22 Universidad
i01 Zaragoza

1542

Trabajo Fin de Grado

Datos en un contenedor

Data in a container

Autor

Jaime Conchello Bauto

Director

Francisco Javier Lopez Pellicer

ESCUELA DE INGENIERIA Y ARQUITECTURA
2022

Agradecimientos

Me gustaria comenzar dando las gracias Francisco Javier Lopez Pellicer por haberme
ayudado durante todo el proyecto. Sin duda, su esfuerzo y dedicaciéon han sido claves
para sacar adelante este TFG.

También quiero agradecer a todos los companeros y companeras que he conocido
durante el transcurso del grado y con los que he pasado muy buenos momentos.

Por tltimo, y en especial, quiero dar las gracias a mi familia por haberme apoyado
siempre que lo necesitaba durante todo estos anos.

IT

Resumen

Los métodos actuales para distribuir conjuntos de datos se basan principalmente
en la comparticién directa de ficheros con la informacion o en el desarrollo de
una solucién integradora que ofrezca una API de acceso para cada caso de uso.
Una linea no explorada todavia es hacer uso de la funcionalidad ofrecida por la
tecnologia de contenedores Docker. Esta permite empaquetar codigo junto con todas sus
dependencias y desplegarlo en entornos heterogéneos empleando ficheros que describen
servicios y con una herramienta de linea de comandos. En este Trabajo Fin de Grado, se
desarrollara una herramienta que permita configurar mediante un script la construccién
y despliegue automatico de un contenedor Docker que integre y exponga un conjunto
de datos a través de una API tipo Web y una API tipo Remote Procedure Call o
RPC construida en base de la especificacion del conjunto de datos. Ademds, cada
contenedor dispondra de una pagina web con informacién sobre los datos almacenados
y la capacidad de probar las interfaces expuestas de forma interactiva.

La solucién propuesta simplifica el proceso de distribucién de conjuntos de datos.
A diferencia de las aproximaciones actuales, es posible compartir un tnico contenedor
que cuente con todo lo necesario para que los distintos tipos de consumidores finales
(aplicaciones web, sistemas de informacién, etc.) consulten la informacién que deseen
a través de las diferentes interfaces expuestas. De este modo, no es necesario que los
consumidores procesen manualmente las fuentes de datos, se eliminan los problemas
de compatibilidad al trabajar en entornos heterogéneos y se garantiza la integridad de
la informacion almacenada.

Como conclusién, el desarrollo del Trabajo Fin de Grado ha permitido desarrollar
una primera aproximacion a este modelo de distribucién de conjuntos de datos. Supone
un paso importante, ya que, se ha podido comprobar que la propuesta tiene potencial y
ha permitido sentar la base sobre la que continuar trabajando en futuros trabajos. En
el repositorio de Docker Hub https://hub.docker.com/r/776012/diac, se pueden
descargar dos contenedores generados con la herramienta desarrollada en este Trabajo
Fin de Grado y que almacenan y exponen datos abiertos de empresas reales.

II1

https://hub.docker.com/r/776012/diac

Indice

1.

Introduccion

1.1. Motivacidn
1.2. Objetivo del Trabajo Finde Grado
1.3. Alcance
1.4. Estructura del documento

. Analisis

2.1. Seleccion de tecnologias Lo
2.2. Prueba de conceptoo
2.3. Conclusiones de la fase de analisis

3. Diseno
3.1. Arquitectura del sistema
3.2. Diseno de la descripcion del contenedor
3.2.1. Descripcién del modelo de datos
3.2.2. Descripcién de las consultas L.
3.2.3. Especificacion de las interfaces de acceso
3.2.4. Descripcién de la construcciéon
3.3. Construccion del contenedor
3.4. Conclusiones de la fase de diseno
4. Desarrollo
4.1. Documentacién del contenedor
4.2. Gestién de la configuraciono oo
4.3. Entorno de ejecucion
4.4. Dificultades encontradas
5. Validacién

5.1. Catélogo de Netflix
5.2. Alojamientos y resenas de Airbnb
5.3. Conclusiones de la validacién

. Conclusiones

6.1. Objetivos alcanzados
6.2. Trabajo futuro
6.3. Reflexiones personales,

Acrénimos

Glosario

Referencias

Lista de Tablas

Lista de Figuras

Lista de Cdédigo

IV

20
20
20
21
21

22
22
23
24

25
25
25
26

27

28

29

31

32

33

. Gestion del proyecto

. Estudio de Kotlin
B.1. Soporte para scripts
B.2. Definicion deun DSL

. Desarrollo de la solucion
C.1. Motor de plantillas
C.2. Ejecucién de seripts oL

. Prueba catalogo de Netflix

. Prueba publicaciones Airbnb

34

35
35
35

37
37
41

42

48

1. Introduccion

Un contenedor Docker es una tecnologia que, mediante virtualizacion a nivel de
sistema operativo, es capaz de encapsular cdédigo junto a sus dependencias para ser
ejecutado en entornos heterogéneos. Las simplificaciones que aporta al proceso de
distribuciéon y despliegue de aplicaciones han potenciado su uso durante los ultimos
anos. Pese a ello, todavia no se ha desarrollado una alternativa que permita integrar y
distribuir conjuntos de datos de forma automatica, siendo los desarrolladores quienes
deben crear manualmente sus propias soluciones para cada caso de uso.

El objetivo de este Trabajo Fin de Grado es construir una herramienta mediante
la cual un desarrollador pueda via un script, configurar la construccién y despliegue
automatico de un contenedor Docker que distribuya y despliegue un determinado
conjunto de datos exponiendo, por ejemplo, una API tipo Web y una API tipo Remote
Procedure Call o RPC como interfaces de acceso en modo lectura.

1.1. Motivacion

No se puede ignorar que actualmente se potencia cada vez mas el desarrollo y
creaciéon de repositorios de recursos abiertos, en los que cada dia se producen ingentes
cantidades de datos [1]. Pese a ello, todavia no existe un método que permita la
distribucién de toda esta informacion de una forma sencilla y eficaz. En la mayoria de
las ocasiones, estos datos son publicados o distribuidos directamente en ficheros [2],
que dificilmente pueden ser procesados para extraer la informaciéon buscada, o es
necesario que se desarrolle una solucién a medida para ponerlos a disposicién de los
usuarios. Tampoco se debe olvidar que existen ciertos entornos donde es imprescindible
garantizar la integridad del contenido. Por ejemplo, cuando este haya de ser empleado
por un tercero y sea preciso asegurar su reproducibilidad [3], extremo que es mucho mas
dificil de cumplir en el caso de que se opte por compartir de manera directa un fichero
con la informacién que corresponda. Ya que, al contrario de un contenedor Docker [4],
formado por diferentes capas de cdodigo y dependencias no modificables, un fichero
con datos se puede modificar de forma sencilla. En este ltimo caso, seria necesario
utilizar funciones hash para asegurar la integridad de la informacién. De este modo,
aunque la comparticién directa de ficheros o el desarrollo puntual de una solucién
distribuidora pueda resultar 1til en entornos dénde se gestionen pequenos volimenes
de informacion. Cuando se traslada a dmbitos en los que estos pardmetros escalan y
se incluyen relaciones entre los datos, se produce una considerable pérdida de eficiencia.

Todo lo anteriormente comentado ha motivado la realizacion de este Trabajo
Fin de Grado. Se busca transformar la forma en la que se distribuyen conjuntos de
datos. En vez de compartir uno o varios ficheros con la informacion pertinente, se
puede poner a disposicion del usuario un contenedor que, almacene los datos y ofrezca
diferentes interfaces de acceso en modo lectura a los mismos. Antes de generar la
imagen del contenedor definitiva, se puede configurar todo aquello que es ejecutado
dentro del mismo. De este modo, es posible definir previamente a su distribucién todas
las consultas que se consideren mas relevantes y asi ofrecer un acceso estandarizado
que ademas sea capaz de soportar multiples consultas concurrentemente. Este formato
de comparticion recibe el nombre de Data in a container. Se utiliza este término para
representar la herramienta que recibe un script de configuracion y un conjunto de

datos como entrada y genera como salida un contenedor. El uso de la tecnologia Docker
garantiza que los contenedores puedan ser desplegados en entornos heterogéneos vy,
gracias a su modo de ejecucion aislado del resto del sistema, protege la fuente de
datos almacenada frente a posibles intentos de modificacién por parte de los usuarios.
A diferencia de la aproximacién actual, donde las soluciones de integraciéon para
distribuir conjuntos de datos deben adaptarse a las dependencias y requisitos de
cada entorno donde se ejecuten, trabajar con contenedores permite eliminar ese
proceso de adaptacién y limitarse a la implementacién de la solucién. Por 1ltimo, cabe
destacar que Docker cuenta con la plataforma Docker Hub [5] para publicar imagenes de
contenedores y que asi los usuarios puedan descargarlas de una forma sencilla y directa.

En la Figura 1, se muestra un esquema en alto nivel de la solucién propuesta.
Mediante un script de configuracion se describe el contenido del contenedor Docker,
que informacion se almacena, cudl es su modelo de datos, que consultas se definen sobre
esos datos y en que interfaces se exponen. Ademads, enfocado en su distribucion, en el
seript de configuracion se puede declarar informacion referente a la licencia, nombre o
fuente de los datos almacenados. Los conjuntos de datos a los que se hace referencia
en el script de configuracion deben estar presentes entre los datos que se reciben como
entrada. Basandose en la configuracion recibida, se carga la informacién en un sistema
de almacenamiento embebido, se crea cdédigo a medida que expone las interfaces, y todo
ello se empaqueta en el contenedor. Este iltimo expone la informacién en las interfaces
indicadas y ofrece una pagina de documentacion, accesible una vez que se ha ejecutado
la imagen del contenedor. La creacién de esquemas de datos y la generacion de cédigo
de forma automatica suponen una reduccion del trabajo manual, repercutiendo en un
aumento de la productividad. Un ejemplo de su aplicacién puede darse en procesos de
migracién, donde es necesario exponer con tecnologias actuales informacién que hasta
el momento se almacenaba en ficheros de texto o en medios legados. Juntando esta
herramienta y una plataforma como Docker Hub, es posible, por ejemplo, compartir
un conjunto de datos con varias entidades relacionadas entre ellas. Bastaria con definir
en un script el modelo de datos y las consultas e interfaces expuestas, para que asi se
generara un contenedor que pudiera ser publicado en Docker Hub. En vez de compartir
por separado la fuente de datos y que cada usuario tuviera que implementar su propia
solucién para efectuar consultas, se puede distribuir una imagen del contenedor que
contiene todo lo necesario para acceder a los datos de una manera directa y eficaz.

Script de o Dataina
configuracion - container
A
Contenedor Docker
Datos

Figura 1: Esquema en alto nivel de la soluciéon propuesta

1.2. Objetivo del Trabajo Fin de Grado

El objetivo de este Trabajo Fin de Grado es proponer un método de comparticion
de conjuntos de datos que haga uso de la tecnologia de contenedores. Para ello, se
busca desarrollar una herramienta que, recibiendo como entrada un conjunto de datos
y un script donde se defina el modelo de datos del conjunto y las consultas e interfaces
expuestas. Construya y despliegue de forma automadtica un contenedor Docker que
distribuya y despliegue el conjunto de datos recibido como entrada, exponiendo las
consultas definidas en las interfaces de acceso indicadas y ofreciendo la documentaciéon
necesaria para que los usuarios puedan consumir los datos almacenados. De la definicién
de este objetivo se derivan los siguientes desafios:

» Desarrollo de un lenguaje de dominio especifico (DSL): Este DSL debe
facilitar definir en el script el modelo de datos de la informacién almacenada, las
consultas aplicadas sobre esta informacién, las interfaces de acceso expuestas al
exterior para ejecutar las consultas e informacién béasica para la distribucion del
contenedor.

» Implementacién de un intérprete del DSL: Esta libreria debe ser capaz
de procesar los scripts en dicho DSL y generar el cédigo necesario, ejecutar los
procesos de construccion de programas, procesar los datos para su uso por dichos
programas y construir contenedores basandose en esa configuracion.

= Construccion del contenedor: Utilizando el intérprete y las herramientas
de Docker, esta herramienta debe ser capaz de construir un contenedor con
los requisitos extraidos del procesamiento del script y desplegarlo de forma
automatica.

1.3. Alcance

El proyecto desarrollado debe encontrarse dentro de los limites de un Trabajo Fin
de Grado. En este caso, se trata de una primera aproximacién al concepto Data in a
container. Asi, se ha decidido establecer unos requisitos minimos que deberia tener la
solucion desarrollada para exponer el potencial del concepto y sentar las bases para
futuros trabajos (ver Tabla 1). A continuacién, se exponen y justifican estos requisitos
minimos.

La soluciéon debe trabajar con Docker como tecnologia de contenedores. Se ha
seleccionado porque es una solucion de codigo abierto, ampliamente utilizada y dispone
de la plataforma de distribucién Docker Hub. No se ha seleccionado otra tecnologia

Tecnologia Requisitos minimos

Tecnologia de contenedores Docker

Lenguaje de base para el DSL Kotlin

Framework de desarrollo Spring Framework

Modelo de datos soportado CSV

Interfaces expuestas REST API, GraphQL y
gRPC

Tabla 1: Resumen de los requisitos minimos de la solucién

de contenedores, ya que no se ha encontrado una alternativa que cuente con la misma
funcionalidad y ademas disponga de un entorno de desarrollo y trabajo como Docker. El
lenguaje de base para el DSL debe ser Kotlin. Su eleccion se ha basado en la capacidad
de crear DSL definidos integramente con funcionalidad nativa del lenguaje gracias a la
tecnologia Kotlin DSL [6] y la capacidad para ejecutar ficheros con cédigo Kotlin sin
compilacién previa gracias a la tecnologia Kotlin Scripting [7]. No se ha encontrado
ningun otro lenguaje que ofrezca las mismas caracteristicas que Kotlin. Por otra parte,
la solucién debe caracterizarse por emplear el framework de desarrollo Spring [8]. Esto
se debe a que se trata de una tecnologia madura que permite simplificar aspectos como
la configuracion o el despliegue, entre otros. Respecto a la herramienta en si, inicamente
se soporta CSV como formato de entrada de los datos almacenados en el contenedor.
Esta decisién se debe a que se trata de una primera aproximacion, por lo que se ha
elegido un formato facil de procesar y que ademas es muy empleado para publicar
conjuntos de datos en grandes repositorios o por parte de empresas. En lo referente a
las interfaces que debe ofrecer el contenedor para ejecutar las consultas, se usa REST
API [9], GraphQL [10] y gRPC [11] debido a que se trata de tecnologias estables, bien
documentadas y su uso estd extendido en la actualidad. No se han seleccionado otras
interfaces, ya que con esta combinacién se garantiza que los datos almacenados pueden
ser accedidos desde multitud de entornos y se considera un conjunto representativo de
las tecnologias utilizadas actualmente. En caso de desconocer estas tecnologias, se puede
consultar el glosario, donde se presenta una breve definiciéon de cada una. Relacionado
con las interfaces, la solucién debe ofrecer la posibilidad de definir consultas que cuenten
con una unica condicién de busqueda y con la posibilidad de filtrar los resultados
devueltos. Se limita a una condiciéon porque se ha determinado que anadir consultas
con condiciones mas complejas de filtrado queda fuera del alcance este Trabajo Fin
de Grado. Ademas, la herramienta debe generar de forma automética para cada
contenedor una péagina de documentacién donde se permita visualizar las entidades y
sus atributos, asi como probar de forma interactiva las diferentes interfaces expuestas.

