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RESUMEN 

El objetivo principal de este Trabajo Fin de Grado es analizar el 

comportamiento del Predictor de Smith (PS) ante pequeñas desviaciones en la 

identificación del retardo. El análisis abarcará una casuística de sistemas con 

retraso puro bucle cerrado que comprenderá los más comunes. 

A lo largo de este documento se abordarán distintos sistemas de primer y 

segundo orden con retardo puro, de forma que primeramente se analizará su 

comportamiento en bucle cerrado, sin Predictor de Smith. A continuación se 

introducirá el Predictor de Smith en condiciones ideales (es decir, con el retardo 

perfectamente identificado), analizando su comportamiento y en especial su 

estabilidad. Finalmente, se analizará el impacto que supone en las prestaciones del 

Predictor de Smith la introducción de una pequeña desviación en la identificación 

del retardo (“Predictor de Smith Real”). 

Se obtendrán conclusiones del análisis realizado anteriormente, 

reflexionando acerca de la aplicabilidad de esta técnica a los diversos sistemas 

bajo estudio. 

Es importante señalar que, a diferencia de otros estudios realizados sobre la 

cuestión que nos ocupa, todo el análisis se realizará por medio del criterio de 

Nyquist. Es decir, usando en todo momento un razonamiento eminentemente 

gráfico. 
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 Introducción 

Los sistemas con retardos aparecen en situaciones en las se tienen tiempos 

de procesamiento considerables (procesamiento de control o tratamiento de 

señales), situaciones en las que se da un transporte de materia y/o energía, en 

mediciones, etc. Ejemplos de ellos son: Sistemas de control en cuyos lazos hay 

sensores como cámaras, columnas de destilación, procesos industriales, procesos 

químicos, térmicos…por mencionar algunos casos. 

Un sistema que presenta un retardo implica que desde que actuamos sobre el 

sistema, hasta que la variable comienza a responder transcurre un tiempo T.  

Es decir, si se supone un sistema,   ( )  
 

    
  donde este puede representar 

un circuito RC, un sistema térmico o algo similar. Su comportamiento ante una 

entrada escalón es: 

 
Gráfica 1. Respuesta de un sistema de primer orden simple ante una entrada escalón. 

Pero si al mismo sistema se le añade un retardo de T segundos, es decir:  

 ( )    ( ) 
    

 

    
     

Para distintos valores de T, la respuesta que se obtiene es: 
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Gráfica 2. Respuesta de un sistema de primer orden simple con retardo. 

Como se puede observar, en un sistema que está en bucle abierto (Figura 1), 

es decir, en el que actuó y obtengo su respuesta, al añadir un retardo, se 

comportará de la misma forma pero respondiendo T segundos más tarde. Por lo 

que, en estos casos, un retardo puro, no va a afectar a la estabilidad. 

 
Figura 1: Sistema en bucle abierto. 

Pero en cadena cerrada o si se prefiere bucle cerrado (Figura 2), es decir, al 

añadir realimentación, ya no ocurre esto, pues el retardo aparece en el 

denominador. Lo que ya no solamente provoca un retraso en la respuesta, sino que 

al estar también en el denominador, modifica los polos del sistema y, por tanto, 

puede afectar a la estabilidad. Señalar que, pese a que la ecuación característica es 

trascendente, es posible aproximar el término exponencial por medio de la 

aproximación de Padé, por lo que puede seguir hablándose en términos de polos y 

ceros. 

 ( )  
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 Figura 2: Sistema en bucle cerrado.  

Otra forma de abordar el análisis de este tipo de sistemas es a través del 

diagrama de Bode (DdB) (Gráfica 3), donde el margen de fase puede llegar a 

hacerse negativo en el caso del sistema con retardo, y de esta forma afectar a la 

estabilidad de mi sistema (Gráfica 4).  

 
Gráfica 3: Comparación DdB de un sistema con 

retardo y sin retardo. 

 
Gráfica 4: Comparación respuesta escalón de un 

sistema con retardo y sin retardo. 

 

A la vista de la facilidad con la que ese tipo de sistemas puede 

inestabilizarse, el control de sistemas con retraso puro, resulta casi siempre 

dificultoso. Una de las soluciones que se propone es emplear el Predictor de 

Smith, que es una técnica basada en la compensación del tiempo muerto, es decir, 

compensar el problema de los retardos matemáticamente. 

Consideremos como punto de partida un proceso con retraso puro en lazo 

cerrado (Figura 2). Para compensar el retardo se añade un modelo dado por    y 

    , quedando de la forma: 

 
Figura 3: Estructura del Predictor de Smith. 
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Donde     ( ) representa la dinámica de mi proceso, como si este no 

tuviera ningún retraso y      representa el retardo. Si sustituimos, y realizamos 

los cálculos, la función de transferencia del sistema queda de la forma: 

 
Figura 4: Estructura del predictor de Smith simplificada. 

  ( )   
 ( )  ( ) 

   

   ( )  ( )(      )
 

   ( )  
 ( )  ( ) 

   

   ( )  ( )(      )   ( )  ( )    
  

 
 ( )  ( ) 

   

    ( )  ( )    ( )  ( )      ( )  ( )    
  

 ( )  ( )

    ( )  ( )
     

Como se puede observar, al aplicar la estructura del Predictor de Smith, el 

retardo queda únicamente en el numerador (Ecuación anterior), de forma que 

conseguimos que el retardo (que seguirá estando presente), no afecte a la 

estabilidad del sistema. 

Este Predictor de Smith es capaz de predecir lo que va a suceder en la salida 

real en base al modelo    sin retardo, y el retardo T, pues este es capaz de calcular 

sin error, que va a suceder. Y el controlador se consigue anticipar un tiempo igual 

al retraso. Pero la clave del Predictor reside en la correcta identificación de    y 

del retardo    pero, como se trata de tiempos, es fácil cometer un error en la 

estimación del retardo, entonces… ¿Qué sucedería si se comete un error en la 

estimación, es decir, el retardo es la suma entre el retardo y una desviación que se 

a cometido,      ?  

La respuesta a esta pregunta, es la que se va a resolver durante este Trabajo 

Fin de Grado. 
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 Objetivos y metodología 

El Predictor de Smith (PS) es la estrategia de control más extendida cuando 

se trata de gobernar sistemas que presentan retardos puros. El objetivo del trabajo 

es analizar, por medio del criterio de Nyquist, el impacto en las prestaciones del 

control basado en el PS, ante la incorrecta identificación del retardo del sistema 

que va a ser controlado. Se analizará el efecto del error en la identificación del 

retardo para una casuística diversa que incluye los sistemas más habituales, 

permitiendo obtener conclusiones acerca de las limitaciones del uso de esta 

técnica. 

Para cada caso de estudio, se realizarán cálculos numéricos y 

representaciones gráficas mediante MATLAB y SIMULINK, analizando el efecto 

del retardo en el control, el efecto del Predictor de Smith teórico y el efecto de un 

Predictor de Smith con un pequeño error en la identificación del retardo que 

realmente presenta el sistema a controlar. 

En resumen, se analizarán diferentes casos prácticos, y se estudiará el 

comportamiento de un Predictor de Smith teórico (sin error en la estimación del 

retardo), y el de un Predictor de Smith Real (con error en la estimación del 

retardo), con el objetivo de poder hacer una crítica sobre el Predictor de Smith, la 

cual será la conclusión de este trabajo. 

Los sistemas que van a ser analizados son aquellos que en su cadena directa 

(o bucle abierto) presentan las siguientes funciones de transferencia: 

1. Sistema de primer orden. 

2. Sistema de primer orden completo. 

3. Sistema de primer orden + PI con cancelación. 

4. Integrador. 

5. Sistema de segundo orden. 

6. Sistema de segundo orden con un polo en cero. 

7. Sistema de segundo orden completo. 

Recomendaciones de lectura: Debido a la extensión del Trabajo fin de 

grado y a la similitud en los procedimientos empleados para cada uno de los 

apartados, al lector se le recomienda leer con más detalle los apartados “3.Sistema 

de primer orden”,  “4.Sistema de primer orden completo” y “10.Conclusión”. Con 

ello se consigue que el lector ya tenga una idea clara de lo que se presenta en este 

TFG. 
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 Sistema de primer orden. 

Supóngase un primer sistema de primer orden con retraso puro controlado 

con un regulador proporcional, igual al que se ha mencionado anteriormente 

(1.Introdución): 

 ( )    ( ) 
     

 

    
     

Para este sistema, se va a hacer un estudio de su estabilidad en bucle cerrado, 

del Predictor de Smith Teórico y del Predictor de Smith cometiendo un error en la 

estimación del retardo. 

 El efecto del retraso puro en bucle cerrado 

Se comienza añadiendo una realimentación, quedando el sistema en bucle 

cerrado (Figura 2). Si se obtiene la función de transferencia de ambos sistemas 

(sistema con retardo, y sistema sin retardo): 

o Función de transferencia del sistema sin el retardo: 

   ( )   

 
    

  
 

    

 
 

      
 

o Función de transferencia del sistema con el retraso: 

   ( )   

 
     

   

  
 

     
   

 
      

           
 

Como se ha mencionado anteriormente, la presencia del retardo en el 

denominador puede afectar a la estabilidad de mi sistema, debido a que puede 

modificar los polos del sistema. 

Con el diagrama de Nyquist (DN) del sistema en bucle abierto (o si se 

prefiere de la cadena directa), podemos estudiar la estabilidad en BC. Por tanto 

siguiendo con este ejemplo: 

Empezamos haciendo un análisis breve para el sistema sin retardo, 

sustituyendo s por   , y analizando su comportamiento a bajas y altas frecuencias: 

 T1 (Tramo 1): A frecuencias bajas. 

   
     

  (  )     
   

 
 

     
  ,

|  (  )|   

   (  (  ))    
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 T2 (Tramo 2): A altas frecuencias.  

   
     

  (  )     
   

 
 

     
  ,

|  (  )|   

   (  (  ))      
 

Por tanto el diagrama de Nyquist, partirá del valor K, y tenderá a cero, sin 

cortar en ningún momento el semieje negativo de abcisas. Como se puede 

observar a continuación, para distintos valores de K: 

 
Gráfica 5: DN de un sistema de primer orden simple sin retardo. 

Como se ha realizado la simulación para una      solo presenta un único 

polo, en -1, por tanto, el Criterio de Nyquist nos dice que el sistema es estable. 

Repitiendo el análisis para el sistema con retardo: 

  (  )    (  ) 
      

 

     
       

(     )

(     )(     )
       

  
(     )

      
      {

|  (  )|  | || | |
 

√      
|

   (  (  ))       (   )    

 

Analizamos por tramos: 

 T1: A frecuencias bajas, el DN partirá de K con fase 0º 

   
     

  (  )     
   

 
 

    
       ,

|  (  )|   

   (  (  ))    
 

 T2: A altas frecuencias, el DN tiende a 0 con una fase de   .  

   
     

  (  )     
   

 
 

    
       ,

|  (  )|   

   (  (  ))    
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Por tanto como la magnitud disminuye de forma monotónica a partir del 

valor de K y el ángulo de fase disminuye de forma monotónica e indefinida, el 

diagrama polar de la función de transferencia determinada es una espiral. Ello 

puede abrir una puerta a la inestabilización debido a que dicha espiral, provocada 

por el retardo, intersecta en el semieje negativo de abcisas.  

 T3 (Tramo 3): Lo siguiente que hay que analizar es el primer punto 

de corte con el semieje negativo de abcisas. El cual se produce 

cuando      (   )           . Si representamos dicha 

función (Con T=1 y  =1): 

 
Gráfica 6: Representación de      (   )         , con el fin de obtener el primer corte con el 

semieje negativo de abcisas. 

Cuando         , se produce el primer corte con el semieje 

negativo de abcisas. Este valor se sustituye en el módulo, obteniendo: 

|  (  )|  | || | |
 

√           
|  

 

      
           

Por tanto si el modulo | (  )| es mayor que 1, eso significa que estará 

dando una vuelta en sentido antihorario al punto crítico -1. Esto se produce para 

un valor de K = 2.2618. 

El criterio de estabilidad de Nyquist establece que “para que un sistema sea 

estable, el número de polos en el semiplano derecho tiene que ser igual al número 

de vueltas en sentido antihorario, de lo contrario, el sistema será inestable.” Como 

el sistema no presenta ningún polo inestable, cuando alcance el punto crítico – 1 y 

esto,  se produce cuando K => 2.2618. 

A continuación se puede observar una representación gráfica para una T = 1, 

y distintos valores de K. (K = 1, K = 2, K = 3) 
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Gráfica 7. DN del sistema de primer orden simple con retardo. 

 
Gráfica 8. Respuesta ante una entrada escalón del sistema de primer orden con retardo. 

Como se puede observar en el DN, cuando el sistema tiene una ganancia 

menor a 2.26 (K = 2 o K = 1), el sistema es estable. Pero al superar dicho valor (K 

= 3), el sistema rodea al punto crítico -1, y el sistema se vuelve inestable (Gráfica 

8). 

 Predictor de Smith ideal 

Con el objetivo de estabilizar el sistema, se va a emplear la estructura del 

Predictor se Smith para el sistema con retardo (Figura 4). 

La cadena directa del Predictor de Smith, como se ha mencionado 

anteriormente, queda de la siguiente forma: 

  ( )   
 ( ) ( )    

   ( ) ( )   ( ) ( )  (   ) 
 

Que particulariza para este caso: 

  ( )   
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Como se ha hecho en el apartado anterior, analizamos el diagrama polar. 

  (  )   
      

              
 

 T1: A bajas frecuencias (cuando 0), el diagrama polar de CD(s) 

parte de un valor finito K y con una fase de 0º: 

   
   

  (  )   
 

     
  ,

|  (  )|   

   (  (  ))    
 

 T2: A altas frecuencias (cuando ∞): Termina en 0, con una fase 

de   . 

   
   

  (  )  
      

              
 ,

|  (  )|   

   (  (  ))    
 

La presencia del factor       en el numerador no afecta al módulo 

(únicamente a la fase, indicando que a altas frecuencias, el DN va a exhibir un 

comportamiento cíclico en forma de espiral). En cambio, la presencia de dicho 

factor en el denominador si afecta al módulo del sistema, por ello se analizan los 

valores máximos y mínimos de dicho módulo: 

 Cuando     (  ) , siendo        , tenemos un mínimo en el 

denominador (los términos que contienen a la K se cancelan), lo que 

hace que el módulo del sistema presente un máximo: 

  (  )   
      

         
  

 

     
     {

|  (  )|  | || | |
 

√      
|

   (  (  ))       (   )    

 

 Cuando     (      ) , siendo         , tenemos un máximo 

en el denominador (los términos que contienen a la K se suman), lo 

que hace que el módulo del sistema presente un mínimo: 

  (  )   
      

         
  

 

        
     

{
 

 |  (  )|      |
 

√(    )      
|

   (  (  ))  
  

    

 

Como estos valores extremos se producen una vez cada vuelta, con el mismo 

argumento y en sendos puntos del eje de abcisas (no hay desfase), solo se analizan 
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estos valores. Para el caso   (  )
 

 
, aunque sí que hay valores de K, donde el 

módulo se haga mayor que 1, este valor no preocupa, debido a que este punto va a 

cortar siempre en el semieje positivo de abcisas, al tratarse del extremo derecho de 

cada lóbulo de la espiral (ver gráfica 9). Sin embargo, para el caso de   (   

   )
 

 
, sí que corta en el semieje negativo de abcisas, pero su módulo siempre va 

a ser menor que 1, pues para una ganancia suficientemente elevada, el valor que 

alcanza en el primer cruce por el eje de abcisas no tiene en cuenta el término     

(de pequeño valor en comparación con el valor de K) y por  tanto solo alcanza el 

valor de      (
 

    
). De forma que en el Diagrama de Nyquist, nunca alcanzará 

el punto crítico. 

Aplicando el Criterio de Nyquist, el sistema se va a comportar de forma 

estable, debido a que el número de polos inestables, es igual al número de rodeos 

al punto crítico, que en ambos casos es cero.  

A continuación se pueden observar las gráficas, para K = 1, K = 10 y K = 

100. 

 
Gráfica 9: Diagrama de Nyquist del predictor de Smith ideal. 

 
Grafica 10: Respuesta escalón del predictor de Smith ideal. 
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Por tanto, el Predictor de Smith Teórico da muy buenos resultados, pues 

logra que el sistema con retardo puro (que era inestable para ganancias mayores 

que 2,26) sea estable para todo K positivo.  

 Predictor de Smith real 

Como hemos visto en el apartado anterior, la eficacia del Predictor de Smith 

es excelente, pero esta se consigue gracias a la perfecta identificación de H(s), y  . 

Pero en este apartado vamos a ver qué sucedería si se ha identificado 

correctamente a   ( ), es decir:  ( )    ( )  pero no así al retraso puro, es 

decir:       donde  representa la desviación en la estimación del retardo.  

En este apartado, la cadena directa de nuestro sistema, con la estructura del 

Predictor de Smith Real, quedará de la siguiente forma: 

  ( )   
     

          (   ) 
 

Analicemos esta cuestión en detalle: 

 T1: A bajas frecuencias (cuando 0), el diagrama polar de CD(s) 

parte de un valor finito (K) con un ángulo de fase de 0º: 

   
   

  (  )   
 

     
  ,

|  (  )|   

   (  (  ))    
 

 T2: A altas frecuencias (cuando ∞): Termina en 0, con una fase 

de   . 

   
   

  (  )  
      

           (   )  
 ,

|  (  )|   

   (  (  ))    
 

Al igual que antes la presencia del factor       en el numerador no afecta al 

módulo, pero la presencia del factor   (   )   en el denominador si afecta al 

módulo, de forma, que los valores máximos y mínimos son: 

 Cuando  (   )      , siendo   (   )    , tenemos un 

mínimo en el denominador (los términos que contienen a la K se 

cancelan), lo que hace que el módulo del sistema presente un 

máximo:  

  (  )   
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     {

|  (  )|  | || | |
 

√      
|

   (  (  ))       (   )    

 

 

 Cuando  (   )  (    ) , siendo         , tenemos un 

máximo en el denominador (los términos que contienen a la K se 

suman), lo que hace que el módulo del sistema presente un mínimo: 

  (  )   
      

         
  

 

        
     

{
 

 |  (  )|      |
 

√(    )      
|

   (  (  ))  
  

    

 

El DN va a presentar una forma de espiral que tiende al origen, de forma 

similar a lo que venía sucediendo con el PS teórico, sólo que esta vez, debido a la 

incorrecta identificación del retardo, estos valores máximos y mínimos ya no 

corresponden con múltiplos de  , sino con los valores: (1+2N)T y 

2NT, es decir, cada uno de los valores extremos se producen con T/ 

argumentos diferentes. Por tanto, para que ahora el sistema sea estable, ambos 

módulos deben de ser menor que 1. Se trata por tanto de encontrar el módulo a la 

frecuencia para la cual, el primer máximo alcanza el semieje negativo de abcisas: 

Como hemos visto anteriormente, la frecuencia para la cual se dan los 

máximos es: 

 (   )         
   

   
 

¿En cuantas vueltas (lóbulos) se alcanza el semieje negativo de abcisas? 

Contando con que a frecuencias suficientemente elevadas, el aporte de fase 

correspondiente al término 
 

     
 es de -90º, y que en 360º se dan T/ lóbulos, 

puede concluirse que el número de lóbulos necesario para alcanzar el semieje 

negativo de abcisas es N=T/(4). Sustituyendo dicho valor en la ecuación 

anterior, podemos obtener el valor del módulo a dicha frecuencia: 

  
   

   
 

  

  (   )
 

Sustituyendo w en la expresión del módulo: 
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|  (  )|  
 

√      
 

 

√    (
  

  (   )
)
 

 

Para este caso, los polos del sistema se encuentran en el semiplano 

izquierdo. Por ello, si se supera el punto crítico -1, el sistema se comportará de 

forma inestable, por lo que dicho módulo debe ser inferior a la unidad. Por 

consiguiente, el valor máximo de K que hace al sistema estable es: 

     √    (
  

  (   )
)
 

 

Como puede verse, el máximo valor de K que asegura la estabilidad depende 

varios factores, si bien aquí vamos a poner el foco en la dependencia de  , por lo 

que mantendremos T=1 y =1.  

 
Gráfica 11: Influencia de el error de estimación. Para una K=25. 

A continuación, se va a particularizar la expresión anterior para distintos 

valores de  : 

        

En el caso de que se cometa un error en la estimación del retardo de un 1%, 

podemos calcular para qué valor de K el sistema se haría inestable. Aplicando la 

fórmula anterior: 
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     √    (
  

  (   )
)
 

 √    (
  

       (      )
)
 

        

Vamos a comprobarlo mediante el Diagrama de Nyquist: 

 Para un K = 150, se puede apreciar que el diagrama de Nyquist, no 

llega a alcanzar el punto crítico, y por tanto el sistema se comporta de 

forma estable (Gráfica 12). 

 
Gráfica 12: Comportamiento de un primer orden simple con PS y  desviación en la estimación del 1%. 

 Sin embargo, para una K = 160, se puede observar como alcanza el 

punto crítico, volviéndose el sistema inestable (Gráfica 13). 

 
Gráfica 13: Comportamiento de un primer orden simple con PS y  desviación en la estimación del 1%. 

Par otros valores de K, distintos a los límites, el Diagrama de Nyquist queda 

de la forma: 
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Gráfica 14: El DN, no alcanza el punto crítico para valores de la ganancia menores a 150. 

