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RESUMEN

El objetivo principal de este Trabajo Fin de Grado es analizar el
comportamiento del Predictor de Smith (PS) ante pequefias desviaciones en la
identificacion del retardo. El analisis abarcar4 una casuistica de sistemas con
retraso puro bucle cerrado que comprendera los mas comunes.

A lo largo de este documento se abordaran distintos sistemas de primer y
segundo orden con retardo puro, de forma que primeramente se analizara su
comportamiento en bucle cerrado, sin Predictor de Smith. A continuacion se
introducira el Predictor de Smith en condiciones ideales (es decir, con el retardo
perfectamente identificado), analizando su comportamiento y en especial su
estabilidad. Finalmente, se analizara el impacto que supone en las prestaciones del
Predictor de Smith la introduccion de una pequefia desviacion en la identificacion
del retardo (“Predictor de Smith Real”).

Se obtendran conclusiones del analisis realizado anteriormente,
reflexionando acerca de la aplicabilidad de esta técnica a los diversos sistemas
bajo estudio.

Es importante sefialar que, a diferencia de otros estudios realizados sobre la
cuestién que nos ocupa, todo el andlisis se realizard por medio del criterio de
Nyquist. Es decir, usando en todo momento un razonamiento eminentemente
gréfico.
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1. Introduccion

Los sistemas con retardos aparecen en situaciones en las se tienen tiempos
de procesamiento considerables (procesamiento de control o tratamiento de
sefales), situaciones en las que se da un transporte de materia y/o energia, en
mediciones, etc. Ejemplos de ellos son: Sistemas de control en cuyos lazos hay
sensores como camaras, columnas de destilacion, procesos industriales, procesos

quimicos, térmicos...por mencionar algunos casos.

Un sistema que presenta un retardo implica que desde que actuamos sobre el
sistema, hasta que la variable comienza a responder transcurre un tiempo T.

. . . 1
Es decir, si se supone un sistema, Gy(s) = -7 donde este puede representar

un circuito RC, un sistema térmico o algo similar. Su comportamiento ante una
entrada escalon es:

Respuesta a una entrada escalén sin retardo

1 y T T e

0.9 /

Amplitude
e 2o 2 ©2o 2o 9
[#%] + [4)] [#2] =~ co
T

<
i)
T

0 1 2 3 4 5 6 7 8 9
Time (seconds)
Grafica 1. Respuesta de un sistema de primer orden simple ante una entrada escalon.

Pero si al mismo sistema se le afiade un retardo de T segundos, es decir:

1
s+ 1

G(s) = Gy(s)e™Ts = —Ts

e

Para distintos valores de T, la respuesta que se obtiene es:

14
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Respuesta a una entrada escalén con y sin retardo

1 L ]

- P

-~ Sin retardo

0.9 / / ‘ Con retardo(T=1) | |
/ Con retardo(T=3)

.f'/

Amplitude
© © ©o o o o
[#5] =Y [#] ()] | co

=]
3]
T

0.1y

0 | 2 4 6 8 1IO 12
Time (seconds)
Grafica 2. Respuesta de un sistema de primer orden simple con retardo.

Como se puede observar, en un sistema que esta en bucle abierto (Figura 1),
es decir, en el que actu6 y obtengo su respuesta, al afiadir un retardo, se
comportard de la misma forma pero respondiendo T segundos mas tarde. Por lo
que, en estos casos, un retardo puro, no va a afectar a la estabilidad.

— G6ls)

Figura 1: Sistema en bucle abierto.

Pero en cadena cerrada o si se prefiere bucle cerrado (Figura 2), es decir, al
afadir realimentacién, ya no ocurre esto, pues el retardo aparece en el
denominador. Lo que ya no solamente provoca un retraso en la respuesta, sino que
al estar también en el denominador, modifica los polos del sistema y, por tanto,
puede afectar a la estabilidad. Sefialar que, pese a que la ecuacion caracteristica es
trascendente, es posible aproximar el término exponencial por medio de la
aproximacion de Padé, por lo que puede seguir hablandose en términos de polos y
ceros.

K _
G(s) = e B kxe™Ts
S_1+ K e_Ts_Ts+1+k*e‘T5
s+ 1

15



Sensibilidad del Predictor de Smith respecto
de desviaciones en la identificacion del retardo.

R(s)

G(s)

Universidad
Zaragoza

Figura 2: Sistema en bucle cerrado.

Otra forma de abordar el analisis de este tipo de sistemas es a través del
diagrama de Bode (DdB) (Gréfica 3), donde el margen de fase puede llegar a
hacerse negativo en el caso del sistema con retardo, y de esta forma afectar a la
estabilidad de mi sistema (Gréfica 4).

Bode Diagram

0 T —

Magnitude (dB)
& L N
] S )

A
oo
I
|

-2880

Phase (deg)

-4320

-5760 ——
102 107" 10° 10"
Frequency (rad/s)

R R I
o Sin retardo
-1440 | Con retardo |

102

Grafica 3: Comparacion DdB de un sistema con

retardo y sin retardo.

Step Response

Sin retardo
Con retardo y K=1
Con retardo y K=2

Amplitude

2

4

6 8 10

Time (seconds)

Grafica 4: Comparacion respuesta escalon de un

sistema con retardo y sin retardo.

A la vista de la facilidad con la que ese tipo de sistemas puede
inestabilizarse, el control de sistemas con retraso puro, resulta casi siempre
dificultoso. Una de las soluciones que se propone es emplear el Predictor de
Smith, que es una técnica basada en la compensacion del tiempo muerto, es decir,
compensar el problema de los retardos matematicamente.

Consideremos como punto de partida un proceso con retraso puro en lazo
cerrado (Figura 2). Para compensar el retardo se afiade un modelo dado por G, y

e~ quedando de la forma:

—@— R(s)

G(s)

h' 4

Gyl(s)

eh

-As

Fo

+

Figura 3: Estructura del Predictor de Smith.
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Donde G, = H(s) representa la dinamica de mi proceso, como si este no
tuviera ningln retraso y e~ representa el retardo. Si sustituimos, y realizamos
los célculos, la funcidn de transferencia del sistema queda de la forma:

+ +

R(s) GO(s)*eN-Ts

v

L Hs)(1- en )

Figura 4: Estructura del predictor de Smith simplificada.

R(s)Go(s)e™"
1+ R(s)Gy(s)(1 —e~T5)

CD(s) =

~ R(s)Go(s)e™ ™ _
FdT(S) = 1+ R(S)GO(S)(l _ e_Ts) + R(S)GO(S)B_TS =

R(s)Go(s)e™ ™ _ R(s)Gy(s) .
1+ R(5)Go(s) — R(5)Go(s)e~TS + R(5)Go(s)e TS 1+ R(5)Gy(s)

—Ts

Como se puede observar, al aplicar la estructura del Predictor de Smith, el
retardo queda Unicamente en el numerador (Ecuacién anterior), de forma que
conseguimos que el retardo (que seguird estando presente), no afecte a la
estabilidad del sistema.

Este Predictor de Smith es capaz de predecir lo que va a suceder en la salida
real en base al modelo G, sin retardo, y el retardo T, pues este es capaz de calcular
sin error, que va a suceder. Y el controlador se consigue anticipar un tiempo igual
al retraso. Pero la clave del Predictor reside en la correcta identificacion de G, y
del retardo A, pero, como se trata de tiempos, es facil cometer un error en la
estimacion del retardo, entonces... ;Qué sucederia si se comete un error en la
estimacion, es decir, el retardo es la suma entre el retardo y una desviacion que se
acometido, A =T + §?

La respuesta a esta pregunta, es la que se va a resolver durante este Trabajo
Fin de Grado.

17
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2. Objetivos y metodologia

El Predictor de Smith (PS) es la estrategia de control mas extendida cuando
se trata de gobernar sistemas que presentan retardos puros. El objetivo del trabajo
es analizar, por medio del criterio de Nyquist, el impacto en las prestaciones del
control basado en el PS, ante la incorrecta identificacion del retardo del sistema
que va a ser controlado. Se analizara el efecto del error en la identificacion del
retardo para una casuistica diversa que incluye los sistemas mas habituales,
permitiendo obtener conclusiones acerca de las limitaciones del uso de esta
técnica.

Para cada caso de estudio, se realizaran calculos numéricos vy
representaciones graficas mediante MATLAB y SIMULINK, analizando el efecto
del retardo en el control, el efecto del Predictor de Smith tedrico y el efecto de un
Predictor de Smith con un pequefio error en la identificacion del retardo que
realmente presenta el sistema a controlar.

En resumen, se analizaran diferentes casos practicos, y se estudiara el
comportamiento de un Predictor de Smith tedrico (sin error en la estimacion del
retardo), y el de un Predictor de Smith Real (con error en la estimacion del
retardo), con el objetivo de poder hacer una critica sobre el Predictor de Smith, la
cual sera la conclusion de este trabajo.

Los sistemas que van a ser analizados son aquellos que en su cadena directa
(o bucle abierto) presentan las siguientes funciones de transferencia:

Sistema de primer orden.

Sistema de primer orden completo.

Sistema de primer orden + PI con cancelacion.
Integrador.

Sistema de segundo orden.

Sistema de segundo orden con un polo en cero.
Sistema de segundo orden completo.

No ak~wbdE

Recomendaciones de lectura: Debido a la extension del Trabajo fin de
grado y a la similitud en los procedimientos empleados para cada uno de los
apartados, al lector se le recomienda leer con mas detalle los apartados “3.Sistema
de primer orden”, “4.Sistema de primer orden completo” y “10.Conclusién”. Con
ello se consigue que el lector ya tenga una idea clara de lo que se presenta en este
TFG.
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3. Sistema de primer orden.

Supdngase un primer sistema de primer orden con retraso puro controlado
con un regulador proporcional, igual al que se ha mencionado anteriormente
(1.Introducién):

G(s) = Gy(s)e TS =K ! e~ Ts
1+7ts

Para este sistema, se va a hacer un estudio de su estabilidad en bucle cerrado,
del Predictor de Smith Tedrico y del Predictor de Smith cometiendo un error en la
estimacion del retardo.

3.1 El efecto del retraso puro en bucle cerrado

Se comienza afadiendo una realimentacion, quedando el sistema en bucle
cerrado (Figura 2). Si se obtiene la funcion de transferencia de ambos sistemas
(sistema con retardo, y sistema sin retardo):

o Funcidn de transferencia del sistema sin el retardo:

_K K
FdT(s) = s+ 1 _
(s) 14 K s+1+K
s+1
o Funcion de transferencia del sistema con el retraso:
Lle_’rs K * e—TS
FdT(s) = -5+ = -
K s 1s+1+K=xeTs
1+
s+ 1

Como se ha mencionado anteriormente, la presencia del retardo en el
denominador puede afectar a la estabilidad de mi sistema, debido a que puede
modificar los polos del sistema.

Con el diagrama de Nyquist (DN) del sistema en bucle abierto (0 si se
prefiere de la cadena directa), podemos estudiar la estabilidad en BC. Por tanto
siguiendo con este ejemplo:

Empezamos haciendo un analisis breve para el sistema sin retardo,
sustituyendo s por jw, y analizando su comportamiento a bajas y altas frecuencias:

e T1 (Tramo 1): A frecuencias bajas.

1 _{ ICD(jw)| = K

v&lino CDGw) = A}Ln K Arg(CD(jw)) = 0°

o 1+ 7w

19
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e T2 (Tramo 2): A altas frecuencias.
lim CD(jw) = lim K |ICDGw)| =0
1m w)=IlimK—— =
Jim €D woo 1+ tjw  |Arg(CD(Gw)) = —90°

Por tanto el diagrama de Nyquist, partird del valor K, y tendera a cero, sin
cortar en ningin momento el semieje negativo de abcisas. Como se puede
observar a continuacion, para distintos valores de K:

Nyquist Diagram

Imaginary Axis

-1 0 1 2 3 4 5
Real Axis
Grafica 5: DN de un sistema de primer orden simple sin retardo.
Como se ha realizado la simulacion para una T = 1, solo presenta un Unico

polo, en -1, por tanto, el Criterio de Nyquist nos dice que el sistema es estable.

Repitiendo el andlisis para el sistema con retardo:

-Tjw _—_

CDGW) = Go(jw)e~TW = K ——o=Tiw = g (L= TUW)
° 1+ 7w A+ gw)(1 —gw)

A=tw) | 16DGW)I =
1+ 72w?2

1
pIgee——
V1 + 2w?
Arg(CD(jw)) = tan"1(—tw) — Tw

Analizamos por tramos:

e T1: A frecuencias bajas, el DN partira de K con fase 0°

lim CDGw) = lim K 1 o-TiW |CD(jw)| = K
w-0 T wo0 1+ ™w o Arg(CD(]‘W)) = Q9

e T2: A altas frecuencias, el DN tiende a 0 con una fase de —oo.

ltm CDGw) = lim K 1 T — |ICD(Gw)| =0
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Por tanto como la magnitud disminuye de forma monotonica a partir del
valor de K y el angulo de fase disminuye de forma monotdnica e indefinida, el
diagrama polar de la funcion de transferencia determinada es una espiral. Ello
puede abrir una puerta a la inestabilizacion debido a que dicha espiral, provocada
por el retardo, intersecta en el semieje negativo de abcisas.

e T3 (Tramo 3): Lo siguiente que hay que analizar es el primer punto
de corte con el semieje negativo de abcisas. EI cual se produce
cuando tan~!(—tw) —Tw = —180°. Si representamos dicha
funcion (Con T=1vy t=1):

4

0 o5 1 15 2 25 3 35 4 45 5

Gréfica 6: Representacion de tan~1(—tw) — Tw + 1802, con el fin de obtener el primer corte con el
semieje negativo de abcisas.

Cuando w = 2.0288, se produce el primer corte con el semieje

negativo de abcisas. Este valor se sustituye en el modulo, obteniendo:

K
V1+ 122.028821 2.2618

[CDGw)| = [1]|K]| =K * 0.44211

Por tanto si el modulo |G(jw)| es mayor que 1, eso significa que estara
dando una vuelta en sentido antihorario al punto critico -1. Esto se produce para
un valor de K = 2.2618.

El criterio de estabilidad de Nyquist establece que “para que un sistema sea
estable, el nUmero de polos en el semiplano derecho tiene que ser igual al nimero
de vueltas en sentido antihorario, de lo contrario, el sistema sera inestable.” Como
el sistema no presenta ningun polo inestable, cuando alcance el punto critico — 1y
esto, se produce cuando K =>2.2618.

A continuacion se puede observar una representacion grafica parauna T = 1,
y distintos valoresde K. (K=1, K=2, K=23)
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Nyquist Diagram

K=1
K=2|"
K=3

Imaginary Axis
o
+

-1.5 -1 0.5 0 0.5 1 1.5 2 2.5 3
Real Axis

Grafica 7. DN del sistema de primer orden simple con retardo.

105 Step Response

K=1
K=2|]
K=3

o

- N oW s

Amplitude

0 20 40 60 80 100
Time (seconds)

Gréfica 8. Respuesta ante una entrada escalon del sistema de primer orden con retardo.

Como se puede observar en el DN, cuando el sistema tiene una ganancia
menor a 2.26 (K = 2 0 K = 1), el sistema es estable. Pero al superar dicho valor (K
= 3), el sistema rodea al punto critico -1, y el sistema se vuelve inestable (Grafica
8).