Por ultimo, la herramienta debe poderse validar con conjuntos de datos abiertos,
que dispongan de esquemas con diferentes tipos de datos y una o mas entidades, con
relaciones entre las mismas cuando sea posible. Se deben definir consultas que sean
expuestas en las tres interfaces descritas anteriormente y el resultado debe poder ser
publicado en la plataforma Docker Hub.

1.4. Estructura del documento

A continuacion, se describe como se ha estructurado la memoria del Trabajo Fin de
Grado. En la Seccion 2 se explica la fase de andlisis del proyecto. La Seccién 3 describe
la fase de diseno del sistema. Para ello, se comenta la arquitectura del sistema con
diferentes diagramas. La Seccion 4 explica algunos aspectos del proceso de desarrollo.
Seguidamente, la Seccién 5 explica como se ha validado el sistema y la Seccién 6 expone
las conclusiones del Trabajo Fin de Grado. Finalmente, el Apéndice A resume como
se ha gestionado el proyecto, el Apéndice B describe la fase de estudio de Kotlin, el
Apéndice C comenta algunos detalles de implementacién de bajo nivel y el Apéndice D
y Apéndice E muestran informacion adicional sobre las pruebas de validacion.

2. Analisis

La fase de andlisis de todo proyecto es de vital importancia para poder sentar la
base del desarrollo y evitar futuras dificultades. En este caso, se ha utilizado para
terminar de definir como se debe comportar el sistema, especificar que tecnologias se
van a emplear, desarrollar una prueba de concepto, asi como estudiar y conocer el
funcionamiento de diferentes tecnologias que se utilizan mas adelante en el proyecto.

Es importante destacar que, debido a la naturaleza de la herramienta, existen dos
partes bien diferencias en el mismo. Por un parte, el contenedor generado, y por otra,
el sistema encargado de procesar el script de configuracion y construir el contenedor.
Por simplicidad, durante esta seccién se usarda Data in a container para referirse a este
ultimo.

2.1. Seleccién de tecnologias

En este apartado se exponen las tecnologias elegidas para el proyecto. En concreto,
el lenguaje de programacién, el sistema gestor de base de datos y las interfaces de
acceso. Para estas ltimas, se muestra un ejemplo simple de su funcionamiento.

Tras un analisis de varias posibilidades, se tomo la decision de desarrollar la
implementacion integramente en el lenguaje de programacién Kotlin [12]. Al comienzo
del proyecto se barajé la posibilidad de utilizar Python [13], pero esta qued6 descartada,
yva que Kotlin ofrece una solucion interoperable, soporta el extenso abanico de librerias
de Java [14] y cuenta con una sintaxis sencilla de codificar. Esta decisién también se
traslada al codigo ejecutado dentro del contenedor, donde al igual que en el médulo
Data in a container, se despliega una aplicacién en Kotlin con Spring Boot [15] que
expone los datos almacenados a través de diferentes interfaces.

El siguiente paso fue determinar el sistema gestor de bases de datos que se incluye
en el contenedor y donde se almacena la informacion. En este caso se analizé una tinica
posibilidad, SQLite [16]. Se trata de una base de datos embebida, que se ejecuta junto
con la aplicacion a la que sirve. Su simplicidad, reducido peso, capacidad para ejecutarse
sin la necesidad de un proceso servidor adicional y configuracion practicamente nula,
la convierten en una gran opcién para este sistema. Ademads, exceptuando algunos
aspectos como gestion de permisos, operaciones JOIN de tipo RIGHT y FULL OUTER
y soporte total de triggers y sentencias alter table, ofrece un soporte practicamente total
del estandar SQL [17].

Tal y como se ha mencionado anteriormente, las interfaces que ofrece el contenedor
para el acceso a datos son REST API [9], GraphQL [10] y gRPC. De esta forma,
tras definir el lenguaje de programacion, el sistema de persistencia y las interfaces,
se eligieron las dependencias que debia tener el proyecto ejecutado en el contenedor.
Como se ha comentado previamente, este es uno de los grandes beneficios de trabajar
con Kotlin, ya que se pueden utilizar todas las librerias que ofrece el framework Spring
o que trabajan sobre el mismo (ver Tabla 2).

Para finalizar este apartado de seleccion de tecnologias, se procede a mostrar a partir
de un ejemplo trivial como una misma consulta se expone por REST API, gRPC y
GraphQL. El objetivo es explicar las caracteristicas y diferencias de cada una de las
interfaces seleccionadas. Como ejemplo, se supone que existe un conjunto de datos que
almacena informacién relativa a libros y autores y cuenta con las tuplas mostradas
en la Figura 2. Cada autor tiene su clave primaria, nombre, fecha de nacimiento y

Tecnologia Descripcién

Spring Data JPA Framework empleado para modelar y
acceder a las entidades almacenadas en
SQLite [18].

Spring Data REST Framework para exponer una vista REST

de los datos [19].

GraphQL DGS Spring Boot Framework para exponer una vista
GraphQL de los datos [20].

gRPC Spring Boot Starter = Framework para ofrecer una vista RPC de
los datos sobre una aplicaciéon que utiliza
Spring Boot [21].

Tabla 2: Librerias utilizadas para la construccién del contenedor.

género literario con el que se identifica. Por otra parte, un libro estd definido por su
identificador tnico (ISBN), la clave extranjera de su autor, el titulo y la descripcion de
la obra.

Autor
autor id genero_literarlo. fecha_nacimiento nombre
1 Marrativo 14-03-1958 X
2 Dramatico 7-10-1985 Y
Libro
ISBN autor id descripcion titulo
il 2 [.....] X1
T89 1 [oo] 1

Figura 2: Tuplas de ejemplo para el modelo de libros y autores

Es posible definir una consulta que nos devuelva la fecha de nacimiento del
autor o autora que escribié un libro con un determinado ISBN. En REST API
esta consulta podria exponerse como una operaciéon de tipo GET sobre el recurso
/libros/{ISBN}/autor. En esta interfaz se devuelve la tupla completa del autor del
libro, no se devuelve inicamente el campo fecha nacimiento.

Consulta:
2| GET /1libros/789/autor
i|Resultado:
{
6| "autor_id": 1,
"genero_literario": "Narrativo",
s|"fecha_nacimiento": "14-03-1958",
"nombre" : "X"
0| }

Listado 1: Ejemplo de peticion REST API

El caso de GraphQL es diferente al resto. Es posible exponer una consulta
que filtre los libros por el ISBN y especificar en cada ejecucion que atributos se

6

quieren obtener. Para este ejemplo se supone que se expone una consulta denominada
obtenerFechaNacimientoAutor que recibe como parametro de entrada el ISBN del
libro. Como se aprecia en el Listado 2, se pueden especificar los campos que se desean
obtener. Graph@QL se limita a obtener toda la informacion relacionada con el libro con
ese ISBN y después permite filtrar el resultado.

Consulta:
>l obtenerFechaNacimientoAutor ("ISBN" : 789) {
autor { fecha_nacimiento }
1 titulo
}
6| Resultado:
{
8 "autor_id" { "fecha_nacimiento": "14-03-1958" }
"titulo" : "Y1"
0| }

Listado 2: Ejemplo de peticién GraphQL

En la interfaz ¢RPC se implementa la consulta como la invocacién a una funcion
de un servicio remoto. El contenido devuelto se encuentra en formato Protobuf, por
lo que es necesario un cliente capaz de procesar ese tipo de peticiones. Para este
caso se supone que existe un servidor gRPC que expone una funciéon denominada
obtenerFechaNacimientoAutor, que recibe como parametro de entrada el ISBN del
libro y devuelve la fecha del autor. Para su invocacion bastaria enviar la peticion
obtenerFechaNacimientoAutor(789) al servidor. A diferencia de Graph@L no es posible
especificar los atributos que se quieren obtener, pero tampoco se devuelve toda la
entidad completa como ocurre con REST APIL.

2.2. Prueba de concepto

Antes de comenzar con el desarrollo del sistema, se realizé una prueba de concepto.
El objetivo era desplegar en un contenedor un conjunto de datos, con una tnica
entidad, y exponer consultas sobre el mismo a través de las tres interfaces descritas
anteriormente. Cabe destacar que, en esta prueba no se incluye la definicién del
script o el despliegue parametrizado del contenedor, es decir, todo se lleva a cabo
de forma manual para verificar que realmente es posible crear un contenedor con esas
caracteristicas.

Para el desarrollo de la prueba, se seleccion6 un fichero CSV que contenia
informacién sobre el catdlogo de titulos de Netflix [22]. Todo ello publicado en la
plataforma Kaggle [23] bajo la licencia CCO: Public Domain, que permite copiar,
modificar y distribuir el conjunto de datos sin la necesidad de pedir permiso al autor.
En la Figura 3 puede observarse el modelo de datos de la entidad con la que se trabaja.

Title

PK | show id

type

title

director

cast

country
date_added
release year
rating
duration

listed_in

description

Figura 3: Modelo de datos del catalogo de Netflix

El desarrollo de esta prueba permitio definir los pasos para construir el contenedor,
asi como la configuracién de todas las dependencias necesarias. La estructura se cred
con la herramienta Spring initializr [24], que permite generar un proyecto de Spring
Boot de forma sencilla y automatica. En la Figura 4 puede observarse el diagrama de
paquetes y clases del proyecto desarrollado donde vemos, por una parte, los paquetes
kotlin.com.demo.tfg que cuentan con las clases necesarias para arrancar y configurar
la aplicacion, la definicion de los controladores encargados de gestionar las consultas
en GraphQL y gRPC' y el repositorio donde se especifica el modelo de la entidad, el
acceso a datos en el sistema de almacenamiento embebido y el controlador para REST
API. Por otra parte, en el paquete resources, se encuentra la definicion de ciertas
variables de configuracién y del esquema donde se especifica el servicio expuesto a
través de Graph@QL. Finalmente, el paquete proto cuenta con la definiciéon del servicio
expuesto en gRPC. A continuacion, se procede a explicar los diferentes aspectos de este
diagrama.

src.main |

main |

kotlin.com.de mo.ﬂa resources
sche ma—||
ApplicationConfiguration MainApplication ‘
schema.graphgls
repositoa cuntmlleﬂ
application.properties
TitleGraphQIController

proto

Entity
Repository ‘ TitleGrpcService

Figura 4: Diagrama de paquetes de la prueba de concepto

El modelado y acceso a los datos se desarrolla en las clases Entity y Repository
respectivamente. La primera relaciona la entidad en la base de datos con una clase
de Kotlin a través del mapeo objeto-relacional, desarrollado por Hibernate [25] y
que implementa la API de persistencia de Java (JPA). La segunda, implementa
el repositorio donde se definen las consultas sobre la entidad. Este, extiende la
funcionalidad de una interfaz que por defecto permite contar con las operaciones basicas
de CRUD, aunque en este caso se ha limitado para exponer inicamente acceso en modo
lectura, asi como con paginacién y ordenacién de resultados.

La incorporacion de REST API al proyecto es directa al trabajar con la libreria
Spring Data REST, tan solo basta con etiquetar el repositorio creado con la anotacion
@RepositoryRestResource y configurar la ruta donde se expondra el servicio.

En el caso de Graph@L, es necesario definir un esquema que incluya la entidad con
la que se trabaja y especificar las consultas que se van a implementar. En la prueba,
esto se incluye en schema.graphqgls. Un fragmento de este fichero puede observarse
en el Listado 3, donde se define primero el tipo Query con todas las consultas que se
exponen en la interfaz y después se especifica la entidad con la que se trabaja, en este
caso TitleEntity. Ademas, se debe crear un controlador, TitleGraphQlController,
que relacione las consultas definidas en el esquema con las implementadas en el
repositorio comentado anteriormente. Esto se debe a que Graph@L no exige un sistema
de almacenamiento concreto, actiia como una capa intermedia entre el repositorio de
informacion y el cliente.

type Query {

2 titlesByReleaseYear (yearFilter: Int): [TitleEntity]
titleByShowId (showId : String) : TitleEntity
allTitles : [TitleEntity]

}

i|type TitleEntity {
showId: ID

8 releaseYear: Int

0| }

Listado 3: Fragmento de codigo de la definicion del esquema para GraphQL

Finalmente, para incorporar el soporte de gRPC' hay que seguir un proceso similar
al de Graph@L. Primero, se define el servicio, schema.proto, con las operaciones que
se van a exponer y los mensajes necesarios para invocarlas. Después, se implementa
el controlador para el servidor que recibird y procesard las peticiones, en este caso
TitleGrpcService.

service TitleService {
rpc titleByShowId (ById) returns (Title);
rpc allTitles(ListTitles) returns (stream Title);
| rpc titlesByReleaseYear (ByReleaseYear) returns (stream Title);

}

message ListTitles {}

s|message ById { string id = 1 ;}

message ByReleaseYear { int32 year = 1; }
10
message Title {

12 string id = 1;

int32 releaseYear = 2;
14 string rating = 3;
16| }

Listado 4: Fragmento de cédigo de la definicién del servicio y mensajes de gRPC en la
prueba de concepto

Con el desarrollo de la prueba de concepto, se pudo verificar que era posible construir
un contenedor con las caracteristicas buscadas. Algunos detalles destacables de esta
primera aproximacion fueron los siguientes:

= En un principio se decidié cargar los datos del CSV al iniciar la aplicacién,
pero rapidamente se detecté que esto ralentizaba el proceso de arranque. Como
solucién, se optd por emplear un script SQL que definiera la tabla e importara
los datos directamente a la base de datos. De este forma, se generaba un fichero
con toda la informacién, que podia ser accedido directamente por la aplicacion,
y no era necesario repetir el proceso de carga con cada arranque del sistema.

» Kl servicio encargado de ofrecer la interfaz gRPC se genera gracias al plugin
protoc-gen-grpc-java [26]. Este, tomando como entrada el fichero con la definicién
del servicio y sus mensajes, schema.proto, define las clases y los stubs necesarios.