Si recordamos el valor que antes no me preocupa, el de valor máximo, el de 

valor con módulo (que puede alcanzar un valor mayor a la unidad):  

|  (  )|  | || | |
 

√      
| 

Debido al error en la estimación del error, se produce un desfase, y se va 

aproximando al eje negativo de abcisas. Pero este valor del módulo, también 

depende de la frecuencia y como el desfase que se comete es muy pequeño (de 

0.01), la frecuencia aumenta significativamente antes de cortar con el semieje 

negativo de abcisas. Por ello el sistema no se vuelve inestable hasta valores de K 

mayores que 150. 

 
Gráfica 15: Estabilidad para valores de la ganancia menores a 150. 
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Si ponemos en práctica la ecuación obtenida anteriormente, la ganancia 

máxima que se puede alcanzar antes de que el sistema se vuelva inestable es: 

     √    (
  

  (   )
)
 

 √    (
  

       (      )
)
 

       

Comprobamos mediante el diagrama de Nyquist, el valor para el cual el 

sistema se vuelve inestable. 

 
Gráfica 16: Comprobación de la inestabilidad mediante el criterio de Nyquist. 

Para este caso el desfase es mayor, pues es 0.05, y la frecuencia alcanza un 

menor valor cuando corta con el semieje negativo. Por tanto el sistema alcanza el 

punto crítico con valores menores que K, y termina volviéndose inestable el 

sistema para valores menores. (Gráfica 17) 

 
Gráfica 17: Comportamiento de un sistema de primer orden con PS y desviación del 5%. 

 

       

Sustituyendo de nuevo en la ecuación pero esta vez, para una desviación de 

0,1, se obtiene que el sistema se vuelve inestable para ganancias mayores que 

14,31. 
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Gráfica 18: Comprobación de la inestabilidad mediante el criterio de Nyquist. 

Para esta situación la frecuencia al llegar al semieje negativo aun es menor, 

debido a que el desfase es mayor. Por tanto la inestabilidad aparece para ganancias 

aun menores. (Como se puede observar en la siguiente gráfica). 

 
Gráfica 19: DN para el sistema de primer orden con PS y una desviación del 10%. 

 Conclusión 

Como conclusión para sistema, obtenemos que la inestabilidad en bucle 

cerrado se produce para ganancias superiores a 2.2618 (En caso de T=1, y    ), 

si se añade el Predictor de Smith Teórico funciona muy bien, pues se consigue la 

estabilidad para todos los valores de K.  

En el caso de que se cometiera un error pequeño en el cálculo del retardo 

(alrededor del 1%), el sistema sigue siendo estable para ganancias muy elevadas. 

Pero, si se comete un error del 5%, al elevar la ganancia por encima de 30 se nos 

inestabiliza el sistema. Y el valor de la ganancia para el cual el sistema se hace 

inestable seguirá disminuyendo a medida que aumenta el error, de manera que 

para un error del 10%, se inestabiliza para una ganancia mayor que 14,31 (Como 

se ha obtenido en la fórmula empleada).  
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 Sistema de primer orden completo 

El siguiente sistema que se va a estudiar es un sistema de control en bucle 

cerrado (BC), en cuya cadena directa (CD) incorpora un sistema de primer orden 

completo con retraso puro. Dicha cadena directa puede ser el resultado de un 

control proporcional aplicado a un sistema de primer orden completo, o bien a un 

control PD aplicado a un sistema de primer orden simple. Sea como fuere, la 

función de transferencia de la cadena directa es: 

 ( )    ( ) 
     

     

    
     

 El efecto del retraso puro en bucle cerrado 

A continuación para este mismo sistema, se estudiará el comportamiento en 

bucle cerrado. Para ello obtenemos las funciones de transferencial del sistema con 

retardo y el sistema sin retardo. 

o La función de transferencia sin retardo: 

   ( )  
 
      
     

   
      
     

 
  (      )

        (      )
 

o La función de transferencia con el retardo queda: 

   ( )  
 
      
      

   

   
      
     

    
 

  (      )    

        (      )    
 

Ya de un primer vistazo y en base a la experiencia del sistema anterior, se 

sabe que la presencia del retardo en el denominador, puede provocar la 

inestabilicación del sistema. Lo vamos a comprobar aplicando el Criterio de 

Nyquist. 

  (  )   
      

     
      

 T1: Evaluamos a bajas frecuencias (cuando 0), y el diagrama 

polar de CD(s) parte de un valor finito a K con un argumento de 0º: 

   
    

  (  )   
 

 
 ,

|  (  )|   

   (  (  ))    
 

 T2: Evaluamos a altas frecuencias (cuando   ), y el diagrama 

polar termina alcanzando el valor  
  

 
, con un argumento de     
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  (  )   
  

 
  {

|  (  )|   
  

 
   (  (  ))    

 

Lo que supone describir repetidamente una circunferencia en torno al 

origen de radio  
  

 
. Es decir, esto provoca que me corte con la parte 

negativa, lo que va a abrir una puerta a la inestabilización del sistema. 

Veamos un ejemplo del sistema con retardo (trayectoria roja) y el sistema sin 

retardo (trayectoria azul). Se ha empleado una    = 0.5,   = 1, T = 1 y una K = 1. 

 
Gráfica 20: Comportamiento para un sistema de primer orden completo con y sin retardo. 

Como se puede observar, en el sistema sin retardo, me corta en el semieje 

positivo de abcisas, en el punto  
  

 
  y a continuación tiende a cero, sin producirse 

ningún corte con el semieje negativo. Sin embargo, la presencia del retardo, hace 

que a altas frecuencias, tenga un argumento de     lo que provoca que describa 

una  circunferencia de radio  
  

 
. 

Ahora bien, con el objetivo de aplicar el Criterio de Nyquist, y saber si el 

sistema se va a inestabilizar. Se obtienen los polos del sistema, y como todos los 

polos son estables, es decir, no hay ningún polo en el semieje positivo de abcisas. 

Cuando el diagrama de Nyquist rodee en sentido antihorario al punto crítico -1, el 

número de vueltas, será distinto al número de polos inestables, por tanto se podrá 

decir que el sistema se comportará de forma inestable. 

 Como describe circunferencias de radio  
  

 
, cuando  

  

 
  , el sistema se 

volverá inestable. Para nuestro caso donde               cuando    , el 

sistema será inestable. 

Nota: Para este caso se ha llevado a cabo la aproximación de escoger el 

radio de la circunferencia como punto de corte con el semieje negativo de abcisas, 

siendo que en realidad el primer corte se da un poco más a la izquierda, si bien 
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está a muy poca distancia de este. (Gráfica 21). 

La gráfica siguiente ilustra el DN para distintos valores de K. 

 
Gráfica 21: DN con retardo. 

 
Gráfica 22: Respuesta con retardo. 

Como se puede observar los resultados coinciden con los mencionado 

anteriormente, con una K =1.5, el sistema es estable, pero con una K = 2.5 se 

vuelve inestable.  

Por tanto, para un sistema de primer orden completo con un retardo puro, al 

analizar su comportamiento en bucle cerrado, el sistema con retardo se termina 

volviendo inestable, mientras que si no tuviera retardo este seguiría estable. Con el 

objetivo de solucionar este problema se va a colocar la estructura del Predictor de 

Smith. 

 Predictor de Smith ideal 

Aplicamos la estructura del Predictor de Smith para el sistema de primer 

orden completo, y ya realizando la sustitución, la cadena directa queda de la 

siguiente manera: 

  ( )   
 (      )    

    (      )   (      )    
 

  (  )   
 (       )     

    (      )    (       )     
 

La presencia del factor       en el numerador no afecta al módulo 

(únicamente a la fase, indicando que a altas frecuencias, el DN va a exhibir ciclos 

límite). En cambio, la presencia de dicho factor en el denominador sí afecta al 

módulo, de forma que este presentará oscilaciones. Otra forma de verlo es 

considerar el denominador como el resultado de una suma de vectores, de los que 

uno de ellos gira, afectando periódicamente al módulo y al argumento de la CD. 

La gráfica siguiente muestra el DdB del sistema, en el que se aprecian las 
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mencionadas oscilaciones del módulo: 

 
Gráfica 23: Oscilaciones a altas frecuencias. 

Analizamos el Diagrama Polar por tramos: 

 T1: A bajas frecuencias (cuando 0), el diagrama polar de CD(jw) 

parte de un valor finito K y una fase de 0º: 

   
   

  (  )   
 

     
  ,

|  (  )|   

   (  (  ))    
 

 T2: A altas frecuencias (cuando ∞) su módulo oscila entre 2 

valores extremos,   (    )
 

 
 , (frecuencia máxima) y   

(  )
 

 
 (frecuencia mínima): 

   
   

  (  )  
      

    

                
    

 

{
 
 

 
 |  (  )|

  (    )
 
 
 

   
      

|  (  )|
  (  )

 
 
 
   
 

   (  (  ))    

 

Por lo que el DN, partirá inicialmente de K, y ha frecuencias máximas 

debido al retardo      , describirá circunferencias, al valor máximo, cuando 

  (    )
 

 
  se alcanza el valor de    

  

      
 y en el valor mínimo   

(  )
 

 
  se alcanza el valor de  

  

 
. 

Como estos valores extremos se producen una vez cada vuelta, con el mismo 

argumento y en sendos puntos del eje de abcisas (no hay desfase), con analizar 

estos valores extremos será suficiente. El valor máximo ( 
  

 
) , no me preocupa 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

36 

 

porque se encuentra siempre en el semieje positivo de abcisas. Sin embargo el 

valor de   (    )
 

 
  , con módulo ( 

  

      
) sí que corta en el semieje 

negativo, pero como              , este valor siempre será menor que 1, y 

no llega a alcanzar el punto crítico (Para ganancias elevadas el valor del módulo 

es 0.5).  

Se han obtenido también los polos del sistema y no hay ningún polo 

inestable, de esta forma, como no hay polos inestables, y el sistema nunca alcanza 

el punto crítico -1, se puede afirmar que el Predictor de Smith consigue que el 

retardo no afecte a la estabilidad del sistema. 

Una muestra para c = 0.5,  = 1, T=1  y para distintos valores de K (1, 10, 

20) respectivamente: 

 
Gráfica 24: Diagrama de Nyquist Predictor de Smith Ideal. 

A la vista del Nyquist, dado que el módulo mínimo se corresponde con 

argumentos múltiplos impares de - (encontrándose por tanto en el semieje 

negativo de abcisas), al aumentar K, el módulo cuando la fase coincide en el 

semieje negativo de abcisas tiene una cota superior de valor 0.5, por lo que este 

sistema nunca se inestabilizará en BC, por muy grande que sea K. En resumen, el 

Predictor de Smith ideal consigue en este caso evitar la desestabilización del 

sistema, aun en presencia de valores elevados de K. 

 Predictor de Smith Real 

En el apartado anterior, se ha supuesto un predictor de Smith ideal, con la 

correcta identificación de H(s) y el tiempo exacto en el retardo, pero en este 

apartado se va a suponer que no se ha identificado correctamente el retraso puro, 

es decir:      , donde   representa la desviación en la estimación del retardo. 

Por tanto, aplicando la estructura del Predictor de Smith para nuestro sistema 
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y con una desviación en la estimación del retardo, queda de la forma: 

  (  )  
 (      ) 

    

    (     )    (      )  (   )  
 

Analizamos el Diagrama de Nyquist: 

 T1: Cuando w0: 

   
   

  (  )  
 

     
 ,

|  (  )|   

   (  (  ))    
 

 T2: Cuando ∞, su módulo también oscila entre 2 valores 

extremos, pero esta vez son:   (    )
 

   
 , (frecuencia máxima) 

y   (  )
 

   
 (frecuencia mínima): 

   
   

  (  )  
      

    

                
 (   )  

 

{
 
 

 
 |  (  )|

  (    )
 
   

 
   

      

|  (  )|
  (  )

 
   

 
   
 

   (  (  ))    

 

En este caso, las frecuencias correspondientes con los valores mínimo y 

máximo del módulo de la cadena directa cuando  ya no se corresponden con 

argumentos múltiplos de -, sino con los siguientes valores: -T y -

T, por lo que cada uno de estos valores extremos se producen con T/ 

argumentos diferentes. La consecuencia es clara: el mínimo y máximo de módulo 

a altas frecuencias se va dando para diferentes valores de argumento (tantos como 

T/), por lo que para asegurar la estabilidad, ya no basta con que el mínimo de 

módulo esté por debajo de la unidad, sino que el máximo (en este caso  
  
 ⁄ ) 

también debe estarlo. En el caso que nos ocupa (=1 y   =0.5), el asegurar la 

estabilidad para cualquier valor de  implica hacer       . En definitiva, ya no 

vale cualquier valor de K.  

Empleando la aproximación de Padé se ha observado que todos sus polos 

son estables, de forma que si se alcanza el punto crítico -1, el sistema se 

comportará de forma inestable. 

A continuación se pueden observar ejemplos para diferentes valores de   

considerando una T=1,               (Gráfica 25) 
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Gráfica 25: Comportamiento del PS en un primer orden completo con una desviación de 0.01. 

Se puede observar, que el Diagrama de Nyquist coincide con los cálculos 

obtenidos anteriormente, de forma que para valores mayores que 2, el sistema se 

vuelve inestable. 

        

 
      Gráfica 26: Comportamiento del PS en un primer orden completo con una desviación de 0.05. 

Para este caso, cuando el valor de la ganancia supera el valor de 2, este se 

vuelve inestable, al igual que en el caso anterior, por ello podemos decir que 

cualquier error en la estimación del retardo por pequeño que este sea, 

inestabilizará el sistema para el mismo valor de K. 

       

 
      Gráfica 27: Comportamiento del PS en un primer orden completo con una desviación de 0.1. 
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 Conclusión 

Para el caso de segundo orden con cero, se observa que la presencia del 

retardo puro, provoca la inestabilidad del sistema en bucle cerrado, para ganancias 

mayores que 
 

  
.  

La inestabilidad del sistema se logra corregir con la estructura del Predictor 

de Smith Teórico para cualquier valor de la ganancia. Pero, no sería correcto 

llevarlo a la práctica, pues un mínimo error en la estimación del retardo (cosa que 

siempre va a suceder) provocaría la inestabilidad del sistema para ganancias 

mayores que 
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 Primer orden completo + PI 

Continuando con el sistema de primer orden completo del apartado anterior, 

con retraso puro, le añadimos un controlador PI con cancelación: 

  ( )   
     

     
     

 ( )    
(     )

  
 

Donde el polo de nuestra función de transferencia sea igual al cero de 

nuestro controlador PI (    ), de forma que la cadena directa (CD) queda: 

  ( )     ( )   ( )     
     

     

(     )

  
        

     

   
     

Un control PI, permite una corrección del error completa y ligeramente más 

rápida. Por eso se ha elegido este sistema, porque el control PI, es muy empleado 

por los ingenieros.  

 El efecto del retraso puro en bucle cerrado 

El sistema se pone en bucle cerrado, y se analiza el comportamiento del 

sistema con retardo y el sistema sin retardo. 

 
Figura 5: sistema en bucle cerrado. 

o La función de transferencia del sistema sin el retardo quedará de la forma: 

   ( )  
    

     
   

      
     
   

 
    (      )

         (      )
 

Con la función de transferencia anterior se puede estudiar el 

comportamiento del sistema: 
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 ( )

 ( )
  
 ( )

 ( )

 ( )

 ( )
  
   ( )

  ( )
 

    (      )
         (      )

 
     
     

 
   (     )

         (      )
 

Por lo que, en t = 0: 

      
   

 
 

 

   (     )

         (      )
 

   

        
 

En t =  (Régimen permanente): 

      
   

 
 

 

   (     )

         (      )
 
   
   

 
 

 
 

Por tanto, ya podemos adelantar que para el sistema sin retardo, el sistema se 

va a comportar de forma estable. (Gráfica 29). 

 

Gráfica 29: Respuesta sistema de primer orden completo + PI sin retardo. 

o La función de transferencia con el retardo me quedaría de la forma: 

   ( )  
    

     
   

    

      
     
   

    
  

   (     ) 
   

         (      )    
 

El tener el retardo en el denominador puede suponer un problema para mi 

estabilidad.  
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Vamos a comprobarlo con el diagrama de Nyquist (DN) del sistema en bucle 

abierto, y a la vez mediante la representación gráfica ante una entrada escalón. 

  (  )      
      

    
      

En primer lugar vamos a obtener los polos del sistema, para ello es necesario 

emplear la aproximación de Padé. Se ha realizado una aproximación de Padé de 

orden 6 y aunque a frecuencias altas, se nota alguna diferencia, a frecuencias bajas 

se comporta de la misma forma (zona de interés), como se puede observar en las 

siguientes gráficas (Gráfica 30): 

  
Gráfica 30: Comparación Diagrama de Nyquist exacto con la aproximación de Padé de orden 6. 

Por tanto para una                  y una      . Los polos del 

sistema son:   0.0000 + 0.0000i, -5.0319 + 8.9853i, -5.0319 - 8.9853i, -7.4714 + 

5.2525i, -7.4714 - 5.2525i, -8.4967 + 1.7350i, -8.4967 - 1.7350i. No hay ningún 

polo con parte real positiva, por tanto si el diagrama de Nyquist, da alguna vuelta 

en sentido antihorario, el sistema será inestable. 

Una vez, sabemos los polos del sistema, ahora queda conocer el diagrama 

polar. La gráfica anterior, ya nos da una pista de cómo va a ser (Gráfica 30, 

izquierda). 

o Sistema sin retardo: 

 T1: Evaluamos a bajas frecuencias: 

   
    

  (  )     
      

    
   

   

 
 ,

|  (  )|   

   (  (  ))      
 

 T2: Evaluamos a altas frecuencias: 

   
    

  (  )     
  
  
  {

|  (  )|     
  
  

   (  (  ))    
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o Sistema con retardo: 

 T1: Evaluamos a bajas frecuencias: 

   
    

  (  )     
      

    
        

   

 
 ,

|  (  )|   

   (  (  ))      
 

 T2: Evaluamos a altas frecuencias: 

   
    

  (  )     
  
  
  {

|  (  )|     
  
  

   (  (  ))    
 

 
Gráfica 31: Diagrama de Nyquist, sistema con retardo y sistema sin retardo. 

Como se puede observar ambos sistemas parten de  , con fase de -90º, pero 

a altas frecuencias, ambos sistemas tienen un módulo    
  

  
, La diferencia está en 

que el sistema que no hay retardo, este valor corta el semieje positivo de abcisas y 

el sistema es estable. Pero al incluir el retardo (       ) este valor corta el semieje 

negativo de abcisas y eso puede influir en la inestabilidad del sistema. 

Es decir, para el sistema sin retardo, a frecuencias altas, corta en el semieje 

positivo con valor    
  

  
  de forma que cuanto mayor sea el valor de    , se ira 

desplazando más hacia la derecha, sin llegar a cortar nunca en el semieje negativo, 

y por tanto siempre será estable.  

Sin embargo, el sistema con retardo, presenta un argumento con valor 

    lo que provoca que describa circunferencias en torno al origen de 

módulo    
  

  
, de forma que si |   

  

  
| supera el valor de 1, supondrá que el 

Diagrama de Nyquist rodee el punto crítico, y como anteriormente se ha 

mencionado, el sistema no presenta polos inestables, lo que supondrá la 

inestabilidad del sistema.  
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Nota: Es cierto que hay un punto de corte, un poco más a la izquierda, que el 

de valor    
  

  
, y es ese punto el que terminará inestabilizando mi sistema, pero 

se ha decidido realizar una aproximación. Por tanto, para mi sistema con    

        , para que mi sistema con retardo sea estable tiene que cumplir que 

    
  

  
   .  

La gráfica siguiente ilustra el DN para valores diferentes de K (K=1, K=1.5 y 

K=2.5), empleando un valor de T=1, y una             : 

 
Gráfica 32: Diagrama de Nyquist sistema con retardo. 

 
Gráfica 33: Respuesta escalón, sistema con retardo. 

Como conclusión del apartado, se obtiene que el sistema sin retardo es 

estable para todo K positivo, sin embargo, el sistema con retardo se vuelve 

inestable, para ganancias superiores a 
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 Predictor de Smith ideal 

Con el objetivo de estabilizar el sistema con retardo puro, colocamos la 

estructura del Predictor de Smith, que, como ya se sabe, el Predictor de Smith 

consigue que el retardo, aun cuando esté presente, no afecte a la estabilidad del 

sistema controlado. De forma que si H(s) = G(s) y  = T, el sistema me queda de 

la siguiente forma (Ver cálculos del predictor de Smith):  

 ( )  
 ( ) ( )

   ( ) ( )
     

Y como se puede apreciar, hemos logrado que el retardo salga del 

denominador, y únicamente aparezca en el numerador, de forma que logramos que 

el retardo no me afecte a la inestabilidad. 

Volvamos al caso que nos ocupa (sistema de primer orden completo + PI con 

retraso puro): 

 ( )    ( ) ( ) 
       

     

   
     

Como se ha demostrado anteriormente, en apartado de cálculos del predictor 

de Smith, la cadena directa del control con el Predictor de Smith queda: 

  ( )  
 ( ) ( )    

   ( ) ( )   ( ) ( )  (   ) 
 

Sustituyendo para nuestro caso y como es ideal      , es decir, se ha 

estimado el retardo (T), sin error: 

  ( )   
   (      ) 

   

    (        )     (      )    
 

Nuevamente, tenemos que aplicar la aproximación de Padé, para obtener los 

polos del sistema. Se ha hecho una aproximación de Padé de orden 6, y no hay 

ningún polo inestable, de forma que si el sistema no alcanza el punto crítico -1, el 

sistema es estable. 