3.2 Predictor de Smith ideal

Con el objetivo de estabilizar el sistema, se va a emplear la estructura del
Predictor se Smith para el sistema con retardo (Figura 4).

La cadena directa del Predictor de Smith, como se ha mencionado
anteriormente, queda de la siguiente forma:

R(s)G(s)e™Ts
1+ R(s)G(s) — R(s)G(s)e~(T+8)s

CD(S) =

Que particulariza para este caso:

Ke_TS

CD =
() 1+K+71s—Ke™Ts
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Como se ha hecho en el apartado anterior, analizamos el diagrama polar.

Ke—TjW

ChGw) = 1+ K+ 1jw — Ke™T/w

e T1: A bajas frecuencias (cuando w—0), el diagrama polar de CD(s)
parte de un valor finito K y con una fase de 0°:

K { ICD(jw)| = K

Mm CDUW) = Tk —k ~ arg(CD(w)) = 0°

e T2: A altas frecuencias (cuando w—): Termina en 0, con una fase
de —oo.

Ke~Tiv CD(jw)| =0
lim CD(jw) = —>{ |CDGw)|
w—00

1+ K +1jw—Ke T |Arg(CD(jw)) = —oo

La presencia del factor e~7/" en el numerador no afecta al mdédulo
(Unicamente a la fase, indicando que a altas frecuencias, el DN va a exhibir un
comportamiento ciclico en forma de espiral). En cambio, la presencia de dicho
factor en el denominador si afecta al modulo del sistema, por ello se analizan los
valores maximos y minimos de dicho médulo:

e Cuando wT = (2N)m, siendo e~T/* = 1, tenemos un minimo en el
denominador (los términos que contienen a la K se cancelan), lo que
hace que el médulo del sistema presente un méaximo:

Ke™Tiv
1+K+w—K

CD(jw) =

K 1CDGW)I =

1
e
Arg(CD(jw)) = tan™*(—tw) — Tw
e Cuando wT = (1 + 2N)m, siendo e~ /W = —1, tenemos un Maximo

en el denominador (los términos que contienen a la K se suman), lo
gue hace que el modulo del sistema presente un minimo:

Ke_TjW

1+ 7w

Gw) 1+K+tjw+K
1
|ICD(jw)| =1 * K *
K e-Tiw V(A +2K)% + 12w?2
1+ 2K + 7gjw ) ™w
Arg(CD(jw)) = 1T 2K

Como estos valores extremos se producen una vez cada vuelta, con el mismo
argumento y en sendos puntos del eje de abcisas (no hay desfase), solo se analizan
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estos valores. Para el caso w = (2N) % aunque si que hay valores de K, donde el

maodulo se haga mayor que 1, este valor no preocupa, debido a que este punto va a
cortar siempre en el semieje positivo de abcisas, al tratarse del extremo derecho de
cada Iébulo de la espiral (ver grafica 9). Sin embargo, para el caso de w = (1 +

2N) % si que corta en el semieje negativo de abcisas, pero su médulo siempre va

a ser menor que 1, pues para una ganancia suficientemente elevada, el valor que
alcanza en el primer cruce por el eje de abcisas no tiene en cuenta el termino tjw

(de pequeiio valor en comparacién con el valor de K) y por tanto solo alcanza el

K

valor de —0,5 (m) De forma que en el Diagrama de Nyquist, nunca alcanzara

el punto critico.

Aplicando el Criterio de Nyquist, el sistema se va a comportar de forma
estable, debido a que el nimero de polos inestables, es igual al nimero de rodeos
al punto critico, que en ambos casos es cero.

A continuacion se pueden observar las gréficas, para K=1, K=10y K =
100.

Nyquist Diagram

+& /

Imaginary Axis
‘ o

-20 0 20 10 60 80 100
Real Axis
Grafica 9: Diagrama de Nyquist del predictor de Smith ideal.

Step Response

Amplitude

0 10 20 30 40 50
Time (seconds)

Grafica 10: Respuesta escaldn del predictor de Smith ideal.
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Por tanto, el Predictor de Smith Tedrico da muy buenos resultados, pues
logra que el sistema con retardo puro (que era inestable para ganancias mayores
que 2,26) sea estable para todo K positivo.

3.3 Predictor de Smith real

Como hemos visto en el apartado anterior, la eficacia del Predictor de Smith
es excelente, pero esta se consigue gracias a la perfecta identificacion de H(s), y A.
Pero en este apartado vamos a ver qué sucederia si se ha identificado
correctamente a Gy(s), es decir: H(s) = Gy(s), pero no asi al retraso puro, es
decir:A = T + §, donde & representa la desviacion en la estimacion del retardo.

En este apartado, la cadena directa de nuestro sistema, con la estructura del
Predictor de Smith Real, quedara de la siguiente forma:

Ke—TS

OO = T K F s —Ke-Tvos

Analicemos esta cuestion en detalle:

e T1: A bajas frecuencias (cuando w—0), el diagrama polar de CD(s)
parte de un valor finito (K) con un angulo de fase de 0°:

K { ICD(jw)| = K

Mm CDUW) = 77k =k ~ \arg(cD(iw)) = 0°

e T2: A altas frecuencias (cuando @—o0): Termina en 0, con una fase
de —oo.

Ke~T/v |CD(jw)| =0
lim CD(jw) =
w—> 00

1+K + gw — Ke-@+ow  |Arg(CD(jw)) = —o

Al igual que antes la presencia del factor e~7/* en el numerador no afecta al
modulo, pero la presencia del factor e=("*9Jw en el denominador si afecta al
modulo, de forma, que los valores maximos y minimos son:

e Cuando w(T +8) = 2Nm, siendo e~ T+%/w =1  tenemos un
minimo en el denominador (los términos que contienen a la K se
cancelan), lo que hace que el mddulo del sistema presente un
maximo:

Ke_TjW
1+K+1tjw—K -

CD(jw) =
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K o |CDo'w)|=|1||K||

Tjw

1
— V1 + t2w?
1+ jw . -1

Arg(CD(jw)) = tan™ (—tw) — Tw
e Cuando w(T + &) = (2N + 1)m, siendo e T/W = —1, tenemos un
maximo en el denominador (los términos que contienen a la K se
suman), lo que hace que el médulo del sistema presente un minimo:

Ke™Tiv
D(i = =
CO0W) = T R T ow+ K
1
|ICD(jw)| =1 * K *
K Tjw{ V(A +2K)2 + 12w?
1+ 2K + tjw Ara(CD(i ™wW
\ rg(CDGW)) = 15755

El DN va a presentar una forma de espiral que tiende al origen, de forma
similar a lo que venia sucediendo con el PS tedrico, solo que esta vez, debido a la
incorrecta identificacion del retardo, estos valores maximos y minimos ya no
corresponden con multiplos de m, sino con los valores: (1+2N)n/(1+38/T) y
2N7t/(1+38/T), es decir, cada uno de los valores extremos se producen con T/
argumentos diferentes. Por tanto, para que ahora el sistema sea estable, ambos
maodulos deben de ser menor que 1. Se trata por tanto de encontrar el modulo a la
frecuencia para la cual, el primer maximo alcanza el semieje negativo de abcisas:

Como hemos visto anteriormente, la frecuencia para la cual se dan los
maximos es:

2Nt

T = 2N =
w(T + 6) T—->W T+35

¢En cuantas vueltas (I6bulos) se alcanza el semieje negativo de abcisas?

Contando con que a frecuencias suficientemente elevadas, el aporte de fase
K
1+tjw

puede concluirse que el niumero de Iébulos necesario para alcanzar el semieje

correspondiente al término

es de -90° y que en 360° se dan T/ & l6bulos,

negativo de abcisas es N=T/ (438). Sustituyendo dicho valor en la ecuacion
anterior, podemos obtener el valor del médulo a dicha frecuencia:

_2N7T_ T
T T+8 28(T+96)

w

Sustituyendo w en la expresion del mddulo:
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K

K
[CD(jw)| = =
U V1 + 12w? 2
T )

2 -
I+z (26(T+6)

Para este caso, los polos del sistema se encuentran en el semiplano
izquierdo. Por ello, si se supera el punto critico -1, el sistema se comportara de
forma inestable, por lo que dicho modulo debe ser inferior a la unidad. Por
consiguiente, el valor maximo de K que hace al sistema estable es:

T )2

= 2 —
Kmax = |17 (26(T o)

Como puede verse, el méximo valor de K que asegura la estabilidad depende
varios factores, si bien aqui vamos a poner el foco en la dependencia de &, por lo
que mantendremos T=1y t=1.

Nyquist Diagram
10 T T

deltaT=0.01
deltaT=0.05
deltaT=0.1

Imaginary Axis
[sn]

-10

Real Axis
Gréfica 11: Influencia de el error de estimacion. Para una K=25.

A continuacion, se va a particularizar la expresion anterior para distintos
valores de 6:

3.31 6=0.01

En el caso de que se cometa un error en la estimacion del retardo de un 1%,
podemos calcular para qué valor de K el sistema se haria inestable. Aplicando la
formula anterior:
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o = (1477 () = 112 ()~ 15553
max = RAVEGEY SV 2+0.01+(T+001)) ~ 7>

Vamos a comprobarlo mediante el Diagrama de Nyquist:

e Para un K = 150, se puede apreciar que el diagrama de Nyquist, no
llega a alcanzar el punto critico, y por tanto el sistema se comporta de
forma estable (Grafica 12).

Nyquist Diagram
— Step Response

Imaginary Axis
o
Amplitude

) ~
-2 0 2 4 6 8 10 0 100 200 300 400 500
Real Axis Time (seconds)

Gréfica 12: Comportamiento de un primer orden simple con PS'y desviacion en la estimacion del 1%.

e Sin embargo, para una K = 160, se puede observar como alcanza el
punto critico, volviéndose el sistema inestable (Grafica 13).

Step Response

Imaginary Axis
o
Amplitude

—— “

-1 i
= S A
‘?”’:':::0 z & c
15 / ',:s“’? S = 5
f A g iy s <
S R e i
2 -1.5 -1 0.5 0 0.5 1 0 20 40 80 80 100
Real Axis Time (seconds)

Gréfica 13: Comportamiento de un primer orden simple con PS'y desviacion en la estimacion del 1%.

Par otros valores de K, distintos a los limites, el Diagrama de Nyquist queda
de la forma:
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Nyquist Diagram

Imaginary Axis

Real Axis
Gréfica 14: EI DN, no alcanza el punto critico para valores de la ganancia menores a 150.

Si recordamos el valor que antes no me preocupa, el de valor maximo, el de
valor con médulo (que puede alcanzar un valor mayor a la unidad):

|ICDGwW)| =

1
111K |
V1 + 72w?

Debido al error en la estimacion del error, se produce un desfase, y se va
aproximando al eje negativo de abcisas. Pero este valor del mddulo, también
depende de la frecuencia y como el desfase que se comete es muy pequefio (de
0.01), la frecuencia aumenta significativamente antes de cortar con el semieje
negativo de abcisas. Por ello el sistema no se vuelve inestable hasta valores de K
mayores que 150.

Step Response

_;
R

K=100
K=50
K=30

o
0

Amplitude
o o o o
o o = co

o
'S

0 100 200 300 400 500
Time (seconds)

Gréfica 15: Estabilidad para valores de la ganancia menores a 150.
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3.32 6=0.05

Si ponemos en practica la ecuacion obtenida anteriormente, la ganancia
méxima que se puede alcanzar antes de que el sistema se vuelva inestable es:

2

Kpaw = |1+ Z(L)Z— 1+12( 1 )—2993
max = ERVEGETS VA 2+0.05+ (T +005)) — “”

Comprobamos mediante el diagrama de Nyquist, el valor para el cual el
sistema se vuelve inestable.

Nyquist Diagram

Step Response

o

Imaginary Axis
o
®

Amplitude

-05

o
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=
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e
1Y)

-2 = = 0
2 -1.5 -1 0.5 0 05 1 0 10 20 30 40 50 60 70
Real Axis Time (seconds)

Grafica 16: Comprobacion de la inestabilidad mediante el criterio de Nyquist.

Para este caso el desfase es mayor, pues es 0.05, y la frecuencia alcanza un
menor valor cuando corta con el semieje negativo. Por tanto el sistema alcanza el
punto critico con valores menores que K, y termina volviéndose inestable el
sistema para valores menores. (Gréafica 17)

Nyquist Diagram

10 — Step Response
= k=1 100
8 e K=20 K=1
A K=50 80 K=20
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Ol e
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-8 Y~ ~ -80

10 — -100
-4 2 0 2 4 6 8 10 0 5 10 15 20 25 30
Real Axis Time (seconds)

Grafica 17: Comportamiento de un sistema de primer orden con PS y desviacién del 5%.

333 §=0.1

Sustituyendo de nuevo en la ecuacion pero esta vez, para una desviacion de
0,1, se obtiene que el sistema se vuelve inestable para ganancias mayores que
14,31.
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Nyquist Diagram

Imaginary Axis
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g/ aa
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Gréfica 18: Comprobacidn de la inestabilidad mediante el criterio de Nyquist.

Para esta situacion la frecuencia al llegar al semieje negativo aun es menor,
debido a que el desfase es mayor. Por tanto la inestabilidad aparece para ganancias
aun menores. (Como se puede observar en la siguiente gréfica).

Imaginary Axis
=

Nyquist Diagram

K=1
K=10
K=20

Step Response
80

60

40

20

Real Axis

6

e ————

Amplitude

-20

-40

-60

T -80
8 0 10 20 30
Time (seconds)

40 50

Grafica 19: DN para el sistema de primer orden con PS y una desviacion del 10%.

3.4 Conclusiéon

Como conclusién para sistema, obtenemos que la inestabilidad en bucle
cerrado se produce para ganancias superiores a 2.2618 (Encasode T=1,y t = 1),
si se afiade el Predictor de Smith Tedrico funciona muy bien, pues se consigue la
estabilidad para todos los valores de K.