10

Finalmente, se debe crear un controlador, para cada uno de los servicios
definidos, que extienda la clase creada por protoc-gen-grpc-java e implemente
las operaciones definidas en el servicio. En la Figura 5, se puede apreciar un
esquema del funcionamiento de este plugin.

= En esta primera version, la construccion del contenedor se realiza mediante un
script de bash que carga los datos en un fichero mediante sqlite3, un cliente en
terminal para acceder a SQLite, y junto con el archivo Java (JAR) de la aplicacién
genera la imagen del contenedor.

Controllers

) : o Definicidn de sarvicio,
‘;.EhEm;!.PrIJ[D pruto:-gen-grpc-}du& . === p==
mensajes y stubs

Figura 5: Esquema de la generacion del servicio gRPC

En el Apéndice B se comentan pruebas adicionales que se realizaron durante esta
fase para analizar la viabilidad de Kotlin en el proyecto. En particular, se estudio la
ejecucion de scripts y la definicién de un DSL en el lenguaje.

2.3. Conclusiones de la fase de analisis

La realizacion de esta fase de andlisis permitié confirmar que el conjunto de
tecnologias seleccionadas para el desarrollo de la herramienta eran las idoneas. Ademas,
se pudo definir como debia ser el flujo de trabajo seguido para transformar la
construccién descrita en el script de configuraciéon en un contenedor con los requisitos
necesarios. A su vez, se extrajeron las siguientes conclusiones. Del proceso de estudio de
Kotlin y el desarrollo de la prueba de concepto, se detecto la necesidad de disenar una
arquitectura modular que facilitara incorporar las diferentes funcionalidades con las que
debia contar la herramienta y permitiera en un futuro anadir nuevas caracteristicas
de una forma sencilla. Ademas, en esta fase se determind que era necesario que la
documentacién generada para cada contenedor estuviera centralizada en un tunico
punto. Asi, es posible ofrecer a los usuarios que reciben un contenedor creado con esta
herramienta, un modo para conocer la estructura de los datos almacenados y probar
las diferentes interfaces de acceso de forma estandarizada. De este modo, si es necesario
construir otro programa o herramienta que trabaje sobre las interfaces del contenedor,
se puede verificar el funcionamiento de las mismas antes de comenzar el desarrollo.
Finalmente, desde un punto de vista de gestién del proyecto, esta fase ayudé a definir
de manera clara los limites hasta los que resultaba viable llegar con el Trabajo Fin de
Grado. En particular, fue muy importante el desarrollo de la prueba de concepto, ya
que permitié sentar la base sobre la que poco a poco se anadiria funcionalidad para
soportar una construccion paramétrica.

11

3. Diseno

En esta seccién se describe el diseno del sistema. Esta fase debe establecer como
se va a alcanzar los objetivos definidos anteriormente. Para ello, se muestra el sistema
desde una vista fisica. En este caso se definen los diagramas de clases y paquetes
necesarios para construir la solucion.

3.1. Arquitectura del sistema

Por la naturaleza de la herramienta, y sus funcionalidades bien diferenciadas, se ha
decidido implementar un proyecto multi-médulo. En la Figura 6 se puede observar el
diagrama de paquetes del sistema. Se ha optado por mostrar una vista en alto nivel
del mismo para explicar los detalles més importantes en este primer apartado.

= Médulo core: Incluye la logica para, a partir de una configuracion, construir la
aplicacion que se ejecutara en el contenedor.

s Médulo dsl: Define el DSL para describir la construcciéon del contenedor y
configura e invoca al modulo core. Este DSL es el utilizado en los scripts que
procesa el médulo host.

= Moddulo script: Define como se deben procesar y ejecutar los scripts que recibe el
modulo host y especifica las dependencias del médulo dsl que se deben importar
por defecto al ejecutar un script.

= Médulo host: Actia como punto de entrada al sistema. Recibe scripts con cédigo
Kotlin y los compila y ejecuta segun la definicion del médulo script. Durante
esta ejecucion invoca funcionalidad de los médulos dsl y core.

dala-in-a-conlaineﬂ

script hos

Figura 6: Diagrama de paquetes del sistema

En los siguientes apartados se explica mas en detalle los médulos core y dsl. Se
han anadido diagramas para acompanar la descripcién de los mismos y asi facilitar
su comprension. El diseno de los médulos script y host no se comentara, ya que es
muy sencillo y estd basado en la implementaciéon oficial desarrollada por Kotlin para
el soporte de scripts.

12

3.2. Diseno de la descripciéon del contenedor

El médulo dsl se comporta como la piedra angular del sistema. De forma similar
a la mostrada en el Apéndice B, donde se comenta como especificar un DSL en
Kotlin, define el lenguaje utilizado para describir como se debe construir el contenedor.
Una vez que esta definicion se ha completado, se encarga de invocar al médulo core
con una configuracion especifica, para que, mediante plantillas, cree un proyecto con
las caracteristicas indicadas en la configuracion y listo para ser desplegado en un
contenedor.

En la Figura 7 se muestra una vista simplificada del médulo dsl. En particular,
se ha eliminado de este diagrama el resto del contenido del paquete entities, ya
que si no resultaba complejo de comprender. Como solucién se ha creado un segundo
diagrama (Figura 8), donde tinicamente se encuentran las clases y paquetes del paquete
entities. Mas adelante, se procede a analizar cada uno de los diferentes aspectos de
estas vistas.

dsl
data
files
nititle
u - + definedEntities + fileBuilder + dataBuilder
EntityBuilder w=—— FileBuiider —— DataBuildar - (datafsContainer
111 Builder

Figura 7: Diagrama de clases y paquetes del médulo DSL simplificado

entities
: EniftyBullder
+ schemaBuilder * U[]'E‘I'H[FI}II'ISBIJ“-HE‘I'
modules
tion
schema modules g
L +Qrpe W + rest f
SchemaBuilder JT ModulesBullder OperationsBullder
+ entityFields Q GrpcBuilder RestBulkder L
| : | Query
1 + graphql T
Entity Fieki L i
GraphqiBuilder w
. DefaultQueryBuilder
AplBuilder

Figura 8: Diagrama de clases y paquetes del paquete entities

13

La arquitectura de este moddulo se ha desarrollado siguiendo el siguiente
razonamiento: Todos los contenedores descritos con el DSL deben almacenar y exponer
un conjunto de datos y contar con una serie de variables para describir minimamente
la informacién almacenada. Esto se representa en la clase dataAsContainerBuilder,
que cuenta con los atributos apropiados y la funcion para describir la informaciéon que
se guarda.

A su vez, los datos almacenados en el contenedor pueden ser importados al mismo
a través de diferentes medios. En este caso, inicamente se trabaja con ficheros CSV,
pero dada la arquitectura del sistema, no seria complicado anadir uno nuevo. Dentro
de la clase FileBuilder, es posible definir multiples ficheros que seran empleados
como fuente de datos. Cada uno de los ficheros definidos se asocia con una entidad,
EntityBuilder. No es posible definir dos entidades en el mismo fichero. Tal y como
ocurre en el modelo relacional, toda entidad cuenta con una serie de atributos, esto se
representa en el paquete schemas. Adicionalmente, para la construccién del contenedor,
es necesario definir las consultas que se van a aplicar sobre los atributos de la entidad,
paquete operations, y las interfaces en las que se va a exponer la entidad y sus
consultas, paquete modules. A continuacion, se procede a explicar detalladamente los
paquetes schemas, modules y operations.

3.2.1. Descripcion del modelo de datos

En el siguiente apartado se explica como se ha disenado el paquete schema,
encargado de definir el modelo de datos de una entidad, incluyendo atributos y
propiedades de los mismos. Como ocurre en el modelo relacional, una entidad puede
contar con un numero indeterminado de atributos. La clase EntityField se utiliza para
representar un atributo en la entidad. Cada uno de estos atributos puede ser del tipo
entero o cadena de texto. Al tratarse de un prototipo, se ha optado por no incorporar
tipos adicionales, pero con el diseno actual se podrian anadir nuevos de forma casi
directa en caso de que fuera necesario. Ademas, se soporta la definicién de claves
extranjeras y de clave primaria. A modo de ejemplo se muestran como se especificarian
los atributos de una entidad perteneciente a un fichero previamente definido.

schema A

2 <var_name> type <var_type> property isPrimaryKey

<var_name > type <var_type>

4 <var_name> type <var_type> references <table> column <colName>

}

Listado 5: Definicién del esquema de una entidad con un atributo basico, una clave
primaria y una clave extranjera

Como se puede apreciar en el fragmento de cédigo superior, se hace uso de diferentes
palabras clave para definir las propiedades de cada uno de los atributos de un esquema.
Pese a su apariencia, esas palabras representan invocaciones a funciones de la clase
SchemaBuilder. En concreto, esta funcionalidad se trata del soporte para la notacion
de infijo que implementa Kotlin. Permite invocar a funciones sin la necesidad de escribir
los paréntesis, incluso cuando se pasa un parametro de entrada. De esta forma, y
encadenando invocaciones, se puede conseguir asignar todas las caracteristicas de un
atributo en una misma linea y de una forma muy similar a como se realiza en el estandar
SQL. La utilidad de las funciones definidas es la siguiente:

14

= type: Permite determinar el tipo de dato del atributo. Como se ha comentado
anteriormente, Unicamente se soportan cadenas de texto y enteros.

= property: Especifica una propiedad del atributo. En este caso se puede indicar
que se trata de la clave primaria, con el pardmetro isPrimaryKey o de un atributo
no nulo, con el parametro isNotNull. La implementacion actual no soporta el
uso de claves primarias compuestas, esto podria ser un anadido de cara a un
posible futuro trabajo.

» references y column: Para definir claves extranjeras, es necesario concatenar
dos funciones. Primero, se debe utilizar references para indicar con que otra
entidad esta relacionada la actual y column para el atributo en concreto que
se referencia. Se ha disenado de tal forma que no es posible indicar primero
la columna y luego la tabla. De esta manera se fuerza al usuario a especificar
una sintaxis lo mas parecido posible al estandar SQL a la hora de definir claves
extranjeras. Como detalle de implementacion, internamente Spring JPA permite
definir una clave extranjera como un objeto del tipo al que apunta. De este modo,
se simplifica la navegacién entre relaciones y se puede acceder a todos los atributos
de la entidad a la que se hace referencia sin necesidad de una segunda consulta.

Finalmente, un aspecto a destacar de este paquete es que es posible definir una entidad
sin esquema. Para ello, es obligatorio que la primera fila del fichero contenga la cabecera
de las columnas y no sea necesario especificar claves primarias y/o extranjeras. Si esos
requisitos se cumplen, se extraen automaticamente los nombres de las columnas y se
supone que todos los campos son de tipo cadena de texto no nula.

3.2.2. Descripcion de las consultas

En este apartado se explica como se ha disenado el paquete operations, encargado
de definir las consultas sobre el conjunto de datos que expondra el contenedor. Es
importante mencionar que las consultas se especifican sobre una entidad, es decir, no
se definen a nivel global. De este modo, cada entidad cuenta con sus propias consultas.
Las operaciones de consulta propuestas soportan la busqueda por tinico atributo. Por
ejemplo, suponiendo una entidad como la mostrada en la prueba de concepto donde se
almacena informacion sobre peliculas, una consulta seria: Obtener todas las peliculas
publicadas en el ano 2021. No se permite una consulta como: Obtener todas las peliculas
publicadas en el ano 2021 y del director X. De nuevo, se trata de una funcionalidad que
podria ser parte de una segunda fase de desarrollo de este proyecto. Respecto a detalles
mas especificos del diseno, para cada una de las operaciones de consulta se permiten
configurar los siguientes parametros:

Nombre de la consulta.

Atributo por el que se realiza la busqueda.

Indicar si se desea que soporte ordenacién de resultados y/o paginacién.

Especificar, en caso de ser posible, si los resultados se deben ordenar de forma
ascendente o descendente segiin un atributo de la entidad.

Limitar el nimero de resultados devueltos

15

» Especificar si los resultados devueltos deben ser tinicos.

= Indicar las interfaces en las que se expone esta operacion.

Respecto al diseno arquitectural del modulo, se ha creado teniendo en cuenta que
para cada consulta, puede darse el caso de que sea necesario generar la configuracion
para tres interfaces distintas, REST API, GraphQL y gRPC. A continuacion, se
muestra un ejemplo de como se especifica una operacién, sobre una entidad previamente
definida, que soporta paginacién, devuelve el resultado ordenado ascendentemente y
esta expuesta en las interfaces gRPC y REST API. Cabe destacar que, en caso de que
no se especifique ninguna interfaz al definir la operacion, se expone por defecto en las
tres. El resto de parametros no tienen ningin valor por defecto.

operations {
2 create<Query>(<query_name>) {

parameters = L[<var_name>, Pageable(), Sort ()]
4 sorted = asc(<var_name>)
limit = first(<integer>)
6 distinct = <boolean>
platforms = L[grpc,rest]
8 }
}

Listado 6: Definicién de una operaciéon que soporta paginacion y ordenacion de
resultados y se expone en gRPC y REST API

Como se puede comprobar en el fragmento de cédigo superior, se crea una operacion
del tipo Query. Esta actiia como una plantilla para definir consultas compatibles con
la libreria Spring Data JPA, que es la interfaz utilizada para dar soporte al acceso a
datos desde la aplicacion.

Pese a que en la implementacion actual inicamente se cuenta con un tipo de consulta
soportada, se ha optado por un diseno modular que facilite en un futuro anadir nuevos
tipos de consultas, por ejemplo, aquellas que tienen asociada una sentencia SQL. Esto
se puede ver reflejado en la interfaz DefaultQueryBuilder del diagrama de paquetes y
clases del médulo (Figura 8), cuya finalidad es definir los atributos y funcionalidad base
que deben tener todos los tipos de consultas definidas y que puede ser implementada
de diferentes formas.

3.2.3. Especificacion de las interfaces de acceso

En el siguiente apartado se describe el disenio desarrollado en el paquete modules.
Este permite especificar a través de que interfaces se va a exponer cada una de las
entidades. En relacién con el médulo operations, para que una consulta sea accesible
desde una interfaz concreta, es necesario que la entidad sobre la que se realiza la
consulta haya sido declarada especificamente como accesible a través de esa interfaz.
En caso contrario, la operacion no se expondra a través de esa interfaz.

Al igual que con las consultas, se ha aplicado un diseno que facilita la incorporacion
de nuevas interfaces. En particular, para las que se encuentran incorporadas al proyecto,
REST API, GraphQL y gRPC se permiten los siguientes pardametros de configuracion:

16

= REST API: Nombre y ruta donde se expone la interfaz.

= GraphQL: Nombre del controlador que implementa la vista GraphQL de los
datos.

= gRPC: Nombre del servicio que expone la vista RPC de los datos.