A continuación se analiza el Diagrama de Nyquist es detalle: 

 T1: A bajas frecuencias (cuando 0): 

   
   

  (  )   
   

    (        )      
   

   

 
  

 ,
|  (  )|   

   (  (  ))      
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 T2: A altas frecuencias (cuando ∞) su módulo oscila entre 2 

valores extremos,     (    )  , (que presenta un valor mínimo 

en el módulo) y    (  )  (que presenta un valor máximo en el 

módulo): 

   
   

  (  )  
        

   

                     
   

 

{
 
 

 
 |  (  )|

  (    )
 
 
 

     
         

|  (  )|
  (  )

 
 
 
     
  

   (  (  ))    

 

Como estos valores extremos se producen una vez cada vuelta, con el mismo 

argumento y en sendos puntos del eje de abcisas (no hay desfase), solo hay que 

analizar estos valores extremos. El valor de    
  

  
 , no me preocupa en este 

momento porque siempre se encuentra en el semieje positivo de abcisas. Sin 

embargo el valor del punto   (    )
 

 
  , sí que corta en el semieje negativo, 

pero como                  , este valor siempre será menor que 1, y no 

llega a alcanzar el punto crítico. En caso de que     , tenga un valor muy 

elevado, el primer corte con el eje de abcisas, alcanzará el valor de     . 

Una muestra para c = 0.5, i = 1, T=1  y para distintos valores de K (1, 10, 

20) respectivamente: 

 
Gráfica 34: Diagrama de Nyquist Predictor de Smith ideal. 

En resumen, el Predictor de Smith ideal consigue en este caso evitar la 

desestabilización del sistema, aun en presencia de valores elevados de K (Gráfica 

35). 
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Gráfica 35: Respuesta escalón unitario del Predictor de Smith Ideal 

 Predictor de Smith realista 

A continuación se supone que se ha identificado correctamente   ( ), pero 

no así al retraso puro, es decir:        donde   representa la desviación en la 

estimación del retardo. Por tanto nuestro sistema de estudio queda: 

  (  )   
   (      ) 

    

    (        )      (      )  (   )  
 

En estas circunstancias, a frecuencias altas, los máximos y los mínimos de 

módulo no tienen por qué producirse en el eje de abcisas, debido a que la 

desviación en la estimación del retardo va a provocar que los valores máximos y 

mínimos ya no se produzcan con argumentos múltiplos de - sino queestos 

valores extremos se produzcan con T/ argumentos diferentes.  

 Analicemos el Nyquist de CD(s): 

 T1: Cuando w0 

   
   

  (  )  
   

    (        )      
 ,

|  (  )|   

   (  (  ))      
 

 T2: Cuando w∞: Se vuelven a analizar los dos valores extremos 

que esta vez coinciden con   (    )
 

   
 y   (  )

 

   
. 

   
   

  (  )  
        

   

                     
   

 

{
 
 

 
 |  (  )|

  (    )
 
   

 
     

         

|  (  )|
  (  )

 
   

 
     
  

   (  (  ))    

 

Por lo que ahora, el valor que debe preocuparnos ya no es el de   (  

  )
 

   
, pues como en el caso del Predictor de Smith ideal anterior, este valor 
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seguirá siendo menor o igual que 0,5. Ahora el punto que me preocupa es el valor 

de   (  )
 

   
, debido a que este se va desfasando y cuando |

     

  
|     este 

alcanzará el punto crítico -1, lo que sucede cuando      
  

  
    

Ahora hay que analizar el número de polos del bucle abierto en el semiplano 

derecho, para así aplicar el Criterio de Nyquist, y saber si el sistema se hará 

inestable. Empleando la aproximación de Padé de orden 6, un        y para una 

para una KKc igual a 2: 

 
Gráfica 36: Aproximación de Padé de orden 6 

Como podemos observar, una aproximación de Padé de orden 6, no es 

suficiente, debido a que no puede representar correctamente, las frecuencias más 

altas, que es cuando supera el punto crítico -1. Probamos con una aproximación de 

Padé de orden mayor: 

 
Gráfica 37: Aproximación de Padé de orden 24. 

Mejora, pero aun no es suficiente, si empleo una aproximación de Padé de 

orden 32: 

 
Gráfica 38: Aproximación de Padé de orden 32. 
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Si observamos los polos de este sistema, podemos observar que no hay 

ninguno en el semieje positivo. Por tanto, siguiendo el criterio de Nyquist, una vez 

alcance el punto crítico -1, el sistema se inestabilizará. 

A continuación vamos a mostrar el diagrama de Nyquist, para     = 0.5,     = 

1, T=1, y variando las ganancias (K) y la desviación en la estimación ( ). 

Donde, como vamos a observar la inestabilidad sucederá cuando     
  

  
  2 

 Para     .01 

 Con una K =1, K =2, K =2.5. 

  
Gráfica 39: Comportamiento de primer orden + PI con PS con y una desviación del 1%. 

Si observamos la imagen izquierda, podemos ver que la causa de la 

inestabilización es el punto que en el Predictor de Smith ideal, cortaba siempre en 

el eje positivo de abcisas, ahora se va desplazando y termina inestabilizando el 

sistema cuando su módulo es mayor que 1. 

 Para    .05 

 Con una K =1, K =2, K =2.5. 

  
Gráfica 40: Comportamiento del primer orden + PI con PS y una desviación del 5%. 
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 Para    .1 

 Con una K =1, K =2, K =2.5. 

 
Gráfica 41: Comportamiento del primer orden + PI con PS y una desviación del 10%. 

 Para    .5 (Caso excepcional) 

 Con una K =1, K =2, K =2.5. 

  
Gráfica 42: Comportamiento del primer orden + PI con PS y una desviación del 50%. 

En esta situación lo que sucede es que como la desviación es justo un 50%, 

se produce un recorrido en el eje de abcisas, y luego dos recorridos más (
 

 
). 

Como en total son tres recorridos estos suceden a los 120º, con lo que justo logra 

evitar el punto crítico, pues ningún máximo corta justo con el eje negativo. 

Pero aun asi al aumentar un poco más la ganancia, con K = 3, termina 

cortando el eje negativo de abcisas más a la izquierda del punto crítico. E 

inestabilizando el sistema. 

 Con una K = 3. 
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Gráfica 43 Comportamiento del primer orden + PI con PS y una desviación del 50% y K=3. 

 Para     (Caso excepcional) 

 Con una K =1, K =2, K =2.5. 

 
Gráfica 44: Comportamiento del primer orden + PI con PS y una desviación del 100%. 

 Conclusión  

Este sistema se comporta de manera muy similar al sistema de primer orden 

completo. Donde en bucle cerrado debido a la presencia del retardo, se inestabiliza 

el sistema con ganancias superiores a 
  

  
. A continuación con la estructura del 

predictor de Smith, suponiendo que todas las estimaciones son correctas, se logra 

estabilizar el sistema con retardo para cualquier ganancia.  

Pero si se da un error en la estimación del retardo, por pequeño que este sea, 

vuelve a inestabilizarse el sistema para ganancias mayores que 
  

  
  Por tanto, para 

este sistema no es recomendable el Predictor de Smith, dado que siempre va a 

cometerse un error en la estimación del retardo. 
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 Integrador 

Otro caso que va a ser analizado es el correspondiente con un integrador 

puro en la cadena directa. Dicha cadena directa puede ser el resultado de un 

control PI aplicado a un sistema de primer orden simple en el que se ha dado 

cancelación polo-cero. Sea como fuere, la función de transferencia de la cadena 

directa es: 

 ( )    
 

 
     

 El efecto del retraso puro en bucle cerrado. 

A continuación se va a analizar el comportamiento en bucle cerrado. Si se 

obtiene la función de transferencia, se verá que el retardo está situado en el 

denominador, y, en base a la experiencia de todos los sistemas analizados con 

anterioridad, es muy probable que provoque la inestabilidad del sistema.  

Nuevamente, la estabilidad del sistema se va a analizar aplicando el Criterio 

de Nyquist. 

o Sistema sin retardo: 

  (  )   
 

  
 

 T1: Evaluamos a bajas frecuencias: 

   
    

  (  )   
 

  
 ,

|  (  )|   

   (  (  ))      
 

 T2: Evaluamos a altas frecuencias: 

   
    

  (  )   
 

 
  ,

|  (  )|   

   (  (  ))    
 

 T3: Puntos de corte con el eje real: 

  (  )   
 

  

  

  
  

  

   
   

  

 
 

El sistema parte de un valor    con argumento -90º, y termina alcanzando el 

valor de cero con argumento 0º. Al calcular los puntos de corte con el eje real, se 

ha visto que únicamente tiene parte imaginaria, por tanto, el diagrama de Nyquist 

de este sistema se corresponde a trazar una línea recta en el eje imaginario. 

(Gráfica 48). 
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Gráfica 45: Diagrama de Nyquist de un integrador sin retardo. 

o Sistema con retardo: 

  (  )   
 

  
      

 T1: Evaluamos a bajas frecuencias: 

   
    

  (  )   
 

  
      ,

|  (  )|   

   (  (  ))      
 

Por lo que a bajas frecuencias el diagrama parte de   con fase -90º. 

 T2: Evaluamos a altas frecuencias: 

   
    

  (  )   
 

 
       ,

|  (  )|   

   (  (  ))    
 

A altas frecuencias tenderá a 0 con fase   , al tener este argumento, el 

sistema va a realizar una espiral en torno al origen. Esto va a suponer que corte en 

el semieje negativo, y dependiendo del tamaño de la espiral, es posible 

inestabilizar el sistema. 

 

Gráfica 46 Diagrama polar integrador con retardo. 
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Para conocer cuando se inestabilizará el sistema tenemos que conocer ese 

punto de corte con el eje negativo de abcisas. 

 T3: Puntos de corte con el eje real:  

  (  )   
 

  

  

  
       

  

   
        

  

 
      

Pasamos a modulo y argumento: 

  (  )    
  

 
      {

|  (  )|  
 

 

   (  (  ))   
 

 
  

 

Cuando   
 

 
, nos encontramos con argumento -180º. En ese punto la 

cadena directa del sistema tiene de módulo |  (  )|  
 

(   )
   

  

 
.  

Con una aproximación de Padé de orden 6, obtenemos los polos del sistema. 

Vemos que la aproximación de Padé donde nos interesa es bastante buena: 

 

Gráfica 47: Aproximación de Padé de orden 6. 

Y los polos que se han obtenido son:   0.0000 + 0.0000i, -5.0319 + 8.9853i, -

5.0319 - 8.9853i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -8.4967 + 1.7350i, -8.4967 

- 1.7350i. Como no hay ningún polo que tenga parte real negativa, cuando el 

sistema de una vuelta en sentido antihorario al punto crítico -1, el sistema se hará 

inestable. 

Como conclusión, al incluir el retardo, puede provocar que mi sistema se 

inestabilice, debido a que cuando         , el sistema alcanzará el punto crítico 

y se comportará de forma inestable, esto sucede para   
 

 
     . 

Veámoslo para algunos ejemplos (Con K=1, K= 1.5, y K= 2)con T=1 y 

   : 
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Gráfica 48: Diagrama de Nyquist de la cadena directa del integrador con retardo. 

 
Gráfica 49: Respuesta escalón del integrador en bucle cerrado 

 Predictor de Smith ideal 

Nuevamente, se recurre a la estructura del Predictor de Smith con el objetivo 

de que la presencia del retardo no afecte a la estabilidad de mi sistema. Para este 

sistema la cadena directa queda de la forma: 

  ( )   
     

         
 

Analizando este sistema en detalle mediante el diagrama de Nyquist: 

  (  )   
      

           
 

 T1: A bajas frecuencias (cuando 0), el diagrama polar parte de   

con una fase de -90º: 

   
   

  (  )   
 

      
   

 

 
  ,

|  (  )|   

   (  (  ))      
 

 T2: A altas frecuencias (cuando ∞) el diagrama polar termina en 0, 
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con una fase de     

   
    

  (  )   
      

           
 ,

|  (  )|   

   (  (  ))    
 

Esto, en el diagrama polar supone describir una especie de espiral en 

torno al origen, lo que provocará que intersecte infinitas veces con el 

semieje negativo. 

Esas elipses presentan valores máximos y mínimos de módulo para    

    y para    (    )  respectivamente: 

Cuando       , donde el valor          de forma que los valores de 

K del denominador se anulan, y el módulo presenta un valor máximo:  

  (  )   
      

      
  
 

  
      

  (  )     
 

 
       {

|  (  )|  
 

 

   (  (  ))   
 

 
   

 

Y cuando    (    )   donde el valor           de forma que en el 

denominador se suman los dos valores de K, provocando que el módulo presente 

un valor mínimo: 

  (  )   
      

      
  

 

     
      

  (  )    
(     )

      
      {

|  (  )|  
 

√      

   (  (  ))       
 

  
   

 

Por consiguiente, los cortes con el semieje positivo de abcisas se producen 

con valores de módulo K/w. Aunque sí que hay valores de K que hacen que dicho 

módulo sea mayor que 1, no hay que preocuparse, debido a que como la elipse se 

repite con argumentos de    es decir, sin producirse ningún desfase. Este valor 

siempre corta con el eje positivo de abcisas, sin llegar a alcanzar el punto crítico. 

Observando el módulo, vemos que para un valor suficientemente elevado de 

K (en el límite, infinito) el primer corte con el eje de abcisas (el que más a la 

izquierda se produce) se da para un valor pequeño de w, por lo que dicho valor de 

módulo es como mucho 0,5. Por tanto, aunque corte en el semieje negativo de 

abcisas, no llega a alcanzar el punto crítico. 
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Si obtenemos los polos del sistema, se obtiene que todos son polos estables, 

y como establece el Criterio de Nyquist: “Si el punto       no está rodeado. 

Implica que el sistema es estable si no hay polos de  ( ) ( ) en el semiplano 

derecho del plano s; de lo contrario, el sistema es inestable”. Se obtiene asi la 

conclusión de que el sistema es estable. 

Ejemplos, para distintos valores de K: 

 
Gráfica 50: Comportamiento del Predictor de Smith ideal. 

 Predictor de Smith realista 

Como se puede observar, en el Predictor de Smith, se ha tenido que 

identificar correctamente la cadena directa, es decir:  ( )    ( )  y también el 

retardo. Pero, ¿Qué sucedería sin embargo si el retardo empleado en el predictor 

de Smith no se correspondiese exactamente con el retardo que exhibe el sistema? 

Nuestro caso de estudio, quedaría de la forma: 

  (  )   
      

        (   )  
 

Volvemos a analizar el Diagrama de Nyquist para este caso: 

 T1: A bajas frecuencias, cuando w0: 

   
   

  (  )  
 

      
   

 

 
 ,

|  (  )|   

   (  (  ))      
 

 T2: A altas frecuencias, cuando w  : 

   
   

  (  )  
      

        (   )  
 ,

|  (  )|   

   (  (  ))    
 

La presencia del factor       en el numerador no afecta al módulo pero, la 

presencia de dicho factor en el denominador si afecta al módulo, de forma, que 
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volvemos a analizar los valores máximos y mínimos: 

 Cuando  (   )  (  ) , siendo          de forma que las 

ganancias del denominador se anular, provocando que el módulo 

presente un valor máximo:  

  (  )   
      

      
 
 

  
       

 
  

  
      {

|  (  )|  | | |
 

 
|

   (  (  ))         
 

 

 Cuando  (   )  (      ) , siendo           de forma que 

las ganancias en el numerador se suman, y provocan un valor mínimo 

en el módulo: 

  (  )   
      

      
 

 

     
       

 

     
     {

|  (  )|  | || | |
 

√      
|

   (  (  ))       (
 

  
)    

 

El DN va a presentar una forma de espiral que tiende al origen, de forma 

similar a lo que venía sucediendo con el PS teórico, sólo que esta vez, debido a la 

incorrecta identificación del retardo, estos valores máximos y mínimos ya no 

corresponden con múltiplos de  , sino con los valores: (1+2N)T y 

2NT, es decir, cada uno de los valores extremos se producen con T/ 

argumentos diferentes. Por tanto, el módulo a tener en cuenta no es 
 

√      
, si no 

 

 
, de mayor valor. Ello podría provocar (dependiendo de la magnitud de K, T, 

delta y w) cortes con el semieje negativo más allá del punto crítico, con la 

consiguiente inestabilización del sistema. Se trata en definitiva de encontrar el 

módulo a la frecuencia para la cual, el primer máximo alcanza el semieje negativo 

de abcisas: 

Como hemos visto anteriormente, la frecuencia para la cual se dan los 

máximos es: 

 (   )         
   

   
 

¿En cuantas vueltas (lóbulos) se alcanza el semieje negativo de abcisas? 

Contando con que el aporte de fase correspondiente al término 
 

  
 es de -90º, y que 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

59 

 

en 360º se dan T/ lóbulos, puede concluirse que el número de lóbulos necesario 

para alcanzar el semieje negativo de abcisas es N=T/(4). Sustituyendo dicho 

valor en la ecuación anterior, podemos obtener el valor del módulo a dicha 

frecuencia: 

  
   

   
 

  

  (   )
 

Sustituyendo w en la expresión del módulo: 

| (  )|  
 

 
 

 

  
  (   )

 

Por consiguiente, el valor máximo de K que hace al sistema estable es: 

     
  

  (   )
 

Como puede verse, el máximo valor de K que asegura la estabilidad depende 

varios factores, si bien aquí vamos a poner el foco en la dependencia de  , por lo 

que mantendremos T=1 y =1.  

 
Gráfica 51: Efecto de la estimación del retardo. Para una ganancia de 25. 

 

A continuación, se va a particularizar la expresión anterior para distintos 

valores de  , pero en todos los casos se emplea una T=1 y una    : 
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 Para     .01 

Si se aplica la ecuación anterior para una desviación del 1%, se obtiene que 

el sistema de vuelve inestable para una ganancia de  

     
  

  (   )
 

  

       (      )
        

Dicho resultado se puede comprobar mediante el diagrama de Nyquist, Gráfica 

52: 

 
Gráfica 52: Comprobación del valor límite de la ganancia para una desviación de 0,01. 

Si por ejemplo se seleccionan otros valores de la ganancia, como por 

ejemplo 50 y 100, se obtiene (Gráfica 53 y 54): 

 
Gráfica 53: Diagrama de Nyquist con un 

desfase del 1%. 

 
Gráfica 54: Respuesta escalón del Predictor de 

Smith con un desfase del 1%. 

En este caso, el valor del módulo que inestabiliza el sistema (K/w) depende 

de la frecuencia, y como el error cometido en el cálculo de la estimación del 

retardo es muy pequeño, el desfase que se produce también lo es.  De forma que 

para cuando alcanza el semieje negativo de abcisas, el valor de la frecuencia es 

bastante elevado, y solo alcanzará el punto crítico, para ganancias mayores que 

155. 
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 Para     .05 

Para este caso el sistema se vuelve inestable para una ganancia de 29,91.  

     
  

  (   )
 

  

       (      )
       

Dicho resultado se puede comprobar mediante el diagrama de Nyquist 

(Gráfica 55): 

 
 

Gráfica 55: Comprobación del valor límite de la ganancia para una desviación de 0,05. 

En cambio, para este caso la desviación en la estimación del retardo es 

mayor, por tanto el desfase que se produce es mayor y el valor de la frecuencia es 

menor cuando alcanza el semieje negativo de abcisas, por tanto el sistema se 

inestabilizará con un valor de la ganancia menor al caso anterior. 

 Para     .1 

Si se sustituye en la ecuación anterior para una desviación de 0,1 se obtiene 

que el sistema se inestabiliza para una ganancia de 14,27. Se puede comprobar 

mediante el diagrama de Nyquist: 

 
Gráfica 56: Comprobación del valor límite de la ganancia para una desviación de 0,15. 

Para este caso todavía se hace más patente lo comentado anteriormente. 

 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

62 

 

  Conclusión 

En el caso de este sistema, se ha observado que, en bucle cerrado, el sistema 

sin retardo es estable para todos los valores de K, pero, para el sistema con retardo 

solo para ganancias menores que 
 

 
. Por ello añadimos la estructura del Predictor 

de Smith al sistema con retardo, y si este es ideal el sistema se estabiliza para 

todos los valores de K. 

Pero… ¿Qué sucede si se comete un error en la estimación del retardo? Pues 

a diferencia de los dos casos anteriores, para este sistema si se comete un error de 

un 1%, no supondría mucho problema, debido a que para ganancias menores a 

155, el sistema sigue comportándose de forma estable. Pero, cuanto mayor sea la 

desviación, el sistema se inestabiliza para ganancias menores. 

Por ejemplo, para un error del 5%, el sistema se vuelve inestable para 

ganancias mayores que 30. O, si seguimos cometiendo más error en la estimación 

del retardo, a un 10%, el sistema se volverá inestable para ganancias mayores que 

14. Cierto que la ganancia disminuye bastante, pero sigue siendo mejor que para el 

sistema en bucle cerrado sin el PS, que únicamente para una ganancia de 1.57, se 

inestabilizaba.  
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 Sistema de segundo orden simple 

A continuación vamos a pasar de los sistemas de primer orden, a sistemas de 

segundo orden. El cual su función de transferencia de un sistema de segundo 

orden se corresponde con: 

 ( )

 ( )
  

  
 

           
 

Dónde: 

 X(s) = Salida del sistema 

 F(s) = Entrada del sistema 

 K = Ganancia estática del sistema 

     La frecuencia natural no amortiguada del sistema 

    Factor de amortiguamiento 

El caso que se va a estudiar en este apartado, es un sistema de segundo orden 

simple con retraso puro controlado por un regulador proporcional. Por simplicidad 

se va a considerar que el sistema tiene un polo real doble, correspondiéndose así 

con un sistema críticamente amortiguado. 