En el caso de que se cometiera un error pequefio en el calculo del retardo
(alrededor del 1%), el sistema sigue siendo estable para ganancias muy elevadas.
Pero, si se comete un error del 5%, al elevar la ganancia por encima de 30 se nos
inestabiliza el sistema. Y el valor de la ganancia para el cual el sistema se hace
inestable seguird disminuyendo a medida que aumenta el error, de manera que
para un error del 10%, se inestabiliza para una ganancia mayor que 14,31 (Como
se ha obtenido en la féormula empleada).
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4. Sistema de primer orden completo

El siguiente sistema que se va a estudiar es un sistema de control en bucle
cerrado (BC), en cuya cadena directa (CD) incorpora un sistema de primer orden
completo con retraso puro. Dicha cadena directa puede ser el resultado de un
control proporcional aplicado a un sistema de primer orden completo, o bien a un
control PD aplicado a un sistema de primer orden simple. Sea como fuere, la
funcion de transferencia de la cadena directa es:

1+ 1.8
1+ 7s

—Ts

G(s) = Gy(s)e TS =K

4.1 El efecto del retraso puro en bucle cerrado

A continuacién para este mismo sistema, se estudiard el comportamiento en
bucle cerrado. Para ello obtenemos las funciones de transferencial del sistema con
retardo y el sistema sin retardo.

o La funcién de transferencia sin retardo:

1+1tc*s
FdT(s) = T+c*s  _ K*(1+ tcx*s)
l+tc*s 1+1xs+K=(1+TCc*s)
1+ K970 —75s
+T*s

o La funcion de transferencia con el retardo queda:

1+TCc*s _rg _
Far(s)— —AFtrs e Ke(tress)e™™
1+tc*s ;o 1+t*s+K*x(1+1c*s)eTs
+T*S

Ya de un primer vistazo y en base a la experiencia del sistema anterior, se
sabe que la presencia del retardo en el denominador, puede provocar la
inestabilicacion del sistema. Lo vamos a comprobar aplicando el Criterio de
Nyquist.

l1+7jw o—Tjo

Ch(jw) = K 1+17jw

e T1: Evaluamos a bajas frecuencias (cuando »—0), y el diagrama
polar de CD(s) parte de un valor finito a K con un argumento de 0°:
|CD(jw)| = K

Arg(CD(jw)) = 0°

e T2: Evaluamos a altas frecuencias (cuando @—>), y el diagrama

1
lim CD(jw) = K——>{
w —0 1

polar termina alcanzando el valor K%, con un argumento de —co.
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Imaginary Axis

lim CD(jw) = K
W — 00

TC

— >

T

|ICDGwW)| = K —
Arg(CD(jw)) = —oo

Universidad
Zaragoza

Lo que supone describir repetidamente una circunferencia en torno al

origen de radio K%. Es decir, esto provoca que me corte con la parte

negativa, lo que va a abrir una puerta a la inestabilizacion del sistema.

Veamos un ejemplo del sistema con retardo (trayectoria roja) y el sistema sin
retardo (trayectoria azul). Se ha empleadouna t, =0.5,t=1, T=1yuna K = 1.
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-0.2
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Nyquist Diagram
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Grafica 20: Comportamiento para un sistema de primer orden completo con y sin retardo.

Como se puede observar, en el sistema sin retardo, me corta en el semieje
positivo de abcisas, en el punto K%, y a continuacion tiende a cero, sin producirse
ningun corte con el semieje negativo. Sin embargo, la presencia del retardo, hace
que a altas frecuencias, tenga un argumento de —oo, lo que provoca que describa
una circunferencia de radio KTT—C.

Ahora bien, con el objetivo de aplicar el Criterio de Nyquist, y saber si el
sistema se va a inestabilizar. Se obtienen los polos del sistema, y como todos los
polos son estables, es decir, no hay ningin polo en el semieje positivo de abcisas.
Cuando el diagrama de Nyquist rodee en sentido antihorario al punto critico -1, el
numero de vueltas, sera distinto al namero de polos inestables, por tanto se podra
decir que el sistema se comportara de forma inestable.

Como describe circunferencias de radio KTT—C, cuando K% > 1, el sistema se

volvera inestable. Para nuestro caso donde 7, =0.5y 7 =1, cuando K > 2, el
sistema sera inestable.

Nota: Para este caso se ha llevado a cabo la aproximacion de escoger el
radio de la circunferencia como punto de corte con el semieje negativo de abcisas,
siendo que en realidad el primer corte se da un poco mas a la izquierda, si bien
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estd a muy poca distancia de este. (Grafica 21).
La gréfica siguiente ilustra el DN para distintos valores de K.
s Nyquist Diagram o 107 Step Response
K=1 K=1
15 K=15 8 K=15
K=2.5 K=2.5
I . 6
2 0 4
o g,
g o0 2
g Eo
E-05 y
pd 2
A . 4
-1.5 6
2 -8
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 0 10 20 30 40 50
Real Axis Time (seconds)
Grafica 21: DN con retardo. Graéfica 22: Respuesta con retardo.

Como se puede observar los resultados coinciden con los mencionado
anteriormente, con una K =1.5, el sistema es estable, pero con una K = 2.5 se
vuelve inestable.

Por tanto, para un sistema de primer orden completo con un retardo puro, al
analizar su comportamiento en bucle cerrado, el sistema con retardo se termina
volviendo inestable, mientras que si no tuviera retardo este seguiria estable. Con el
objetivo de solucionar este problema se va a colocar la estructura del Predictor de
Smith.

4.2 Predictor de Smith ideal

Aplicamos la estructura del Predictor de Smith para el sistema de primer
orden completo, y ya realizando la sustitucién, la cadena directa queda de la
siguiente manera:

K(1+tc*s)eTs
1+K+(t+1c*xK)s—K(1+1c*s)e”Ts

CD(s) =

K(1+ tc * jw)e TV

CD(jw) = -
Gw) 1+ K+ (t+1c*K)jw — K(1 + ¢ * jw)e~TIW

La presencia del factor e~7/" en el numerador no afecta al modulo
(Unicamente a la fase, indicando que a altas frecuencias, el DN va a exhibir ciclos
limite). En cambio, la presencia de dicho factor en el denominador si afecta al
mobdulo, de forma que este presentara oscilaciones. Otra forma de verlo es
considerar el denominador como el resultado de una suma de vectores, de los que
uno de ellos gira, afectando periddicamente al modulo y al argumento de la CD.
La grafica siguiente muestra el DdB del sistema, en el que se aprecian las
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mencionadas oscilaciones del madulo:

Bode Diagram
0 T

Magnitude (dB)

-1440 | J

-2880 1

Phase (deg)

4320 .

-5760 & l l :
1072 107! 10° 10" 102
Frequency (rad/s)

Graéfica 23: Oscilaciones a altas frecuencias.
Analizamos el Diagrama Polar por tramos:

e TI1: A bajas frecuencias (cuando w—0), el diagrama polar de CD(jw)
parte de un valor finito K y una fase de 0°:

‘}Vi_r%CD(jW)= K { |ICD(jw)| =K

1+K—K _ |Arg(cD(jw)) = 0°

e T2: A altas frecuencias (cuando w—) su modulo oscila entre 2
valores extremos, w=(1+2N)§, (frecuencia maxima) y w =

(2N) g (frecuencia minima):

CD G| S
e Plo=a+2mf T T+ 2K7,
lim CD(jow) = Krcjwe IR K,
W — 00 Tja)+KTCja)—Kch(1)e_Tjw |CD(jw)|w=(2N)E=
T T

Arg(CD(jw)) = —oo

Por lo que el DN, partira inicialmente de K, y ha frecuencias maximas
debido al retardo e~7/®, describira circunferencias, al valor maximo, cuando

Tc
T+2K7T,

w=(1+ 2N)§ se alcanza el valor de — K y en el valor minimo w =

(2N) - se alcanza el valor de K =*.

Como estos valores extremos se producen una vez cada vuelta, con el mismo
argumento y en sendos puntos del eje de abcisas (no hay desfase), con analizar

estos valores extremos sera suficiente. EI valor maximo (K%) , N0 Me preocupa
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porque se encuentra siempre en el semieje positivo de abcisas. Sin embargo el
Tc
T+2K7T,

valor de w = (1 + 2N)§ , con modulo (K )si que corta en el semieje

negativo, pero como K * tc < 7 + 2Kt , este valor siempre sera menor que 1, y
no llega a alcanzar el punto critico (Para ganancias elevadas el valor del mddulo
es 0.5).

Se han obtenido también los polos del sistema y no hay ningan polo
inestable, de esta forma, como no hay polos inestables, y el sistema nunca alcanza
el punto critico -1, se puede afirmar que el Predictor de Smith consigue que el
retardo no afecte a la estabilidad del sistema.

Una muestra para 7. = 0.5, =1, T=1 y para distintos valores de K (1, 10,
20) respectivamente:

Nyquist Diagram

K=1
K=10
10 K=201 -

w

Imaginary Axis
o

(&}

-5 0 5 10 15 20
Real Axis

Grafica 24: Diagrama de Nyquist Predictor de Smith Ideal.

A la vista del Nyquist, dado que el mdédulo minimo se corresponde con
argumentos multiplos impares de -m (encontrdndose por tanto en el semieje
negativo de abcisas), al aumentar K, el modulo cuando la fase coincide en el
semieje negativo de abcisas tiene una cota superior de valor 0.5, por lo que este
sistema nunca se inestabilizara en BC, por muy grande que sea K. En resumen, el
Predictor de Smith ideal consigue en este caso evitar la desestabilizacion del
sistema, aun en presencia de valores elevados de K.

4.3 Predictor de Smith Real

En el apartado anterior, se ha supuesto un predictor de Smith ideal, con la
correcta identificacion de H(s) y el tiempo exacto en el retardo, pero en este
apartado se va a suponer que no se ha identificado correctamente el retraso puro,
es decir: A =T + &, donde & representa la desviacion en la estimacion del retardo.

Por tanto, aplicando la estructura del Predictor de Smith para nuestro sistema
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y con una desviacion en la estimacion del retardo, queda de la forma:

K1+t jw)e /e

CD(j = -
) 1+K+ (t+1.K)jo— KA+ 1 jw)e " T+djw

Analizamos el Diagrama de Nyquist:

e T1: Cuando w—0:

lim €DGiw) = K { ICD(jw)| = K

1+K—K  |Arg(CD(jw)) = 0°

e T2: Cuando @—oo, su modulo también oscila entre 2 valores

extremos, pero esta vez son: w = (1 + 2N) T%, (frecuencia méaxima)

yw = (2N) % (frecuencia minima):

(IcD G Rt
w n o =—C
Kt jwe T/® w=(1+2N)775 74 2K7,
lim CD (jw) = — < — — . K,
w-oo Tjw + KT jw — KT jwe=T+0)jo 1CDG feomy 7 =~
T+

k Arg(CD(jw)) = —oo

En este caso, las frecuencias correspondientes con los valores minimo y
méaximo del médulo de la cadena directa cuando «T7 ya no se corresponden con
argumentos multiplos de -m, sino con los siguientes valores: -n/(1+3/T) y -
/(1+8/T), por lo que cada uno de estos valores extremos se producen con T/ o
argumentos diferentes. La consecuencia es clara: el minimo y maximo de mdédulo
a altas frecuencias se va dando para diferentes valores de argumento (tantos como
T/ 8), por lo que para asegurar la estabilidad, ya no basta con que el minimo de
modulo esté por debajo de la unidad, sino que el maximo (en este caso KTC/T)
también debe estarlo. En el caso que nos ocupa (t=1y 7.=0.5), el asegurar la
estabilidad para cualquier valor de & implica hacer [0.5K < 1|. En definitiva, ya no
vale cualquier valor de K.

Empleando la aproximacion de Padé se ha observado que todos sus polos
son estables, de forma que si se alcanza el punto critico -1, el sistema se
comportara de forma inestable.

A continuacion se pueden observar ejemplos para diferentes valores de &
considerando una T=1, Tt = 1 y 7. = 0,5. (Grafica 25)
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43.1 6§=0.01
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Grafica 25: Comportamiento del PS en un primer orden completo con una desviacion de 0.01.

Se puede observar, que el Diagrama de Nyquist coincide con los célculos
obtenidos anteriormente, de forma que para valores mayores que 2, el sistema se

vuelve inestable.

432 §=0.05

Nyquist Diagram

K=1
K=1.5
K=2.5

Imaginary Axis
)
s

-0.5 0 0.5 1

Real Axis

25

Step Response

K=1
K=1.5
K=2.5

Amplitude

-6

0 10 20 30 40 50

Time (seconds)

Grafica 26: Comportamiento del PS en un primer orden completo con una desviacion de 0.05.

Para este caso, cuando el valor de la ganancia supera el valor de 2, este se
vuelve inestable, al igual que en el caso anterior, por ello podemos decir que
cualquier error en la estimacion del retardo por pequefio que este sea,
inestabilizara el sistema para el mismo valor de K.

433 6=0.1
Nyquist Diagram
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Grafica 27: Comportamiento del PS en un primer orden completo con una desviacion de 0.1.
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4.4 Conclusion

Para el caso de segundo orden con cero, se observa que la presencia del
retardo puro, provoca la inestabilidad del sistema en bucle cerrado, para ganancias
mayores que —.

Tc

La inestabilidad del sistema se logra corregir con la estructura del Predictor
de Smith Tedrico para cualquier valor de la ganancia. Pero, no seria correcto
llevarlo a la practica, pues un minimo error en la estimacion del retardo (cosa que
siempre va a suceder) provocaria la inestabilidad del sistema para ganancias
mayores que Tic
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5. Primer orden completo + Pl

Continuando con el sistema de primer orden completo del apartado anterior,
con retraso puro, le afladimos un controlador PI con cancelacién:

1+ 1.5
Gols) = K 1+ rcs e
T;is+1
C(s) :Kcu

i

Donde el polo de nuestra funcién de transferencia sea igual al cero de

nuestro controlador Pl (t; = 1), de forma que la cadena directa (CD) queda:
1+t.s(tis+1) 0TS — KK 1+ 1.s

= e
1+ ts T; ¢ T;S

—Ts

CD(s) = Gyo(s) *C(s) = KK,

Un control PI, permite una correccién del error completa y ligeramente mas
rapida. Por eso se ha elegido este sistema, porque el control PI, es muy empleado
por los ingenieros.

5.1 El efecto del retraso puro en bucle cerrado

El sistema se pone en bucle cerrado, y se analiza el comportamiento del
sistema con retardo y el sistema sin retardo.

Figura 5: sistema en bucle cerrado.

o La funcion de transferencia del sistema sin el retardo quedara de la forma:

1+7.s
FdT(s) = e~ KK+ (trexs)
14+ KK01+TCS T, xS+ KK.*(1+ 1. *5)

T;S

Con la funcion de transferencia anterior se puede estudiar el
comportamiento del sistema:
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KK, * (141, *5)
U(s) _ S U(s) _ FAT(s) _ 7y *xs+ KK, x(1+1.*5)
E(s)  E(s)S(s)  Go(s) gltTcs
1+ s

_ K.*x(1+1%*5s)
T xS+ KK * (141, %5)

Por lo que,ent=0:

U = li K.x(1+1%*5) _ K.t
0_SLrgSSTi*S+KKC*(1+TC*S)_Tl-+KKCTC

En t =co (Régimen permanente):

) E Kcx(1+1%*5) EK. E
U, =lims— = - —
s20 sT;*Ss+KK.*x(1+7.+*s) KK. K

Por tanto, ya podemos adelantar que para el sistema sin retardo, el sistema se
va a comportar de forma estable. (Gréfica 29).
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Grafica 29: Respuesta sistema de primer orden completo + PI sin retardo.

o La funcion de transferencia con el retardo me quedaria de la forma:

1+7.5 _rg

KKC - e —=Ts
FdT(s) = i _ Kex(A+Txs)e -
1+KKC%e‘TS T;*S+ KK+ (1+71.*5)e
l

El tener el retardo en el denominador puede suponer un problema para mi
estabilidad.
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Vamos a comprobarlo con el diagrama de Nyquist (DN) del sistema en bucle
abierto, y a la vez mediante la representacién grafica ante una entrada escalon.