En el fragmento de cédigo inferior, se muestra un ejemplo donde, para una entidad
definida previamente, se indica que se va a exponer a través de las tres interfaces y se
configura su implementacién.

modules {

2 install(restApi) {

collectionResourceRel = <collection_name>
1 path = <path_name>

}
6 install (graphqlApi) { controllerName = <controller_name> }
install (grpcApi) { serviceName = <service_name> }

Listado 7: Definicion de las interfaces que exponen una entidad

3.2.4. Descripcién de la construccion

El objetivo de este apartado es mostrar un ejemplo donde se describa la
estructura de construcciéon de un contenedor y se haga uso de forma conjunta de
toda la funcionalidad comentada en el médulo dsl. Cabe destacar que, gracias a la
implementacion desarrollada por Kotlin, la creacion del DSL se deriva directamente
de la definicion de las clases comentada anteriormente. Es por ello por lo que se ha
decidido incorporar en esta seccion la descripcion de construcciones. A continuacién,
se muestra un fragmento de coédigo con la estructura en concreto.

dac {

2 name = <...>

fullName = <...>
1 desc = <...>

license = <...>
6 homepage = <...>

packageName = <...>
8 mainClass = <...>

buildDir = <...>
10 data {

files {
12 <entityName> {
src = <file_path>
14 schema { ... }
operations { ... }
16 modules { ... }
}
18 <otherEntityName> { ... }
}
20 }
}

Listado 8: Ejemplo de definicién de la construccién de un contenedor

17

Como se puede observar, la descripcién comienza con la invocacion a la funcion
dac, esta inicializa todos los objetos necesarios para configurar un contenedor y antes
de finalizar su ejecucién, invoca al modulo core con la configuracién que ha recibido y
procesado. En el cuerpo de la funcién, se asigna un valor a las siguientes variables:

name: Nombre de la imagen de Docker generada con el proyecto.

» fullName: Nombre de la fuente de datos almacenada.

= desc: Descripcion de la fuente de datos almacenada.

= license: Licencia de la fuente de datos almacenada.

= homepage: Enlace al sitio donde se ha obtenido la fuente de datos.

= packageName: Nombre del paquete donde se crea el proyecto en Kotlin
encargado de exponer la fuente de datos.

= mainClass: Nombre de la clase principal del proyecto generado.

= buildDir: Directorio donde se genera el proyecto

Es obligatorio asignar un valor para los campos name, packageName y mainClass.
En el caso de que el campo buildDir quede sin valor, se le asigna uno por defecto. El
resto de valores no es necesario que tengan un valor asignado siempre. Una vez definidas
estas variables, se procede a especificar los datos almacenados en el contenedor. Para
ello, se invoca a la funcién data. Seguidamente, y como solo se soporta el uso de ficheros
CSV, se llama a la funcién files para indicar cuales son esos ficheros. Esto se realiza
de la siguiente forma, primero, se senala el nombre de la entidad que se generara al
procesar el fichero. Después, mediante la variable src, se marca la ruta hasta el fichero
en concreto y posteriormente se invoca a las funciones schema, operations y modules.
Como la estructura de estas tltimas ya ha sido descrita anteriormente, se han obviado
en este caso. A modo de ejemplo se muestra también como se definiria una segunda
entidad, que se configuraria de la misma manera que la anterior.

3.3. Construccion del contenedor

El médulo core es el encargado de generar el proyecto ejecutado en el contenedor.
Es invocado por el médulo dsl, que lo configura segin la descripcion que ha sido
extraida del script. Basandose en esta configuracién y en el uso de plantillas, genera
la estructura necesaria. En la Figura 9 se muestra el diagrama de clases y paquetes
del médulo. Al igual que en secciones anteriores, se ha optado por mostrar una vista
simplificada del mismo para facilitar su comprensién y explicacién.

18

core

DataAsContainer ... TreeWalk

cose>>

config ! i
<<uses> | <<yses> |
o 4
ConfigLoader
+ configurationProperties . ConfigurationProperties
+ templateConfiguration : Configuration

Figura 9: Diagrama de clases y paquetes del modulo core

Se ha definido una clase denominada DataAsContainer. Esta se comporta como el
punto de entrada al médulo. Recibe la configuracién de la construcciéon del contenedor
desde el modulo dsl e invoca a la clase TreeWalk para que construya el proyecto
ejecutado en el contenedor segin esa configuracién. Ademads, antes de terminar su
ejecucion, se encarga de poner en funcionamiento el contenedor generado.

De este modo, la clase TreeWalk, bajo las érdenes de la clase DataAsContainer,
es quien construye realmente el contenedor. Para ello, hace uso de una estructura
de ficheros y directorios previamente definida, que cuenta con una serie de plantillas
que son completadas segun la configuracion recibida desde el médulo dsl. El paquete
config expone dos objetos estdticos, uno con todas las constantes utilizadas a lo
largo del moédulo y otro con la configuracién necesaria para utilizar las plantillas.
Antes de finalizar con este modulo, cabe destacar que el disenio aplicado soporta
multiples arquitecturas de contenedores. La herramienta debe ser capaz de detectar
la arquitectura del sistema donde se esta ejecutando y construir un contenedor que
sea compatible con la misma. En la Subseccion C.1 se explica en detalle la estructura
de directorios y ficheros creada, asi como, el funcionamiento del motor de plantillas
seleccionado para esta tarea.

3.4. Conclusiones de la fase de diseno

El desarrollo de la fase de diseio puso de manifiesto la importancia de todo el
trabajo realizado durante el periodo de analisis y permitié confirmar que el desarrollo
de un proyecto multi-modulo es la opciéon més viable. Ha sido posible disenar con
mayor independencia cada uno de los cuatro modulos y el resultado garantiza la
mantenibilidad y la facilidad para incorporar nueva funcionalidad en un futuro. Durante
esta fase también se ha terminado de consolidar que Kotlin es el lenguaje idéneo para
este desarrollo, gracias a la simplicidad con la que se pueden definir DSL y ejecutar
scripts. Respecto al diseno de los propios médulos, destaca dsl porque se ha podido
plasmar el razonamiento légico seguido para idear la solucién en el diseno fisico y core
por la separaciéon clara de tareas entre las clases DataAsContainer y TreeWalk, que
favorece la transformacién de los datos de configuracion recibidos desde el médulo dsl
en un contenedor Docker.

19

4. Desarrollo

En esta seccién se describen algunos aspectos del proceso de desarrollo del sistema.
En particular, se comentan detalles de la generacién de la pagina de documentacién
para cada contenedor, la gestién de las variables de configuracion y la creacién de un
entorno de ejecucion. Finalmente, se explican las principales dificultades encontradas
durante esta fase. En el Apéndice C se comentan detalles de implementacion de la
ejecucion de scripts y el motor de plantillas.

4.1. Documentacion del contenedor

El siguiente apartado comenta la documentacion generada en formato HTML para
cada construccion. Esta se incluye en el proyecto lanzando en el contenedor y se puede
acceder desde cualquier navegador. Para el aspecto visual y la organizacion de la pagina,
se tomo como referencia el ejemplo propuesto por la agencia del gobierno de los Estados
Unidos, General Services Administration para la documentacién de API [27].

Los ments de la pagina de documentacién desarrollada son:

= Overview: Esta seccién actiia como péagina de inicio. Incluye una breve
descripcion de la informacién almacenada en el contenedor. Es aqui donde se
muestran las variables configuradas en el script para especificar aspectos como
la licencia, nombre de los datos, etc. Ademads, se muestra informacién sobre el
contenido de las otras dos secciones, API calls y Field reference.

= API calls: Esta secciéon permite explorar las interfaces de acceso a datos de
forma interactiva. En el caso de GraphQL, se utiliza un entorno de desarrollo
denominado GraphiQL [28]. Este se despliega en el mismo contenedor y permite
descubrir que consultas son accesibles a través de esa interfaz y ejecutar las que se
desee. Para probar REST API, se ha empleado la especificacién OpenAPI 3 [29]
para describir el servicio y la interfaz grafica de Swagger-ui [30] para generar de
modo visual esta documentacién y poder enviar peticiones de prueba. Todo ello se
ha efectuado mediante anotaciones a través de la libreria springdoc-openapi [31],
que permite automatizar este proceso. Finalmente, para gRPC ha sido necesario
crear un controlador adicional que permite transformar peticiones HTTP en
invocaciones al servicio gRPC' y devuelve el resultado de las mismas en formato
JSON. El motivo de esta decision se explica mas adelante.

= Field reference: Esta seccion se encarga de mostrar para las diferentes entidades
almacenadas en el contenedor, el nombre y el tipo de cada uno de sus atributos.

4.2. Gestion de la configuracion

En este apartado se explica como se ha gestionado la definicion de todas las
constantes empleadas en el modulo core. Se ha optado por trabajar con la notacién
Human-Optimized Config Object Notation (HOCON) [32]. Esta permite asignar desde
un fichero de configuracién externo valores para atributos de objetos de Kotlin. La
arquitectura desarrollada para dar soporte a este modelo se encuentra en el paquete
config del diagrama de clases y paquetes mostrado anteriormente (Figura 9). Se ha
trabajado con la libreria config/k [33], que incorpora el soporte para a esta notacién en

20

Kotlin. En particular, se ha empleado para asignar, desde un fichero con la extension
conf, valores para los atributos de la clase ConfigurationProperties. Por otro lado,
la clase Configloader se encarga de cargar esos valores en un objeto estatico que se
expone al resto de clases del modulo para que accedan a las constantes que necesiten.

4.3. Entorno de ejecucién

En este apartado se explica el entorno de ejecucién que se ha creado para facilitar el
uso de la herramienta. Suponiendo que el proyecto ha sido compilado y se ha generado
su ejecutable. Es posible definir un directorio cualquiera, que su a vez cuente con: un
fichero de Kotlin con el nombre build.diac.kts donde se defina la construcciéon del
contenedor con el DSL y un subdirectorio denominado data donde se encuentren los
ficheros CSV necesarios. De este modo, asumiendo que existe un alias hasta la ruta del
ejecutable y se ha generado la estructura comentada, basta con invocar al binario, sin
especificar ningtin argumento, desde el directorio creado para que se genere dentro del
directorio un nuevo subdirectorio denominado build con el cédigo fuente del proyecto
y se lance el contenedor de forma automatica.

4.4. Dificultades encontradas

Configuracion del contenedor. Respecto al médulo dsl, uno de los obstaculos
detectados estuvo relacionado con el paso de toda la informacion extraida del script al
médulo core. Como se ha comentado anteriormente, el médulo dsl define el lenguaje
de descripcién de contenedores y, basandose en la informacién que recibe desde el script,
genera una configuracion u otra. El problema surge para generar la estructura de datos
adecuada para enviar esta configuracién al modulo core en una forma que facilite su
posterior uso en el motor de plantillas. Como solucidn, se decidié transformar las clases
creadas para definir el dsl y su configuraciéon en una tabla hash como la que utiliza
el motor de plantillas para sustituir las variables. Para una explicacién detallada del
motor de plantillas se puede consultar el anexo C.1. La conversién se realizé con la
librerfa Jackson [34], especializada en ese tipo de transformaciones.

Cliente para el servicio gRPC. Se encontraron también dificultades para enviar
peticiones al servidor gRPC desde la pagina de documentacion. Durante todo el
desarrollo del proyecto, se habia trabajado con la herramienta grpcurl [35], ya que
abstrae la complejidad de la interfaz. El problema surgié cuando se intenté conectar
con este servicio a través de una peticiéon HTTP, debido a que no es viable desplegar
un cliente gRPC junto con el propio contenedor. Ante este problema, se opté por, para
cada consulta expuesta a través del servicio gRPC, crear su homoéloga en la interfaz
REST API. La implementacién se realiza con la operacion de tipo POST para asi
emular el cuerpo del mensaje en el mismo formato que en las peticiones gRPC. De este
modo, y con la descripcién del servicio que se ofrece en la pagina de documentacion, es
posible a través de Swagger-ui enviar peticiones POST que se comunican directamente
con el servicio gRPC. Internamente, las peticiones recibidas en formato JSON se
transforman mediante un proceso de marshalling a su correspondiente estructura en
Protocol Buffers. Seguidamente, se invoca al stub del servicio con la peticién recibida
y se espera hasta obtener el resultado para devolverlo en formato JSON. El proceso de
marshalling se realiza con la librerfa protobuf-jackson [36].

21

5. Validacion

En esta seccién se describe como se ha desarrollado la validacion del sistema. En
particular, se han ejecutado pruebas con conjuntos de datos con una y varias tablas.
Las iméagenes de los contenedores generados durante esta fase de validacion pueden ser
descargadas para su uso en el repositorio de Docker Hub https://hub.docker.com/
r/776012/diac. Solo se han publicado las correspondientes con la arquitectura amd6/.
La decisién de utilizar esta arquitectura se explica en el anexo C.1

5.1. Catalogo de Netflix

En este apartado se explica la prueba realizada con un conjunto de datos con
una tunica tabla. El objetivo de este primer experimento es verificar que el proyecto
construido de forma manual en la prueba de concepto se puede replicar tinicamente
describiendo la construccién en un script. Por ello, se utilizan de nuevo los datos
sobre el catalogo de titulos de Netflix. Estos se pueden visualizar en el apartado de
desarrollo de la prueba de concepto 2.2. Para la realizacion de la prueba se ha creado
un directorio, netflix_test, que contiene el script, build.diac.kts, y el subdirectorio
data con el fichero CSV de los datos. Tanto el script desarrollado para esta prueba,
la documentacion generada y las consultas expuestas en las tres interfaces, se pueden
consultar en el Anexo D. A continuacién, se procede a describir el contenido del script
de descripcion del contenedor.

Inicialmente, se define informacién basica del contenedor y del conjunto de datos
almacenado con las variables especificas. Seguidamente, se determina la entidad que
se va a crear para almacenar el contenido. Para ello, se fija el nombre de title y
se indica la ruta hasta el fichero CSV. Como se trabaja desde el directorio descrito
anteriormente, la herramienta se encarga de buscar en data para encontrar el fichero.
Una vez definida la informacion basica de la entidad, se comienza a definir el esquema
de la misma. En este caso, se trabaja unicamente con atributos del tipo cadena de
texto. Es por eso que todos los atributos son del tipo Text. Ademds, show_id actta
como clave primaria de la entidad.

A continuacion, se procede a explicar las operaciones creadas:

» findByReleaseYear: Consulta que devuelve los diez primeros titulos distintos
ordenados ascendentemente por su nombre y que han sido publicados en un ano
concreto. Soporta paginacién y se expone en las interfaces gRPC' y REST APIL.

/
ig,netflix,test
build.diac.kts
data
lg,netflix,titles.csv
build

L ensrc

<Proyecto>

Figura 10: Directorio utilizado para la ejecucion de la prueba del catalogo de Netflix

22

https://hub.docker.com/r/776012/diac
https://hub.docker.com/r/776012/diac

» findByDirector: Consulta que devuelve todos los titulos de un director concreto.
Al no especificar ninguna plataforma, se expone en las tres interfaces, REST API,
gRPC y GraphQL.