  ( )  
 

(    ) 
 

 

          
  

(
 
 )
 

   
  
  

 
 

 

A continuación a este sistema le añadiremos un retraso puro, quedando de la 

forma: 

 ( )    ( ) 
    

 

(    ) 
     

 

          
     

Un ejemplo de un sistema de segundo orden podría ser un sistema de Masa-

Amortiguador-Resorte. 

 El efecto del retraso puro en bucle cerrado. 

Al sistema de segundo orden simple con un regulador proporcional, se le 

añade realimentación, quedando un sistema en bucle cerrado, como se ve a 

continuación (Figura 6): 

 
Figura 6: Sistema de segundo orden en bucle cerrado. 
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La función de transferencia del sistema anterior me queda de la siguiente 

forma: 

   ( )  

 
          

    

  
 

          
    

 
     

                
 

Al igual  que en los sistemas de primer orden, aparece el retardo en el 

denominador, lo que significa que puede influir en la estabilidad de mi sistema. 

Se va a comprobar la estabilidad mediante el diagrama de Nyquist (DN), en 

cadena abierta. Reemplazamos,        en CD(s): 

o En el sistema sin retardo: 

  (  )  
 

             
  

 

           
 

Evaluamos la función de transferencia: 

 T1: Cuando w 0. 

   
    

  (  )    ,
|  (  )|   

   (  (  ))    
 

 T2: Cuando w  . 

   
    

  (  )    ,
|  (  )|   

   (  (  ))       
 

 T3: Puntos de corte con el eje real. 

  (  )  
 

             
 *

(       ) 

(             )
 

    

(             )
 + 

Puntos de corte con el eje real: 

    

(             )
               

Sustituyendo: 

(       ) 

(             )
     

(       ) 

(             )
    

Corta en los puntos w = 0 y w =    dichos puntos se corresponden 

con los calculados anteriormente, y ninguno corta en el semieje 

negativo de abcisas, por tanto si el número de polos inestables de la 

cadena directa es nulo, el sistema sin retardo será estable. 

A continuación se puede observar el comportamiento del diagrama polar del 

sistema sin retardo (Gráfica 64). A la vista de la gráfica, vemos que en ningún 

momento intersecta con el semieje negativo de abcisas: 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

65 

 

 
Gráfica 57: Diagrama polar del sistema de primer orden simple sin retardo. 

o En el sistema con retardo: 

  (  )   
 

           
      

Evaluamos la función de transferencia: 

 T1: Cuando w 0: 

   
    

  (  )    ,
|  (  )|   

   (  (  ))    
 

 T2:Cuando w  : 

   
    

  (  )    ,
|  (  )|   

   (  (  ))    
 

Para el caso con retardo a bajas frecuencias el sistema parte de un 

valor finito K con fase 0º, y acaba en 0 con fase - , lo que supone 

describir una espiral en torno al origen de radio decreciente. Ello 

abre una puerta a la inestabilización del sistema, dado que el DN 

intersecta el semieje negativo de abcisas infinitas veces, siendo el 

primer corte el más cercano al punto crítico. 

Se obtiene el módulo y el argumento, con el objetivo de conocer el primer 

punto de corte: 

  (  )   
 

           
       *

      

            
 

   

            
 +       
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{
 

 |  (  )|  | | |
 

√            
| | |

   (  (  ))       ( 
   

      
)    

 

De forma que el primer corte se produce cuando el argumento tiene el valor 

de -180º, es decir: 

        (
   

      
)         

Representando dicha función en Matlab, para un valor de      y una   

 . Se obtiene que el corte se produce para una frecuencia w = 1.018. Nota: para 

tomar la medida correcta hay que ignorar el escalón que se produce, de forma que 

4.17-1.83=2.98, hay que coger ese valor que coincide con 2.98, y este se 

corresponde con 1.018 (Aproximadamente). 

 
Gráfica 58: Representación del argumento, con el objetivo de obtener el primer corte en el semieje 

negativo de abcisas. 

Sustituimos dicha w, en la parte real, y el punto de corte se corresponde con: 

|  (  )|  | | |
 

√                  
| | |  

 

    
 

Por tanto cunado K sea mayor que 5 rodeará al punto crítico en sentido 

antihorario. Como se puede observar en la siguiente gráfica (Gráfica 59) para una 

K = 5, el diagrama polar rodeará al punto crítico, sin embargo para una K = 4 no 

llega a alcanzarlo: 
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Gráfica 59: Diagrama de Nyquist, segundo orden simple con retardo. 

A continuación aplicamos la aproximación de Padé, para conocer los polos 

del sistema, y de esta forma poder aplicar el criterio de Nyquist. Aplicamos una 

aproximación de Padé de orden 6, que como podemos observar es más que 

suficiente (Se ha hecho con una ganancia de 5, debido a que es cuando rodea al 

punto crítico): 

 
Gráfica 60: Comparación sistema con retardo con aproximación de Padé. 

Si obtenemos los polos del sistema, vemos que todos los planos pertenecen 

al semiplano izquierdo, (-5.0319 + 8.9853i, -5.0319 - 8.9853i, -7.4714 + 5.2525i,  

-7.4714 - 5.2525i, -8.4967 + 1.7350i, -8.4967 - 1.7350i, -0.5000 + 0.0000i,            

-0.5000 - 0.0000i.) Por tanto, aplicando el criterio de Nyquist, si el número de 

polos inestables no coincide con el número de vuelta en sentido antihorario, el 

sistema se comporta de forma inestable. 

Las gráficas siguientes ilustran la respuesta a una entrada escalón del sistema 

con ganancias 4 y 5: 
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Gráfica 61: Respuesta a entrada escalón de un sistema de segundo orden con retardo. 

Por tanto, se puede observar como el sistema sin retardo es estable para 

cualquier valor de K, y al añadir el retardo, se vuelve inestable para ganancias 

mayores que 5.  

Con el objetivo de solucionar el problema de la estabilidad en los sistemas 

con retardo, se añade la estructura del Predictor de Smith. 

 Predictor de Smith ideal 

A continuación añadimos el predictor de Smith a la función con el retardo. 

De la forma: 

 
Figura 7: Estructura del predictor de Smith. 

Que como hemos visto en los casos anteriores, el predictor de Smith 

consigue que el retardo, aun cuando esté presente, no afecte a la estabilidad del 

sistema controlado. 

Como se ha demostrado en el apartado de cálculos del Predictor de Smith, la 

cadena directa de control con el Predictor de Smith quedará como sigue:  

  ( )   
 ( ) ( )    

   ( ) ( )   ( ) ( )    
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Donde sustituyendo para el caso de segundo orden simple con retardo queda 

de la forma: 

  (  )  
      

                    
 

La presencia del retardo afecta al módulo cuando este se encuentra en el 

denominador (también al argumento), de forma que este presentará oscilaciones. 

Otra forma de verlo es considerar el denominador como el resultado de una suma 

de vectores, de los que uno de ellos gira, afectando periódicamente al módulo y al 

argumento de la CD. Parece evidente que las mencionadas oscilaciones tendrán 

más protagonismo cuanto mayor sea K. La gráfica siguiente muestra el DdB del 

sistema con K=10 y con K=50, en el que se aprecian con mayor nitidez las 

oscilaciones del módulo (Gráfica 62): 

 
Gráfica 62: Diagrama de Bode, donde se muestra las oscilaciones del módulo. 

No obstante, en la gráfica anterior se aprecia una subida de módulo de en 

torno a 180º con un ¿pico de resonancia? que parece corresponderse con la 

presencia de 2 polos complejos conjugados con parte real positiva, propias de un 

sistema inestable. Por tanto, que el módulo crezca por encima de la unidad en 

torno a 4rad/seg, lo que junto al crecimiento de la fase de 180º determina que el 

diagrama de Nyquist de 2 vueltas en sentido antihorario en torno al punto crítico. 

 
Gráfica 63: DN del sistema de segundo orden con el predictor de Smith ideal. 

Puede apreciarse que para K=50, el DN da 2 vueltas en sentido antihorario. 

La pregunta que surge es: ¿esas vueltas determinan inestabilidad? La respuesta a 
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esa pregunta no es sencilla, pues la aplicación del criterio de Nyquist requiere 

conocer el número de polos de   ( ) en el semiplano derecho, siendo que 

tenemos en su denominador una función trascendente (el término oscilante 

     ). La gráfica siguiente muestra la respuesta al escalón, poniendo de 

manifiesto la estabilidad en BC: 

 
Gráfica 64: Respuesta escalón de un sistema de segundo orden con PS ideal. 

Por ello, para realizar el análisis se propone sustituir dicho término oscilante 

por una aproximación polinomial (por ejemplo, la de Padé de un orden suficiente): 

     
                                            

                                            
 

La validez de la aproximación realizada puede corroborarse comparando el 

DN obtenido con el retraso puro y con su aproximación de Padé, o también 

realizando el diagrama de Bode de ambos: 

 
Gráfica 65: Comprobación de la aproximación de Padé. 

Se observa que en la zona de interés la diferencia es nula (dicha diferencia 

comienza a darse para frecuencias muy altas (diagrama de Bode), para las que el 

módulo está próximo a cero), por lo que puede aplicarse el método de Nyquist. 

Los polos de   ( ) con la aproximación de Padé de 6º orden son: -22.3660 + 

0.0000i, -8.8281 +13.7846i, -8.8281 -13.7846i, -1.8616 + 9.0475i, -1.8616 - 

9.0475i,  0.3819 + 4.1887i,  0.3819 - 4.1887i, -0.0184 + 0.0000i. Como puede 
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verse, hay 2 polos del bucle abierto en el semiplano derecho, por lo que para que 

el sistema sea estable, el DN debe circunvalar al PC 2 veces en sentido 

antihorario, tal y como sucede. 

Buscando el límite del SP exacto, probemos con un valor de K todavía más 

elevado (K=500). Observando el DN, se aprecia que da 4 vueltas en torno al PC 

en sentido antihorario, pero dado que (con la aproximación de Padé de 6º orden) 

existen 4 polos con parte real positiva en bucle abierto 

(                                      ), el sistema sigue siendo estable: 

 
Gráfica 66: Diagrama de Nyquist del sistema de segundo orden con Predictor de Smith ideal. 

Su respuesta al escalón (obtenida del esquema de Simulink adjunto): 

  
Gráfica 67: Diagrama de Nyquist del sistema de segundo orden con Predictor de Smith ideal. 

En resumen, la estructura del Predictor de Smith Ideal es capaz de estabilizar 

el sistema de segundo orden simple con retardo para cualquier valor de la 

ganancia. 
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 Predictor de Smith real 

¿Qué sucede cuando en un sistema de segundo orden, se  produce una 

desviación en el cálculo del retardo de la estructura del Predictor de Smith? Es 

decir:        donde   representa la desviación en la estimación del retardo. 

Continuando con el sistema de estudio actual: 

  (  )  
      

                 (   )  
 

Como seguimos teniendo el retardo en el denominador (  (   )  ), el 

módulo del sistema seguirá teniendo esas oscilaciones, como se puede observar en 

la gráfica siguiente (Con una K = 50, y esta vez una       ).  

 
Gráfica 68: Diagrama de Bode del Predictor de Smith con desviaciones en la estimación. 

Dichas oscilaciones provocan que el módulo sea superior que la unidad, y 

junto al crecimiento de la fase de 180º, va a determinar que el diagrama de 

Nyquist rodee en sentido antihorario entorno al PC, al igual que se ha explicado 

anteriormente: 

 
Gráfica 69: Diagrama de Nyquist con la estructura del Predictor de Smith con desviaciones. 
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Como se puede observar, el DN rodea dos veces al punto crítico en sentido 

antihorario. Según el criterio de Nyquist “El punto       queda rodeado una o 

varias veces en sentido contrario al de las agujas del reloj. En este caso, el sistema 

es estable si el número de rodeos en sentido contrario al de las agujas del reloj es 

igual al número de polos  ( ) ( ) en el semiplano derecho del plano s; de lo 

contrario, el sistema es inestable.”  

Por tanto para saber si es estable, sustituimos la función del retardo, por la 

aproximación de Padé, con el objetivo de poder obtener los polos de la cadena 

directa, y saber si el sistema va a ser estable. Para ello realizamos una 

aproximación de orden 6, que se puede ver, que en la zona de interés es bastante 

exacta: 

 
Gráfica 70: Comprobación de la aproximación de Padé. 

Y los polos que se obtienen son: -21.6827 + 0.0000i, -8.3883 +13.3570i, -

8.3883 -13.3570i, -5.0319 + 8.9853i, -5.0319 - 8.9853i, -8.4967 + 1.7350i, -

8.4967 - 1.7350i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -1.6699 + 8.6578i, -1.6699 

- 8.6578i,  0.4084 + 4.0838i,  0.4084 - 4.0838i, -0.0176 + 0.0000i. Encontramos 

dos polos en el semiplano derecho, por tanto se puede decir que es sistema se 

comporta de forma estable. Mediante SIMULINK, se obtiene la respuesta a una 

entrada escalón. 

 
Gráfica 71: Respuesta entrada escalón mediante SIMULINK. 
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A continuación mediante simulaciones, se va buscar el límite de la ganancia 

donde el sistema se vuelve inestable. Y se va a hacer para distintas desviaciones y 

con un valor de    . 

        

Si se comete únicamente un error en la estimación del retardo de tan solo un 

1%, el sistema se volverá inestable, con K mayores a 775. Pues mediante 

SIMULINK, se puede observar la respuesta a una entrada escalón: 

 
Gráfica 72: Respuesta de un sistema de segundo orden con PS y un error en la estimación del 1%. 

El diagrama de Nyquist que se obtiene: 

 
Gráfica 73: Diagrama de Nyquist, con un error en la estimación de un 1% 

 Se puede observar, que da 4 vueltas al punto crítico en sentido antihorario, 

pero no corresponden con el número de polos inestables de la cadena directa, pues 

presenta 6 polos inestables: 0.8891 16.1509i, 1.0565  11.8607i,  0.2115   

6.1654i. Provocando así la inestabilización del sistema.  
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Mencionar que para este apartado se ha empleado una aproximación de Padé de 

orden 12, pues la aproximación de orden 6, no era capaz de imitar al diagrama de 

Nyquist en la zona de interés. 

 
Gráfica 74: Aproximación de Padé de orden 12. 

A continuación vamos a ver qué sucedería si se analiza el Predictor de Smith 

real para una K que haga que mi sistema se comporte de manera estable, por 

ejemplo, una K = 700. 

Obtenemos el diagrama de Nyquist y la respuesta ante una entrada escalón: 

 
Gráfica 75: Comportamiento del PS con una desviación del 1% y ganancia 700. 

Si se observa con mucho detenimiento el diagrama de Nyquist, vemos que rodea 6 

veces al punto crítico -1. Que como coincide con los polos en el semiplano 

derecho (   0.6827  15.9942i,  1.1305  11.6978i, 0.2356   6.1559i), se llega a la 

conclusión que el sistema se comporta de forma estable. 

Notar que un segundo orden simple con la estructura del Predictor de Smith, 

es bastante bueno, debido a que aunque se cometa un error de un 1%, va a ser muy 

difícil inestabilizar el sistema. 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

76 

 

        

Si se comete una desviación de un 5%, en el cálculo del error, pues en base a 

la repetición de simulaciones, se observa que para K mayores o iguales a 197, el 

sistema se hará inestable. 

Por ejemplo para una K = 200, se obtiene una respuesta ante una entrada 

escalón: 

 
Gráfica 76: Respuesta escalón del PS con una desviación del 5% y ganancia 200 

Si nos fijamos en el diagrama de Nyquist, se aprecia que da dos vueltas al 

PC, y si obtenemos los polos del sistema de la cadena directa, se aprecian 4 polos 

inestables (0.2141   9.4582i, 0.6642   5.4727i), de esta forma se llega a la 

conclusión de que el sistema para una K = 200, el sistema es inestable. 

 
Gráfica 77: Diagrama de Nyquist, del PS con desviación del 5% y ganancia de 200. 

A continuación, se va a estudiar un caso que se comporte de forma estable, 

pero que este próximo a la inestabilidad, para así descubrir cuál es la causa de la 

inestabilidad. Por ejemplo cogiendo una K = 190. Se obtiene el siguiente diagrama 

de Nyquist. 
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Gráfica 78: Diagrama de Nyquist, del PS con desviación del 5% y ganancia de 190. 

Se aprecia que el diagrama de Nyquist, da 4 vueltas en sentido antihorario al 

punto crítico, y el número de polos inestables sigue siendo 4 (0.6803 + 5.4286i,  

0.6803 - 5.4286i,   0.1295 + 9.4046i, 0.1295 - 9.4046i). Por tanto el sistema se 

comporta de forma estable. 

 
Gráfica 79: Respuesta escalón del PS con desviación del 5% y ganancia de 190. 

Al final lo que provoca la inestabilidad, es que al aumentar la ganancia, el 

diagrama de Nyquist se desplaza un poco más hacia la izquierda, de forma que ya 

no rodea al punto crítico 4 veces sino 2.  

       

A continuación se va a suponer que se comete una error en la estimación del 

retardo de un 10%. Para este caso ganancias por encima de 44, se comportan de 

manera inestable. 

Por ejemplo si se escoge una K = 45, se obtiene la siguiente respuesta ante 

una entrada escalón: 
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Gráfica 80: Respuesta escalón del PS con desviación del 10% y ganancia de 45. 

Para entender, la inestablidad del sistema, obtenemos el diagrama de 

Nyquist, en el que podemos se aprecia muy bien, que no da ninguna vuelta al 

punto crítico, es más si nos fijamos, ni siguiera corta el semieje negativo de 

abcisas por encima del valor -1. Pero, ¿Por qué no es estable? Es debido a que si 

se obtienen los polos de la cadena directa, mediante una aproximación de Padé, se 

observa que hay 2 polos inestables (0.3719 + 3.8911i, 0.3719 - 3.8911i), y como 

indica el Criterio de Nyquist, para que un sistema sea estable, el número de polos 

en el semiplano derecho, tiene que coincidir con el número de vueltas que de el 

diagrama de Nyquist, en sentido antihorario al PC. 

 
Gráfica 81: DN del sistema de segundo orden con PS, una desviación del 10% y ganancia de 45. 

Si analizamos esto mismo, pero con una K menor, por ejemplo, K = 40, que 

ya sabemos de antemano que se comporta de forma estable. Se puede deducir, que 

el diagrama de Nyquist para este caso si que rodeará el punto crítico dos veces. 

Esto se puede ver, porque para una K = 45, el diagrama de Nyquist a bafas 

frecuencias parte de   , sube, y luego da una vuelta y tiende a cero. Por ello, se 

puede deducir, que para K = 40, esa vuelta sucederá un poco más arriba, cortando 

con el semieje negativo de abcisas, y rodeando al punto crítico. 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

79 

 

 
Gráfica 82: DN del sistema de segundo orden con PS, una desviación del 10% y ganancia de 40. 

El número de polos en el semiplano derecho sigue siendo 2 (0.3060 + 

3.7885i y   0.3060 - 3.7885i) y por tanto para una K = 40, el sistema es estable. 

 
Gráfica 83: Respuesta de un sistema de segundo orden con PS y una desviación del 10% y K=40. 

 Conclusión 

Podemos observar que en el caso de un sistema de segundo orden simple con 

retardo, el sistema en bucle cerrado se termina inestabilizando al elevar un poco la 

ganancia (En el caso explicado para ganancias mayores que 5). Al colocar la 

estructura del Predictor de Smith sin error en la estimación del retardo, se 

consigue estabilizar el sistema, para cualquier valor de la ganancia. 

Pero cuando se comete un error en la estimación ya no es para cualquier 

valor de las ganancias, sino que por ejemplo, para el caso que se ha estudiado, si 

se comete un error de un 1%, se inetabiliza para una ganancia de 775, un error de 

un 5%, supondrá la inestabilidad cuando la ganancia sea superior a 200, de un 

10% para ganancias mayores a 45. 

Se puede observar que cuanto mayor sea el error en la estimación, antes se 

inestabilizará el sistema, por tanto, el Predictor de Smith en la realidad no 

consigue estabilizar el sistema. 

También mencionar que para este sistema de segundo orden simple, el 

Predictor de Smith funciona mejor que para los casos de primer orden. 
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 Sistema de segundo orden con un polo en el 

origen 

En este apartado se va a analizar otro sistema de segundo orden, el cual 

consiste en un sistema que contiene uno de sus polos en el origen. Como se ve a 

continuación: 

 ( )  
 

 (    )
 

 

     
 

 El efecto del retraso puro en bucle cerrado 

El diagrama de Nyquist (DN) del sistema en bucle abierto (o si se prefiere, 

de la cadena directa), nos permite estudiar la estabilidad en BC: 

 (  )  
 

  (     )
 

Para el sistema sin el retardo (Ecuación anterior), a bajas frecuencias el 

sistema parte de    con una fase de -90º. Cuando aumentamos la frecuencia, el 

sistema sin el retardo tiende a 0, con una fase de   . 