1+t jw o—Tjw

CD(jw) = KK, W

En primer lugar vamos a obtener los polos del sistema, para ello es necesario
emplear la aproximacion de Padé. Se ha realizado una aproximacion de Padé de
orden 6 y aunque a frecuencias altas, se nota alguna diferencia, a frecuencias bajas
se comporta de la misma forma (zona de interés), como se puede observar en las
siguientes graficas (Grafica 30):

Bode Diagram
Nyquist Diagram 20 . -

Magnitude (dB)
S

o

-10
1440

0k SR B——

Imaginary Axis

-1440

-2880 -

Phase (deg)

-4320 -

A . H . -5760
4 ( ).4 0. 107" 10

0.4 ).2 ( 0 0
Real Axis Frequency (rad/s)

Grafica 30: Comparacion Diagrama de Nyquist exacto con la aproximacion de Padé de orden 6.
Por tanto para una 7, =0.5,7;, =1,T =1,y unaKKc = 1. Los polos del
sistema son: 0.0000 + 0.0000i, -5.0319 + 8.9853i, -5.0319 - 8.9853i, -7.4714 +
5.2525i, -7.4714 - 5.2525i, -8.4967 + 1.7350i, -8.4967 - 1.7350i. No hay ningun

polo con parte real positiva, por tanto si el diagrama de Nyquist, da alguna vuelta
en sentido antihorario, el sistema seré inestable.

Una vez, sabemos los polos del sistema, ahora queda conocer el diagrama
polar. La gréafica anterior, ya nos da una pista de como va a ser (Grafica 30,
izquierda).

o Sistema sin retardo:

e T1: Evaluamos a bajas frecuencias:
1+ 7.0 KKc |CD(jw)| = oo
—_— ]

7,j0 J70 Arg(CD(jw)) = —90°
e T2: Evaluamos a altas frecuencias:

lim CD(jw) = KK,
w -0

TC
. |CD(jw)| = KK¢ =<
lim CD(jw) = KKo—< — 1

v i 4arg(cp(jw)) = 0°
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o Sistema con retardo:

e T1: Evaluamos a bajas frecuencias:
1+ 7.0 KKc { |CD(jw)| =
e

. . — I 2 —Tj0=_'_
wm, CDGw) = KKe—75 /70 7 larg(cpGw)) = —90¢

L

e T2: Evaluamos a altas frecuencias:

. TC

T |CD(jw)| = KK, —

lim CD(jw) = KKe-< — Gw) ‘1
woe ti Arg(CD(jw)) = —oo

Nyquist Diagram

A

Sin retardo
Con retardo | |

Imaginary Axis

2 . LA . . i . .
-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6
Real Axis

Gréfica 31: Diagrama de Nyquist, sistema con retardo y sistema sin retardo.
Como se puede observar ambos sistemas parten de oo, con fase de -90°, pero
a altas frecuencias, ambos sistemas tienen un médulo KK % La diferencia esta en
i
que el sistema que no hay retardo, este valor corta el semieje positivo de abcisas y

el sistema es estable. Pero al incluir el retardo ( e~7/® ) este valor corta el semieje
negativo de abcisas y eso puede influir en la inestabilidad del sistema.

Es decir, para el sistema sin retardo, a frecuencias altas, corta en el semieje
positivo con valor KK % de forma que cuanto mayor sea el valor de KKc, se ira
i
desplazando mas hacia la derecha, sin llegar a cortar nunca en el semieje negativo,
y por tanto siempre sera estable.
Sin embargo, el sistema con retardo, presenta un argumento con valor
—oo,l0 que provoca que describa circunferencias en torno al origen de

modulo KK¢ =%, de forma que si |KKC%

supera el valor de 1, supondra que el

Diagrama de Nyquist rodee el punto critico, y como anteriormente se ha
mencionado, el sistema no presenta polos inestables, lo que supondra la
inestabilidad del sistema.
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Nota: Es cierto que hay un punto de corte, un poco mas a la izquierda, que el

de valor KK % y es ese punto el que terminard inestabilizando mi sistema, pero
L

se ha decidido realizar una aproximacion. Por tanto, para mi sistema con t; =

1,7, = 0.5, para que mi sistema con retardo sea estable tiene que cumplir que

KKc<2=2.

La grafica siguiente ilustra el DN para valores diferentes de K (K=1, K=1.5y
K=2.5), empleando un valorde T=1,yunat; = 1,7, = 0.5 :

Nyquist Diagram

F Y
+ k=1
15 | K=15] |
f K=2.5
1k
g 0.5
=
@ 0
c
=3
@
E-05¢ _
b \
1571 \ |
i |
2 Y S 3 i . .
-2 -1.5 -1 -0.5 0 0.5 1 1.5
Real Axis
Grafica 32: Diagrama de Nyquist sistema con retardo.
108 Step Response
2 . |
K=1
K=1.5
1 K=2.5] -
O —
@
°
=
S0
=
<
2
3
4 s s s )
0 10 20 30 40 50

Time (seconds)

Gréafica 33: Respuesta escaldn, sistema con retardo.
Como conclusion del apartado, se obtiene que el sistema sin retardo es
estable para todo K positivo, sin embargo, el sistema con retardo se vuelve
inestable, para ganancias superiores a ?

[
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5.2 Predictor de Smith ideal

Con el objetivo de estabilizar el sistema con retardo puro, colocamos la
estructura del Predictor de Smith, que, como ya se sabe, el Predictor de Smith
consigue que el retardo, aun cuando esté presente, no afecte a la estabilidad del
sistema controlado. De forma que si H(s) = G(s) y 4 = T, el sistema me queda de
la siguiente forma (Ver calculos del predictor de Smith):

R(s)G(s) ¢
1+ R(s)G(s) €

F(s) =

Y como se puede apreciar, hemos logrado que el retardo salga del
denominador, y Unicamente aparezca en el numerador, de forma que logramos que
el retardo no me afecte a la inestabilidad.

Volvamos al caso que nos ocupa (sistema de primer orden completo + Pl con
retraso puro):

1+1.s
T;S

—Ts

G(s) = Go(s)C(s)e TS = KK, e
Como se ha demostrado anteriormente, en apartado de calculos del predictor
de Smith, la cadena directa del control con el Predictor de Smith queda:

R(s)G(s)e™Ts

CD(S) = T R(5)6 () — R(5)G (5)e—T+3%

Sustituyendo para nuestro caso y como es ideal & =0 , es decir, se ha
estimado el retardo (T), sin error:

KKc(1+1.%s)e”Ts

CD =
) KK; + (t; + KK;t.)s — KK (1 + 1. *s)e™ TS

Nuevamente, tenemos que aplicar la aproximacion de Padé, para obtener los
polos del sistema. Se ha hecho una aproximacion de Padé de orden 6, y no hay
ningun polo inestable, de forma que si el sistema no alcanza el punto critico -1, el
sistema es estable.

A continuacion se analiza el Diagrama de Nyquist es detalle:

e T1: A bajas frecuencias (cuando w—0):
KK, KKc
KK + (t; + KKot)j0 — KKe .~ 2 0
|ICD(jw)| = o0
~ {Arg(CD(ja))) = —90¢°

—_

lim CD(jw) =
w-0
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e T2: A altas frecuencias (cuando w—o) su modulo oscila entre 2
valores extremos, wT = (1 + 2N)m, (que presenta un valor minimo
en el modulo) y wT = (2N)m (que presenta un valor maximo en el

maodulo):
Do _ KK.7,
, . KKt jwe™™ ! (Jw)lw=(1+2N)% i TileZKKCTC
dim CD(jw) = 1w + KKctojw — KKt ojweTs 1CD ()] ooy = TfTC

Arg(CD(jw)) = —o0

Como estos valores extremos se producen una vez cada vuelta, con el mismo
argumento y en sendos puntos del eje de abcisas (no hay desfase), solo hay que
analizar estos valores extremos. El valor de KKC% , N0 me preocupa en este
momento porque siempre se encuentra en el semieje positivo de abcisas. Sin
embargo el valor del punto w = (1 + 2N)§ , Si que corta en el semieje negativo,
pero como KK.t. < t; + 2KK.7. , este valor siempre serd menor que 1, y no

llega a alcanzar el punto critico. En caso de que KK, tenga un valor muy
elevado, el primer corte con el eje de abcisas, alcanzara el valor de —0,5.

Una muestra para 7. = 0.5, 7 = 1, T=1 y para distintos valores de K (1, 10,
20) respectivamente:

Nyquist Diagram

xlAg
: K=1
: K=10
4r K=20|
2 L
ho]
= |
g 0 A . I | oo
i=) :
@ :
E \
2 r
4t
S da . . . . |
-2 0 2 4 6 8 10 12

Real Axis

Grafica 34: Diagrama de Nyquist Predictor de Smith ideal.

En resumen, el Predictor de Smith ideal consigue en este caso evitar la
desestabilizacion del sistema, aun en presencia de valores elevados de K (Grafica
35).
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Step Response

K=1
K=10
11 — K=20

o o
=2} =}

Amplitude

o
N

027}

0 10 20 30 40 50
Time (seconds)

Grafica 35: Respuesta escaldn unitario del Predictor de Smith Ideal

5.3 Predictor de Smith realista

A continuacion se supone que se ha identificado correctamente G,(s), pero
no asi al retraso puro, es decir: A =T + §, donde & representa la desviacion en la
estimacion del retardo. Por tanto nuestro sistema de estudio queda:

KK-(1+ T jw)e /W
KK¢ + (7, + KKcto)jw — KK (1 + T jw)e—T+oJjw

CD(jw) =

En estas circunstancias, a frecuencias altas, los maximos y los minimos de
maédulo no tienen por qué producirse en el eje de abcisas, debido a que la
desviacion en la estimacion del retardo va a provocar que los valores maximos y
minimos ya no se produzcan con argumentos multiplos de -m, sino que estos
valores extremos se produzcan con T/ & argumentos diferentes.

Analicemos el Nyquist de CD(s):

e T1: Cuando w—0

KK CD(jw)| =
lim €D (jw) = ¢ { ICD(w)] = e
w—

KK¢ + (T; + KK¢c10)j0 — KK |Arg(CD(jw)) = —90°
e T2: Cuando w—oo: Se vuelven a analizar los dos valores extremos

T

que esta vez coinciden con w = (1 + 2N)TL+5y w = (2N)

T+§'
ICD ()| KKt
— Geo w=(42M755 T, + 2KKT,
. . KKct jwe
lim CD(jw) = — - - - , _ KKct,
w00 Tjw + KKct . jw — KK jwe TS |CD(]w)|w=(2N)% =—
l

Arg(CD(jw)) = —oo

Por lo que ahora, el valor que debe preocuparnos ya no es el de w = (1 +
Vs

2N) 75

, pues como en el caso del Predictor de Smith ideal anterior, este valor
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seguira siendo menor o igual que 0,5. Ahora el punto que me preocupa es el valor

de @ = (2N)——, debido a que este se va desfasando y cuando % > 1, este

Ti

alcanzard el punto critico -1, lo que sucede cuando KK, > % = 2.
C

Ahora hay que analizar el nimero de polos del bucle abierto en el semiplano
derecho, para asi aplicar el Criterio de Nyquist, y saber si el sistema se hara
inestable. Empleando la aproximacion de Padé de orden 6, un § = 0.05 y para una
para una KKc igual a 2:

Nyquist Diagram

Imaginary Axis

Real Axis

Gréfica 36: Aproximacion de Padé de orden 6

Como podemos observar, una aproximacion de Padé de orden 6, no es
suficiente, debido a que no puede representar correctamente, las frecuencias mas
altas, que es cuando supera el punto critico -1. Probamos con una aproximacion de
Padé de orden mayor:

Nyquist Diagram

Imaginary Axis

Real Axis

Grafica 37: Aproximacion de Padé de orden 24.

Mejora, pero aun no es suficiente, si empleo una aproximacion de Padé de
orden 32:

Nyquist Diagram

p Y u
Exacta
Aprox

Imaginary Axis

Real Axis

Grafica 38: Aproximacion de Padé de orden 32.
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Si observamos los polos de este sistema, podemos observar que no hay
ninguno en el semieje positivo. Por tanto, siguiendo el criterio de Nyquist, una vez
alcance el punto critico -1, el sistema se inestabilizara.

A continuacién vamos a mostrar el diagrama de Nyquist, para 7. = 0.5, 7; =
1, T=1, y variando las ganancias (K) y la desviacion en la estimacion (5).

Donde, como vamos a observar la inestabilidad sucedera cuando Kk, > z— =2

5.3.1 Para 6 = 0.01
e ConunaK=1, K=2,K=25.

Nyquist Diagram ) :
Respuesta predictor de Smith real

K=1
K=2.0

K=1
K=2.0
K=2.5

Imaginary Axis
Amplitude

A

-1.5 -1 0.5 0 0.5 1 1.5 0 10 20 30 40 50
Real Axis Time (seconds)

Gréfica 39: Comportamiento de primer orden + PI con PS con y una desviacién del 1%.

Si observamos la imagen izquierda, podemos ver que la causa de la
inestabilizacion es el punto que en el Predictor de Smith ideal, cortaba siempre en
el eje positivo de abcisas, ahora se va desplazando y termina inestabilizando el
sistema cuando su médulo es mayor que 1.

5.3.2 Parad = 0.05
e ConunaK=1, K=2,K=25.

Nyquist Diagram

1.5
%'+ K=1 Respuesta predictor de Smith real
[ K=2.0

1 I ——— K=2.5 K=1
% K=2.0
K=2.5

Imaginary Axis
=)

Amplitude
Y

-05

1.5 0 10 20 30 40 50
Real Axis Time (seconds)

Gréfica 40: Comportamiento del primer orden + PI con PS y una desviacion del 5%.
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5.3.3 Paradé =0.1
e ConunaK=1, K=2,K=25.
Respuesta predictor de Smith real
Nyquist Diagram 10
2 K=1
I ’ K=1 8 K=2.0
K=2.0 K=2.5
i K=25| 6
/, 4
& a
§ ’ g0
E 2
-4
6
vy -8
1.5 0 10 20 30 40 50
Real Axis Time (seconds)

Gréfica 41: Comportamiento del primer orden + Pl con PS y una desviacion del 10%.

5.3.4 Paraé = 0.5 (Caso excepcional)
e ConunaK-=1, K=2, K=25.

Nyquist Diagram Respuesta predictor de Smith real

K=1
K=2.0
K=25

Amplitude

Imaginary Axis
N

Real Axis Time (seconds)

Grafica 42: Comportamiento del primer orden + PI con PS y una desviacion del 50%.
En esta situacion lo que sucede es que como la desviacion es justo un 50%,

. . . - ‘ T
se produce un recorrido en el eje de abcisas, y luego dos recorridos mas (E)'

Como en total son tres recorridos estos suceden a los 120°, con lo que justo logra
evitar el punto critico, pues ningln maximo corta justo con el eje negativo.

Pero aun asi al aumentar un poco mas la ganancia, con K = 3, termina
cortando el eje negativo de abcisas mas a la izquierda del punto critico. E
inestabilizando el sistema.

e ConunaK=3.

Nyquist Diagram

Respuesta predictor de Smith real

K=3 - L
‘ ‘ ““\_K—A]‘

Imaginary Axis
Amplitude

0 5 ] y Y
Real Axis Time (seconds)
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Grafica 43 Comportamiento del primer orden + Pl con PSy una desviacion del 50% y K=3.