» findByType: Consulta que devuelve los veinticinco primeros titulos distintos
ordenados descendentemente por el ano en él fueron publicados y que son de un
tipo concreto (pelicula, serie, etc.). Se expone en las interfaces GraphQL y REST
API.

s findByShowld: Consulta que devuelve un titulo por su identificador. Expuesta
en las tres interfaces.

= Aunque no se especifique en el script, para todas las entidades se genera
automaticamente la operacion que devuelve todas las entradas de una tabla.
En este caso devuelve todos los titulos, sin posibilidad de filtrar la respuesta y se
expone en todas las interfaces que se especifiquen en la seccién de modulos.

Finalmente, la especificacion de los modulos. En esta prueba se instalan las tres
interfaces. Como se puede apreciar en el anexo, no se fijan valores para todas las
variables que se permiten configurar en cada interfaz. Si esto ocurre, aquellas que
han quedado sin designar son asignadas automaticamente segin el nombre que se ha
especificado para la entidad. Para este contenedor, se ha fijado la ruta title para la
interfaz REST API. De esta forma se podré acceder en http://container_ip:8080/title.

En la interfaz GraphQL se detalla el nombre para el controlador encargado de
gestionar las peticiones recibidas. Por tltimo, para gRPC' no se especifica ningtin valor
de configuracién, por lo que el nombre del servicio serd TitleService.

5.2. Alojamientos y resenas de Airbnb

Este apartado se emplea para comentar la prueba ejecutada con un conjunto de
datos formado por dos tablas con una relacién entre ellas. Se ha utilizado informacién
publicada por la empresa Airbnb, especializada en el alquiler de alojamientos. En
particular, se trabaja con los datos sobre alojamientos de la ciudad de Barcelona y
las resenas de los mismos [37]. Toda la informacién ha sido publicada bajo la licencia
C'CO 1.0 Universal Public Domain Dedication.

El modelo de datos de la informacion almacenada cuenta con dos entidades,
listing y review. La primera se corresponde con todas las publicaciones de alojamiento
de Barcelona en el ultimo cuarto de ano. Para cada una se almacena su nombre,
identificador del casero/a, identificador de la zona donde se encuentra, nombre del
barrio, tipo de alojamiento, precio de una noche, niimero minimo de noches que se debe
alquilar y nimero de resenas que ha recibido. La segunda representa una resena emitida
para un alojamiento en concreto. En este caso, inicamente se almacena la fecha en la
que se realizd y la clave extranjera del alojamiento resenado. Un alojamiento puede
tener un nimero indeterminado de resenas. Cabe destacar que, por no sobrecargar
el sistema en exceso, ya que el nimero de resenas supera las seiscientos mil, se ha
eliminado el campo donde se guarda el mensaje de la resena, puesto que algunas son
extremadamente largas y no aportan nada 1til al experimento. Respecto al entorno de
ejecucion, exceptuando el subdirectorio data, donde es necesario guardar los ficheros
correspondientes con las dos entidades, la estructura del directorio para esta prueba
debe ser idéntica a la comentada en la prueba con una tnica tabla.

23

/

Lg,airbnb,test
build.diac.kts
data
klistings.csv

reviews.csv
build

L ensrc

<Proyecto>

Figura 11: Directorio utilizado para la ejecucion de la prueba de alojamientos y resenas

de Airbnb

El modelo de datos de la informacion, el script desarrollado para esta prueba,
la documentacién generada y las consultas expuestas en las tres interfaces se pueden
consultar en el Anexo E. Respecto al contenido del script build.diac.kts, la principal
diferencia con la prueba de una tnica tabla se encuentra en la declaracién de las
entidades. La declaracién de las variables con la informacion basica del contenedor se
realiza igual, aunque cambiando el contenido.

De la misma forma que ocurre en el estandar SQL, cuando se trabaja con tablas con
una relacion entre ellas. Se debe dejar para el final la declaracién de aquella que tiene
como atributo la clave extranjera. De este modo, en el script de la prueba, primero se
define la entidad listing y por tltimo review. A continuacién se procede a explicar
la estructura y consultas de cada una de ellas.

A diferencia de la prueba con los titulos de Netflix, donde se trabaja tan solo com
atributos de tipo cadena de texto. Listing hace uso del tipo entero para los atributos
listing id, host_id, price, minimum nights y number of reviews. Ademas, define
una consulta, findByPrice, que devuelve todos los alojamientos que tienen un precio
determinado y se expone en las tres interfaces, REST API, GraphQL y gRPC.

Por otro lado, review, cuenta con la definicién de la clave extranjera. En este caso
se crea una consulta, expuesta en las tres interfaces, que devuelve una resena segun el
identificador indicado. Como se ha comentado en la seccién de desarrollo, esta clave
extranjera se transforma internamente en un objeto de la clase Listing. Asi, es posible
acceder a toda la informacion del alojamiento al que hace referencia una resena sin la
necesidad de ejecutar una segunda consulta.

5.3. Conclusiones de la validaciéon

Con el desarrollo de estas dos pruebas se ha verificado que la herramienta cumple
con los objetivos marcados al comienzo del Trabajo Fin de Grado. Es capaz de construir
y desplegar contenedores Docker que exponen consultas sobre modelos de datos simples
en las interfaces definidas. Esta fase ha puesto de manifiesto que el sistema creado para
ejecutar la herramienta, con la creaciéon de un directorio que cuente con el script de
configuracion y los datos, reduce la dificultad de uso de la misma y facilita trabajar con
ella. Ademas, ha resultado importante la verificacién de que se soporta correctamente
el uso de claves extranjeras, ya que su implementaciéon supuso un salto importante de
dificultad en el desarrollo de la solucién.

24

6. Conclusiones

6.1. Objetivos alcanzados

Se considera que el desarrollo del Trabajo Fin de Grado ha cumplido con los
objetivos establecidos al comienzo del mismo. La herramienta creada, pese a no contar
con toda la funcionalidad de la que podria disponer en un entorno de produccién,
supone una buena base sobre la que continuar trabajando y permite distribuir y
desplegar conjuntos de datos con modelos simples en entornos heterogéneos. El DSL
desarrollado para definir la construccién del contenedor simplifica en gran parte este
proceso y permite que el usuario se limite a configurar el contenedor. La validacién
realizada demuestra que el concepto tiene un gran potencial y realmente simplifica la
distribucién y acceso a los datos. Ademas, ha permitido comprobar que la distribucién
de los contenedores a través de plataformas como Docker Hub es una opcién viable y
que puede ser explotada en el futuro. El esfuerzo dedicado para alcanzar estos objetivos
puede consultarse en el Apéndice A.

6.2. Trabajo futuro

De cara a una posible continuacién de la herramienta, se presentan una serie de
propuestas de trabajo:

» Incluir soporte para consultas m&ds complejas. Actualmente, solo se pueden
realizar buisquedas segun el valor de un tnico atributo.

» Capacidad para inferir automéaticamente los tipos de datos de los atributos
declarados en un fichero, ya que la implementacién actual supone que todos son
cadena de texto si no se indica el esquema.

= Posibilidad de definir mas propiedades de los atributos de las entidades. Por
ejemplo, rangos de valores aceptados o condiciones de mayor complejidad. El
objetivo seria replicar en la medida de lo posible la definicion de tablas del
estandar SQL.

= Soportar la carga de datos desde otros formatos de almacenamiento. Incluyendo
la posibilidad de acceder a recursos publicados en un servicio remoto.

s Definir en un mismo contenedor diferentes conjuntos de datos. Aunque en el
estado actual se permite trabajar con varias tablas, se trata de informacion
relacionada. Una posible mejora podria permitir almacenar, y exponer, conjuntos
de tematica distinta.

= Ofrecer una interfaz grafica para configurar la descripcién del contenedor sin la
necesidad de codificar directamente el script. De este modo, la herramienta podria
ser empleada por un mayor niimero de usuarios.

= Anadir, si fuera necesario, el soporte para otras interfaces de acceso.

25

6.3. Reflexiones personales

En lo personal, este Trabajo Fin de Grado me ha permitido poner en practica
muchos de los conocimientos adquiridos durante todo el grado. Ademaés, he podido
trabajar con un buen abanico de tecnologias y herramientas muy interesantes. Algunas
de las cuales nunca habia utilizado, y pienso que su conocimiento puede resultar
de gran utilidad en mi futuro profesional. Como cualquier trabajo académico de
estas caracteristicas, han existido dificultades a lo largo del desarrollo. Principalmente
relacionadas con la incorporacién al proyecto de tecnologias o técnicas desconocidas.
Por tltimo, creo que una de las claves detras de este Trabajo Fin de Grado es la forma
en la que se ha organizado su desarrollo. Definiendo tareas muy especificas y de no
gran tamano. Esto redujo la dificultad durante las fases del desarrollo y ademéas ha
permitido llevar un buen control de todo el proyecto.

26

Acronimos

API Application programming interface.
CSV Comma-separated values.
DSL Domain-specific language (en castellano, Lenguaje especifico de dominio).

HOCON Human-Optimized Config Object Notation.

HTTP Hypertext Transfer Protocol.
ISBN International Standard Book Number.

JAR Java Archive.
JPA Java Persistence API.
JSON JavaScript Object Notation.

REST Representational State Transfer.

RPC Remote Procedure Call.

SQL Structured Query Language.

27

Glosario

Docker Se trata de una plataforma para desplegar aplicaciones en entornos
heterogéneos. Fue publicada en el ano 2013 bajo la licencia Apache License 2.0.
Docker trabaja con contenedores, que se corresponde con software empaquetado
junto a todas sus dependencias. Estos contenedores se ejecutan sobre el sistema
operativo en un entorno aislado y pueden ser desplegados en diferentes maquinas
que soporten Docker [38].

GraphQL Lenguaje de consultas orientado a dar soporte al acceso a datos en
aplicaciones clientes-servidor. Desarrollado internamente por Facebook en el ano
2012 y publicado en el 2015, cuenta con su propio motor para ejecutar las
consultas y soporta introspeccién de tipos desde el cliente [10].

gRPC Tecnologia que permite invocar métodos en sistemas distribuidos como si
se tratara de una llamada local [11]. Desarrollado inicialmente por Google y
publicado en el ano 2015, posibilita que un servidor defina un servicio donde se
especifiquen los métodos que se pueden invocar remotamente y los pardmetros
y tipos devueltos. Estos pueden ser accedidos por clientes gRPC mediante
peticiones serializadas con Protocol Buffers [39].

Lenguaje especifico de dominio Lenguaje creado para resolver un problema
especifico en un dominio concreto. En este Trabajo Fin de Grado se utiliza para
describir como se debe construir el contenedor generado.

REST API Interfaz de un servicio web que responde a las peticiones de los clientes
segtin el estilo REST. Definido este ultimo como un estilo arquitectural para

sistemas hipermedia distribuidos [9].

Script Fichero que incluye coédigo en un lenguaje de programacién que puede ser
ejecutado sin necesidad de compilacion previa.

28

Referencias

[1]

9,

e
2

J Berends y col. Reusing open data : a study on companies transforming open
data into economic and societal value. European Union, Publications Office, 2020.
DOI: doi/10.2830/876679.

Antonio Bello-Garcia. «Datos abiertos y participacién en el gobierno social». En:
Economia industrial 405 (oct. de 2017), pags. 99-111.

Carl Boettiger. «An Introduction to Docker for Reproducible Research». En:
SIGOPS Oper. Syst. Rev. 49.1 (ene. de 2015), pags. 71-79. 1SSN: 0163-5980. DOTI:
10.1145/2723872.2723882.

Docker. https://www.docker.com. Accedido: 09-06-2022.
Docker Hub. https://hub.docker.com. Accedido: 07-06-2022.

Type-safe builders. https://kotlinlang . org/docs/type-safe-builders.
html. Accedido: 20-06-2022.

Get started with Kotlin custom scripting — tutorial. https://kotlinlang.org/
docs/custom-script-deps-tutorial.html. Accedido: 26-05-2022.

Spring. https://spring.io. Accedido: 09-06-2022.

Roy T Fielding y Richard N Taylor. «Principled design of the modern web
architecture». En: ACM Transactions on Internet Technology (TOIT) 2.2 (2002),
pags. 115-150.

GraphQL. https://spec.graphql.org/October2021/. Accedido: 26-05-2022.
gRPC. https://grpc.io. Accedido: 08-06-2022.

Kotlin Programming Language. https : / / kotlinlang . org. Accedido:
06-06-2022.

Python. https://www.python.org. Accedido: 06-06-2022.
Java Oracle. https://wuw. java.com. Accedido: 06-06-2022.

Spring Boot. https : / / spring . io / projects / spring - boot. Accedido:
06-06-2022.

SQLite. https://www.sqlite.org. Accedido: 06-06-2022.

SQL Features That SQLite Does Not Implement. https://www.sqlite.org/
omitted.html. Accedido: 26-05-2022.

Spring Data JPA. https://spring.io/projects/spring-data-jpa. Accedido:
06-06-2022.

Spring Data REST. https ://spring . io/projects/spring-data-rest.
Accedido: 06-06-2022.

Netflix. GraphQL for Java with Spring Boot made easy. Ver. 4.9.24. Mar. de 2021.
URL: https://github.com/netflix/dgs-framework.

Michael Zhang. Spring Boot starter module for gRPC' framework. Ver. 2.31.13.
Ene. de 2022. URL: https://github. com/yidongnan/grpc-spring-boot-
starte.

Netfliz Movies and TV Shows. https://www.kaggle.com/datasets/shivamb/
netflix-shows. Accedido: 01-06-2022.

29

https://doi.org/doi/10.2830/876679
https://doi.org/10.1145/2723872.2723882
https://www.docker.com
https://hub.docker.com
https://kotlinlang.org/docs/type-safe-builders.html
https://kotlinlang.org/docs/type-safe-builders.html
https://kotlinlang.org/docs/custom-script-deps-tutorial.html
https://kotlinlang.org/docs/custom-script-deps-tutorial.html
https://spring.io
https://spec.graphql.org/October2021/
https://grpc.io
https://kotlinlang.org
https://www.python.org
https://www.java.com
https://spring.io/projects/spring-boot
https://www.sqlite.org
https://www.sqlite.org/omitted.html
https://www.sqlite.org/omitted.html
https://spring.io/projects/spring-data-jpa
https://spring.io/projects/spring-data-rest
https://github.com/netflix/dgs-framework
https://github.com/yidongnan/grpc-spring-boot-starte
https://github.com/yidongnan/grpc-spring-boot-starte
https://www.kaggle.com/datasets/shivamb/netflix-shows
https://www.kaggle.com/datasets/shivamb/netflix-shows

Kaggle. https://www.kaggle.com. Accedido: 07-06-2022.
Spring Initializr. https://start.spring.io. Accedido: 07-06-2022.
Hibernate. https://hibernate.org. Accedido: 09-06-2022.

gRPC. The Java gRPC implementation. HTTP/2 based RPC. Ver. 1.45.0.
Mar. de 2022. URL: https://github.com/grpc/grpc-java.