   
    

  (  )  
 

  (    )
 ,

|  (  )|   

   (  (  ))      
 

   
    

  (  )  
 

 (   )
 ,

|  (  )|   

   (  (  ))    
 

Como se puede ver en la siguiente gráfica (Gráfica 86), para distintos 

valores de K: 

 
Gráfica 86: DN, para el sistema de segundo orden con un polo en el origen y sin retardo. 

Se puede observar, que por mucho que aumente la ganancia, y aunque el 

sistema parta del semiplano negativo, llegue a cero, y se vuelva a ir por el 

semiplano negativo, no rodea al punto crítico en sentido antihorario, de forma que 
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si el número de polos de la cadena directa, se encuentra en el plano izquierdo (lo 

cual se cumple para este caso), el sistema se comporta de forma estable. 

Se puede comprobar con la respuesta en bucle cerrado ante una entrada 

escalón. 

 
Gráfica 87: Respuesta del sistema segundo orden con un polo en el origen y sin retardo. 

A continuación se analiza el sistema con retardo: 

 (  )  
 

  (     )
      

A bajas frecuencias el sistema parte de    con una fase de -90º. Conforme 

aumentamos la frecuencia el sistema tiende a 0 con una fase de -   

   
    

  (  )  
 

  (     )
        

 

 
 ,

|  (  )|   

   (  (  ))      
 

   
    

  (  )  
 

 (   )
      ,

|  (  )|   

   (  (  ))    
 

La presencia del retardo, va a provocar con el mismo módulo que antes, que 

la fase sea menor debido al factor       en el numerador, por lo que se producirán 

cortes con el semieje negativo de abcisas, como el que se puede ver a continuación 

para una K = 1:  

 
Gráfica 88: DN, del sistema de segundo orden con un polo en el origen y retardo. 
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Es interesante saber cuándo se produce ese punto de corte, para ello: 

  (  )   
 

  (     )
       

 

(      )
       

(      )

        
     

  
(    )

       
       [

   

      
 

 

      
 ]       

{
 
 

 
 |  (  )|   

 

 √(      )

   (  (  ))       
 

  
   

 

Necesito conocer el valor de la frecuencia, y ese resultado se ha obtenido a 

través del diagrama de Nyquist (Gráfica 89), siendo w = 0.86.  

 

Gráfica 89: Diagrama de Nyquist, cálculo de la frecuencia. 

Sustituyendo en el módulo: 

|  (  )|        

Por tanto cuando |  (  )|     el Diagrama de Nyquist superará el punto -

1, esto sucede para K > 1.13. 

Se han obtenido los polos de la cadena directa:   0.0000 + 0.0000i, -5.0319 + 

8.9853i, -5.0319 - 8.9853i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -8.4967 + 

1.7350i, -8.4967 - 1.7350i, -1.0000 + 0.0000i. Para ello se ha empleado una 

aproximación de Padé de orden 6, y una K = 10. A continuación se puede 

observar en la siguiente gráfica, una comparación entre el diagrama de Nyquist 

empleando la función del retardo, y empleando la aproximación de Padé. 
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Gráfica 90: DN de la aproximación de Padé junto con el retardo. 

A continuación se puede observar la gráfica del diagrama de Nyquist, para 

distintos valores de K: 

 
Gráfica 91: DN, del sistema de segundo orden con un polo en el origen y retardo.  

 
Gráfica 92: Respuesta del sistema de segundo orden con un polo en el origen y retardo en bucle 

cerrado. 

 

A la vista de las gráficas anteriores, el efecto del retardo, hace que corte el 

semieje negativo de abcisas, provocando la inestabilidad del sistema, con 
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únicamente una K > 1.134. 

En este sistema, se aprecia muy bien como el retardo influye en la 

estabilidad del sistema. 

 El predictor de Smith ideal 

De nuevo, se añade la estructura del predictor de Smith, donde para el caso 

que nos ocupa: 

  (  )  
      

(     )           
 

La presencia del factor       en el numerador no afecta al módulo 

(únicamente a la fase, indicando que el DN va a dar ∞ vueltas en torno al origen). 

En cambio, la presencia de dicho factor en el denominador sí afecta al módulo 

(también al argumento), de forma que este presentará oscilaciones. 

 
Gráfica 93: Oscilaciones en el Diagrama de Bode. 

Por ejemplo para el caso de K = 10, con el Predictor de Smith (trazado azul), 

se pueden apreciar las mencionadas oscilaciones en el módulo, dicho módulo se 

aprecia que crece por encima de la unidad, lo que junto con el crecimiento de la 

fase por encima de 180º determina que el diagrama de Nyquist dará 2 vueltas en 

sentido antihorario en torno al punto crítico. A continuación se obtiene el 

diagrama de Nyquist (K = 10): 
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Gráfica 94: DN del sistema de segundo orden con polo en el origen con PS. 

Al igual que antes queremos saber si esas vueltas determinan la inestabilidad 

del sistema. Para ello se requiere conocer el número de polos de la   ( ) en el 

semiplano derecho, siendo que tenemos en su denominador una función 

trascendente (el término oscilante      ).  

Por ello, empleamos nuevamente la aproximación de Padé de orden 6, que la 

validez de la aproximación realizada puede corroborarse comparando el DN 

obtenido con el retraso puro y con su aproximación de Padé: 

 
Gráfica 95: Aproximación de Padé comparada con el del retardo puro. 

Se observa que en la zona de interés la diferencia es nula (dicha diferencia 

comienza a darse para frecuencias muy altas, para las que el módulo está próximo 

a cero), por lo que puede aplicarse el método de Nyquist. Los polos de   ( ) con 

la aproximación de Padé de 6º orden son:   0.0000 + 0.0000i, -21.5097 + 0.0000i,  

-8.8714 +13.2634i, -8.8714 -13.2634i, -2.1056 + 8.9672i, -2.1056 - 8.9672i,   
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0.2319 + 3.9617i,  0.2319 - 3.9617i. Como puede verse, hay 2 polos del bucle 

abierto en el semiplano derecho, por lo que para que el sistema sea estable, el DN 

debe circunvalar al PC 2 veces en sentido antihorario, tal y como sucede.  

La gráfica siguiente muestra la respuesta al escalón, poniendo de manifiesto 

la estabilidad en BC: 

 
Gráfica 96: Respuesta del sistema de segundo orden con polo en el origen y PS ideal. 

Buscando el límite del SP exacto, probemos con un valor de K todavía más 

elevado (K=100). Observando el DN, se aprecia que da 4 vueltas en torno al PC 

en sentido antihorario, pero dado que (con la aproximación de Padé de 6º orden) 

existen 4 polos con parte real positiva en bucle abierto ( 0.0000 + 0.0000i, -

33.5447 + 0.0000i, -6.3556 +20.1657i, -6.3556 -20.1657i,  1.1869 +10.8718i,  

1.1869 -10.8718i,  0.4411 + 6.1048i,  0.4411 - 6.1048i), el sistema sigue siendo 

estable. 

 
Gráfica 97: DN para el sistema de segundo orden con polo en el origen con el PS ideal yK=100. 

 

 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

87 

 

Su respuesta al escalón (obtenida del esquema de Simulink adjunto): 

    
Gráfica 98: Respuesta ante una entrada escalón del sistema de segundo orden con un polo en el 

origen obtenida por SIMULINK. 

 El predictor de Smith realista 

¿Qué sucedería sin embargo si el retardo empleado en el predictor de Smith 

no se correspondiese exactamente con el retardo que exhibe el sistema? Vamos a 

suponer que se ha identificado correctamente a   ( ), es decir:  ( )    ( )  

pero no así al retraso puro, es decir:        donde   representa la desviación 

en la estimación del retardo. Supóngase también que inicialmente T=1:  

  ( )  
 ( )  ( ) 

   

   ( )  ( )   ( )  ( )  (   ) 
 

En nuestro sistema de estudio: 

  (  )  
      

(     )        (   )  
 

Como seguimos teniendo el retardo puro en el denominador (  (   )  ), el 

módulo del sistema seguirá teniendo esas oscilaciones, como se puede observar en 

la gráfica siguiente (Con una K = 10, y esta vez una       ).  

 
Grafica 99: Diagrama de Bode, oscilaciones en el módulo. 
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Al igual que antes, dicho módulo crece por encima de la unidad. Lo que 

junto al crecimiento de la fase de 180º, va a determinar que el diagrama de 

Nyquist de 2 vueltas en sentido antihorario entorno al PC: 

 
Grafica 100: DN del sistema de segundo orden con polo en el origen y PS con desviaciones en la 

estimación del retardo. 

La pregunta que nos debemos hacer es si es estable, y lo mejor para ello es 

emplear la aproximación de Padé (de nuevo se va a emplear una de orden 6), 

debido a que si comparamos los diagramas de Nyquist, en la zona de interés son 

muy parecidas. 

 
Grafica 101: Comparación aproximación de Padé con retardo puro. 

Los polos de la cadena directa del predictor de Smith realista son: -20.8457 

+ 0.0000i, -8.4407 +12.8496i, -8.4407 -12.8496i, -8.4967 + 1.7350i, -8.4967 - 

1.7350i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -5.0319 + 8.9853i, -5.0319 - 

8.9853i, -1.9079 + 8.5788i, -1.9079 - 8.5788i,  0.2715 + 3.8638i,  0.2715 - 

3.8638i,  0.0000 + 0.0000i. 
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Encontramos dos polos en el semiplano derecho, por tanto, como los polos 

del semiplano derecho, coinciden con el número de vueltas que da el Diagrama de 

Nyquist al punto crítico en sentido antihorario, se puede afirmar que el sistema se 

va a comportar de forma estable. 

Pero no nos conformamos con esto, el objetivo va a ser encontrar cuando se 

va a inestabilizar este sistema, encontrar el límite de K para el cual el sistema es 

estable. 

        

Comenzamos con una desviación pequeña de 0.01. Mediante SIMULINK, se 

observa que para una K = 194, el sistema se inestabiliza: 

 
Gráfica 102: Respuesta ante una entrada escalón del sistema de segundo orden con un polo en el 

origen, desviación del 1% y una ganancia de 194. 

Si obtenemos el diagrama de Nyquist, con dificultad se observa que da 4 

vueltas al punto crítico en sentido antihorario, y el número de vueltas no coincide 

con el número de polos en el semiplano derecho que se obtiene con la 

aproximación de Padé (De orden 12, para este caso):   0.8901 16.1512i,   1.0575 

 11.8605i, 0.2127   6.1653i. 

 
Gráfica 103: DN del sistema de segundo orden con un polo en el origen para una desviación del 1% y 

una ganancia de 194. 
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Sin embargo si hubiéramos cogido una K de 100, se observa que da 4 vueltas 

en sentido antihorario al punto crítico, y justo coincide con el número de polos en 

el semiplano derecho:   1.0552 10.5935i,  0.4267   6.0493i. Por tanto el sistema, 

es estable, se puede observar en la gráfica obtenida por Simulink. 

 
Gráfica 104: Comportamiento de un sistema de segundo orden con polo en el origen, con PS, una 

desviación del 1% y una ganancia de 194. 

        

Si aumentamos el error en la estimación del retardo a 0.05 (es decir, se ha 

cometido un error en la estimación del 5%), la inestabilidad del sistema se aprecia 

con una K=50. Como se puede observar a continuación: 

 
Gráfica 105: Respuesta escalón de un sistema de segundo orden con polo en el origen, con PS,  una 

desviación del 5% y una ganancia de 50. 

Obtenemos el diagrama de Nyquist, para saber porque este sistema es 

inestable: 
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Gráfica 106: DN de un sistema de segundo orden con polo en el origen, con PS, una desviación del 

5% y una ganancia de 50. 

 Resulta mucho más sencillo ver que da dos vueltas al punto crítico -1. Y 

para este caso, presenta 4 polos en el semiplano derecho (0.2360   9.3180i,   

0.6688   5.4677i). Por tanto, aplicando el Criterio de Nyquist, se confirma que el 

sistema es inestable. 

Que sucede por ejemplo con una ganancia de 45, ligeramente menor a la 

ganancia con 50, donde el sistema se vuelve inestable: 

 
Gráfica 107: Comportamiento de un sistema de segundo orden con polo en el origen, con PS, una 

desviación del 5% y una ganancia de 45. 

Resulta complicado de ver, pero para este sistema, el diagrama de Nyquist, 

rodea 4 veces al punto crítico -1, y seguimos obteniendo 4 polos inestables(0.0792 

+ 9.2246i,  0.0792 - 9.2246i,  0.6997 + 5.3742i,  0.6997 - 5.3742i), por tanto, esta 

vez, el sistema es estable. 

Para este caso la inestabilidad se debe a que pasamos de dar 4 vueltas, a dar 

únicamente dos vueltas, por ello el sistema se termina volviendo inestable. 
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A continuación vamos a suponer que se comete un error de 0.1, es decir, del 

10%. Para este caso el sistema se vuelve inestable con una ganancia igual a 11. 

 
Gráfica 108: Comportamiento de un sistema de segundo orden con polo en el origen, con PS,  una 

desviación del 10% y una ganancia de 11. 

Si se observa el diagrama de Nyquist, y los polos del sistema, se observa que  

no da ninguna vuelta al punto crítico, y el número de polos inestables de la cadena 

directa es 2 (0.3575 + 3.8549i,  0.3575 - 3.8549i), por tanto, es normal que el 

sistema se comporte de forma inestable. 

Sin embargo si obtenemos para una K = 10, se aprecia que da dos vueltas al 

punto crítico, y para esta ganancia sigue teniendo 2 polos inestables 0.3030 + 

3.7715i, 0.3030 - 3.7715i. Por tanto la causa de que el sistema se vuelva inestable, 

es que en el diagrama de Nyquist, al aumentar la K hace que a bajas frecuencias 

no llegue a corta el eje de abcisas, sino que, da un giro sin llegar a cortar, y tiende 

a cero. (Ver gráfica)  

 
Gráfica 109: Comportamiento de un sistema de segundo orden con polo en el origen, con PS,  una 

desviación del 10% y una ganancia de 10. 
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 Conclusión 

Para este sistema pasa de forma similar al anterior, en bucle cerrado el 

sistema se inestabilizaba con tan solo una K = 1.17. Sin embargo el PS ideal lo 

estabiliza para cualquier valor de K. Pero cuanto mayor es la desviación en el 

cálculo del retardo, más disminuye el valor de la ganancia para el cual el sistema 

se vuelve inestable. 
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 Sistema de segundo orden con cero 

El último de los sistemas a analizar en este TFG, va a ser un sistema de 

segundo orden con cero. El cual se corresponde con: 

  ( )  
      

           
  

     

  
  
  
  

 
   

  
 

Por simplicidad, al igual que en el caso “7. Sistema de segundo orden 

simple”, se va considerar que el sistema tiene un polo real doble y se va añadir un 

controlador proporcional (K). 

  ( )   
(     )

(    ) 
 

 El efecto del retraso puro en bucle cerrado. 

Nuevamente, analizamos el efecto del retardo en bucle cerrado para el 

sistema actual: 

 
Figura 8: Sistema en bucle cerrado. 

Si se obtiene la función de transferencia, el retardo se encontrará en el 

denominador. Y en base a la experiencia de los sistemas anteriores, esto puede 

causar la inestabilidad. Dicha suposición se va a comprobar mediante el Criterio 

de Nyquist. 

  (  )   
(      )

(     ) 
      

En primer lugar analizamos el diagrama polar, sin el retardo, es decir: 

  (  )   
(      )

(     ) 
 

T1: Analizamos a bajas frecuencias, cuando      

  ( )   
(     )

(    ) 
 ,

|  (  )|   

   (  (  ))    
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T2: Analizamos a frecuencias altas, cuando      

  ( )   
(     )

(    ) 
 ,

|  (  )|   

   (  (  ))      
 

T3: Calculamos los puntos de corte: 

  (  )   
(      )

(     ) 
  *

            
 

(      )       
 
   (   

   )     

(      )       
 + 

Buscamos cuando la parte imaginaria es cero: 

   (   
   )     

(      )       
     

Sucede para w = 0, y para      Esto se corresponde con los puntos 

calculados anteriormente, donde la parte real es K (cortando en el semieje 

positivo) y 0. 

De esta forma el diagrama polar, para una        y      y distintos 

valores de K, queda de la forma: 

 
Gráfica 110: Nyquist del sistema sin retardo 

Se puede observar que para el sistema sin retardo, el diagrama polar, nunca 

corta el semieje negativo, por tanto se puede asegurar la estabilidad para este 

sistema de segundo orden con cero sin retardo.  

Pero, ¿Qué sucede si al sistema que antes era estable en bucle cerrado, se le 

añade un retardo? Analizamos el diagrama polar, del sistema con retardo, es decir, 

cuando su cadena directa es:  

  (  )   
(      )

(     ) 
      

T1: Analizamos a bajas frecuencias, cuando      
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  ( )   
(     )

(    ) 
      ,

|  (  )|   

   (  (  ))    
 

T2: Analizamos a frecuencias altas, cuando      

  ( )   
(     )

(    ) 
      {

|  (  )|   

   (  (  ))    
 

Por tanto, al añadirle el retardo, su fase a frecuencias altas es     lo que 

significa que el diagrama de Nyquist, hará una espiral en torno a cero, cortando así 

con el semieje negativo, y abriendo una puerta a la inestabilidad. 

T3: Calculamos el primer punto de corte: 

  (  )   
(      )

(     ) 
       

{
 
 

 
 
⌈  (  )⌉   √(

             

(      )       
)

 

 (
   (      )     

(      )       
)

 

   (  (  ))       
   (   

   )     

             
   

 

A continuación calculamos cuando el argumento es -180º. Para ello 

representamos la función en Matlab y calculamos el punto de corte, para los 

valores                 . 

     
    (    )    

       
            (           )      

 
Gráfica 111: Representación del argumento, con el objetivo de obtener el primer corte en el semieje 

negativo de abcisas. 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

97 

 

Se obtiene que el primer punto de corte sucede para w = 1.7559. Por tanto 

sustituyendo en la parte real. 

⌈  (  )⌉   √(
 

     
)
 

 (
       

     
)
 

         

Por tanto, cuando            alcanzará el punto crítico, y esto sucede 

para K > 3.068. 

El criterio de Nyquist, nos dice que: “el sistema es estable si el número de 

rodeos en sentido contrario al de las agujas del reloj es igual al número de polos 

 ( ) ( ) en el semiplano derecho del plano s; de lo contrario, el sistema es 

inestable.” 

Por tanto, obtenemos los polos para una K = 4, por ejemplo: -5.0319 + 

8.9853i, -5.0319 - 8.9853i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -8.4967 + 

1.7350i, -8.4967 - 1.7350i, -1.0000 + 0.0000i, -1.0000 + 0.0000i. Se observa que 

no hay polos en el semiplano derecho, por tanto cundo K > 3.07, el sistema se 

volverá inestable. 

Las gráficas siguientes ilustran el DN y la respuesta del sistema en bucle 

cerrado ante una entrada escalón con y sin retardo (T=1seg) para valores 

diferentes de K: 

 
Gráfica 112: Diagrama de Nyquist. 
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Gráfica 113: Comportamiento sistema en bucle cerrado, ante entrada escalón. 

Como se observa en el diagrama de Nyquist, la trayectoria para K = 3, aun 

no alcanza el punto crítico, sin embargo, si aumentamos un poco más la ganancia 

(K=5), ya se alcanza el punto -1, y el sistema se comporta de forma inestable. 

También es de interés observar las diferencias entre el diagrama de Nyquist 

sin retardo, y el que contiene el retardo, pues se observa que el retardo es lo que 

provoca que mi sistema se vuelva inestable.  

Por ello en el siguiente apartado se emplea el Predictor de Smith, con el 

objetivo de que al elevar la ganancia en el sistema con retardo, el sistema no se 

vuelva inestable. 

 El predictor de Smith ideal. 

En el caso que nos ocupa (sistema de 2º orden simple con cero y retraso 

puro): 

 ( )    ( ) 
    

     

(    ) 
     

Supóngase que se emplea una estructura de control basada en el predictor de 

Smith, en la que se han identificado correctamente   ( ) y T, es decir:  ( )  

  ( ) y    . La cadena directa del control con el Predictor de Smith quedará 

como sigue: 

  ( )  
 ( )  ( ) 

   

   ( )  ( )   ( )  ( )    
 

  (  )  
 (      ) 

    

                     (      )    
 

La presencia del factor       en el numerador no afecta al módulo 
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(únicamente a la fase, indicando que el DN va a dar ∞ vueltas en torno al origen). 

En cambio, la presencia de dicho factor en el denominador sí afecta al módulo 

(también al argumento), de forma que este presentará oscilaciones. La gráfica 

siguiente muestra el DdB del sistema, en el que se aprecian las mencionadas 

oscilaciones del módulo: 

 
Gráfica 114: Diagrama de Bode del sistema de segundo orden con cero y PS. 

Parece evidente que las mencionadas oscilaciones tendrán más protagonismo 

cuanto mayor sea K. No obstante, en la gráfica anterior se aprecian varias subidas 

de módulo las cuales podría corresponderse con la presencia de 2 polos complejos 

conjugados con parte real positiva, propias de un sistema inestable.  

Por ello, se aplica la aproximación de Padé de orden 6, y se comprueba su 

validez, con el objetivo de poder obtener los polos del sistema. 

 
Gráfica 115: Exactitud de la  aproximación de Padé con la del retardo. 