5.3.5 Paraé =1 (Caso excepcional)
Conuna K =1, K =2, K =2.5.

Nyquist Diagram
5 600
K=1

K=2.0
K=2.5

Respuesta predictor de Smith real

K=2.0
400 K=25

200

0 I WA AU AU E U N

Imaginary Axis

Amplitude

-200

- -400

15 . -600
2 1.5 -1 0.5 0 0.5 1 15 0 10 20 30 40 50

Real Axis Time (seconds)

Gréfica 44: Comportamiento del primer orden + Pl con PS y una desviacion del 100%.

5.4 Conclusion

Este sistema se comporta de manera muy similar al sistema de primer orden

completo. Donde en bucle cerrado debido a la presencia del retardo, se inestabiliza

el sistema con ganancias superiores a % A continuacion con la estructura del
c

predictor de Smith, suponiendo que todas las estimaciones son correctas, se logra

estabilizar el sistema con retardo para cualquier ganancia.

Pero si se da un error en la estimacion del retardo, por pequefio que este sea,
vuelve a inestabilizarse el sistema para ganancias mayores que % Por tanto, para
c

este sistema no es recomendable el Predictor de Smith, dado que siempre va a
cometerse un error en la estimacién del retardo.
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6. Integrador

Otro caso que va a ser analizado es el correspondiente con un integrador
puro en la cadena directa. Dicha cadena directa puede ser el resultado de un
control PI aplicado a un sistema de primer orden simple en el que se ha dado
cancelacion polo-cero. Sea como fuere, la funcion de transferencia de la cadena
directa es:

1
G(S) = KEG_TS

6.1 El efecto del retraso puro en bucle cerrado.

A continuacion se va a analizar el comportamiento en bucle cerrado. Si se
obtiene la funcién de transferencia, se vera que el retardo estd situado en el
denominador, y, en base a la experiencia de todos los sistemas analizados con
anterioridad, es muy probable que provoque la inestabilidad del sistema.

Nuevamente, la estabilidad del sistema se va a analizar aplicando el Criterio
de Nyquist.

o Sistema sin retardo:

1
CD(jw) = K—
() w
e T1: Evaluamos a bajas frecuencias:
lim CD(j) P |ICD(Gw)| = oo
= —_— -
sim €D jo ~ \4rg(cD(w)) = —90°
e T2: Evaluamos a altas frecuencias:
lim CD(jw) = K 1 |ICD(Gw)| =0
= —_ -
w e o o0 Arg(CD(jw)) = 0°

e T3: Puntos de corte con el eje real:
. ljw jw —J
CD(jw)=K——"—=K——= K—
Jwjw —-w w

El sistema parte de un valor oo, con argumento -90°, y termina alcanzando el
valor de cero con argumento 0°. Al calcular los puntos de corte con el eje real, se
ha visto que Unicamente tiene parte imaginaria, por tanto, el diagrama de Nyquist
de este sistema se corresponde a trazar una linea recta en el eje imaginario.
(Gréafica 48).
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Nyquist Diagram

Imaginary Axis

-0.4 0.2
Real Axis

-1.2 -1 -0.8 0.6

Grafica 45: Diagrama de Nyquist de un integrador sin retardo.

o Sistema con retardo:

1 .
CD(]O)) = K,—B_TJW
jw

T1: Evaluamos a bajas frecuencias:

lim CD(jw) = Kle_TfO -
w -0 j A

jo

|ICD(w)| = oo
rg(CD(jw)) = —90°

Universidad
Zaragoza

Por lo que a bajas frecuencias el diagrama parte de oo con fase -90°.

T2: Evaluamos a altas frecuencias:

1 .
lim CD(jw) = K—e ™ T/® - {
W — 00 (0]

|ICDGwW)| =0
Arg(CD(jw)) = —o

A altas frecuencias tendera a 0 con fase —oo, al tener este argumento, el
sistema va a realizar una espiral en torno al origen. Esto va a suponer que corte en
el semieje negativo, y dependiendo del tamafio de la espiral, es posible
inestabilizar el sistema.

Nyquist Diagram

08 \
0.6 F

04r \

0.2 ‘\\_ 7

0+ S
02t ' ~

-04 | /

Imaginary Axis
e
AN

-06

-08

-1 -0.8 0.6 0.4 0.2
Real Axis

Gréfica 46 Diagrama polar integr

ador con retardo.
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Para conocer cuando se inestabilizard el sistema tenemos que conocer ese
punto de corte con el eje negativo de abcisas.
e T3: Puntos de corte con el eje real:

CD(jw) = Ki]—w ~tjo = g LY _o-Tio = g T o-Tjw
jwjw —w? w
Pasamos a modulo y argumento:
CDGw) =~
—J . Gw)l = w

CD(jw) = K—e‘TJ“’ - -
Arg(CD(jw)) =—=—w

2
Cuando w = g nos encontramos con argumento -180°. En ese punto la
cadena directa del sistema tiene de modulo |CD(jw)| = (nljz) = %

Con una aproximacion de Padé de orden 6, obtenemos los polos del sistema.
Vemos que la aproximacion de Padé donde nos interesa es bastante buena:

Nyquist Diagram

Exacto
Aproximado | |

0.8

04r

0.2

Imaginary Axis
o

02 /N
04t
06t

08

T2 45 - 05 0 05
Real Axis

Grafica 47: Aproximacion de Padé de orden 6.

Y los polos que se han obtenido son: 0.0000 + 0.0000i, -5.0319 + 8.9853i, -
5.0319 - 8.9853i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -8.4967 + 1.7350i, -8.4967
- 1.7350i. Como no hay ningun polo que tenga parte real negativa, cuando el
sistema de una vuelta en sentido antihorario al punto critico -1, el sistema se hara
inestable.

Como conclusion, al incluir el retardo, puede provocar que mi sistema se
inestabilice, debido a que cuando 2K /m > 1, el sistema alcanzara el punto critico

y se comportara de forma inestable, esto sucede para K > g =1,57.

Veamoslo para algunos ejemplos (Con K=1, K= 1.5, y K= 2)con T=1y

T=1:
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Nyquist Diagram

1

T
A
A =
0.8 | K=15
\ \ K=2
0.6 \ \
\ \ -
0.4 \ -~
@ \ 7 o
3 o2 \ AN\
- '\‘
g 0 + X
£ /N
= W/ N\
£02 A SN
-0.4
-0.6
-0.8
1 A A
-2 -1.5 -1 -0.5 0 0.5
Real Axis

Gréfica 48: Diagrama de Nyquist de la cadena directa del integrador con retardo.

Step Response

30

K=1
K=1.5
20 K=2

Amplitude

-20

-30 . : :
0 5 10 15 20
Time (seconds)
Gréfica 49: Respuesta escaldn del integrador en bucle cerrado

6.2 Predictor de Smith ideal

Nuevamente, se recurre a la estructura del Predictor de Smith con el objetivo
de que la presencia del retardo no afecte a la estabilidad de mi sistema. Para este
sistema la cadena directa queda de la forma:

Ke—TS
s+ K—KeTs

CD(s) =

Analizando este sistema en detalle mediante el diagrama de Nyquist:

Ke—TjW
w+ K —Ke-Tiw

CD(jw) = j

e T1: A bajas frecuencias (cuando w—0), el diagrama polar parte de oo
con una fase de -90°:

i CDG) = = DU

w=0 jO+K—K 0 |Arg(CD(jw)) = —90°

e T2: A altas frecuencias (cuando @w—) el diagrama polar termina en 0,
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con una fase de —oo.

Ke™Tiw |ICD(jw)| =0
jw+ K— Ke-Tiw ” {Arg(CD(iw)) = —o0
Esto, en el diagrama polar supone describir una especie de espiral en
torno al origen, lo que provocard que intersecte infinitas veces con el
semieje negativo.

lim CD(jw) =
W —00

Esas elipses presentan valores maximos y minimos de médulo para wT =
2Nmy para wT = (2N + 1)m respectivamente:

Cuando wT = 2N, donde el valor e~7/% = 1, de forma que los valores de
K del denominador se anulan, y el modulo presenta un valor maximo:

Ke™T/W K .
CD(jw) = ———= —e TIW
(Gw) jw+ K—K jwe
) K
1 . |ICDGw)| = —
CD(jw) = —K—je T1® - d
w Arg(CD(ja))) =—Z- Tw
Y cuando wT = (2N + 1)m, donde el valor e~7/¥ = —1, de forma que en el

denominador se suman los dos valores de K, provocando que el médulo presente
un valor minimo:

Ke~Tiw K

— e—Tjw
jw+K+K  jw+ 2K

CD(jw) =

K
—j ICDGW)| = ——=

4K2 2 w
tw Arg(CD(jw)) = tan_lﬁ —Tw

Por consiguiente, los cortes con el semieje positivo de abcisas se producen
con valores de modulo K/w. Aunque si que hay valores de K que hacen que dicho
mabdulo sea mayor que 1, no hay que preocuparse, debido a que como la elipse se
repite con argumentos de 7, es decir, sin producirse ningun desfase. Este valor
siempre corta con el eje positivo de abcisas, sin llegar a alcanzar el punto critico.

Observando el modulo, vemos que para un valor suficientemente elevado de
K (en el limite, infinito) el primer corte con el eje de abcisas (el que mas a la
izquierda se produce) se da para un valor pequefio de w, por lo que dicho valor de
maodulo es como mucho 0,5. Por tanto, aunque corte en el semieje negativo de
abcisas, no llega a alcanzar el punto critico.
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Si obtenemos los polos del sistema, se obtiene que todos son polos estables,

y como establece el Criterio de Nyquist: “Si el punto —1 + j0 no esta rodeado.
Implica que el sistema es estable si no hay polos de G(s)H(s) en el semiplano
derecho del plano s; de lo contrario, el sistema es inestable”. Se obtiene asi la

conclusién de que el sistema es estable.

Imaginary Axis
A b N LY o 5 N e o~ oo

-5 . 0

Ejemplos, para distintos valores de K:

Nyquist Diagram Step Response

[N}

K=1
K=5
K=10

\\ |

<}
@

Amplitude
=)
~

<}
[N}

-1 0 1 2 3 4 5 6 7 0 2 4 6 8 10
Real Axis Time (seconds)

Gréfica 50: Comportamiento del Predictor de Smith ideal.

6.3 Predictor de Smith realista

Como se puede observar, en el Predictor de Smith, se ha tenido que

identificar correctamente la cadena directa, es decir: H(s) = Gy(s), y también el
retardo. Pero, ¢Qué sucederia sin embargo si el retardo empleado en el predictor
de Smith no se correspondiese exactamente con el retardo que exhibe el sistema?

Nuestro caso de estudio, quedaria de la forma:

Ke—TjW
W+ K= Ke-T+ow

CD(jw) = j

Volvemos a analizar el Diagrama de Nyquist para este caso:

e T1: A bajas frecuencias, cuando w—0:

K K { |CD (jw)| = o

Am CDU) =5k =k = /0 7 larg(cD(jw)) = —90¢

e T2: A altas frecuencias, cuando w— oo

Ke Tiw { |CD(jw)| =0

lim CD(w) =3 Arg(CD(jw)) = —oo

w00 joo + K— Ke~(T+8)jw -

La presencia del factor e=7/* en el numerador no afecta al médulo pero, la

presencia de dicho factor en el denominador si afecta al médulo, de forma, que
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volvemos a analizar los valores maximos y minimos:

e Cuando w(T + &) = (2N)m, siendo e ™/ =1, de forma que las
ganancias del denominador se anular, provocando que el mddulo
presente un valor maximo:

Ke™Tiw K ..
D@ P ———— Y ¥ L A
CDGw) jw+ K—K jwe
K j = K
_ v;je_’]"jw |CD(JW)|—|1||W|
w

Arg(CD(jw)) = —90° — Tw

e Cuando w(T +68) = (1 + 2N)m, siendo e~/ = —1, de forma que
las ganancias en el numerador se suman, y provocan un valor minimo

en el modulo:
ey = K K
W = W+ K+K~ 2K+jw’ B
1
ICDGWI = 11K | s
_ K rw W) V4K? + w?
2K+ jw ) _ (W
Arg(CD(jw)) = tan (ﬁ) —Tw

El DN va a presentar una forma de espiral que tiende al origen, de forma
similar a lo que venia sucediendo con el PS tedrico, s6lo que esta vez, debido a la
incorrecta identificacion del retardo, estos valores maximos y minimos ya no
corresponden con multiplos de m, sino con los valores: (1+2N)w/(1+3/T) y
2N7/(1+8/T), es decir, cada uno de los valores extremos se producen con T/

- P K -
argumentos diferentes. Por tanto, el modulo a tener en cuenta no es —, S o

VaKZ+w?

% de mayor valor. Ello podria provocar (dependiendo de la magnitud de K, T,
delta y w) cortes con el semieje negativo mas alla del punto critico, con la
consiguiente inestabilizacion del sistema. Se trata en definitiva de encontrar el
modulo a la frecuencia para la cual, el primer maximo alcanza el semieje negativo
de abcisas:

Como hemos visto anteriormente, la frecuencia para la cual se dan los
maximos es:

2N
T+6

w(T+6)= 2Nm > w =

¢En cuantas vueltas (I6bulos) se alcanza el semieje negativo de abcisas?

Contando con que el aporte de fase correspondiente al término ]ﬁw es de -90°, y que
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en 360° se dan T/ & lébulos, puede concluirse que el nimero de lI6bulos necesario
para alcanzar el semieje negativo de abcisas es N=T/ (45). Sustituyendo dicho
valor en la ecuacién anterior, podemos obtener el valor del modulo a dicha
frecuencia:

_2N7T_ T
WET s T 28(T +0)

Sustituyendo w en la expresion del médulo:

] _ K _ K
|GGw)| = i
28T ¥9)

Por consiguiente, el valor maximo de K que hace al sistema estable es:

& _ T
max T 285(T +6)

Como puede verse, el maximo valor de K que asegura la estabilidad depende
varios factores, si bien aqui vamos a poner el foco en la dependencia de &, por lo
que mantendremos T=1y t=1.

Nyquist Diagram

/

deltaT=0.01 —
deltaT=0.05
deltaT=0.1 =

Imaginary Axis

Real Axis

Grafica 51: Efecto de la estimacion del retardo. Para una ganancia de 25.

A continuacion, se va a particularizar la expresion anterior para distintos
valores de &, pero en todos los casos se empleauna T=1yunat = 1:
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6.3.1 Para 6 = 0.01

Si se aplica la ecuacidn anterior para una desviacion del 1%, se obtiene que
el sistema de vuelve inestable para una ganancia de

T 1m

Kmax = 357+ 5) ~ 2+ 001+ A+ 0.01) _ 1002

Dicho resultado se puede comprobar mediante el diagrama de Nyquist, Gréfica
52:

1 \‘\\ S
A\, K=145 [
0.8 \% = =188 s Step Response
0.6 i / e Piiaann | K=145
’ \ 2 : | K=165
25
0.4
302 s 2
o
R E—— . &8 g1s
g 02 ‘Li
E gty E 1 WI“H
04 y T
i : 7 JU‘% 05
-06 i : S A
i 3 TSN Enmm
08 '%ﬁ H\ s : o - 7 0
y ik VASSSaNFESERRANS AN
05
2 -1.5 -1 0.5 0 0.5 1 0 10 20 30 40 50
Real Axis Time (seconds)

Grafica 52: Comprobacion del valor limite de la ganancia para una desviacion de 0,01.