Example API documentation. https://gsa.github.io/api-documentation-
template/api-docs/. Accedido: 30-05-2022.

GraphQL. GraphiQL & the GraphQL LSP Reference Ecosystem for building
browser & IDE tools. Ver. 1.7.2. Mar. de 2022. URL: https://github. com/
graphql/graphiql.

Open API 3. https://swagger.io/specification/. Accedido: 30-05-2022.
Swagger Ul https://swagger.io/tools/swagger-ui/. Accedido: 30-05-2022.

OpenAPI3 library for Spring-boot. https : / / springdoc . org/. Accedido:
30-05-2022.

HOCON. github.com/1lightbend/config/blob/main/HOCON.md. Accedido:
20-06-2022.

Configdk. A Kotlin wrapper for Typesafe Config. Ver. 0.4.2. Feb. de 2020. URL:
https://github.com/configdk/configlk.

FasterXML. Jackson Project. Ver. 2.3.12. Sep. de 2021. URL: https://github.
com/FasterXML/jackson.

Fullstory. Command-line tool for interacting with gRPC servers. Ver. 1.8.6.
Feb. de 2022. URL: https://github.com/fullstorydev/grpcurl.

Curioswitch. High performance protobuf JSON marshaler based on Jackson.
Ver. 2.0.0. Ene. de 2022. URL: https://github.com/curioswitch/protobuf-
jackson.

Inside Airbnb: Get the Data. http://insideairbnb . com/get - the-data/.
Accedido: 31-05-2022.

Babak Bashari Rad, Harrison John Bhatti y Mohammad Ahmadi. «An
introduction to docker and analysis of its performance». En: International Journal
of Computer Science and Network Security (IJCSNS) 17.3 (2017), pag. 228.

Protocol buffers. https : / / developers . google . com/ protocol - buffers.
Accedido: 26-05-2022.

FreeMarker Java Template Engine. https : / / freemarker . apache . org/.
Accedido: 29-05-2022.

Gradle Build Tool. https://gradle.org/. Accedido: 30-05-2022.
Curl. https://curl.se. Accedido: 08-06-2022.

30

https://www.kaggle.com
https://start.spring.io
https://hibernate.org
https://github.com/grpc/grpc-java
https://gsa.github.io/api-documentation-template/api-docs/
https://gsa.github.io/api-documentation-template/api-docs/
https://github.com/graphql/graphiql
https://github.com/graphql/graphiql
https://swagger.io/specification/
https://swagger.io/tools/swagger-ui/
https://springdoc.org/
github.com/lightbend/config/blob/main/HOCON.md
https://github.com/config4k/config4k
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/fullstorydev/grpcurl
https://github.com/curioswitch/protobuf-jackson
https://github.com/curioswitch/protobuf-jackson
http://insideairbnb.com/get-the-data/
https://developers.google.com/protocol-buffers
https://freemarker.apache.org/
https://gradle.org/
https://curl.se

Lista de Tablas

1. Resumen de los requisitos minimos de la solucién . . .

2. Librerias utilizadas para la construccion del contenedor

3. Esfuerzo dedicado a cada fase del Trabajo Fin de Grado

31

Lista de Figuras

i A Al

— O

13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.

Esquema en alto nivel de la soluciéon propuesta 2
Tuplas de ejemplo para el modelo de libros y autores 6
Modelo de datos del catalogo de Netflix 8
Diagrama de paquetes de la prueba de concepto 9
Esquema de la generacion del servicio gRPC 11
Diagrama de paquetes del sistema 12
Diagrama de clases y paquetes del médulo DSL simplificado 13
Diagrama de clases y paquetes del paquete entities 13
Diagrama de clases y paquetes del médulo core 19

Directorio utilizado para la ejecucién de la prueba del catdlogo de Netflix 22
Directorio utilizado para la ejecucion de la prueba de alojamientos y

resenas de Airbnb 24
Estructura de directorios para la generacion de proyectos 38
Esquema de funcionamiento de FreeMarker 39

Pégina de inicio de documentacion para la prueba del catdlogo de Netflix 45
Ejemplo de peticién enviada al contenedor desde el entorno GraphiQL

para la prueba del catalogo de Netflix 46
Descripcion de los atributos de la entidad para la prueba del catdlogo
de Netflix generado con el motor de plantillas 46
Interfaz de Swagger para REST API y cliente gRPC-REST en la prueba
del catalogo de Netflix A7
Modelo de datos de la informacién de Airbnb Barcelona 49
Pégina de inicio de la documentacién para la prueba de Airbnb 52
Interfaz de Swagger para REST API y cliente gRPC-REST para la
prueba de Airbnbo 52
Ejemplo de peticién a través de la interfaz de Swagger en la prueba de
Airbnb 53

Descripcion de los atributos de la tabla Listing para la prueba de Airbnb 54
Descripcion de los atributos de la tabla Review para la prueba de Airbnb 54

32

Lista de Cédigo

W N =

e

11.

12.

13.
14.
15.

16.
17.
18.
19.
20.
21.

Ejemplo de peticion REST APT
Ejemplo de peticion GraphQLo
Fragmento de cédigo de la definicion del esquema para GraphQL
Fragmento de codigo de la definicién del servicio y mensajes de gRPC
en la prueba de conceptoo
Definicion del esquema de una entidad con un atributo béasico, una clave
primaria y una clave extranjera L.
Definicién de una operacién que soporta paginacién y ordenacion de
resultados y se expone en gRPC y REST APT
Definicién de las interfaces que exponen una entidad
Ejemplo de definicion de la construccion de un contenedor
Fragmento de cédigo de ejemplo de funciones lambda en Kotlin

Script con la descripcion del contenedor para la prueba del catdlogo de
Netflix
Descripcion del esquema de GraphQL para la prueba del catalogo de
Netflix o
Consultas expuestas a través de GraphQL para la prueba del catélogo
de Netflix
Ejemplo de peticiones REST API para la prueba del catalogo de Netflix
Descripcion del servicio gRPC para la prueba del catalogo de Netflix
Ejemplo de peticiones al adaptador de gRPC para la prueba del catélogo
de Netflix
Script con la descripcion del contenedor para la prueba de Airbnb . . .
Descripcion del esquema de GraphQL para la prueba de Airbnb
Consultas expuestas a través de GraphQL para la prueba de Airbnb . .
Ejemplo de peticiones REST API para la prueba de Airbnb
Descripcion del servicio gRPC para la prueba de Airbnb
Ejemplo de peticiones al adaptador de gRPC para la prueba de Airbnb

33

10

14

16
17
17
36

42

43

43
44
44

45
48
49
20
50
ol
o1

A. Gestion del proyecto

El siguiente apéndice se utiliza para describir como se ha llevado a cabo la gestion del
proyecto. En concreto, se detalla el esfuerzo dedicado y el uso del sistema de control
de versiones Github para organizar todo el desarrollo del Trabajo Fin de Grado. El
control de esfuerzos se ha efectuado a través de una hoja de calculo. Cada dia que se
trabajaba en el proyecto se registraba el tiempo invertido. El registro se ha organizado
segun las fases definidas en el cronograma.

» Crear prototipo: Incluye la fase de analisis y la puesta en marcha del entorno
de desarrollo.

= Crear la estructura base del proyecto: Crear proyecto multi-moédulo con la
funcionalidad bésica para crear un contenedor con muy poca configuracion.

= Implementar construcciéon y despliegue parametrizado: Desarrollo total
del DSL y soporte para la construccién del contenedor segtin la descripcion del
script.

= Validacion del sistema: Incluye la realizacion de las dos pruebas descritas en
este documento, limpieza de cédigo y refactorizado de la arquitectura.

» Elaboracién de documentacién y ejemplos: Redaccién de esta memoria y
preparacién de ejemplo para la presentacion.

Fases del trabajo Horas
Crear prototipo 35
Crear la estructura base del proyecto 49
Implementar construccién y despliegue parametrizado 152
Validacién del sistema 24
Redaccion de la memoria 42
Esfuerzo total 302

Tabla 3: Esfuerzo dedicado a cada fase del Trabajo Fin de Grado

Durante todo el proyecto se ha utilizado la plataforma GitHub para contar con un
control de versiones y ademas para organizar las tareas en ussues donde se definian
objetivos y se mantenia una conversacion constante entre el director del proyecto y el
desarrollador sobre como continuar con el Trabajo Fin de Grado y posibles mejoras al
sistema desarrollado. También se han llevado a cabo reuniones presenciales al comienzo
de las fases descritas anteriormente para establecer los limites de la siguiente tarea y
fijar hasta donde se queria llegar.

34

B. Estudio de Kotlin

En este anexo se explican una serie de pruebas realizadas durante la fase de analisis
para comprobar si Kotlin era el lenguaje indicado para el desarrollo del Trabajo
Fin de Grado. Todo este proceso ha permitido familiarizarse més con el lenguaje de
programacion y ha servido como un aprendizaje previo a comenzar con el desarrollo
de la solucién definitiva.

B.1. Soporte para scripts

Uno de los aspectos analizado durante la fase de analisis, fue la capacidad para
ejecutar cédigo Kotlin sin compilacion previa, como si se tratara de un script. El
objetivo era emplear esta técnica para describir la construccion del contenedor. Se trata
de una funcionalidad creada por JetBrains, desarrolladora oficial de Kotlin, pero que
todavia se encuentra en fase experimental. Actualmente, no existe una gran cantidad
de documentacion al respecto, por lo que durante los inicios de esta fase de analisis
aparecieron dificultades asociadas precisamente a esa falta de informacién. Al igual que
con la creacién del contenedor de ejemplo, se gener6 un proyecto de prueba para analizar
la viabilidad de esta idea. De este desarrollo se extrajeron las siguientes conclusiones:

= Toda aplicacion que ejecuta scripts con cédigo Kotlin debe contar con una clase
abstracta que actia como superclase para todos los scripts del mismo tipo. Se
consideran del mismo tipo aquellos que tienen el mismo nombre, por ejemplo
example.kts. Para ello, es necesario crear una clase anotada con la etiqueta
@KotlinScript donde se definan aspectos especificos de la compilacion de ese
tipo de scripts [7]. De este modo, es posible aniadir una serie de dependencias por
defecto o limitar las rutas desde las que se puede ejecutar el script.

= Ademads de la definicion del script, debe implementarse una clase que sea la
encargada de evaluar y ejecutar un fichero con cédigo Kotlin tomando como
referencia la definicién previamente creada.

B.2. Definicion de un DSL

Por otra parte, con la especificaciéon de un DSL se busca simplificar la creaciéon del
contenedor, de modo que no sea necesario un conocimiento avanzado de Kotlin para
realizar la misma y se pueda llevar a cabo de una forma lo méas similar posible al
lenguaje natural.

La implementacién del DSL se basa principalmente en el uso de funciones anénimas,
también conocidas como expresiones lambda. Se comportan como si se tratarda de
una funcién de la cual se pasa directamente el cuerpo de la misma, sin especificar
su declaracién. Ademas, Kotlin permite que estas se puedan utilizar como parametro
de entrada a otras funciones. En particular, es posible invocar a una funcién que recibe
como parametro una funciéon lambda sin la necesidad de especificar los paréntesis. En
el fragmento de cédigo inferior se muestra un ejemplo de esta caracteristica.

funcion({expresion-lambda}) — Invocacién habitual
funcion{ expresion-lambda } — Invocacién soportada por Kotlin

35

Esta funcionalidad toma especial importancia si se hace uso de las denominadas
expresiones lambda con receptores. Se trata de funciones anénimas que estan asociadas
a un objeto concreto, es decir, pueden acceder a las funciones o atributos del mismo
en el cuerpo de la funcién lambda.

En el siguiente fragmento de codigo, se puede apreciar un breve ejemplo donde se
hace uso de esta funcionalidad. En concreto, se define una clase MyType, que cuenta
unicamente con un atributo de tipo String y una funcién, doSomething. Seguidamente,
se especifica una funcién, test, que devuelve un objeto de tipo MyType y recibe
como parametro de entrada una funciéon anénima. Esta ultima, denominada init,
se corresponde con una expresion lambda que no devuelve nada y cuenta con el tipo
MyType como receptor. En el cuerpo de la expresién lambda init, serd posible acceder
a los atributos y funciones de la instancia del tipo MyType.

Finalmente, se muestra un ejemplo de su uso en la funcién main. Tal y como se
puede observar, basta con invocar a la funciéon test para obtener un objeto del tipo
Mytype con el valor indicado en el atributo bar y que ademas invoque a la funcion
doSomething. Cabe destacar que, para aportar mayor contexto al fragmento de cédigo
y de forma opcional, el objeto devuelto por la funcién test se guarda en la variable
type del tipo myType.

class MyType {

2 lateinit var bar : String
4 fun doSomething() { ... }
}
6
fun test(init: MyType.() -> Unit) : MyType {
8 return MyType () .apply(init)
X

10
fun main() {

12| var type : MyType = test {
bar = "prueba"

14 doSomething ()

}

16 }

Listado 9: Fragmento de cédigo de ejemplo de funciones lambda en Kotlin

Mediante el desarrollo de estas pruebas, tanto el proyecto para construir el
contenedor comentando en la seccién de analisis, como los ejemplos para ejecutar
scripts y disenar un DSL en Kotlin, se pudo verificar que la propuesta era viable y
Kotlin era el lenguaje apropiado para realizarlo. Esta fase, pese haberla alargado méas
de lo esperado, sirvié para asentar conocimientos sobre Kotlin, ya que no se contaba
con la experiencia suficiente y cred la base necesaria para comenzar con la fase de
desarrollo.

36

C. Desarrollo de la solucion

En este anexo se explica en detalle algunos aspectos de mas bajo nivel relacionados
con la implementacién de la solucion. En particular, se describe el motor de plantillas
utilizado y como se lleva a cabo la ejecucién de scripts en la herramienta.

C.1. Motor de plantillas

Este apartado describe el uso de un motor de plantillas para generar nuevos
contenedores basandose en la descripcién especificada en el script. Para ello, se combina
un arbol de directorios, que cuenta con la estructura necesaria para un proyecto con
esos requisitos, con el empleo de plantillas que son completadas con la configuracion
recibida. La estructura de directorios y plantillas comentada a lo largo de este apartado
se puede observar en la Figura 12.