Por tanto se obtienen los siguientes polos: 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

100 

 

 Para K = 1: 

-15.2248 +11.2264i, -15.2248 -11.2264i, -3.5225 +10.2412i, -3.5225 -

10.2412i, -2.1804 + 4.3206i, -2.1804 - 4.3206i, -1.7600 + 0.0000i, -0.3845 + 

0.0000i. 

 Para K = 15: 

-19.8410 +28.3452i, -19.8410 -28.3452i, -0.9385 +12.1761i, -0.9385 -

12.1761i, -0.2012 + 5.6428i, -0.2012 - 5.6428i, -1.9795 + 0.0000i, -0.0590 + 

0.0000i. 

Como para todos los valores de K, los polos se encuentran en el semiplano 

izquierdo, si el diagrama de Nyquist, no rodea al punto -1, en sentido antihorario, 

el sistema se comportará de forma estable. Por ello realizamos un análisis 

detallado del Diagrama de Nyquist. 

  (  )  
 (      ) 

    

                     (      )     
 

T1: Analizamos a bajas frecuencias: 

   
   

  (  )   
 

     
  ,

|  (  )|   

   (  (  ))    
 

T2: A altas frecuencias: 

   
   

  (  )  
 (      ) 

    

                                     
 

 ,
|  (  )|   

   (  (  ))    
 

La presencia del factor       en el numerador no afecta al módulo 

(únicamente a la fase, indicando que a altas frecuencias, el DN va a exhibir un 

comportamiento cíclico en forma de espiral). En cambio, la presencia de dicho 

factor en el denominador si afecta al módulo del sistema, por ello se analizan los 

valores máximos y mínimos de dicho módulo: 

 Cuando     (  )   siendo        , tenemos un mínimo en el 

denominador (todos los términos que contienen el valor K se 

cancelan), lo que hace que el módulo del sistema presente un 

máximo: 

  (  )   
 (      )

           
  

      

(     ) 
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{
 
 

 
 

|  (  )|  | | |√(
    

   

(      ) 
)|

   (  (  ))       (   )     
  (   )    

 

Si observamos el módulo, este sí que podría alcanzar el valor de 1, pero en 

este caso no me importa, pues este valor siempre va a cortar en el eje positivo de 

abcisas, por lo que el sistema no se inestabilizará a causa de este valor. 

 Cuando     (    ) , siendo         , tenemos un máximo 

en el denominador (todos los términos que contienen el valor K se 

suman), lo que provoca que el módulo del sistema presente un 

mínimo: 

  (  )  
 (      )

          (         ) 
  

{
 
 

 
 
|  (  )|  | | |√

       

(         )  (         ) 
|

   (  (  ))       (   )     
  (

        

         
)    

 

Si observamos el módulo de dicha función, para ganancias muy elevadas, el 

punto de corte tiende a 0.5, por tanto nunca llega a superar el punto crítico -1.  

Estos valores máximos y mínimos se corresponden con múltiplos de  , es 

decir, cuando el módulo presenta un valor máximo este siempre corta en el 

semieje positivo de abcisas. Y cuando el módulo presenta un mínimo, este 

intersecta en el eje negativo de abcisas, pero su módulo es siempre menor que 1. 

Por tanto podemos afirmar que el PS consigue estabilizar el sistema con retardo. 

 
Gráfica 116: Diagrama de Nyquist  

Gráfica 117: Respuesta escalón al Predictor de 

Smith ideal. 
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Como se puede observar, en las gráficas anteriores, y en los cálculos 

realizados anteriormente, con el Predictor de Smith, se logra, que el retardo no 

afecte a la estabilidad de mi sistema. 

 Predictor de Smith real 

Es importante notar, que para el buen funcionamiento de la estructura del 

predictor de Smith, se ha calculado correctamente la  ( )    ( ), y el retardo 

puro, pero ahora se va a analizar la estructura del Predictor de Smith, suponiendo 

que no se ha identificado correctamente el retardo puro.  

Continuando con el sistema de estudio: 

  ( )  
 (     ) 

   

(    )   (     )   (     )  (   ) 
 

Al igual que en los sistemas de segundo orden anteriores, es necesario 

obtener el número de Polos del sistema de la cadena directa, con el objetivo de 

poder aplicar el criterio de Nyquist y llegar a la conclusión de si el sistema seguirá 

siendo estable o si se inestabilizará. 

Por ello, para realizar el análisis se propone sustituir dicho término oscilante 

por una aproximación polinomial (por ejemplo, la de Padé de un orden suficiente): 

 
Gráfica 118: Comportamiento aproximación de Padé 

En la gráfica anterior, se ha empleado una K=50, y una aproximación de 

Padé de orden 12, y se puede observar como en la zona de interés se comporta de 

la misma forma, que en el sistema que se ha empleado, la función del retardo. Por 
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tanto se considera valida esta aproximación. Si obtenemos los polos de la cadena 

directa, podremos ver que todos sus polos son estables, por tanto si el diagrama de 

Nyquist rodea el punto crítico, el sistema se volverá inestable.  

Por tanto, a diferencia de los sistemas de segundo orden tratados 

anteriormente, los cuales presentaban polos inestables en la cadena directa, y su 

diagrama rodeaba al punto crítico en sentido antihorario, y aun así se podía 

comportar de forma estable. Este caso es más similar a los sistemas de primer 

orden, “3.Sistema de primer orden”, “6.Integrador”. En los que se podría obtener 

también una expresión para obtener la ganancia máxima para el cual el sistema se 

inestabliza.  

Continuando con el caso dado: 

  (  )  
 (      ) 

    

                     (      )  (   ) 
 

Analicemos esta cuestión en detalle: 

 T1: A bajas frecuencias (cuando 0), el diagrama polar de la 

  (  ) parte de un valor finito K a 0º: 

   
   

  (  )   
 

     
  ,

|  (  )|   

   (  (  ))    
 

T2: A altas frecuencias (cuando  ), el diagrama polar de la 

  (  ) termina en 0 con   º: 

   
   

  (  )  
 (      ) 

    

                                     
 

 ,
|  (  )|   

   (  (  ))    
 

Al igual que antes la presencia del factor       en el numerador no afecta al 

módulo, pero la presencia del factor   (   )   en el denominador si afecta al 

módulo, de forma, que los valores máximos y mínimos son: 

 Cuando  (   )      , siendo   (   )    , tenemos un 

mínimo en el denominador (los términos que contienen a la K se 

cancelan), lo que hace que el módulo del sistema presente un 

máximo:  

  (  )   
 (      )

           
  

      

(     ) 
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{
 
 

 
 

|  (  )|  | | |√(
       

(      ) 
)|

   (  (  ))       (   )     
  (   )    

 

 

 Cuando  (   )  (    ) , siendo         , tenemos un 

máximo en el denominador (los términos que contienen a la K se 

suman), lo que hace que el módulo del sistema presente un mínimo: 

  (  )  
 (      )

          (         ) 
  

{
 
 

 
 
|  (  )|  | | |√

       

(         )  (         ) 
|

   (  (  ))       (   )     
  (

        

         
)    

 

El DN va a presentar una forma de espiral que tiende al origen, y debido a la 

incorrecta identificación del retardo, estos valores máximos y mínimos se 

corresponden con los valores: (1+2N)T y 2NT, es decir, cada uno 

de los valores extremos se producen con T/ argumentos diferentes. Por tanto, 

para que ahora el sistema sea estable, ambos módulos deben de ser menor que 1. 

Se trata por tanto de encontrar el módulo a la frecuencia para la cual, el primer 

máximo alcanza el semieje negativo de abcisas: 

La frecuencia para la cual se dan los máximos es: 

 (   )         
   

   
 

Queda saber en cuantas vueltas (lóbulos) se alcanza el semieje negativo de 

abcisas. Contando con que a frecuencias suficientemente elevadas, el aporte de 

fase correspondiente al término  
(     )

(    ) 
 es de -90º, y que en 360º se dan T/ 

lóbulos, puede concluirse que el número de lóbulos necesario para alcanzar el 

semieje negativo de abcisas es N=T/(4). Sustituyendo dicho valor en la ecuación 

anterior, podemos obtener el valor del módulo a dicha frecuencia: 

  
   

   
 

  

  (   )
 

Sustituyendo w en la expresión del módulo: 
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|  (  )|   
√       

      
  

√     (
  

  (   )
)
 

    (
  

  (   )
)
  

Para este caso, los polos del sistema se encuentran en el semiplano 

izquierdo. Por ello, si se supera el punto crítico -1, el sistema se comportará de 

forma inestable, por lo que dicho módulo debe ser inferior a la unidad. Por 

consiguiente, el valor máximo de K que hace al sistema estable es: 

     
    (

  
  (   )

)
 

√     (
  

  (   )
)
 

 

A continuación se muestra el efecto del error en la estimación de este 

sistema, para un valor de T=1,           Por ejemplo para una ganancia de 

50, se observa como al cometer más desfase, se aproxima más el punto crítico, y 

esto es debido a que contra más desfase, se llega al semieje negativo con un valor 

de la frecuencia menor. 

 
Gráfica 119: Efecto al cometer un error en la estimación del retardo 

Al igual que en los sistemas de segundo orden anteriores, se va a buscar el 

límite de la ganancia para el cual se hace inestable con SIMULINK y a 

continuación se corroborará con el diagrama de Nyquist. 
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En el caso de que se cometa un error de un 1% si se aplica la fórmula 

obtenida anteriormente: 

     
    (

  
  (   )

)
 

√     (
  

  (   )
)
 

 
    (

  
       (      )

)
 

√      (
  

       (      )
)
 

       

Se obtiene que para una ganancia igual a 311, el sistema se comportará de 

forma inestable. 

Vamos a comprobarlo mediante el Diagrama de Nyquist (Gráfica 122). 

 
Gráfica 120: DN del sistema de segundo orden con cero, PS y desviación del 1%. 

A causa de la desviación en la estimación del retardo, se produce un desfase 

y el valor con frecuencia  (   )   (  )   se va desplazando, llegando a 

cortar con el semieje negativo de abcisas. Aunque el módulo de este valor se 

divida por la frecuencia y esta valla en aumento, si el valor de K es lo 

suficientemente grande se alcanzará el punto crítico. Causando así la inestabilidad 

(Gráfica 123). 

 
Gráfica 121: Respuesta del sistema de segundo orden con cero, PS y desviación del 1%. 
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Si se comete una desviación en la estimación del retardo de un 5%, para 

ganancias mayores a 60,7 el sistema se comportará de forma inestable. 

     
    (

  
  (   )

)
 

√     (
  

  (   )
)
 

 
    (

  
       (      )

)
 

√      (
  

       (      )
)
 

      

A continuación se puede comprobar el resultado obtenido mediante el 

diagrama de Nyquist (Gráfica 124). 

 
Gráfica 122: Diagrama de Nyquist con un error en la estimación del retardo de un 5%. 

Para este sistema, se alcanza antes el punto crítico para valores de la 

ganancia menor, esto es debido a que cuanto más desfase, menor es el valor de la 

frecuencia al llegar al semieje negativo de abcisas.  

A continuación se muestra la estabilidad del sistema. 

 
Gráfica 123: Respuesta del sistema de segundo orden con cero, con un error en la estimación del 

retardo de un 5%. 
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Si se comete un error en la estimación del retardo, el sistema se inestabiliza 

para valores de la ganancia mayores que 29,28. 

     
    (

  
  (   )

)
 

√     (
  

  (   )
)
 

 
    (

  
      (     )

)
 

√      (
  

      (     )
)
 

       

Se puede corroborar con el diagrama de Nyquist: 

 
Gráfica 124: DN del sistema de segundo orden con cero con un error en la estimación del retardo de 

un 10%. 

Para este caso todavía se hace más patente lo comentado anteriormente. 

 
Gráfica 125: DN del sistema de segundo orden con cero con un error en la estimación del retardo de 

un 10%. 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

109 

 

 Conclusión 

Ya se ha visto, que un sistema con retardo puro puede volverse inestable en 

bucle cerrado con facilidad, a poco que se eleve la ganancia. El Predictor de Smith 

consigue resolver el problema satisfactoriamente en todos los casos, permitiendo 

un diseño del regulador como si tal retardo no existiese.  

Sin embargo, un error en la estimación del retardo en el Predictor de Smith, 

puede ser fatal, pues en todos los casos existen valores de la ganancia de la cadena 

directa que hacen al sistema inestable, a diferencia de lo que sucede con el 

Predictor de Smith ideal, en el que se han identificado con exactitud, tanto la 

dinámica del sistema a controlar, como su retardo.  

Lo única diferencia entre unos sistemas y otros es el valor de la ganancia 

para el cual el sistema se inestabiliza, es decir, en algunos sistemas con pequeños 

errores de estimación, el sistema se inestabiliza para valores de la ganancia 

elevados, sin embargo, en otros sistemas, el mínimo error en la estimación del 

retardo, ya causa la inestabilidad del sistema para ganancias pequeñas (   ). 

Dicho esto, dentro de los sistemas de primer orden podemos diferenciar dos 

tipos: 

 Por un lado tenemos los sistemas que si se comete un error en la 

estimación del retardo por mínimo que sea, se vuelven inestables para el 

mismo valor de la ganancia, sin importar si se ha cometido un error del 

1% o del 10% (aunque puede haber alguna excepción).  

Este tipo se corresponde con el sistema de primer orden completo, y el 

sistema de primer orden completo + PI. Por ejemplo, en el primer caso, si 

 
  

 
 > 1, el sistema se vuelve inestable, sin depender del error que se 

cometa en la estimación del retardo. 

Como se puede observar, ocurre en sistemas que presentan el mismo 

orden en el numerador y en el denominador o, si se prefiere, que tienen un 

cero en su cadena directa. Esto es debido a que a la hora de realizar el 

análisis de Nyquist, el retardo junto con el cero, van a provocar dos 

valores extremos que se mantienen constantes (ciclo límite), y debido al 

desfase que se produce a causa del error en la estimación, el valor 

máximo, va a terminar cortando con el eje negativo de abcisas. 

 

 Por otro lado, tenemos los sistemas en los que la inestabilidad va a 

depender de la ganancia y a la vez, del error cometido en la estimación del 

retardo, siendo así, que si el error cometido es muy pequeño, se volverá 
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inestable, para ganancias muy elevadas (mayores que 100), pero si el error 

es mayor, se volverá inestable para ganancias menores. 

Este se corresponde con sistemas, que no presentan el mismo orden en el 

numerador que en el denominador, como por ejemplo, el sistema de 

primer orden, o el caso del integrador. Esto de debe a que, esos máximos 

y mínimos que se producen, depende del valor de la frecuencia, de forma 

que si el desfase que se produce es muy pequeño, le cuesta más lóbulos 

(vueltas) alcanzar el eje negativo de abcisas, y la frecuencia va 

aumentando y como esta se encuentra en el divisor del módulo, logra que 

para valores de la ganancia no muy elevados, no se alcance el punto 

crítico. Pero en el caso contrario, en los que el error en la estimación del 

retardo es grande, el desfase que se produce es mayor, y el valor de la 

frecuencia es menor al llegar al eje negativo de abcisas, por ello, se 

inestabilizará con ganancias más pequeñas. 

 

Dentro de los sistemas de segundo orden, (donde el análisis resulta bastante 

más complejo), la estructura del Predictor de Smith Real, sigue sin estabilizar el 

sistema para cualquier valor de la ganancia. Pudiendo diferenciar también dos 

tipos: 

 Por un lado tenemos el sistema de segundo orden con cero, donde la 

diferencia del orden del denominador respecto del numerador, es de uno. 

De forma que este sistema se comporta muy similar a los de primer orden. 

Pues en este caso su diagrama de Nyquist, también se corresponde con 

una espiral, y cuando encontramos un desfase, el valor máximo del 

módulo intersecta con el semieje negativo de abcisas. Pero este valor 

también depende de la frecuencia, y por tanto, se la desviación en la 

estimación del retardo es pequeña, el desfase que se produce es pequeño, 

y el valor de la frecuencia al cortar con el eje negativo de abcisas es 

mayor, y por tanto será estable para ganancias mayores. 

 Por otro lado tenemos el Sistema de segundo orden simple, y el Sistema 

de segundo orden con un polo en el origen. En estos casos el estudio de 

estos sistemas resulta bastante más complejo debido a que, como se ha 

visto en los diagramas de Bode, puede presentar un aumento de la fase a 

la vez que su módulo crece por encima de la unidad, lo que supone, 

rodear al punto crítico en sentido antihorario, de forma que para conocer 

su estabilidad, es necesario mirar el número de polos inestables de la 

cadena directa.  

Por tanto, aquí ya no se produce ese ciclo límite, y con el objetivo de 
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conocer para que valores de la ganancia el sistema se vuelve inestable, se 

ha decidido analizar el sistema gráficamente, mediante la obtención de 

gráficas del Diagrama de Nyquist.  

A continuación se puede observar una tabla que muestra las conclusiones de 

cada apartado (Figura 9). 
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Figura 9: Resumen de los resultados obtenidos. 

Por tanto una conclusión extra que se puede obtener, es que cuanto mayor 

sea el orden en el denominador respecto al numerador, el Predictor de Smith, será 

más reacio a inestabilizar el sistema, cuando presente errores en la estimación del 

retardo. 
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 Anexos 

A RESPUESTA EN FRECUENCIA 

Los métodos de respuesta en frecuencia son los más potentes en la teoría de 

control convencional. También son indispensables en la teoría de control robusto. 

La salida en estado estacionario de una función de transferencia de un 

sistema se puede obtener directamente de la función de transferencia sinusoidal, es 

decir, después de alcanzar el estado estacionario, la respuesta en frecuencia se 

puede calcular sustituyendo en la función de transferencia s por  , donde   es la 

frecuencia. La cual se puede dar como 

 (  )           ( ) 

Donde M es el cociente de amplitud de las señales sinusoidales de entrada y 

salida y   es el desplazamiento de fase entre ambas señales.  

Si  tenemos un sistema de la forma 

 ( )    ( ) ( )   ( )  
 ( )

 ( )
 

donde X(s) es la entrada del sistema, e Y(s) la salida del sistema. Este sistema 

después de alcanzar las condiciones en estado estacionario, la respuesta en 

frecuencia se puede calcular sustituyendo en la función de transferencia s por  , 

donde   es la frecuencia.  La cual se puede dar como 

 (  )           ( ) 

donde M es el cociente de amplitud de las señales sinusoidales de entrada y salida, 

es decir, el módulo de la respuesta en frecuencia de nuestra función de 

transferencia (función de transferencia sinusoidal) 

| (  )|  |
 (  )

 (  )
| 

y   es el ángulo de  (  )  que representa el desplazamiento de fase entre ambas 

señales.  

     ( (  ))        *
                     (  )

               (  )
+ 

con ello se obtiene la expresión 

 (  )  | (  )|    
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La función de transferencia sinusoidal, función compleja de la frecuencia  , 

se caracteriza por su magnitud y ángulo de fase, con la frecuencia como 

parámetro. Por lo general se usan tres representaciones gráficas de las funciones 

de transferencia sinusoidales: 

1. El diagrama de Bode. 

2. El diagrama de Nyquist. 

3. Diagrama de Nichols (Este no se emplea durante el TFG) 

B DIAGRAMA DE BODE 

Un diagrama de Bode está formado por dos gráficas: una representa el 

módulo de la función de transferencia y otra representa el ángulo de fase, de la 

función de transferencia. La unidad utilizada en esta representación para la 

magnitud es el decibelio (dB), y para el ángulo de fase grados. 

La ventaja principal de utilizar el diagrama de Bode es la facilidad relativa 

de dibujar las curvas de la respuesta en frecuencia. Pero en este TFG, se ha 

empleado el diagrama de Bode para obtener información general sobre las 

características de la respuesta en frecuencia. 

C DIAGRAMA DE NYQUIST o DIAGRAMA POLAR 

Es un método de respuesta en frecuencia para el análisis y diseño de sistemas 

de control.  

El diagrama polar de una función de transferencia sinusoidal  (  ) es una 

gráfica de la magnitud de  (  ) con respecto al ángulo de fase de la función 

 (  ) en coordenadas polares, cuando   varia de cero a infinito. Por tanto, el 

diagrama polar es el lugar geométrico de los vectores | (  )|   ( (  )) 

cuando   varía de 0 a infinito. El diagrama polar, se denomina, a menudo, 

diagrama de Nyquist. Cada punto en el diagrama polar de  (  ) representa el 

punto terminal de un vector en un valor determinado  .  

 
Figura 10: Diagrama polar. 
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A continuación se puede observar diagramas polares de funciones de 

transferencia sencillas. 

 

Figura 11: Diagrama polar, de distintas funciones de transferencias. 

D CRITERIO DE ESTABILIDAD DE NYQUIST 

El criterio de estabilidad de Nyquist determina la estabilidad del sistema en 

lazo cerrado a partir de la respuesta en frecuencia en lazo abierto y los polos en 

lazo abierto. Este criterio es muy útil en ingeniería de control, debido a que 

permite determinar gráficamente la estabilidad absoluta del sistema en lazo 

cerrado.  

Considere un sistema en lazo cerrado. Donde la función de transferencia en 

lazo cerrado es: 

   ( )  
 ( )

   ( ) ( )
 

para la estabilidad todas las raíces de la ecuación característica  ( )    

 ( ) ( )    deben estar en el semiplano izquierdo del lado s. El criterio de 

estabilidad de Nyquist relaciona la respuesta en frecuencia en lazo abierto 

 (  ) (  ) con el número de ceros y polos de    ( ) ( ) que se encuentran 

en el semiplano derecho del plano s.  