Si por ejemplo se seleccionan otros valores de la ganancia, como por
ejemplo 50 y 100, se obtiene (Grafica 53 y 54):

Nyquist Diagram Step Response

K=50
K=100

R S
! B

|

o
o

Imaginary Axis
Amplitude

I
~

0.2

0

o 2 4 & 8 10 12 1 1
Time (seconds)

Grafica 54: Respuesta escalon del Predictor de

Smith con un desfase del 1%.

Real Axis

Gréfica 53: Diagrama de Nyquist con un
desfase del 1%.

En este caso, el valor del médulo que inestabiliza el sistema (K/w) depende
de la frecuencia, y como el error cometido en el célculo de la estimacion del
retardo es muy pequefio, el desfase que se produce también lo es. De forma que
para cuando alcanza el semieje negativo de abcisas, el valor de la frecuencia es
bastante elevado, y solo alcanzara el punto critico, para ganancias mayores que
155.
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6.3.2 Para § = 0.05

Para este caso el sistema se vuelve inestable para una ganancia de 29,91.

K _ Tm _ 1
Max T 28(T +8) 2 %0.05 * (1 +0.05)

= 29,91

Dicho resultado se puede comprobar mediante el diagrama de Nyquist
(Gréfica 55):

Step Response

Imaginary Axis
o

Amplitude

-05

. 0 10 20 30 40 50
Real Axis Time (seconds)

Grafica 55: Comprobacion del valor limite de la ganancia para una desviacion de 0,05.

En cambio, para este caso la desviacion en la estimacion del retardo es
mayor, por tanto el desfase que se produce es mayor y el valor de la frecuencia es
menor cuando alcanza el semieje negativo de abcisas, por tanto el sistema se
inestabilizara con un valor de la ganancia menor al caso anterior.

6.3.3 Para 6 = 0.1

Si se sustituye en la ecuacién anterior para una desviacion de 0,1 se obtiene
que el sistema se inestabiliza para una ganancia de 14,27. Se puede comprobar
mediante el diagrama de Nyquist:

Nyquist Diagram Step Response

/

K=13
K=16

o

o

IS

o

Amplitude

Imaginary Axis
=)
o
o

o
o

o
>

o
)

o

3 0 10 20 30 40 50 60
Real Axis Time (seconds)

Grafica 56: Comprobacion del valor limite de la ganancia para una desviacion de 0,15.

Para este caso todavia se hace mas patente lo comentado anteriormente.
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6.4 Conclusion

En el caso de este sistema, se ha observado que, en bucle cerrado, el sistema
sin retardo es estable para todos los valores de K, pero, para el sistema con retardo

solo para ganancias menores que g Por ello afiadimos la estructura del Predictor

de Smith al sistema con retardo, y si este es ideal el sistema se estabiliza para
todos los valores de K.

Pero... ;Qué sucede si se comete un error en la estimacién del retardo? Pues
a diferencia de los dos casos anteriores, para este sistema si se comete un error de
un 1%, no supondria mucho problema, debido a que para ganancias menores a
155, el sistema sigue comportandose de forma estable. Pero, cuanto mayor sea la
desviacion, el sistema se inestabiliza para ganancias menores.

Por ejemplo, para un error del 5%, el sistema se vuelve inestable para
ganancias mayores que 30. O, si seguimos cometiendo mas error en la estimacion
del retardo, a un 10%, el sistema se volverda inestable para ganancias mayores que
14. Cierto que la ganancia disminuye bastante, pero sigue siendo mejor que para el
sistema en bucle cerrado sin el PS, que Unicamente para una ganancia de 1.57, se
inestabilizaba.
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7. Sistema de segundo orden simple

A continuacion vamos a pasar de los sistemas de primer orden, a sistemas de
segundo orden. El cual su funcion de transferencia de un sistema de segundo
orden se corresponde con:

X(s) w2
F(s)  s2+2tw,s+w,

Doénde:

e X(s) = Salida del sistema

e F(s) = Entrada del sistema

e K = Ganancia estatica del sistema

e w, = La frecuencia natural no amortiguada del sistema
e ¢ = Factor de amortiguamiento

El caso que se va a estudiar en este apartado, es un sistema de segundo orden
simple con retraso puro controlado por un regulador proporcional. Por simplicidad
se va a considerar que el sistema tiene un polo real doble, correspondiéndose asi
con un sistema criticamente amortiguado.

T~
0 (1+1s)? 1252+ 21s+1 52+§+1
T T

A continuacién a este sistema le afiadiremos un retraso puro, quedando de la
forma:

K e—Ts — K —Ts
(1 + ts5)2

G e G =Ts = e
(s) o(s)e 72524+ 215+ 1 €

Un ejemplo de un sistema de segundo orden podria ser un sistema de Masa-
Amortiguador-Resorte.

7.1 El efecto del retraso puro en bucle cerrado.

Al sistema de segundo orden simple con un regulador proporcional, se le
afade realimentacion, quedando un sistema en bucle cerrado, como se ve a
continuacion (Figura 6):

1

EfTs
1282 + 218 + 1

b 4

Figura 6: Sistema de segundo orden en bucle cerrado.
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La funcion de transferencia del sistema anterior me queda de la siguiente
forma:

K e—Ts —Ts
FdT(S) — TZSZ + ZTS + 1 — Ke
1+ K o-Ts T2s?+2ts+1+Ke™ ™
72524+ 21s+1

Al igual que en los sistemas de primer orden, aparece el retardo en el
denominador, lo que significa que puede influir en la estabilidad de mi sistema.

Se va a comprobar la estabilidad mediante el diagrama de Nyquist (DN), en
cadena abierta. Reemplazamos, s = jw en CD(s):

o En el sistema sin retardo:
K 1

CD(jw) = =K
Gw) T2j2w2 + 27jw + 1 1—-12w?+ 27jw

Evaluamos la funcién de transferencia:
e T1: Cuando w—0.
e CD i — K |CDGw)| = K
wy (o) =K - Arg(CD(jW)) = 02
e T2: Cuando w— oo.
L CD(ia) = O |ICDGw)| =0
aim CD(jw) =0 - Arg(CD(jw)) = —180°

e T3: Puntos de corte con el eje real.

k —t2w? + 1k 2twk
CD(Gw) = [ (—t*w ) ™w

T2j2w? + 2tjw + 1 - (—t*w* + 272w2 + 1)  (—14w? + 272w2 + 1)]

Puntos de corte con el eje real:

2twk )
(—t*w* + 272w? + 1)] =0-ow=0yw=c
Sustituyendo:
(—7%20% + Dk (—1%202 + 1k

= =0
(—7*0* + 271202 + 1) 7 (—7*oo* + 272002 + 1)

Corta en los puntos w = 0 y w = oo, dichos puntos se corresponden
con los calculados anteriormente, y ninguno corta en el semieje
negativo de abcisas, por tanto si el nimero de polos inestables de la
cadena directa es nulo, el sistema sin retardo sera estable.

A continuacién se puede observar el comportamiento del diagrama polar del
sistema sin retardo (Grafica 64). A la vista de la grafica, vemos que en ningun
momento intersecta con el semieje negativo de abcisas:
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Nyquist Diagram

K=1
81 : K=10]|
—— K=15

Imaginary Axis
=

2 0 2 4 6 8 10 12 14 16
Real Axis
Grafica 57: Diagrama polar del sistema de primer orden simple sin retardo.

o En el sistema con retardo:

1 .
CD(jw) = K ~Tjw
Gw) 1—-12w? 4+ 27jw €

Evaluamos la funcién de transferencia:

e T1: Cuando w—0:
. . |CDGw)| =K
aim CD(jw) =K - {Arg(CD(jw)) =00
e T2:Cuando w— oo:
. . |CDGw)| =0
Jim CD(jw) =0 - {Arg(CD(jw)) = —oo

Para el caso con retardo a bajas frecuencias el sistema parte de un
valor finito K con fase 0°, y acaba en 0 con fase -co, lo que supone
describir una espiral en torno al origen de radio decreciente. Ello
abre una puerta a la inestabilizacion del sistema, dado que el DN
intersecta el semieje negativo de abcisas infinitas veces, siendo el
primer corte el méas cercano al punto critico.

Se obtiene el médulo y el argumento, con el objetivo de conocer el primer
punto de corte:
1+ 72w? 2Tw

1 . .
CD(jw) =K e o = K - jle~TIw
Gw) 1-72w? 4+ 2tjw 1+ 202w2 + ttw?® 1+ 202w2 + thwd)
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[ 1coGw)| = 1]

1K1 |
V1 + 272w? + ttw?
2Tw
Arg(CD(jw)) = tan™! (— ) —Tw

1—12w?2

De forma que el primer corte se produce cuando el argumento tiene el valor
de -180°, es decir:

2TW

—Tw — atan( ) = —180¢

1—1%w?

Representando dicha funcion en Matlab, para un valorde t =2 yuna T =
1. Se obtiene que el corte se produce para una frecuencia w = 1.018. Nota: para
tomar la medida correcta hay que ignorar el escalon que se produce, de forma que
4.17-1.83=2.98, hay que coger ese valor que coincide con 2.98, y este se
corresponde con 1.018 (Aproximadamente).

4+ ]
X0.51 x 1.018
Y 417 v 3037

3 o 4

X 0.4636
Y 1.183

Gréfica 58: Representacion del argumento, con el objetivo de obtener el primer corte en el semieje
negativo de abcisas.

Sustituimos dicha w, en la parte real, y el punto de corte se corresponde con:

1 K
|ICD(Gw)| = |K]| 1] = —
U V1 +2721.012 + t41.01% 5,08

Por tanto cunado K sea mayor que 5 rodeara al punto critico en sentido
antihorario. Como se puede observar en la siguiente grafica (Grafica 59) para una
K =5, el diagrama polar rodeara al punto critico, sin embargo para una K = 4 no
llega a alcanzarlo:
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Nyquist Diagram

K=4
3 § —— k=5
. /"" ~ .
, /// . \
, N
\
@9t |
2 \
> |
@ O0F
c I
= J
@ /
E 17 l\ /"
2 AN . s y4
~ 7
3 B
g
4 .
-2 1 0 1 2 3 4 5
Real Axis

Grafica 59: Diagrama de Nyquist, segundo orden simple con retardo.

A continuacion aplicamos la aproximacion de Padé, para conocer los polos
del sistema, y de esta forma poder aplicar el criterio de Nyquist. Aplicamos una
aproximacion de Padé de orden 6, que como podemos observar es mas que
suficiente (Se ha hecho con una ganancia de 5, debido a que es cuando rodea al
punto critico):

Nyquist Diagram

e Exacta
3 7 = Aprox |

Imaginary Axis
d

—

-2 -1 0 1 2 3 4 5
Real Axis

Grafica 60: Comparacion sistema con retardo con aproximacion de Padé.

Si obtenemos los polos del sistema, vemos que todos los planos pertenecen
al semiplano izquierdo, (-5.0319 + 8.9853i, -5.0319 - 8.9853i, -7.4714 + 5.2525i,
-7.4714 - 5.2525i, -8.4967 + 1.7350i, -8.4967 - 1.7350i, -0.5000 + 0.0000i,
-0.5000 - 0.0000i.) Por tanto, aplicando el criterio de Nyquist, si el nUmero de
polos inestables no coincide con el numero de vuelta en sentido antihorario, el
sistema se comporta de forma inestable.

Las gréaficas siguientes ilustran la respuesta a una entrada escalén del sistema
con ganancias 4y 5:
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Step Response

o | | I
-m:..-n—-nwﬁmu-um-o-.m.—-+..q..-4....,_.4~..1....l......rﬂ,..

Amplitude

-6 L L L
40 60 80
Time (seconds)

0 20 100
Grafica 61: Respuesta a entrada escaldn de un sistema de segundo orden con retardo.

Por tanto, se puede observar como el sistema sin retardo es estable para
cualquier valor de K, y al afiadir el retardo, se vuelve inestable para ganancias
mayores que 5.

Con el objetivo de solucionar el problema de la estabilidad en los sistemas
con retardo, se afiade la estructura del Predictor de Smith.

7.2  Predictor de Smith ideal

A continuacion afiadimos el predictor de Smith a la funcién con el retardo.
De la forma:

+

-r.-.-r l:'ﬂ +

R(s)

Gfs)-e

Ts

X(s)

His)1—e JJ

Figura 7: Estructura del predictor de Smith.

Que como hemos visto en los casos anteriores, el predictor de Smith
consigue que el retardo, aun cuando esté presente, no afecte a la estabilidad del
sistema controlado.

Como se ha demostrado en el apartado de calculos del Predictor de Smith, la
cadena directa de control con el Predictor de Smith quedara como sigue:

R(s)G(s)e™Ts
1+ R(s)G(s) — R(s)G(s)e™Ts

CD(s) =
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Donde sustituyendo para el caso de segundo orden simple con retardo queda
de la forma:

Ke—Tjw

1+ K —12w?+ 2tjw — KeTi®

CD(jw) =

La presencia del retardo afecta al médulo cuando este se encuentra en el
denominador (también al argumento), de forma que este presentara oscilaciones.
Otra forma de verlo es considerar el denominador como el resultado de una suma
de vectores, de los que uno de ellos gira, afectando peridédicamente al modulo y al
argumento de la CD. Parece evidente que las mencionadas oscilaciones tendran
mas protagonismo cuanto mayor sea K. La grafica siguiente muestra el DdB del
sistema con K=10 y con K=50, en el que se aprecian con mayor nitidez las
oscilaciones del modulo (Grafica 62):

Bode Diagram

40 ———— o . ; - — -
—~ 20— -
o ——_ K=50
h=A T A
g 0 S\
N
s
E 20 F \\ N\
g ™~
= 40 >
-60 &=
(Y= _ ——ssiiamm
T N
. 360 F ™ \
53 N\
S 720+ O
Y \
& 1080 - \
2 R
1440 |
-1800 &

10° 10’ 10?
Frequency (rad/s)

Gréfica 62: Diagrama de Bode, donde se muestra las oscilaciones del médulo.

102 107

No obstante, en la grafica anterior se aprecia una subida de médulo de en
torno a 180° con un ¢pico de resonancia? que parece corresponderse con la
presencia de 2 polos complejos conjugados con parte real positiva, propias de un
sistema inestable. Por tanto, que el modulo crezca por encima de la unidad en
torno a 4rad/seg, lo que junto al crecimiento de la fase de 180° determina que el
diagrama de Nyquist de 2 vueltas en sentido antihorario en torno al punto critico.

Nyquist Diagram

+
15 |
|
|
! — |
/ N
L 05+ [/ \
2 (g o]\
g o \ / \ =
=Y ~ N\ =
g, | /
05 \
E N\ /
7
-1 — |
|
|
15 |
\
2 Fy

-2 -1.5 -1 -0.5 0 0.5 1 1.5
Real Axis

Gréfica 63: DN del sistema de segundo orden con el predictor de Smith ideal.

Puede apreciarse que para K=50, el DN da 2 vueltas en sentido antihorario.
La pregunta que surge es: ¢esas vueltas determinan inestabilidad? La respuesta a
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esa pregunta no es sencilla, pues la aplicacion del criterio de Nyquist requiere
conocer el numero de polos de CD(s) en el semiplano derecho, siendo que
tenemos en su denominador una funcién trascendente (el término oscilante
e~TJ®), La grafica siguiente muestra la respuesta al escalon, poniendo de
manifiesto la estabilidad en BC:

Step Response
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Gréfica 64: Respuesta escalén de un sistema de segundo orden con PS ideal.