Como ya se ha comentado anteriormente, durante la fase de andlisis se generd un
proyecto de ejemplo para analizar si era viable construir una aplicacién que expusiera
un conjunto de datos de la forma requerida. Este ejemplo resulté muy util en la
fase de desarrollo, ya que permitio extraer la estructura de directorios y ficheros que
habria que utilizar en el proyecto cuando este se generara de un modo paramétrico y
automatico. La principal diferencia con la prueba de concepto, es que en este caso no
todos los proyectos tienen porque contar con la estructura completa. Es decir, es posible
configurar el script de modo que algunas interfaces de acceso no estén disponibles vy,
por lo tanto, no sea necesario incorporar al proyecto cierta funcionalidad.

Con esta premisa en mente, se decidi6 organizar la estructura de directorios y
ficheros seguin la interfaz con la que estaban relacionados. De esta forma, se crearon
los siguientes directorios base:

» common: Contiene la estructura comun a todas las interfaces. Es la base del
proyecto y la encargada de arrancar la aplicacién.

= graphgql: Ficheros especificos para la interfaz de acceso Graph@L.
» grpc: Ficheros especificos para la interfaz de acceso gRPC.

= rest: Ficheros especificos para la interfaz de acceso REST API.

Antes de comenzar con la explicacion en detalle de la estructura de directorios,
se procede a explicar el uso de plantillas. Como motor de plantillas se ha utilizado
FreeMarker [40], se trata de una libreria de Java, con soporte para Kotlin. Permite
completar plantillas al combinarlas con objetos de Kotlin donde se asocia un valor
para las variables definidas en la plantilla. Los ficheros creados como plantillas deben
estar codificados con el lenguaje FreeMarker Template Language (FTL) y emplear la
extensién ftlh. En la Figura 13 se muestra un esquema con el funcionamiento del motor
de plantillas. Como se puede apreciar, las variables se representan con el simbolo $
seguido del nombre de la misma. En este caso, example.kt.ftlh se corresponde con
una plantilla de FreeMarker que enmascara a un fichero de Kotlin. Este tltimo define
una variable, aux, a la que se le asigna el valor que tenga en ese momento la variable de
la plantilla $value. De esa manera, si el motor, a la hora de procesar example.kt.ftlh,
recibe un objeto de tipo tabla hash donde se asocia un valor concreto para la clave

37

/
| common
| data
lg,insert,data.sql.ftlh
| gradle
wrapper
gradle-wrapper. jar
gradle-wrapper.properties
| _src
| main
| kotlin
ApplicationConfiguration.kt.ftlh
mainClass.kt.ftlh
repository
| Entities.kt.ftlh
resources
application.properties.ftlh
static
index.html.ftlh
css
js
| build.gradle.kts.ftlh
| Dockerfile.ftlh
| gradlew
| settings.gradle.kts
| _graphql
| kotlin
| controller
| GraphQlController.kt.ftlh
| resources
| schema
Lfschema.graphqls.ftlh

L grpc
src
lg,main
kotlin
| controller
kGrpcService.kt.ftlh
GrpcServiceClient.kt.ftlh
proto
L,schema.proto.ftlh

| _rest

| src
| main
| xotlin
ig,repository
Lg,Repositories.kt.ftlh

Figura 12: Estructura de directorios para la generacion de proyectos

38

value. Sustituira la variable y generara el fichero example.kt en la ruta que se haya
indicado en la configuracién del mismo.

example.ki.ftih
val aux = "Bvalue"
printin{aux)
example.kt
FreeMarker va_l aux = "Hello
printin{aux)

Key Value
value [—» Hello

HashMap

Figura 13: Esquema de funcionamiento de FreeMarker

A continuacién, se continta con la explicacion de la estructura de directorios. El
directorio common contiene:

= Directorio data: Incluye la plantilla del script SQL encargado de poblar el
fichero de SQLite que actuara como base de datos. Ademas, en este directorio se
almacenan los ficheros CSV especificados en la descripcién del contenedor.

= Directorio gradle: Incluye los ficheros necesarios para incorporar al proyecto la
herramienta de automatizacion Gradle [41]. En los proyectos generados se utiliza
para definir las dependencias del mismo, asi como para crear tareas que permitan
de forma automatica compilar y desempaquetar los ejecutables, crear y cargar la
base de datos y lanzar el contenedor con la imagen generada.

= build.gradle.kts.ftlh: Plantilla donde se especifican las dependencias y tareas
de gradle del proyecto.

= DockerFile.ftlh: Plantilla para crear el documento donde se definen todos los
comandos que hay que ejecutar para crear la imagen del contenedor Docker. Todos
los contenedores se construyen con la imagen base de Java Runtime Environment
11.0.11.9. Internamente, se configura para que se use una versién compatible con
la arquitectura amd64 o arm64-v8a, en funcién del equipo donde se ejecuta la
herramienta. Amd64 se corresponde con la especificacion de 64 bits desarrollada

39

por la compania AMD del conjunto de instrucciones x86, mientras que arm64
es la especificacion de 64 bits de la arquitectura ARM. La eleccién de estas
arquitecturas se debe a que para el desarrollo del Trabajo Fin de Grado se han
empleado dos equipos que contaban con una arquitectura distinta y de este modo
se podia desplegar de manera directa en ambos sistemas.

» gradlew: Script encargado de ejecutar la herramienta gradle.

» settings.gradle.kts: Se utiliza para definir aspectos de configuracion. En este
caso fijar el nombre del proyecto.

= Directorio src: En esta ruta es donde se almacena el cédigo fuente de la
aplicacion. La estructura cuenta tnicamente con los paquetes src/main/kotlin,
pero se expande con el nombre de paquete indicado en el script. Es decir, si en
la descripcion del contenedor se especifica como paquete com.example.tfg, la
ruta de estos directorios serd src/main/kotlin/com/example/tfg. El resto de
ficheros contenidos en el directorio src son los siguientes:

e ApplicationConfiguration.kt.ftlh: Plantilla de la clase donde se
configura el controlador necesario para conectar la aplicacion con S@QLite.

e mainClass.kt.ftlh: Plantilla de la clase encargada de arrancar la aplicacién.

e repository/Entities.kt.ftlh: Contenida en el directorio repository, se
encuentra la plantilla donde se definen las entidades JPA. Estas se
corresponden con las definidas en la descripcién del contenedor y cada una
se asocia con un unico fichero CSV.

e Directorio resources: Este directorio almacena, por un lado, la plantilla
application.properties.ftlh, que se encarga de definir diferentes
aspectos de configuracion del sistema. Por otra parte, en el subdirectorio
static, se encuentra una plantilla de un fichero HT'ML junto con los ficheros
CSS y JavaScript necesarios para crear una pagina donde, una vez lanzado
el contenedor, se pueda consultar documentacion sobre las fuentes de datos
almacenada en el mismo, asi como, probar de forma interactiva las interfaces
de acceso. Mas adelante, se explica en detalle como se genera todo ello.

El directorio graphql contiene las plantillas para definir los controladores y el
esquema necesario para dar soporte a la interfaz Graph@L. El directorio grpc se encarga
de lo mismo para la interfaz gRPC. En este caso contiene la plantilla para definir el
servicio expuesto por el servidor y la plantilla para un servicio cliente. Finalmente,
el directorio rest contiene la plantilla encargada de definir el repositorio de acceso a
datos. Como aspecto destacable, este fichero debe estar presente siempre en el proyecto
generado, ya que es ahi donde se definen las consultas que interaccionan con la base de
datos directamente. En caso de que la descripcién del contenedor indiqué que se debe
utilizar REST API, se anadird a la plantilla la etiqueta correspondiente para anadir
esa funcionalidad, como ya se ha comentado en la prueba de concepto. Como se puede
apreciar, los directorios y plantillas se han estructurado de la misma forma en la que
estarian en el proyecto definitivo, esto se debe a una decisién de implementacién que
se detalla a continuacion.

Tal y como se ha descrito en la seccion de diseno. La clase TreeWalk del médulo
core (Figura 9) es quien construye el contenedor segtn la configuracién que le indica la

40

clase DataAsContainer. Para realizar esta tarea, fusiona los directorios necesarios en
funcion de los requisitos del proyecto y rellena las plantillas con los valores adecuados.
De esta forma, segtin las interfaces de acceso que hayan sido especificadas en el script
de construccién, se copian unos u otros ficheros y directorios de la estructura base en
el proyecto generado. Para acceder estos ficheros, recorre la estructura de directorios
copiando y completando plantillas con las variables que se han recibido desde el médulo
dsl. De la implementacion de la clase TreeWalk, es de donde aparece la necesidad de
declarar las plantillas con todos los directorios donde estan contenidas. Esto se debe a
que se realiza un recorrido en profundidad del arbol y se extrae la ruta de cada nodo
para asi copiarlo directamente en la localizacion del proyecto generado.

C.2. Ejecucién de scripts

A continuacion, se detallan aspectos de la implementacién de los médulos host y
script, comentados en la seccion de diseno 3. Al estar muy relacionados entre si, se
ha optado por agruparlos en un tinico apartado. Cabe destacar que los scripts a los
que se hace referencia a lo largo de este documento, se corresponden con ficheros de la
extension kts escritos con el DSL desarrollado en este Trabajo Fin de Grado.

Como se ha comentado previamente, el médulo host es el encargado de ejecutar los
scripts. Para su desarrollo, se ha trabajado con la libreria kotlin.script, que, en la fecha
de desarrollo del proyecto, todavia se encuentra en estado experimental. Por otra parte,
el modulo script permite especificar aspectos como la extension de los ficheros que
puede ejecutar el médulo host, en este caso build.diac.kts, y las clases que se van a
utilizar para evaluar y compilar el script. Esto iltimo se ha empleado para indicar las
dependencias que se importan por defecto del médulo dsl al ejecutar el script. De este
modo, no es necesario conocer las clases usadas a la hora de describir una construccién
y el usuario puede limitarse a codificar la especificacién del contenedor.

41

D. Prueba catalogo de Netflix

En este anexo se muestra todo el contenido relacionado con la prueba ejecutada
con el catalogo de Netfliz. La descripcion de la misma puede consultarse en
la Subseccién 5.1. En el Listado 10 se puede apreciar el contenido del script
build.diac.kts. Este se utiliza para describir la construccion del contenedor.

dac {
2 name = "Demo"
fullName = "Demo application"
1 desc = "Contenedor con informacion sobre catalogo de Netflix"
license = "Apache-2.0"
6 homepage = "https://www.kaggle.com/shivamb/netflix-shows"
packageName = "com.simplificada.tfg"
8 mainClass = "SimplificadaTest"
data {
10 files {
"title" {
12 src = "netflix_titles.csv"
schema {
14 "show_id" type text property isPrimaryKey
"type" type text
16 "title" type text
"director" type text
18 "cast" type text

"country" type text

20 "date_added" type text
"release_year" type text
"rating" type text
"duration" type text

24 "listed_in" type text
"description" type text

N
N

26)

operations {

28 create<Query>("findByReleaseYear") {

parameters = L["releaseYear", Pageable(), Sort ()]
30 sorted = asc("title")

limit = first (10)

32 distinct = true

platforms = L[grpc,rest]

34 }
create<Query>("findByDirector", "director")
36 create<Query>("findByType",
"type",
38 desc("releaseYear"),
first (25),
40 true,

L[graphql ,rest])
12 create<Query>("findByShowId"){parameters="showId"}

}
14 modules {
install(restApi) { path = "title" }
46 install (graphqlApi) { controllerName = "title" }
install(grpcApi) {}
18 }rr 3}

Listado 10: Script con la descripcién del contenedor para la prueba del catdlogo de

Netflix

42

En el Listado 11 puede observarse el cédigo generado, de forma automatica y segtin
el script del Listado 10, para definir la interfaz Graph@L en el contenedor. Se definen
las consultas expuestas en la interfaz en el tipo Query y posteriormente se define la
entidad con la que se trabaja, en este caso, TitleEntity.

type Query {
allTitles : [TitleEntity]

N

findByDirector (director : String) : [TitleEntity]
| findDistinctFirst25ByTypeOrderByReleaseYearDesc (type : String)
[TitleEntity]

findByShowId (showId : String) : [TitleEntity]

X

type TitleEntity {
showId : String

10 type : String

title : String

12 director : String
cast : String

14 country : String
dateAdded : String

16 releaseYear : String
rating : String

18 duration : String
listedIn : String

20 description : String

3

Listado 11: Descripcién del esquema de GraphQL para la prueba del catdlogo de Netflix

El Listado 12 muestra un ejemplo de como se codificaria cada una de las consultas
expuestas en GraphQL. Cabe destacar el caso de la consulta allTitles, que devuelve
todos los titulos del catdlogo y ha sido creada de forma automatica. Sin necesidad de
especificarlo en el script. Esto se expande también a REST APl y gRPC.

{

2 allTitles {

type

4}

findByDirector (director : "Quentin Tarantino") {
6 releaseYear

cast

s|
findDistinctFirst25ByTypeOrderByReleaseYearDesc (type:"TV Show"){
10 rating

duration

12 }

findByShowId (showId : "s108") {

14 title

country

16 description

}

18] ¥

Listado 12: Consultas expuestas a través de GraphQL para la prueba del catdlogo de
Netflix

43

En el Listado 13 puede observarse una peticion de ejemplo para cada una de las
consultas expuestas en REST API. Aunque estas pueden ser ejecutadas de una forma
més sencilla desde la pagina de documentacién, gracias a swagger-ui, se han decidido
mostrar también con la herramienta curl [42].

curl -X GET http://localhost:8080/title/search/findByDirector\
2 ?director=Martin’20Scorsese

i|curl -X GET http://localhost:8080/title
6| curl -X GET http://localhost:8080/title/search/findByShowId?showId=s190

s| curl -X GET http://localhost:8080/title/search/\
findDistinctFirst10ByReleaseYearOrderByTitleAsc?releaseYear=2020
10
curl -X GET http://localhost:8080/title/search/\

12 findDistinctFirst25ByTypeOrderByReleaseYearDesc?type=Movie

14| curl -X GET http://localhost:8080/title/s305

Listado 13: Ejemplo de peticiones REST API para la prueba del catdlogo de Netflix

A continuacion, en el Listado 14, se muestra la definicion del servicio expuesto en
gRPC. De nuevo, todo el cédigo mostrado se ha generado de forma automatica segin
la descripcién del script. La estructura es muy similar a la del esquema de Graph@QL.
Primero, se definen las consultas y los mensajes necesarios para invocarlas, y después,
se especifica la entidad con la que se trabaja. En este caso Title.

syntax = "proto3";
package proto;

import "google/protobuf/wrappers.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/struct.proto";

service TitleService {

rpc findDistinctFirstl0ByReleaseYearOrderByTitleAsc
(findByReleaseYearRequest) returns (stream Title);

rpc allTitles(allTitleRequest) returns (stream Title);

rpc findByDirector (findByDirectorRequest) returns (stream Title);

rpc findByShowId(findByShowIdRequest) returns (stream Title);

}

message findByReleaseYearRequest { string releaseYear = 1; }
message allTitleRequest {}
message findByDirectorRequest { string director = 1; }

message findByShowIdRequest { string showId = 1; }

message Title {
string showId =
string type = 2;
string title = 3;
string director = 4;
string cast = 5;
string country = 6;
string dateAdded = 7;

1;

44

string releaseYear = 8;
string rating = 9;
string duration = 10;
string listedIn 11;
string description = 12;

}

Listado 14: Descripcién del servicio gRPC para la prueba del catédlogo de Netflix

Para finalizar con gRPC, se ensena un ejemplo de las peticiones HT'TP que se
pueden enviar al contenedor para consular el servicio de gRPC' en caso de no tener
un cliente capaz de trabajar con Protocol Buffers. Como ocurre con el caso de REST
API, estas peticiones se pueden enviar también desde la pagina de documentacién a
través de swagger-ui. Por simplicidad, en las peticiones mostradas en el Listado 15, no
se muestra el flag -H ’Content-Type: application/json’.

curl -X POST http://localhost:8080/grpc/findByDirector \
2 -d '{"director" : "Steven Spielberg"}'
curl -X POST http://localhost:8080/grpc/\
4 findDistinctFirst10ByReleaseYearOrderByTitleAsc -d '{"releaseYear" : "2020"}'
curl -X POST http://localhost:8080/grpc/findByShowId \
6/ -d '{"showId" : "s408"}'
curl -X POST http://localhost:8080/grpc/allTitles

Listado 15: Ejemplo de peticiones al adaptador de gRPC para la prueba del catdlogo
de Netflix

Por ltimo, se muestran capturas de la pagina de documentacién para el contenedor
generado durante la prueba. Cabe destacar que, solo se puede acceder a ella una vez
que se ha lanzado la imagen del contenedor. La Figura 14 se corresponde con la vista de
la seccion Overview y se comporta como la pagina de inicio. En la zona de la izquierda
se puede apreciar un menu que permite navegar al resto de secciones disponibles en la
pagina.