La trayectoria de Nyquist encierra el semiplano derecho del plano s así como 

todos los ceros y polos de 1 +  ( ) ( ) que tienen partes reales positivas. [Si no 

hay ceros de 1 +  ( ) ( ) en el semiplano derecho del plano s, no hay polos en 

lazo cerrado, y el sistema es estable.] 

La estabilidad del sistema en lazo cerrado se averigua examinando los 

rodeos del punto -1 + j0 mediante el lugar geométrico de  (  ) (  ). El número 

de rodeos en el sentido de las agujas del reloj del punto       se encuentra 

contando el número de rotaciones en el sentido de las agujas del reloj del vector. 

Un análisis similar es aplicable para los sistemas con un retardo de 
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transporte. La estabilidad de un sistema con retardo de transporte se determina a 

partir de las curvas de respuesta en frecuencia en lazo abierto examinando el 

número de rodeos en el punto      , al igual que en el caso de un sistema cuya 

función de transferencia en lazo abierto es un cociente de dos polinomios en s. 

En resumen:  

1. Este criterio se expresa como 

      

donde Z es el número de ceros de 1 +  ( ) ( ) en el semiplano derecho 

del plano s, N es el número de rodeos en el sentido de las agujas del reloj 

del punto       y P es número de polos de  ( ) ( ) en el semiplano 

derecho del plano s 

Si P no es cero, para un sistema de control estable, se debe tener Z = 0 o 

N = -P, lo cual significa que se deben tener P rodeos del punto       en 

el sentido de las agujas del reloj.  

Si  ( ) ( ) no tiene polos en el semiplano derecho del plano s, entonces 

Z = N. Por tanto, para la estabilidad no se debe rodear el punto        

mediante el lugar geométrico  (  ) (  ). 

2. Debe tenerse cuidado en el momento de probar la estabilidad de sistemas 

multilazo, debido a que pueden incluir polos en el semiplano derecho del 

plano s. Una simple revisión de los rodeos del punto       mediante el 

lugar geométrico  (  ) (  ) no es suficiente hay que determinar los 

polos, que se hace con facilidad aplicando el criterio de estabilidad de 

Routh al denominador de  ( ) ( ).  

Si se incluyen en  ( ) ( ) funciones trascendentes, tales como el retardo 

de transporte     , deben aproximarse mediante una expansión 

(Aproximación de Pade) en serie antes de aplicar el criterio de estabilidad 

de Routh. 

Un análisis de la estabilidad: 

Al examinar la estabilidad de los sistemas de control lineales mediante el 

criterio de estabilidad de Nyquist, se observa que se pueden presentar tres casos.  

1. El punto       no está rodeado. Esto implica que el sistema es estable 

si no hay polos de  ( ) ( ) en el semiplano derecho del plano s; de lo 

contrario, el sistema es inestable.  

2. El punto       queda rodeado una o varias veces en sentido contrario 

al de las agujas del reloj. En este caso, el sistema es estable si el número 

de rodeos en sentido contrario al de las agujas del reloj es igual al número 
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de polos  ( ) ( ) en el semiplano derecho del plano s; de lo contrario, el 

sistema es inestable.  

3. El punto       queda rodeado una o varias veces en el sentido de las 

agujas del reloj. En este caso el sistema es inestable. 

E APROXIMACIÓN DE PADÉ 

Las   aproximaciones   de   Padé   son   un   tipo   particular   de   aproximación   

en   fracciones racionales  respecto   al valor de   una función  f(x).   La  idea es  que   

dicha aproximación coincida con el desarrollo en serie de Taylor de la misma función 

en la medida de lo posible. La aproximación de Padé de orden (m, n) es la función 

racional: 

 

Trasladando la aproximación de Padé como tal a este Trabajo Fin de Grado, se 

reduce al ajuste a una función racional propia de la expansión en serie de una sola 

función trascendental, la exponencial     donde T es la cantidad de tiempo que se toma 

el sistema analizado en responder. Esto se debe a que  si   se considera  un   retardo  

puro T,   no   se   puede   utilizar   como   función   de transferencia debido a que no se 

trata de una división polinómica, por tal motivo se utiliza esta aproximación cuando 

existe un retardo, que se presenta en sistemas de orden superior. Padé permite 

representar el retardo como polos y ceros permitiendo considerar sus efectos al analizar 

el lugar de la raíz. 

Un ejemplo de la aproximación de Pade de orden 6, que es muy empleada durante 

el Trabajo fin de Grado: 

     
                                            

                                            
 

 

CASO 1: SISTEMA DE PRIMER ORDEN SIMPLE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

%%Declaración de variables. 

tau = 1; 

T=1; 

K=1; 

  

%Sistema sin retraso 

misis_0=tf(1,[tau 1]); 
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%Sistema con retraso 

misis=tf(1,[tau 1],'iodelay',T); 

  

%Sistema en bucle abierto 

figure(1); hold on %Respuesta escalón bucle abierto 

step(K*misis_0,K*misis) 

legend('Sin retardo','Con retardo'), grid on 

title ('Respuesta escalon unitario') 

  

%Sistema en bucle cerrado 

cadena_directa = K*misis/(1 + K*misis) 

cadena_directa_0 = K*misis_0/(1 + K*misis_0) 

figure(2); hold on %Nyquist 

nyquist(K*misis_0,K*misis,0.000001:0.001:1000) 

legend('Sin retardo','Con retardo') 

roots([tau 1]) %Los polos del sistema sin retardo, 

importante para Nyquist 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox_bc=K*num_pade 

den_aprox_bc=conv([tau 1],den_pade) 

cadena_directa_PS_teorico_aprox_bc=tf(num_aprox_bc,den

_aprox_bc) % Sistema aprox bc 

figure(3); hold on %Nyquist 

nyquist(K*misis,cadena_directa_PS_teorico_aprox_bc,0.0

00001:0.001:1000) 

legend('Exacto','Aproximado') 

roots(den_aprox_bc) %Los polos del sistema con 

retardo, importante para Nyquist 

figure(4); hold on 

step(cadena_directa_0,cadena_directa) 

legend('Sin retardo','Con retardo') 

  

%Predictor de Smith Teorico 

num= K*misis; 

den=1+K*misis_0-K*misis; 

cadena_directa_PS_teorico_exacto=num/den % Sistema 

exacto 

figure(5) 

bode(cadena_directa_PS_teorico_exacto) 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox=K*num_pade 

den_aprox=conv([tau 1],den_pade)+[0 K*(den_pade-

num_pade)] 

roots(den_aprox) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 
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cadena_directa_PS_teorico_aprox=tf(num_aprox,den_aprox

) % Sistema con aproximación de padé (orden 6) 

figure(6); hold on 

nyquist(cadena_directa_PS_teorico_exacto,0.03:0.0001:1

00); 

nyquist(cadena_directa_PS_teorico_aprox,0.03:0.0001:10

0); 

legend('Exacta','Aprox'); 

figure(7); hold on 

step(cadena_directa_PS_teorico_exacto/(1+cadena_direct

a_PS_teorico_exacto),50); 

step(cadena_directa_PS_teorico_aprox/(1+cadena_directa

_PS_teorico_aprox),500); 

legend('Exacta','Aprox'); 

  

%Predictor de Smith Real 

Kp = 4 

taup = 1 

Tp = 1 

deltaT=0.5; 

misis_0p=tf(1,[taup 1]) 

misis_p=tf(1,[taup 1],'iodelay',Tp) 

misis_delta_p=tf(1,[taup 1],'iodelay',Tp+deltaT) 

num_p= Kp*misis_p; 

den_p=1+Kp*misis_0p-Kp*misis_delta_p; 

cadena_directa_PS_teorico_exacto_p=num_p/den_p 

[num_pade,den_pade]=pade(Tp,6) 

[num_pade_p,den_pade_p]=pade(Tp+deltaT,6) % 

Aproximación de padé de orden 6 

num_aprox_p=Kp*conv(num_pade,den_pade_p) 

den_aprox_p=conv([taup 1],conv(den_pade,den_pade_p))-

[0 Kp*conv(num_pade_p,den_pade)]+[0 

Kp*conv(den_pade_p,den_pade)] 

cadena_directa_PS_teorico_aprox_p=tf(num_aprox_p,den_a

prox_p) % Sistema con aproximación de padé (orden 6) 

roots(den_aprox_p) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

figure(8); hold on %Miramos si sale bien 

nyquist(cadena_directa_PS_teorico_exacto_p,0.03:0.0001

:100); 

%nyquist(cadena_directa_PS_teorico_aprox_p,0.03:0.0001

:100); 

%legend('K= 32','K = 30'); 

figure(9); hold on 

step(cadena_directa_PS_teorico_exacto_p/(1+cadena_dire

cta_PS_teorico_exacto_p),500); 
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CASO 2: SISTEMA DE PRIMER ORDEN CON COMPLETO 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

%%Comparación K*(tauc*s + 1)/(tau*s + 1) y K*(tauc*s + 

1)/(tau*s + 1)*e^-Ts  

%%Declaración de variables. 

tauc = 0.5; 

tau = 1; 

T=1; 

K=1; 

  

%Sistema sin retardo 

misis_0=tf([tauc 1],[tau 1]); 

  

%Sistema con retado 

misis=tf([tauc 1],[tau 1],'iodelay',T); 

  

%Comportamiento en bucle abierto 

figure(1); hold on; 

step(K*misis_0,K*misis) 

legend('Sin retardo','Con retardo'), grid on 

title ('Respuesta escalon unitario') 

% bode(misis_0,misis) 

% legend('Sin retardo','Con retardo'), grid on 

% title ('Bode') 

  

%Comportamiento en bucle cerrado 

figure(2); hold on; 

nyquist(K*misis_0,K*misis,0.000001:0.001:1000)%Nyquist 

en bucle abierto 

legend('Sin retardo','Con retardo') 

cadena_directa_0 = K*misis_0/(1 + K*misis_0) 

cadena_directa = K*misis/(1 + K*misis); 

figure(3); hold on; 

step(cadena_directa_0,cadena_directa) 

legend('Sin retardo','Con retardo'), grid on 

figure(4); hold on; 

bode(cadena_directa_0,cadena_directa) 

legend('Sin retaardo','Con retardo'), grid on 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox_bc=K*conv([tauc 1],num_pade) 

den_aprox_bc=conv([tau 1],den_pade) 

cadena_directa_PS_teorico_aprox_bc=tf(num_aprox_bc,den

_aprox_bc) % Sistema aprox bc 

figure(5); hold on %Nyquist 
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nyquist(K*misis,cadena_directa_PS_teorico_aprox_bc,0.0

00001:0.001:1000) 

legend('Exacto','Aproximado') 

roots(den_aprox_bc) %Los polos del sistema con 

retardo, importante para Nyquist 

  

%Comportamiento del Predictor de Smith ideal 

num= K*misis; 

den=1+K*misis_0-K*misis; 

cadena_directa_PS_teorico_exacto=num/den % Sistema 

exacto 

figure(6); hold on; 

bode(cadena_directa_PS_teorico_exacto) 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox=K*conv([tauc 1],num_pade) 

den_aprox=conv([tau 1],den_pade)+K*conv([tauc 

1],(den_pade-num_pade)) 

roots(den_aprox) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_PS_teorico_aprox=tf(num_aprox,den_aprox

) % Sistema con aproximación de padé (orden 6) 

figure(7); hold on 

nyquist(cadena_directa_PS_teorico_exacto,0.03:0.0001:1

00); 

nyquist(cadena_directa_PS_teorico_aprox,0.03:0.0001:10

0); 

legend('Exacta','Aprox'); 

figure(8); hold on 

step(cadena_directa_PS_teorico_exacto/(1+cadena_direct

a_PS_teorico_exacto),50); 

step(cadena_directa_PS_teorico_aprox/(1+cadena_directa

_PS_teorico_aprox),500); 

legend('Exacta','Aprox'); 

  

%Comportamiento del Predictor de Smith real 

taucp=0.5; 

taup=1; 

Tp=1 

Kp = 1; 

deltaT = 0.05; 

misis_0p=tf([taucp 1],[taup 1]); 

misis_p=tf([taucp 1],[taup 1],'iodelay',Tp); 

misis_delta_p=tf([taucp 1],[taup 

1],'iodelay',Tp+deltaT); 

num_p= Kp*misis_p; 

den_p=1+Kp*misis_0p-Kp*misis_delta_p; 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

123 

 

%cadena_directa_PS_teorico_exacto_p=num_p/den_p; 

cadena_directa_PS_teorico_exacto_p=Kp*misis_p/(1+Kp*mi

sis_0p-Kp*misis_delta_p); 

[num_pade,den_pade]=pade(Tp,24); 

[num_pade_p,den_pade_p]=pade(Tp+deltaT,24); % 

Aproximación de padé de orden 6 

num_aprox_p=Kp*conv([taucp 

1],conv(num_pade,den_pade_p)) 

den_aprox_p=conv([taup 1],conv(den_pade,den_pade_p))-

Kp*conv([taucp 

1],conv(num_pade_p,den_pade))+Kp*conv([taucp 

1],conv(den_pade_p,den_pade)) 

cadena_directa_PS_teorico_aprox_p=tf(num_aprox_p,den_a

prox_p) % Sistema con aproximación de padé (orden 6) 

roots(den_aprox_p) 

figure(9); hold on %Miramos si sale bien 

nyquist(cadena_directa_PS_teorico_exacto_p,0.000001:0.

001:1000); 

nyquist(cadena_directa_PS_teorico_aprox_p,0.000001:0.0

01:1000); 

legend('Exacta','Aprox'); 

  

% %Ayuda para las simulaciones 

taucp=0.5; 

taup=1; 

Tp=1; 

K1p=1; 

K10p=2.5; 

K20p=3.5; 

misis_0p=tf([taucp 1],[taup 1]); 

misis_p=tf([taucp 1],[taup 1],'iodelay',Tp); 

misis_delta_p=tf([taucp 1],[taup 

1],'iodelay',Tp*1.01); 

cadena_directa_1p=K1p*misis_p/(1+K1p*misis_0p-

K1p*misis_delta_p); 

cadena_directa_10p=K10p*misis_p/(1+K10p*misis_0p-

K10p*misis_delta_p); 

cadena_directa_20p=K20p*misis_p/(1+K20p*misis_0p-

K20p*misis_delta_p); 

figure(10);hold on; 

nyquist(cadena_directa_1p,0.000001:0.001:1000) 

%nyquist(cadena_directa_1p,cadena_directa_10p,cadena_d

irecta_20p,0.000001:0.001:1000) 

%legend('K=1','K=2.5','K=3.5') 

figure(11); hold on; 

step(cadena_directa_1p/(1+cadena_directa_1p),50); 

step(cadena_directa_10p/(1+cadena_directa_10p),50); 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

124 

 

step(cadena_directa_20p/(1+cadena_directa_20p),50); 

legend('K=1','K=2.5','K=3.5') 

% bode(cadena_directa_p) 

 

CASO 4: SISTEMA DE PRIMER ORDEN COMPLETO + PI 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

%%Declaración de variables. 

tauc = 0.5; 

taui = 1; 

T=1; 

kkc=1; 

  

%Sistema sin retardo 

misis_0=tf([tauc 1],[taui 0]); 

  

%Sistema con retardo 

misis=tf([tauc 1],[taui 0],'iodelay',T); 

  

%%Comportamiento en bucle abierto 

figure(1); hold on; 

step(kkc*misis_0,kkc*misis) 

legend('Sin retardo','Con retardo'), grid on 

title ('Respuesta escalon unitario') 

  

%Comportamiento en bucle cerrado 

cadena_directa_0 = kkc*misis_0/(1 + kkc*misis_0); 

cadena_directa = kkc*misis/(1 + kkc*misis); 

figure(2); hold on; 

nyquist(kkc*misis_0,kkc*misis,0.000001:0.001:1000)%Nyq

uist en bucle abierto 

legend('Sin retardo','Con retardo') 

figure(3); hold on; 

step(cadena_directa_0,cadena_directa) 

legend('Sin retardo','Con retardo'), grid on 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox_bc=kkc*conv([tauc 1],num_pade) 

den_aprox_bc=conv([taui 0],den_pade) 

cadena_directa_PS_teorico_aprox_bc=tf(num_aprox_bc,den

_aprox_bc) % Sistema aprox bc 

figure(4); hold on; 

nyquist(kkc*misis,cadena_directa_PS_teorico_aprox_bc,0

.000001:0.001:1000) 

legend('Exacto','Aproximado') 
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roots(den_aprox_bc) %Los polos del sistema con 

retardo, importante para Nyquist 

figure(5); hold on; 

nyquist(kkc*misis,0.000001:0.001:1000) 

nyquist(1.5*misis,0.000001:0.001:1000) 

nyquist(2.5*misis,0.000001:0.001:1000) 

legend('K=1','K=1.5','K=2.5') 

figure(6); hold on; 

step(1*misis/(1 + 1*misis)) 

step(1.5*misis/(1 + 1.5*misis)) 

step(2.5*misis/(1 + 2.5*misis)) 

legend('K=1','K=1.5','K=2.5') 

  

%Comportamiento del Predictor de Smith ideal 

num= kkc*misis; 

den=1+kkc*misis_0-kkc*misis; 

cadena_directa_PS_teorico_exacto=num/den % Sistema 

exacto 

figure(7); hold on; 

bode(cadena_directa_PS_teorico_exacto) 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox=kkc*conv([tauc 1],num_pade) 

den_aprox=conv([taui 0],den_pade)+kkc*conv([tauc 

1],(den_pade-num_pade)) 

roots(den_aprox) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_PS_teorico_aprox=tf(num_aprox,den_aprox

) % Sistema con aproximación de padé (orden 6) 

figure(8); hold on 

nyquist(cadena_directa_PS_teorico_exacto,0.03:0.0001:1

00); 

nyquist(cadena_directa_PS_teorico_aprox,0.03:0.0001:10

0); 

legend('Exacta','Aprox'); 

figure(9); hold on 

step(cadena_directa_PS_teorico_exacto/(1+cadena_direct

a_PS_teorico_exacto),50); 

step(cadena_directa_PS_teorico_aprox/(1+cadena_directa

_PS_teorico_aprox),50); 

legend('Exacta','Aprox'); 

  

%Comportamiento del Predictor de Smith real 

taucp=0.5; 

tauip=1; 

Tp=1 

Kp = 2; 
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deltaT = 0.05; 

misis_0p=tf([taucp 1],[tauip 0]); 

misis_p=tf([taucp 1],[tauip 0],'iodelay',Tp); 

misis_delta_p=tf([taucp 1],[tauip 

0],'iodelay',Tp+deltaT); 

num_p= Kp*misis_p; 

den_p=1+Kp*misis_0p-Kp*misis_delta_p; 

cadena_directa_PS_teorico_exacto_p=Kp*misis_p/(1+Kp*mi

sis_0p-Kp*misis_delta_p); 

[num_pade,den_pade]=pade(Tp,32); 

[num_pade_p,den_pade_p]=pade(Tp+deltaT,32); % 

Aproximación de padé de orden 6 

num_aprox_p=Kp*conv([taucp 

1],conv(num_pade,den_pade_p)) 

den_aprox_p=conv([tauip 0],conv(den_pade,den_pade_p))-

Kp*conv([taucp 

1],conv(num_pade_p,den_pade))+Kp*conv([taucp 

1],conv(den_pade_p,den_pade)) 

cadena_directa_PS_teorico_aprox_p=tf(num_aprox_p,den_a

prox_p) % Sistema con aproximación de padé (orden 6) 

roots(den_aprox_p) 

figure(10); hold on %Miramos si sale bien 

nyquist(cadena_directa_PS_teorico_exacto_p,0.000001:0.