Por ello, para realizar el analisis se propone sustituir dicho término oscilante
por una aproximacion polinomial (por ejemplo, la de Padé de un orden suficiente):

_ 56— 4255+ 840s* — 1008053 + 7560052 — 3326405 + 665280
"~ 56+ 4255+ 840s* + 1008053 + 7560052 + 332640s + 665280

e J@

La validez de la aproximacion realizada puede corroborarse comparando el
DN obtenido con el retraso puro y con su aproximacion de Padé, o también
realizando el diagrama de Bode de ambos:

Nyquist Diagram

Bode Diagram

Exacta
Aprox

Imaginary Axis
o
(@)
O/
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Grafica 65: Comprobacion de la aproximacion de Padé.

Se observa que en la zona de interés la diferencia es nula (dicha diferencia
comienza a darse para frecuencias muy altas (diagrama de Bode), para las que el
modulo esta proximo a cero), por lo que puede aplicarse el método de Nyquist.
Los polos de CD(s) con la aproximacion de Padé de 6° orden son: -22.3660 +
0.0000i, -8.8281 +13.7846i, -8.8281 -13.7846i, -1.8616 + 9.0475i, -1.8616 -
9.0475i, 0.3819 + 4.1887i, 0.3819 - 4.1887i, -0.0184 + 0.0000i. Como puede
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verse, hay 2 polos del bucle abierto en el semiplano derecho, por lo que para que
el sistema sea estable, el DN debe circunvalar al PC 2 veces en sentido
antihorario, tal y como sucede.

Buscando el limite del SP exacto, probemos con un valor de K todavia mas
elevado (K=500). Observando el DN, se aprecia que da 4 vueltas en torno al PC
en sentido antihorario, pero dado que (con la aproximacion de Padé de 6° orden)
existen 4 polos con parte real positiva en bucle abierto
( 1.4372 +11.3562i y 0.3482 + 6.1657i), el sistema sigue siendo estable:

Nyquist Diagram for the exact SP (K=500). Padé approximation
° ' ' ' ' ' Py
] |

[}

System: cadenadlrectaPS[eorlc:oaprox |

Phase Margin (deg): -7.4 |
Delay Margin (sec): 0.579
At frequency (rad/s): 10.6

Imaginary Axis

'
=]

o

.
-2 -1.5 -1 -0.5 0 0.

Real Axis

o
o
&
I

o

Grafica 66: Diagrama de Nyquist del sistema de segundo orden con Predictor de Smith ideal.

Su respuesta al escalon (obtenida del esquema de Simulink adjunto):

tn

.......

1
48 445+ 1

o 5 10 15 20 26 an 35 40 45 50

Gréfica 67: Diagrama de Nyquist del sistema de segundo orden con Predictor de Smith ideal.

En resumen, la estructura del Predictor de Smith Ideal es capaz de estabilizar
el sistema de segundo orden simple con retardo para cualquier valor de la
ganancia.
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7.3 Predictor de Smith real

¢Qué sucede cuando en un sistema de segundo orden, se produce una
desviacion en el célculo del retardo de la estructura del Predictor de Smith? Es
decir: A =T + &, donde & representa la desviacion en la estimacion del retardo.

Continuando con el sistema de estudio actual:

Ke—Tjw

ChGw) = 1+K—12w2+ 217jw — Ke~T+d)jw

Como seguimos teniendo el retardo en el denominador (e~(T+8Jj®) el
maédulo del sistema seguira teniendo esas oscilaciones, como se puede observar en
la grafica siguiente (Con una K =50, y esta vez una § = 0.05).
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Grafica 68: Diagrama de Bode del Predictor de Smith con desviaciones en la estimacion.

Dichas oscilaciones provocan que el modulo sea superior que la unidad, y
junto al crecimiento de la fase de 180° va a determinar que el diagrama de
Nyquist rodee en sentido antihorario entorno al PC, al igual que se ha explicado
anteriormente:

Nyquist Diagram
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Grafica 69: Diagrama de Nyquist con la estructura del Predictor de Smith con desviaciones.
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Como se puede observar, el DN rodea dos veces al punto critico en sentido
antihorario. Segun el criterio de Nyquist “El punto —1 + jO queda rodeado una o
varias veces en sentido contrario al de las agujas del reloj. En este caso, el sistema
es estable si el nimero de rodeos en sentido contrario al de las agujas del reloj es
igual al namero de polos G(s)H(s) en el semiplano derecho del plano s; de lo

contrario, el sistema es inestable.”

Por tanto para saber si es estable, sustituimos la funcion del retardo, por la
aproximacion de Padé, con el objetivo de poder obtener los polos de la cadena
directa, y saber si el sistema va a ser estable. Para ello realizamos una
aproximacion de orden 6, que se puede ver, que en la zona de interés es bastante
exacta:

Nyquist Diagram

Exacta
Aprox

o
3,

o

Imaginary Axis
<)
[4,]

15 F

5 ‘ ‘ A ‘ .
-2 -1.5 -1 -0.5 0 0.5 1 1.5
Real Axis

Grafica 70: Comprobacion de la aproximacion de Padé.

Y los polos que se obtienen son: -21.6827 + 0.0000i, -8.3883 +13.3570i, -
8.3883 -13.3570i, -5.0319 + 8.9853i, -5.0319 - 8.9853i, -8.4967 + 1.7350i, -
8.4967 - 1.7350i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -1.6699 + 8.6578i, -1.6699
- 8.6578i, 0.4084 + 4.0838i, 0.4084 - 4.0838i, -0.0176 + 0.0000i. Encontramos
dos polos en el semiplano derecho, por tanto se puede decir que es sistema se
comporta de forma estable. Mediante SIMULINK, se obtiene la respuesta a una
entrada escalon.

L L
0 50 100 150
Offset=0

Grafica 71: Respuesta entrada escalon mediante SIMULINK.
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A continuacién mediante simulaciones, se va buscar el limite de la ganancia
donde el sistema se vuelve inestable. Y se va a hacer para distintas desviaciones y
con un valor de 7 = 2.

7.3.1 6 =0.01

Si se comete Unicamente un error en la estimacion del retardo de tan solo un
1%, el sistema se volvera inestable, con K mayores a 775. Pues mediante
SIMULINK, se puede observar la respuesta a una entrada escalén:

2k

I L I I I I L I I
0 50 100 150 200 250 300 350 400 450 500
Offset=0

Gréfica 72: Respuesta de un sistema de segundo orden con PS y un error en la estimacion del 1%.

El diagrama de Nyquist que se obtiene:

Nyquist Diagram
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Grafica 73: Diagrama de Nyquist, con un error en la estimacion de un 1%

Se puede observar, que da 4 vueltas al punto critico en sentido antihorario,
pero no corresponden con el numero de polos inestables de la cadena directa, pues
presenta 6 polos inestables: 0.8891+16.1509i, 1.0565 +11.8607i, 0.2115 +
6.1654i. Provocando asi la inestabilizacion del sistema.
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Mencionar que para este apartado se ha empleado una aproximacion de Padé de
orden 12, pues la aproximacion de orden 6, no era capaz de imitar al diagrama de
Nyquist en la zona de interés.

Nyquist Diagram
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Graéfica 74: Aproximacion de Padé de orden 12.

A continuacion vamos a ver qué sucederia si se analiza el Predictor de Smith
real para una K que haga que mi sistema se comporte de manera estable, por
ejemplo, una K = 700.

Obtenemos el diagrama de Nyquist y la respuesta ante una entrada escalon:

Nyquist Diagram

e S A

Imaginary Axis
o

0.5]

-0.5 \
-1
N\

5 4 -3 2 -
Real Axis

0

1 0 1 P L L L L L L L
] 50 100 150 200 250 300 350 400 450 500

Offset=0

Gréfica 75: Comportamiento del PS con una desviacion del 1% y ganancia 700.

Si se observa con mucho detenimiento el diagrama de Nyquist, vemos que rodea 6
veces al punto critico -1. Que como coincide con los polos en el semiplano
derecho ( 0.6827 +15.9942i, 1.1305 +11.6978i, 0.2356 + 6.1559i), se llega a la
conclusién que el sistema se comporta de forma estable.

Notar que un segundo orden simple con la estructura del Predictor de Smith,
es bastante bueno, debido a que aunque se cometa un error de un 1%, va a ser muy
dificil inestabilizar el sistema.
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7.32 6 =0.05

Si se comete una desviacion de un 5%, en el célculo del error, pues en base a
la repeticion de simulaciones, se observa que para K mayores o iguales a 197, el
sistema se hard inestable.

Por ejemplo para una K = 200, se obtiene una respuesta ante una entrada
escalon:

L I I L I ' L
[ 50 100 150 200 250 300 350 400 450 500
Offset=0

Gréfica 76: Respuesta escaldn del PS con una desviacion del 5% y ganancia 200

Si nos fijamos en el diagrama de Nyquist, se aprecia que da dos vueltas al
PC, y si obtenemos los polos del sistema de la cadena directa, se aprecian 4 polos
inestables (0.2141 + 9.4582i, 0.6642 + 5.4727i), de esta forma se llega a la
conclusion de que el sistema para una K = 200, el sistema es inestable.

Nyquist Diagram

Imaginary Axis
! o

-3.5 -3 25 2 -1.5 -1 -0.5 0 0.5
Real Axis

Grafica 77: Diagrama de Nyquist, del PS con desviacion del 5% y ganancia de 200.

A continuacion, se va a estudiar un caso que se comporte de forma estable,
pero que este proximo a la inestabilidad, para asi descubrir cual es la causa de la
inestabilidad. Por ejemplo cogiendo una K = 190. Se obtiene el siguiente diagrama
de Nyquist.

76



Sensibilidad del Predictor de Smith respecto
de desviaciones en la identificacion del retardo.

Nyquist Diagram

s Universidad
10  Zaragoza

Imaginary Axis
(=]

5 4 3 2
Real Axis

-1 0 1

Grafica 78: Diagrama de Nyquist, del PS con desviacion del 5% y ganancia de 190.

Se aprecia que el diagrama de Nyquist, da 4 vueltas en sentido antihorario al
punto critico, y el nimero de polos inestables sigue siendo 4 (0.6803 + 5.4286i,

0.6803 - 5.4286i,
comporta de forma estable.

0.1295 + 9.4046i, 0.1295 - 9.4046i). Por tanto el sistema se

Offset=0

0 50 100 150 200 250 300 350

400 450 500

Grafica 79: Respuesta escalén del PS con desviacion del 5% y ganancia de 190.

Al final lo que provoca la inestabilidad, es que al aumentar la ganancia, el
diagrama de Nyquist se desplaza un poco mas hacia la izquierda, de forma que ya

no rodea al punto critico 4 veces sino 2.

733 6=0.1

A continuacion se va a suponer que se comete una error en la estimacién del
retardo de un 10%. Para este caso ganancias por encima de 44, se comportan de

manera inestable.

Por ejemplo si se escoge una K = 45, se obtiene la siguiente respuesta ante

una entrada escalon:

77



Sensibilidad del Predictor de Smith respecto
de desviaciones en la identificacion del retardo.
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0 50 100 150 200 250 300 50 400 450 500
Offset=0

Gréfica 80: Respuesta escaldn del PS con desviacion del 10% y ganancia de 45.

Para entender, la inestablidad del sistema, obtenemos el diagrama de
Nyquist, en el que podemos se aprecia muy bien, que no da ninguna vuelta al
punto critico, es mas si nos fijamos, ni siguiera corta el semieje negativo de
abcisas por encima del valor -1. Pero, ¢Por qué no es estable? Es debido a que si
se obtienen los polos de la cadena directa, mediante una aproximacion de Padé, se
observa que hay 2 polos inestables (0.3719 + 3.8911i, 0.3719 - 3.8911i), y como
indica el Criterio de Nyquist, para que un sistema sea estable, el nUmero de polos
en el semiplano derecho, tiene que coincidir con el nUmero de vueltas que de el
diagrama de Nyquist, en sentido antihorario al PC.
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Grafica 81: DN del sistema de segundo orden con PS, una desviacion del 10% y ganancia de 45.

Si analizamos esto mismo, pero con una K menor, por ejemplo, K = 40, que
ya sabemos de antemano que se comporta de forma estable. Se puede deducir, que
el diagrama de Nyquist para este caso si que rodeara el punto critico dos veces.
Esto se puede ver, porque para una K = 45, el diagrama de Nyquist a bafas
frecuencias parte de —oo, sube, y luego da una vuelta y tiende a cero. Por ello, se
puede deducir, que para K = 40, esa vuelta sucedera un poco mas arriba, cortando
con el semieje negativo de abcisas, y rodeando al punto critico.
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Gréfica 82: DN del sistema de segundo orden con PS, una desviacién del 10% y ganancia de 40.

El ndmero de polos en el semiplano derecho sigue siendo 2 (0.3060 +
3.7885iy 0.3060 - 3.7885i) y por tanto para una K = 40, el sistema es estable.

0 50 100 150 200 250 300 350 400 450 500
Offset=0

Grafica 83: Respuesta de un sistema de segundo orden con PS y una desviacion del 10% y K=40.

7.4 Conclusién

Podemos observar que en el caso de un sistema de segundo orden simple con
retardo, el sistema en bucle cerrado se termina inestabilizando al elevar un poco la
ganancia (En el caso explicado para ganancias mayores que 5). Al colocar la
estructura del Predictor de Smith sin error en la estimacion del retardo, se
consigue estabilizar el sistema, para cualquier valor de la ganancia.

Pero cuando se comete un error en la estimacién ya no es para cualquier
valor de las ganancias, sino que por ejemplo, para el caso que se ha estudiado, si
se comete un error de un 1%, se inetabiliza para una ganancia de 775, un error de
un 5%, supondra la inestabilidad cuando la ganancia sea superior a 200, de un
10% para ganancias mayores a 45.

Se puede observar que cuanto mayor sea el error en la estimacion, antes se
inestabilizara el sistema, por tanto, el Predictor de Smith en la realidad no
consigue estabilizar el sistema.

También mencionar que para este sistema de segundo orden simple, el
Predictor de Smith funciona mejor que para los casos de primer orden.
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8. Sistema de segundo orden con un polo en el
origen

En este apartado se va a analizar otro sistema de segundo orden, el cual
consiste en un sistema que contiene uno de sus polos en el origen. Como se ve a
continuacion:

K

G(s) = s(1+1ts) T Is2+s

8.1 El efecto del retraso puro en bucle cerrado

El diagrama de Nyquist (DN) del sistema en bucle abierto (o si se prefiere,
de la cadena directa), nos permite estudiar la estabilidad en BC:
K

SO = fa W

Para el sistema sin el retardo (Ecuacién anterior), a bajas frecuencias el
sistema parte de oo, con una fase de -90°. Cuando aumentamos la frecuencia, el
sistema sin el retardo tiende a 0, con una fase de —co.

lim CD(jw) = —— { ICDGw)| = o

w >0 jo(1+j0) ~ |Arg(cD(jw)) = —90°
lim €D (jw) = kK _){ |CD(jw)| =0

w -0 ©(1+ ) |Arg(CD(w)) = —oo

Como se puede ver en la siguiente grafica (Grafica 86), para distintos
valores de K:

Nyquist Diagram
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Grafica 86: DN, para el sistema de segundo orden con un polo en el origen y sin retardo.

