto";

import "google/protobuf/struct.proto";

service ListingService {

rpc findByPrice(findByPriceRequest) returns (stream Listing);

rpc allListings(allListingRequest) returns (stream Listing);

}

message findByPriceRequest { int32 price = 1; }

message allListingRequest {}

message Listing {

int32 listingId = 1;

string name = 2;

int32 hostId = 3;

string neighbourhoodGroup = 4;

string neighbourhood = 5;

string roomType = 6;

int32 price = 7;

int32 minimumNights = 8;

int32 numberOfReviews = 9;

}

service ReviewService {

rpc findByReviewId(findByReviewIdRequest) returns (stream Review);

rpc allReviews(allReviewRequest) returns (stream Review);

}

message findByReviewIdRequest { int32 reviewId = 1; }

message allReviewRequest {}

message Review {

int32 reviewId = 1;

Listing listingReviewed = 2;

string date = 3;

}

Listado 20: Descripción del servicio gRPC para la prueba de Airbnb

Para finalizar con gRPC, se muestra un ejemplo de las peticiones HTTP que se
pueden ejecutar para consular el servicio de gRPC. Estas peticiones se pueden enviar
también desde la página de documentación a través de swagger-ui.

curl -X POST http://localhost:8080/grpc/findByReviewId -d '{reviewId : 12}'
2

curl -X POST http://localhost:8080/grpc/findByPrice -d '{price : 55}'
4

curl -X POST http://localhost:8080/grpc/allReviews

6

curl -X POST http://localhost:8080/grpc/allListings

Listado 21: Ejemplo de peticiones al adaptador de gRPC para la prueba de Airbnb

51

A continuación, se enseñan capturas de la página de documentación. El diseño de
esta es idéntico al mostrado en la prueba de Netflix. La Figura 19 muestra la vista de
la página Overview, donde la única diferencia a la prueba anterior es el contenido de
la descripción del contenedor.

Figura 19: Página de inicio de la documentación para la prueba de Airbnb

La Figura 20 y la Figura 21 muestran los menús desplegables de swagger-ui,
accesibles en la sección API calls. Esta última enseña como se lleva a cabo la
configuración y ejecución de una consulta en la interfaz API REST. En este caso se ha
decidido no mostrar la ejecución de una consulta de prueba en el entorno GraphiQL,
ya que no aporta información adicional.

Figura 20: Interfaz de Swagger para REST API y cliente gRPC-REST para la prueba
de Airbnb

52

Figura 21: Ejemplo de petición a través de la interfaz de Swagger en la prueba de
Airbnb

53

Para concluir, se muestra el contenido de la sección Field reference. Esta contiene
las tablas de las dos entidades con las que se trabaja, Listing y Review.

Figura 22: Descripción de los atributos de la tabla Listing para la prueba de Airbnb

Figura 23: Descripción de los atributos de la tabla Review para la prueba de Airbnb

54

	Introducción
	Motivación
	Objetivo del Trabajo Fin de Grado
	Alcance
	Estructura del documento

	Análisis
	Selección de tecnologías
	Prueba de concepto
	Conclusiones de la fase de análisis

	Diseño
	Arquitectura del sistema
	Diseño de la descripción del contenedor
	Descripción del modelo de datos
	Descripción de las consultas
	Especificación de las interfaces de acceso
	Descripción de la construcción

	Construcción del contenedor
	Conclusiones de la fase de diseño

	Desarrollo
	Documentación del contenedor
	Gestión de la configuración
	Entorno de ejecución
	Dificultades encontradas

	Validación
	Catálogo de Netflix
	Alojamientos y reseñas de Airbnb
	Conclusiones de la validación

	Conclusiones
	Objetivos alcanzados
	Trabajo futuro
	Reflexiones personales

	Acrónimos
	Glosario
	Referencias
	Lista de Tablas
	Lista de Figuras
	Lista de Código
	Gestión del proyecto
	Estudio de Kotlin
	Soporte para scripts
	Definición de un DSL

	Desarrollo de la solución
	Motor de plantillas
	Ejecución de scripts

	Prueba catálogo de Netflix
	Prueba publicaciones Airbnb