001:1000); 

nyquist(cadena_directa_PS_teorico_aprox_p,0.000001:0.0

01:1000); 

legend('Exacta','Aprox'); 

 

CASO 5: INTEGRADOR 

% Impacto de la errónea identificación del retardo 

puro en los 

% controladores basados en el proedictor de Smith 

% El caso de un sistema de primer orden completo / 

control proporcional 

  

%Declaración de variables 

K=2; T=1; deltaT=0.1;tau = 1; 

  

%Sistema sin retraso 

misis_0 = tf(1,[tau 0]) 

  

%Sistema con retraso 

misis = tf(1,[tau 0],'ioDelay',T)  

  

%%Comportamiento en bucle abierto 

figure(1); hold on; 
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step(K*misis_0,K*misis) 

legend('Sin retardo','Con retardo'), grid on 

title ('Respuesta escalon unitario') 

  

%Comportamiento en bucle cerrado 

cadena_directa_0 = K*misis_0/(1 + K*misis_0); 

cadena_directa = K*misis/(1 + K*misis); 

figure(2); hold on; 

nyquist(K*misis,0.000001:0.001:1000)%Nyquist en bucle 

abierto 

nyquist(1.5*misis,0.000001:0.001:1000)%Nyquist en 

bucle abierto 

nyquist(2*misis,0.000001:0.001:1000)%Nyquist en bucle 

abierto 

legend('K=1','K=1.5','K=2') 

%legend('Sin retardo','Con retardo') 

figure(3); hold on; 

step(K*misis/(1 + K*misis)) 

step(1.5*misis/(1 + 1.5*misis)) 

step(2*misis/(1 + 2*misis)) 

legend('K=1','K=1.5','K=2') 

%legend('Sin retardo','Con retardo'), grid on 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox_bc=K*conv(1,num_pade) 

den_aprox_bc=conv([tau 0],den_pade) 

cadena_directa_PS_teorico_aprox_bc=tf(num_aprox_bc,den

_aprox_bc) % Sistema aprox bc 

figure(4); hold on; 

nyquist(K*misis,cadena_directa_PS_teorico_aprox_bc,0.0

00001:0.001:1000) 

legend('Exacto','Aproximado') 

roots(den_aprox_bc) %Los polos del sistema con 

retardo, importante para Nyquist 

figure(5); hold on; 

nyquist(K*misis,0.000001:0.001:1000) 

nyquist(1.5*misis,0.000001:0.001:1000) 

nyquist(2.5*misis,0.000001:0.001:1000) 

legend('K=1','K=1.5','K=2.5') 

figure(6); hold on; 

step(1*misis/(1 + 1*misis)) 

step(1.5*misis/(1 + 1.5*misis)) 

step(2.5*misis/(1 + 2.5*misis)) 

legend('K=1','K=1.5','K=2.5') 

  

%Comportamiento del Predictor de Smith ideal 

num= K*misis; 
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den=1+K*misis_0-K*misis; 

cadena_directa_PS_teorico_exacto=num/den % Sistema 

exacto 

figure(7); hold on; 

bode(cadena_directa_PS_teorico_exacto) 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox=K*num_pade 

den_aprox=conv([tau 0],den_pade)+[0 K*(den_pade-

num_pade)] 

roots(den_aprox) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_PS_teorico_aprox=tf(num_aprox,den_aprox

) % Sistema con aproximación de padé (orden 6) 

figure(8); hold on 

nyquist(cadena_directa_PS_teorico_exacto,0.03:0.0001:1

00); 

nyquist(cadena_directa_PS_teorico_aprox,0.03:0.0001:10

0); 

legend('Exacta','Aprox'); 

figure(9); hold on 

step(cadena_directa_PS_teorico_exacto/(1+cadena_direct

a_PS_teorico_exacto),50); 

step(cadena_directa_PS_teorico_aprox/(1+cadena_directa

_PS_teorico_aprox),50); 

legend('Exacta','Aprox'); 

  

%Comportamiento del Predictor de Smith real 

taup=1; 

Tp=1 

Kp = 3; 

deltaT = 0.5; 

misis_0p=tf(1,[taup 0]); 

misis_p=tf(1,[taup 0],'iodelay',Tp); 

misis_delta_p=tf(1,[taup 0],'iodelay',Tp+deltaT); 

num_p= Kp*misis_p; 

den_p=1+Kp*misis_0p-Kp*misis_delta_p; 

cadena_directa_PS_teorico_exacto_p=Kp*misis_p/(1+Kp*mi

sis_0p-Kp*misis_delta_p); 

[num_pade,den_pade]=pade(Tp,6); 

[num_pade_p,den_pade_p]=pade(Tp+deltaT,6); % 

Aproximación de padé de orden 6 

num_aprox_p=Kp*conv(num_pade,den_pade_p) 

den_aprox_p=conv([taup 0],conv(den_pade,den_pade_p))-

[0 Kp*conv(num_pade_p,den_pade)]+[0 

Kp*conv(den_pade_p,den_pade)] 
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cadena_directa_PS_teorico_aprox_p=tf(num_aprox_p,den_a

prox_p) % Sistema con aproximación de padé (orden 6) 

roots(den_aprox_p) 

figure(10); hold on %Miramos si sale bien 

nyquist(cadena_directa_PS_teorico_exacto_p,0.000001:0.

001:1000); 

  

figure(11); hold on; 

step(cadena_directa_PS_teorico_exacto_p/(1+cadena_dire

cta_PS_teorico_exacto_p)) 

 

CASO 6: SISTEMA DE SEGUNDO ORDEN SIMPLE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% 

% Impacto de la errónea identificación del retardo 

puro en los 

% controladores basados en el proedictor de Smith 

% El caso de un sistema de 2º orden simple (polo 

doble) + control 

% proporcional 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% 

  

K=5; tau=2; T=1;  

  

% Sistema sin retraso 

misis_0= tf(1,[tau*tau 2*tau 1])  

  

% Sistema con retraso 

misis= tf([1],[tau*tau 2*tau 1],'ioDelay',T)  

  

%Respuesta bucle abierto 

figure(1);hold on; 

step(K*misis_0,K*misis,20) 

legend('Sin retardo','Con retardo'), grid on 

title ('Respuesta escalon unitario') 

  

%Estudio en bucle cerrado 

figure(2); hold on; 

nyquist(K*misis_0,0.01:0.0001:100) 

nyquist(10*misis_0,0.01:0.0001:100) 

nyquist(15*misis_0,0.01:0.0001:100) 

figure(3); hold on; 

step(K*misis_0/(1+K*misis_0)); 

step(10*misis_0/(1+10*misis_0)); 

step(15*misis_0/(1+15*misis_0)); 



Sensibilidad del Predictor de Smith respecto  

de desviaciones en la identificación del retardo.  
  

130 

 

legend('K=1','K=10','K=15') 

figure(4); hold on; 

nyquist(K*misis,0.01:0.0001:100); 

nyquist(1.5*misis,0.01:0.0001:100); 

nyquist(2*misis,0.01:0.0001:100); 

figure(5); hold on; 

step(K*misis/(1+K*misis)); 

step(2*misis/(1+2*misis)); 

step(3*misis/(1+3*misis)); 

%Obtenemos los polos de la cadena directa 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox_bc=K*num_pade 

den_aprox_bc=conv([tau*tau 2*tau 1],den_pade) 

roots(den_aprox_bc) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_bc=tf(num_aprox_bc,den_aprox_bc) 

figure(6); hold on 

nyquist(K*misis,0.01:0.0001:100); 

nyquist(cadena_directa_bc,0.01:0.0001:100); 

legend('Exacta','Aprox') 

  

% Sistema con predictor de Smith teórico 

num= K*misis; 

den=1+K*misis_0-K*misis; 

cadena_directa_PS_teorico_exacto=num/den % Sistema 

exacto 

figure(7); hold on; 

bode(K*misis_0/(1+K*misis_0)) 

bode(cadena_directa_PS_teorico_exacto) 

legend('Sin PS','Con PS') 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox=K*num_pade 

den_aprox=conv([tau*tau 2*tau 1],den_pade)+[0 0 

K*(den_pade-num_pade)] 

roots(den_aprox) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_PS_teorico_aprox=tf(num_aprox,den_aprox

) % Sistema con aproximación de padé (orden 6) 

figure(8); hold on 

nyquist(cadena_directa_PS_teorico_exacto,0.01:0.0001:1

00); 

nyquist(cadena_directa_PS_teorico_aprox,0.01:0.0001:10

0); 

legend('Exacta','Aprox'); 

figure(9); hold on 
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bode(cadena_directa_PS_teorico_exacto,0.01:0.0001:100)

; 

bode(cadena_directa_PS_teorico_aprox,0.01:0.0001:100); 

legend('Exacta','Aprox'); 

figure(10); hold on; 

nyquist(cadena_directa_PS_teorico_exacto,0.01:0.0001:1

00); 

figure(11); hold on; 

step(cadena_directa_PS_teorico_exacto/(1+cadena_direct

a_PS_teorico_exacto)) 

  

% Sistema con predictor de Smith real 

deltaT=0.5; 

K=10; 

misis_delta= tf(1,[tau*tau 2*tau 

1],'ioDelay',T+deltaT)  % Sistema identificado con 

error 

num2= K*misis; 

den2=1+K*misis_0-K*misis_delta; 

cadena_directa_exacto_2=num2/den2; 

figure(12); hold on; 

bode(cadena_directa_exacto_2); 

[num_pade_2,den_pade_2]=pade(1,12) % Aproximación de 

padé de orden 6 misis 

[num_pade_2_delta,den_pade_2_delta]=pade(1+deltaT,12)% 

Aproximación de padé de orden 6 misis_delta 

num_aprox_2=conv(K*num_pade_2,den_pade_2_delta) 

w=conv([tau*tau 2*tau 1],den_pade_2) 

den_aprox_2=conv(w,den_pade_2_delta)+[0 0 

(conv(K*den_pade_2,den_pade_2_delta)-

[conv(K*num_pade_2_delta,den_pade_2)])] 

roots(den_aprox_2) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_aprox_2=tf(num_aprox_2,den_aprox_2); % 

Sistema con aproximación de padé (orden 6) 

figure(13); hold on 

nyquist(cadena_directa_exacto_2,0.03:0.0001:100); 

nyquist(cadena_directa_aprox_2,0.03:0.0001:100); 

legend('Exacta','Aprox'); 

figure(14); hold on 

bode(cadena_directa_exacto_2,0.01:0.0001:100); 

bode(cadena_directa_aprox_2,0.01:0.0001:100); 

legend('Exacta','Aprox'); 

figure(15); hold on 

step(cadena_directa_exacto_2/(1+cadena_directa_exacto_

2),500); 

figure(16); hold on 
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nyquist(cadena_directa_exacto_2,0.03:0.0001:100); 

 

CASO 7: SISTEMA DE SEGUNDO ORDEN CON POLO EN EL 

ORIGEN 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

%%Declaración de variables. 

tau = 1;T=1;K=2; 

  

% Sistema sin retraso 

misis_0= tf(1,[tau 1 0])  

  

% Sistema con retraso 

misis= tf(1,[tau 1 0],'ioDelay',T)  

  

%Estudio en bucle abierto 

figure(1); hold on; 

step(K*misis_0,K*misis,20) 

legend('Sin retardo','Con retardo'), grid on 

title ('Respuesta escalon unitario') 

  

%Estudio en bucle cerrado 

figure(2); hold on; 

nyquist(K*misis_0,0.01:0.0001:100) 

nyquist(10*misis_0,0.01:0.0001:100) 

nyquist(15*misis_0,0.01:0.0001:100) 

figure(3); hold on; 

step(K*misis_0/(1+K*misis_0)); 

step(10*misis_0/(1+10*misis_0)); 

step(15*misis_0/(1+15*misis_0)); 

legend('K=1','K=10','K=15') 

figure(4); hold on; 

nyquist(K*misis,0.01:0.0001:100); 

nyquist(1.5*misis,0.01:0.0001:100); 

nyquist(2*misis,0.01:0.0001:100); 

figure(5); hold on; 

step(K*misis/(1+K*misis)); 

step(2*misis/(1+2*misis)); 

step(3*misis/(1+5*misis)); 

%Obtenemos los polos de la cadena directa 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox_bc=K*num_pade 

den_aprox_bc=conv([tau 1 0],den_pade) 

roots(den_aprox_bc) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 
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cadena_directa_bc=tf(num_aprox_bc,den_aprox_bc) 

figure(6); hold on 

nyquist(K*misis,0.01:0.0001:100); 

nyquist(cadena_directa_bc,0.01:0.0001:100); 

legend('Exacta','Aprox') 

pause 

% Sistema con predictor de Smith teórico 

num= K*misis; 

den=1+K*misis_0-K*misis; 

cadena_directa_PS_teorico_exacto=num/den % Sistema 

exacto 

figure(7); hold on; 

bode(cadena_directa_PS_teorico_exacto); 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox=K*num_pade 

den_aprox=conv([tau 1 0],den_pade)+[0 0 K*(den_pade-

num_pade)] 

roots(den_aprox) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_PS_teorico_aprox=tf(num_aprox,den_aprox

) % Sistema con aproximación de padé (orden 6) 

figure(8); hold on 

nyquist(cadena_directa_PS_teorico_exacto,0.01:0.0001:1

00); 

nyquist(cadena_directa_PS_teorico_aprox,0.01:0.0001:10

0); 

legend('Exacta','Aprox'); 

figure(9); hold on 

bode(cadena_directa_PS_teorico_exacto,0.01:0.0001:100)

; 

bode(cadena_directa_PS_teorico_aprox,0.01:0.0001:100); 

legend('Exacta','Aprox'); 

figure(10); hold on; 

nyquist(cadena_directa_PS_teorico_exacto,0.01:0.0001:1

00); 

figure(11); hold on; 

step(cadena_directa_PS_teorico_exacto/(1+cadena_direct

a_PS_teorico_exacto)) 

  

% Sistema con predictor de Smith real 

deltaT=0.5; 

K=2; 

misis_delta= tf(1,[tau 1 0],'ioDelay',T+deltaT)  % 

Sistema identificado con error 

num2= K*misis; 

den2=1+K*misis_0-K*misis_delta; 
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cadena_directa_exacto_2=num2/den2; 

[num_pade_2,den_pade_2]=pade(1,12) % Aproximación de 

padé de orden 6 misis 

[num_pade_2_delta,den_pade_2_delta]=pade(1+deltaT,12)% 

Aproximación de padé de orden 6 misis_delta 

num_aprox_2=conv(K*num_pade_2,den_pade_2_delta) 

w=conv([tau 1 0],den_pade_2) 

den_aprox_2=conv(w,den_pade_2_delta)+[0 0 

(conv(K*den_pade_2,den_pade_2_delta)-

conv(K*num_pade_2_delta,den_pade_2))] 

roots(den_aprox_2) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_aprox_2=tf(num_aprox_2,den_aprox_2) % 

Sistema con aproximación de padé (orden 6) 

figure(12); hold on 

nyquist(cadena_directa_exacto_2,0.03:0.0001:100); 

nyquist(cadena_directa_aprox_2,0.03:0.0001:100); 

legend('Exacta','Aprox'); 

figure(13); hold on 

bode(cadena_directa_exacto_2,0.01:0.0001:100); 

figure (14); hold on 

step(cadena_directa_exacto_2/(1+cadena_directa_exacto_

2),500); 

figure(15); hold on; 

nyquist(cadena_directa_exacto_2,0.03:0.0001:100); 

 

CASO 8: SISTEMA DE SEGUNDO ORDEN CON CERO 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

%K*(tauc*s + 1)/(tau^2*s^2 +2*tau*s 1) y K*(tauc*s + 

1)/(tau^2*s^2 +2*tau*s 1)*e^-Ts 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

%%Declaración de variables. 

tau = 1; 

tauc = 0.5; 

T=1; 

K=15; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

%Sistema sin retardo 

misis_0=tf([tauc 1],[tau*tau 2*tau 1]); 

  

%Sistema con retardo 

misis=tf([tauc 1],[tau*tau 2*tau 1],'iodelay',T); 
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%Estudio en bucle abierto 

figure(1); hold on; 

step(K*misis_0,K*misis) 

legend('Sin retardo','Con retardo'), grid on 

title ('Respuesta escalon unitario') 

  

  

%Estudio en bucle cerrado 

cadena_directa_0 = K*misis_0/(1 + K*misis_0); 

cadena_directa = K*misis/(1 + K*misis); 

figure(2); hold on 

nyquist(1*misis_0,5*misis_0,10*misis_0,0.000001:0.001:

1000) 

%legend('Sin retardo','Con retardo') 

legend('K=1','K=5','K=10') 

title('Nyquist del sistema sin retardo') 

figure(3); hold on; 

nyquist(K*misis,0.000001:0.001:1000)%Nyquist en bucle 

abierto 

nyquist(3.5*misis,0.000001:0.001:1000)%Nyquist en 

bucle abierto 

nyquist(4*misis,0.000001:0.001:1000)%Nyquist en bucle 

abierto 

legend('K=1','K=3','K=5') 

%legend('Sin retardo','Con retardo') 

figure(4); hold on; 

step(K*misis/(1 + K*misis)) 

step(3.5*misis/(1 + 3.5*misis)) 

step(4*misis/(1 + 4*misis)) 

legend('K=1','K=3','K=5') 

%legend('Sin retardo','Con retardo'), grid on 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox_bc=K*conv([tauc 1],num_pade) 

den_aprox_bc=conv([tau*tau 2*tau 1],den_pade) 

cadena_directa_PS_teorico_aprox_bc=tf(num_aprox_bc,den

_aprox_bc) % Sistema aprox bc 

figure(5); hold on; 

nyquist(K*misis,cadena_directa_PS_teorico_aprox_bc,0.0

00001:0.001:1000) 

legend('Exacto','Aproximado') 

roots(den_aprox_bc) %Los polos del sistema con 

retardo, importante para Nyquist 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 
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% Sistema con predictor de Smith teórico 

num= K*misis; 

den=1+K*misis_0-K*misis; 

cadena_directa_PS_teorico_exacto=num/den % Sistema 

exacto 

figure(6);hold on; 

bode(cadena_directa_PS_teorico_exacto) 

%legend('K = 1','K = 10','K = 15') 

grid; 

figure(7); hold on; 

nyquist(cadena_directa_PS_teorico_exacto,0.000001:0.00

1:1000) 

%legend('K = 1','K = 10','K = 15') 

figure (8); hold on 

step(cadena_directa_PS_teorico_exacto/(1+cadena_direct

a_PS_teorico_exacto)); 

%legend('K = 1','K = 10','K = 15') 

[num_pade,den_pade]=pade(1,6) % Aproximación de padé 

de orden 6 

num_aprox=K*conv([tauc 1],num_pade) 

den_aprox=conv([tau*tau 2*tau 1],den_pade)+[0 

K*conv([tauc 1],den_pade)]-[0 K*conv([tauc 

1],num_pade)] 

roots(den_aprox) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_PS_teorico_aprox=tf(num_aprox,den_aprox

) % Sistema con aproximación de padé (orden 6) 

figure(9); hold on 

nyquist(cadena_directa_PS_teorico_exacto,0.01:0.0001:1

00); 

nyquist(cadena_directa_PS_teorico_aprox,0.01:0.0001:10

0); 

legend('Exacta','Aprox'); 

hold off 

  

%Sistema del predictor de Smith Real 

deltaT=0.01; 

K=700; 

misis_delta= tf([tauc 1],[tau*tau 2*tau 

1],'ioDelay',T+deltaT)  % Sistema identificado con 

error 

num2= K*misis; 

den2=1+K*misis_0-K*misis_delta; 

cadena_directa_exacto_2=num2/den2; 

figure(10); hold on; 

nyquist(cadena_directa_exacto_2,0.01:0.0001:100); 

title('Diagrama de Nyquist, deltaT:0.05') 
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%figure(11); hold on; %%MEJOR OBTENERLO CON SIMULINK%% 

%step(cadena_directa_exacto_2/(1+cadena_directa_exacto

_2)); 

[num_pade_2,den_pade_2]=pade(1,12) % Aproximación de 

padé de orden 6 misis 

[num_pade_2_delta,den_pade_2_delta]=pade(1+deltaT,12)% 

Aproximación de padé de orden 6 misis_delta 

h=conv(num_pade_2,den_pade_2_delta) 

num_aprox_2=conv(K*[tauc 1],h) 

w=conv([tau*tau 2*tau 1],den_pade_2) 

t=conv(den_pade_2,den_pade_2_delta) 

p=conv(num_pade_2_delta,den_pade_2) 

den_aprox_2=conv(w,den_pade_2_delta)+[0 conv(K*[tauc 

1],t)]-[0 conv(K*[tauc 1],p)] 

roots(den_aprox_2) % IMPORTANTE MIRARLO PARA APLICAR 

NYQUIST 

cadena_directa_aprox_2=tf(num_aprox_2,den_aprox_2) % 

Sistema con aproximación de padé (orden 6) 

figure(12); hold on 

nyquist(cadena_directa_exacto_2,0.03:0.0001:100); 

nyquist(cadena_directa_aprox_2,0.03:0.0001:100); 

legend('Exacta','Aprox'); 

figure(13); hold on 

bode(cadena_directa_exacto_2,0.01:0.0001:100); 

bode(cadena_directa_aprox_2,0.01:0.0001:100); 

legend('Exacta','Aprox'); 

 

EXTRA 

%%Declaración de variables. 

tau = 1; 

T=1; 

T3=3; 

k=1; 

%%Comparación K/(tau*s + 1) y K/(tau*s + 1)*e^-Ts en 

bucle abierto 

misis_0=tf(k,[tau 1]); 

misis=tf(k,[tau 1],'iodelay',T); 

misis_3=tf(k,[tau 1],'iodelay',T3); 

figure(1); hold on 

step(misis_0) 

title ('Respuesta a una entrada escalón sin retardo') 

figure(2); hold on 

step(misis_0,misis,misis_3) 

title ('Respuesta a una entrada escalón con y sin 

retardo') 
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legend('Sin retardo','Con retardo(T=1)','Con 

retardo(T=3)'), grid on 

%%%%%%%%Puntos de corte para el cálculo de funciones 

fa1 = @(x) atan(-x)-x+pi; 

x = linspace(0.01,5,100); 

y = fa1(x); 

plot(x,y),grid 

x0 = 1; 

x = fzero(fa1,x0) 

%%%%%%%%Otro punto de corte 

fa2 = @(x) atan(-1.5.*x-0.5.*x.*x.*x)-x+pi; 

x = linspace(0.01,5,100); 

y = fa2(x) 

plot(x,y),grid 

x0 = 1; 

x = fzero(fa2,x0) 

%%%%%%%%Otro punto de corte 

fa3 = @(x) atan(1./x)-x-pi; 

x = linspace(0.01,5,100); 

y = fa3(x) 

plot(x,y),grid 

x0 = 0; 

x = fzero(fa3,x0) 

%%%%%%%%Mas puntos de corte 

fa4 = @(x) -atan((4.*x)./(1-(4.*x.*x)))-x+pi; 

x = linspace(0.01,5,100); 

y = fa4(x) 

plot(x,y),grid 

x0 = 0; 

x = fzero(fa4,x0) 

 