Data in a container

Demo Overview
afj p I Ication « APl content description: Contenedor con informacion sobre el catalogo de Metflix
AF‘JI dOCS + License: Apache-2.0

« Homepage: hitps:/www.kaggle.com/shivamb/netflix-shows

USING THE API

We built the API to be as self-documenting as possible, but if you find yourself
Field referenc overwhelmed, we organized this site into these major areas

+« API calls gives you a hands-on experience of those operations with an interactive
console,
+ Field reference lists and describes the type of information provided by the API.

Figura 14: Pagina de inicio de documentacién para la prueba del catalogo de Netflix

45

El apartado API calls permite probar las diferentes interfaces. Expone un enlace
para acceder al entorno Graphi@QL y una serie de desplegables de swagger-ui desde
donde se puede configurar y ejecutar las consultas a través de REST API y el adaptador
para gRPC-REST. La Figura 15 ensena una peticién de ejemplo desde el entorno
GraphiQ)L. En la zona de la izquierda se encuentra la definicion de la consulta y en la
derecha el resultado de la misma. La zona superior permite, entre otras cosas, ejecutar
la consulta y ver un histérico de las consultas ejecutadas. En la Figura 16 se puede
apreciar una version reducida de la entidad. El objetivo es que el usuario disponga
de una secciéon donde pueda consultar la entidad almacenada en el contenedor. Cabe
destacar que la tabla se genera con el motor de plantillas segin el contenido del script
de configuracién. La Figura 17, muestra una vista reducida de los desplegables de
swagger-ui. Estos han sido generados de forma automaética gracias a la descripcién del
servicio en Open API 3.

GraphiQL | 3 Prettify Merge Copy History

¥ {

1
2 findByShowId(showId: 306") { v ‘data": {

3 title v "findByShowId": |
4 director v {

5 releaseYear "title":

6 } ‘director":

7) ‘releaseYear"”:

}
]
}
}

Figura 15: Ejemplo de peticién enviada al contenedor desde el entorno GraphiQL para
la prueba del catalogo de Netflix

Title API Fields

Field name Data type
showId String
type String

Figura 16: Descripcion de los atributos de la entidad para la prueba del catalogo de
Netflix generado con el motor de plantillas

46

Grpc ~

/grpe
/findDistinctFirstl0ByRe ~
leaseYearOrderByTitleAsc

[Jfgrpe/findByShowId v]
[/grpe/findsydirector v]

Rest -
v
- ftitle/search -
== /findByDirector V‘

Figura 17: Interfaz de Swagger para REST API y cliente gRPC-REST en la prueba
del catalogo de Netflix

47

E.

Prueba publicaciones Airbnb

El siguiente anexo muestra el contenido relacionado con la prueba ejecutada con los

datos de Airbnb sobre alojamientos y resenas en la ciudad de Barcelona. La explicacion
en detalle de la misma puede consultarse en la seccién 5.2. El modelo de datos se
muestra en la Figura 18. El Listado 16 muestra el contenido del script build.diac.kts.
Utilizado para describir la construccion del contenedor.

10

16

30

36

10

16

dac {
name = "airbnb"
fullName = "Airbnb-bcn"
desc = "Informacion sobre Airbnb barcelona"
license = "Apache-2.0"
homepage = "http://insideairbnb.com/get-the-data/"
packageName = "com.manyToOne.tfg"
mainClass = "ManyToOneTest"
data {
files {
"listing" {
src = "listings.csv"
schema {
"listing_id" type integer property isPrimaryKey
"name" type text
"host_id" type integer
"neighbourhood_group" type text
"neighbourhood" type text
"room_type" type text
"price" type integer
"minimum_nights" type integer
"number_of_reviews" type integer
}
operations { create<Query>("findByPrice", "price") }
modules {
install(restApi) { collectionResourceRel = "listing" }
install (graphqlApi) {}
install (grpcApi) { serviceName = "ListingService" }
}
X
"review" {
src = "reviews.csv"
schema {
"review_id" type integer property isPrimaryKey
"listing_reviewed" type integer references "listing"
column "listingId"
"date" type text
}
operations {
create<Query>("findByReviewId", "reviewId")
X
modules {
install(restApi) { path = "review" }
install (graphqlApi) { controllerName = "review" }
install (grpcApi) {}
I
b
}

Listado 16: Script con la descripcion del contenedor para la prueba de Airbnb

48

listing review
P | listing_id H—‘ PK | review id
name FK | listing_reviewed
host_id date

neighbourhood_group
neighbourhood
room_type

price
minimum_nights

number_of_reviews

Figura 18: Modelo de datos de la informacion de Airbnb Barcelona

En el Listado 17 se puede apreciar la descripcion del esquema de GraphQL. Se
encarga de exponer las consultas indicadas a través de la interfaz y de definir las
entidades que se almacenan, ListingEntity y ReviewEntity. En este caso, cabe
destacar el atributo listingReviewed, que hace referencia a la clave extranjera definida

en el script (Listado 16).

type Query {
2 findByPrice (price
alllListings [Lis

allReviews [Revi

}

o)

type ListingEntity {
listingId Int
name String
hostId Int

10

neighbourhood
roomType
price Int
minimumNights
numberOfReviews

14

16

X

type ReviewEntity {
reviewId Int
listingReviewed
date String

findByReviewId(reviewId

neighbourhoodGroup

Int) [ListingEntity]
tingEntity]
Int)
ewEntity]

[ReviewEntity]

String
String

String

Int
Int

ListingEntity

Listado 17: Descripcién del esquema de GraphQL para la prueba de Airbnb

En el Listado 18 se puede observar un ejemplo de como se definirian las consultas
expuestas en Graph@L. De nuevo, al igual que en la prueba con el catdlogo de Netflix,
se han generado automaticamente las consultas allListings y allReviews.

49

findByPrice(price : 140) {
neighbourhoodGroup
1 roomType

}

alllListings{
8 price
hostId

10 }

12 findByReviewId (reviewId: 4) {
date

14 listingReviewed {
minimumNights

16 }

}

allReviews{
20 date

}
}

IN)
¥]

Listado 18: Consultas expuestas a través de GraphQL para la prueba de Airbnb

En el Listado 19 se pueden apreciar ejemplos de peticiones para las consultas
expuestas en REST API. De nuevo, es posible ejecutarlas también desde la pagina

de documentacién a través de swagger-ui.

2| curl -X GET http://localhost:8080/ListingServices
curl -X GET http://localhost:8080/ListingServices/582364

curl -X GET http://localhost:8080/review/search/findByReviewId?reviewId=100
6| curl -X GET http://localhost:8080/review

curl -X GET http://localhost:8080/review/2

s|curl -X GET http://localhost:8080/review/2/listingReviewed

curl -X GET http://localhost:8080/ListingServices/search/findByPrice?price=170

Listado 19: Ejemplo de peticiones REST API para la prueba de Airbnb

Seguidamente, en el Listado 20, se muestra la definicién de los servicios expuestos
en gRPC. Se especifica uno por cada entidad, Listing y Review. Al igual que ocurria
en el esquema de GraphQ)L, el atributo listingReviewed de la entidad Review permite
tratar una clave extranjera como un objeto de la entidad a la que se hace referencia.

50

syntax = "proto3";
package proto;

import "google/protobuf/wrappers.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/struct.proto";

service ListingService {
rpc findByPrice(findByPriceRequest) returns (stream Listing);
rpc alllistings(alllListingRequest) returns (stream Listing);

3

message findByPriceRequest { int32 price = 1; }
message alllistingRequest {}
message Listing {
int32 listinglId = 1;
string name = 2;
int32 hostId = 3;
string neighbourhoodGroup = 4;
string neighbourhood = 5;
string roomType = 6;
int32 price = 7;
int32 minimumNights = §;
int32 numberOfReviews =

}

9;

service ReviewService {
rpc findByReviewId (findByReviewIdRequest) returns (stream Review);
rpc allReviews(allReviewRequest) returns (stream Review);

}

message findByReviewIdRequest { int32 reviewId = 1; }
message allReviewRequest {}
message Review {

int32 reviewId = 1;
Listing listingReviewed = 2;
string date = 3;

3

Listado 20: Descripcién del servicio gRPC para la prueba de Airbnb

Para finalizar con gRPC, se muestra un ejemplo de las peticiones HIT'TP que se
pueden ejecutar para consular el servicio de gRPC. Estas peticiones se pueden enviar
también desde la pagina de documentacion a través de swagger-ui.

curl -X POST http://localhost:8080/grpc/findByReviewId -d '{reviewId : 12}'
curl -X POST http://localhost:8080/grpc/findByPrice -d '{price : 553}'

curl -X POST http://localhost:8080/grpc/allReviews

curl -X POST http://localhost:8080/grpc/alllistings

Listado 21: Ejemplo de peticiones al adaptador de gRPC para la prueba de Airbnb

51

A continuacion, se ensenan capturas de la pagina de documentacién. El disenio de
esta es idéntico al mostrado en la prueba de Netflix. La Figura 19 muestra la vista de
la pagina Quverview, donde la tnica diferencia a la prueba anterior es el contenido de
la descripcion del contenedor.

Data in a container

Airbnb-bcn Overview
API docs

» AP content description: Informacion sobre Airbnb barcelona
+ License; Apache-2.0
Overview + Homepage: hitp:/finsideairbnb.com/get-the-data/

API calls
USING THE API

Field reference
e We built the API 10 be as self-documenting as possible, but if you find yourself

overwhelmed, we organized this site into these major areas.

« AP| calls gives you a hands-on experience of those operations with an interactive
console.
» Field reference lists and describes the type of information provided by the AP,

Figura 19: Pagina de inicio de la documentacién para la prueba de Airbnb

La Figura 20 y la Figura 21 muestran los menus desplegables de swagger-usi,
accesibles en la secciéon API calls. Esta ultima ensena como se lleva a cabo la
configuracion y ejecucién de una consulta en la interfaz API REST. En este caso se ha
decidido no mostrar la ejecucion de una consulta de prueba en el entorno GraphiQL,
ya que no aporta informacién adicional.

Grpc ~

S /9rec/tindeyReviewtd v
IESE /orec/findeyprice v
‘ /grpc/allReviews ~
ISR /orec/alListings v

Rest ~

(IESE /Listingservices v
fListingServices/search

B tinyprice 7

Figura 20: Interfaz de Swagger para REST API y cliente gRPC-REST para la prueba
de Airbnb

52

fListingServices/search
/findByPrice .

Parameters | Ancel |

Namse Description
rice

P [130
integer(s$int32)

[query

Responses

ewrl =X "GET'
| al BeBA/Listi riices/search F'.ru'IH)JP".-.'-r--'|:ri-.'r- 138" 4

ic)

search/findByPrice?price=130

Server response

Code Details

200 RESPONSE BODY

"name”: "Apartment 2 bedrooms near to Sagrada Famili
“hostId™: -
“neighbourhocdGroup”:

"meighbourhocd”: “el F
“roomType™: "Entire ho
“price”: -
“minimmNights": 3,
“number0fReviews™:

Figura 21: Ejemplo de peticién a través de la interfaz de Swagger en la prueba de
Airbnb

53

Para concluir, se muestra el contenido de la seccién Field reference. Esta contiene
las tablas de las dos entidades con las que se trabaja, Listing y Review.

Listing API Fields

Field name Data type
listingId Int
name String

Figura 22: Descripcién de los atributos de la tabla Listing para la prueba de Airbnb

Review API Fields

Field name Data type
reviewId Int
listingReviewed Int
date String

Figura 23: Descripcién de los atributos de la tabla Review para la prueba de Airbnb

54

	Introducción
	Motivación
	Objetivo del Trabajo Fin de Grado
	Alcance
	Estructura del documento

	Análisis
	Selección de tecnologías
	Prueba de concepto
	Conclusiones de la fase de análisis

	Diseño
	Arquitectura del sistema
	Diseño de la descripción del contenedor
	Descripción del modelo de datos
	Descripción de las consultas
	Especificación de las interfaces de acceso
	Descripción de la construcción

	Construcción del contenedor
	Conclusiones de la fase de diseño

	Desarrollo
	Documentación del contenedor
	Gestión de la configuración
	Entorno de ejecución
	Dificultades encontradas

	Validación
	Catálogo de Netflix
	Alojamientos y reseñas de Airbnb
	Conclusiones de la validación

	Conclusiones
	Objetivos alcanzados
	Trabajo futuro
	Reflexiones personales

	Acrónimos
	Glosario
	Referencias
	Lista de Tablas
	Lista de Figuras
	Lista de Código
	Gestión del proyecto
	Estudio de Kotlin
	Soporte para scripts
	Definición de un DSL

	Desarrollo de la solución
	Motor de plantillas
	Ejecución de scripts

	Prueba catálogo de Netflix
	Prueba publicaciones Airbnb