Se puede observar, que por mucho que aumente la ganancia, y aunque el
sistema parta del semiplano negativo, llegue a cero, y se vuelva a ir por el
semiplano negativo, no rodea al punto critico en sentido antihorario, de forma que
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si el numero de polos de la cadena directa, se encuentra en el plano izquierdo (lo
cual se cumple para este caso), el sistema se comporta de forma estable.

Se puede comprobar con la respuesta en bucle cerrado ante una entrada
escalon.

Step Response

K=1
K=10
K=15

Amplitude

0 5 10 20 25 30

15
Time (seconds)

Graéfica 87: Respuesta del sistema segundo orden con un polo en el origen y sin retardo.

A continuacion se analiza el sistema con retardo:

G(jw) = Le—ﬁw
jw(1l + tjw)
A bajas frecuencias el sistema parte de oo, con una fase de -90°. Conforme

aumentamos la frecuencia el sistema tiende a 0 con una fase de -co.

lim CDU@)—Le—TjO__-K_) |ICD(jw)| = e
w0 ~jo( + 7j0) = 70 7 larg(cp(w)) = —90¢
K . |CD(jw)| =0
i j e —T]OO
Jim CD(jw) = s e {Arg e

La presencia del retardo, va a provocar con el mismo médulo que antes, que
la fase sea menor debido al factor e~7/% en el numerador, por lo que se produciran
cortes con el semieje negativo de abcisas, como el que se puede ver a continuacién
para una K = 1:

Nyquist Diagram
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Grafica 88: DN, del sistema de segundo orden con un polo en el origen y retardo.
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Es interesante saber cudndo se produce ese punto de corte, para ello:

1 . (Gw +w?)
— ¢

1 .
CD(W=K—— e TW=K_— e Tiw=F
Gw) jw(l + tjw) € (Jw — tw?) € —w? — 2w*
g +mw) i [ ]
=K~ " Tiw_[ —

—w—t2w3 ¢ w+t2w?  w+2w3’]°

I{ |[CD(jw)| = K !
w)| =

4 wy/ (1 + t2w?)

1
. _ -1 _
LArg(CD (jw)) = tan p— Tw
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Necesito conocer el valor de la frecuencia, y ese resultado se ha obtenido a

través del diagrama de Nyquist (Grafica 89), siendo w = 0.86.
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Grafica 89: Diagrama de Nyquist, calculo de la frecuencia.

Sustituyendo en el modulo:

|ICD(jw)| = K0.88

Por tanto cuando |CD(jw)| > 1, el Diagrama de Nyquist superara el punto -
1, esto sucede para K > 1.13.

Se han obtenido los polos de la cadena directa: 0.0000 + 0.0000i, -5.0319 +
8.9853i, -5.0319 - 8.9853i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -8.4967 +
1.7350i, -8.4967 - 1.7350i, -1.0000 + 0.0000i. Para ello se ha empleado una
aproximacion de Padé de orden 6, y una K = 10. A continuacion se puede
observar en la siguiente grafica, una comparacion entre el diagrama de Nyquist
empleando la funcién del retardo, y empleando la aproximacion de Padé.
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Gréfica 90: DN de la aproximacion de Padé junto con el retardo.
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A continuacion se puede observar la grafica del diagrama de Nyquist, para

distintos valores de K:
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Gréfica 91: DN, del sistema de segundo orden con un polo en el origen y retardo.
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Grafica 92: Respuesta del sistema de segundo orden con un polo en el origen y retardo en bucle

cerrado.

A la vista de las graficas anteriores, el efecto del retardo, hace que corte el
semieje negativo de abcisas, provocando la inestabilidad del sistema, con
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Unicamente una K > 1.134.

En este sistema, se aprecia muy bien como el retardo influye en la
estabilidad del sistema.

8.2 El predictor de Smith ideal

De nuevo, se afade la estructura del predictor de Smith, donde para el caso
que nos ocupa:

Ke Ti®
(1+ gjw)jw + K — Ke~Tj®

CD(jw) =

La presencia del factor e~7/“ en el numerador no afecta al mddulo
(tnicamente a la fase, indicando que el DN va a dar o« vueltas en torno al origen).
En cambio, la presencia de dicho factor en el denominador si afecta al médulo
(también al argumento), de forma que este presentara oscilaciones.

Bode Diagram

(o2}
o

N
o
T

N
o
T

Magnitude (dB)
0
o o

A
S
T

1440 T T T

720 | M\# |

720 | AN

Phase (deg)
o
\
|
\

1440 b
107 1072 107" 10° 10" 102
Frequency (rad/s)

Grafica 93: Oscilaciones en el Diagrama de Bode.

Por ejemplo para el caso de K = 10, con el Predictor de Smith (trazado azul),
se pueden apreciar las mencionadas oscilaciones en el modulo, dicho modulo se
aprecia que crece por encima de la unidad, lo que junto con el crecimiento de la
fase por encima de 180° determina que el diagrama de Nyquist dara 2 vueltas en
sentido antihorario en torno al punto critico. A continuacion se obtiene el
diagrama de Nyquist (K = 10):
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Nyquist Diagram

Imaginary Axis

Grafica 94: DN del sistema de segundo orden con polo en el origen con PS.

-1.5 -1
Real Axis
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0.5
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Al igual que antes queremos saber si esas vueltas determinan la inestabilidad
del sistema. Para ello se requiere conocer el nUmero de polos de la CD(s) en el
semiplano derecho, siendo que tenemos en su denominador una funcién
trascendente (el término oscilante e~7/¢).

Por ello, empleamos nuevamente la aproximacion de Padé de orden 6, que la
validez de la aproximacion realizada puede corroborarse comparando el DN

obtenido con el retraso puro y con su aproximacion de Padé:

Nyquist Diagram

Imaginary Axis
o

-

A

Exacta
Aprox | |

-3 -2.5

Grafica 95: Aproximacion de Padé comparada con el del retardo puro.

-2 -1.5 -1

Real Axis

-0.5

0

0.5

Se observa que en la zona de interés la diferencia es nula (dicha diferencia
comienza a darse para frecuencias muy altas, para las que el médulo esta proximo
a cero), por lo que puede aplicarse el método de Nyquist. Los polos de CD(s) con

la aproximacién de Padé de 6° orden

son.

0.0000 + 0.0000i, -21.5097 + 0.0000i,

-8.8714 +13.2634i, -8.8714 -13.2634i, -2.1056 + 8.9672i, -2.1056 - 8.9672i,
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0.2319 + 3.9617i, 0.2319 - 3.9617i. Como puede verse, hay 2 polos del bucle
abierto en el semiplano derecho, por lo que para que el sistema sea estable, el DN
debe circunvalar al PC 2 veces en sentido antihorario, tal y como sucede.

La gréafica siguiente muestra la respuesta al escalon, poniendo de manifiesto
la estabilidad en BC:

Step Response

7
\
\
\
\
\
|

Amplitude

0 2 4 6 8 10 12 14
Time (seconds)

Gréfica 96: Respuesta del sistema de segundo orden con polo en el origen y PS ideal.

Buscando el limite del SP exacto, probemos con un valor de K todavia més
elevado (K=100). Observando el DN, se aprecia que da 4 vueltas en torno al PC
en sentido antihorario, pero dado que (con la aproximacion de Padé de 6° orden)
existen 4 polos con parte real positiva en bucle abierto ( 0.0000 + 0.0000i, -
33.5447 + 0.0000i, -6.3556 +20.1657i, -6.3556 -20.1657i, 1.1869 +10.8718i,
1.1869 -10.8718i, 0.4411 + 6.1048i, 0.4411 - 6.1048i), el sistema sigue siendo
estable.

Nyquist Diagram

Imaginary Axis
o

-3 2 -1 0 1 2
Real Axis

Grafica 97: DN para el sistema de segundo orden con polo en el origen con el PS ideal yK=100.
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Su respuesta al escalon (obtenida del esquema de Simulink adjunto):

Gréfica 98: Respuesta ante una entrada escaldn del sistema de segundo orden con un polo en el

8.3 El predictor de Smith realista

origen obtenida por SIMULINK.

¢, Qué sucederia sin embargo si el retardo empleado en el predictor de Smith
no se correspondiese exactamente con el retardo que exhibe el sistema? Vamos a
suponer que se ha identificado correctamente a G,(s), es decir: H(s) = Gy(s),
pero no asi al retraso puro, es decir: A =T + §, donde & representa la desviacién
en la estimacion del retardo. Supdngase también que inicialmente T=1:

CD(s) =

R(s)Gy(s)e™Ts

En nuestro sistema de estudio:

CD(jw) =

Ke—Tja)

14+ R(s)Gy(s) — R(s)Gy(s)e~(T+8)s

(1+7w)jw + K — Ke~T+djw

Como seguimos teniendo el retardo puro en el denominador (e~(T+8)Jj®) el
maédulo del sistema seguira teniendo esas oscilaciones, como se puede observar en
la grafica siguiente (Con una K = 10, y esta vez una § = 0.05).

Phase (deg)

Magnitude (dB)
ENE N IS
o o o o o

&
oo

1440 -

-2880

-4320

-5760

1072

Bode Diagram

L

107! 10°
Frequency (rad/s)

10" 102

Grafica 99: Diagrama de Bode, oscilaciones en el mddulo.
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Al igual que antes, dicho modulo crece por encima de la unidad. Lo que
junto al crecimiento de la fase de 180° va a determinar que el diagrama de

Nyquist de 2 vueltas en sentido antihorario entorno al PC:

Nyquist Diagram

Imaginary Axis

-2.5 2 -1.5

-1
Real Axis

0

0.5

Grafica 100: DN del sistema de segundo orden con polo en el origen y PS con desviaciones en la
estimacion del retardo.

La pregunta que nos debemos hacer es si es estable, y lo mejor para ello es
emplear la aproximacion de Padé (de nuevo se va a emplear una de orden 6),
debido a que si comparamos los diagramas de Nyquist, en la zona de interés son

muy parecidas.

Nyquist Diagram

e + Exacta
15} | Aprox | |
1 S \\.
2 05 / |
é AN - [ _
= . - {_/ .'/"_
@ 0 > + AN x
£ N \ | —
@ \ .‘.
E-05F \ |
| /
A+ /
151
2 . L L L
2.5 -2 -1.5 -1 0.5 0
Real Axis

Grafica 101: Comparacion aproximacion de Padé con retardo puro.

Los polos de la cadena directa del predictor de Smith realista son: -20.8457
+ 0.0000i, -8.4407 +12.8496i, -8.4407 -12.8496i, -8.4967 + 1.7350i, -8.4967 -
1.7350i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -5.0319 + 8.9853i, -5.0319 -

8.9853i, -1.9079 + 8.5788i, -1.9079 - 8.5788i,

3.8638i, 0.0000 + 0.0000i.

0.2715 + 3.8638i,

0.2715 -

88



Universidad

Sensibilidad del Predictor de Smith respecto Zaragoza

de desviaciones en la identificacion del retardo.

Encontramos dos polos en el semiplano derecho, por tanto, como los polos
del semiplano derecho, coinciden con el nimero de vueltas que da el Diagrama de
Nyquist al punto critico en sentido antihorario, se puede afirmar que el sistema se
va a comportar de forma estable.

Pero no nos conformamos con esto, el objetivo va a ser encontrar cuando se
va a inestabilizar este sistema, encontrar el limite de K para el cual el sistema es
estable.

83.1 §=0.01

Comenzamos con una desviacion pequefia de 0.01. Mediante SIMULINK, se
observa que para una K = 194, el sistema se inestabiliza:

L L L I L 1 L I
[} 100 200 300 400 500 600 700 800 900 1000

Offset=0
Gréfica 102: Respuesta ante una entrada escalon del sistema de segundo orden con un polo en el
origen, desviacién del 1% y una ganancia de 194.

Si obtenemos el diagrama de Nyquist, con dificultad se observa que da 4
vueltas al punto critico en sentido antihorario, y el nimero de vueltas no coincide
con el numero de polos en el semiplano derecho que se obtiene con la
aproximacion de Padé (De orden 12, para este caso): 0.8901+16.1512i, 1.0575
+11.8605i, 0.2127 + 6.1653i.

Nyquist Diagram Nyquist Diagram
3 0.8 INY
I o T
06
2 //
04 f
( o
\ \ o ™~ T
. T g M2\ )
% | 3 N
N [\ .
= Y z 0 RN
g0 A g 1 A )
g /| g 02 N
E e £ ‘ -
-1 / _ \
/ 04
.//
06 -
-2 S
-0.8
-3 A
-6 -5 -4 -3 -2 -1 0 1 2 3 -1.4 -1.2 -1 =
Real Axis Real Axis

Gréfica 103: DN del sistema de segundo orden con un polo en el origen para una desviacién del 1%y
una ganancia de 194.
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Sin embargo si hubiéramos cogido una K de 100, se observa que da 4 vueltas
en sentido antihorario al punto critico, y justo coincide con el numero de polos en
el semiplano derecho: 1.0552+10.5935i, 0.4267 + 6.0493i. Por tanto el sistema,
es estable, se puede observar en la gréfica obtenida por Simulink.

Nyquist Diagram

Imaginary Axis
IS

-0.5

h "o 5‘0 1(‘]0 15‘10 260 25‘0 .‘IAD 3:;0 4&0 45‘0 500

Offset=0

Grafica 104: Comportamiento de un sistema de segundo orden con polo en el origen, con PS, una
desviacion del 1% y una ganancia de 194.

8.3.2 6=0.05

Real Axis

Si aumentamos el error en la estimacion del retardo a 0.05 (es decir, se ha
cometido un error en la estimacién del 5%), la inestabilidad del sistema se aprecia
con una K=50. Como se puede observar a continuacion:

107
251

ok

151

0.5

=251

I I I I I I L I I
0 50 100 150 200 250 300 350 400 450 500
Offset=0

Grafica 105: Respuesta escalon de un sistema de segundo orden con polo en el origen, con PS, una
desviacion del 5% y una ganancia de 50.

Obtenemos el diagrama de Nyquist, para saber porque este sistema es
inestable:
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Nyquist Diagram

Imaginary Axis

35 -3 25 -2 -1.5 -1 -0.5 0 0.5
Real Axis

Gréfica 106: DN de un sistema de segundo orden con polo en el origen, con PS, una desviacion del
5% y una ganancia de 50.

Resulta mucho mas sencillo ver que da dos vueltas al punto critico -1. Y
para este caso, presenta 4 polos en el semiplano derecho (0.2360 + 9.3180i,

0.6688 + 5.4677i). Por tanto, aplicando el Criterio de Nyquist, se confirma que el
sistema es inestable.

Que sucede por ejemplo con una ganancia de 45, ligeramente menor a la
ganancia con 50, donde el sistema se vuelve inestable:

Nyquist Diagram T T T T

I A 18-
8 - 16l
e ™
6 ,/ N 14
4 | ’g' 12
- /
X 2 L / ,
_— /
> . s | L
-
g 0 -~ A 08 4
£ p - .
@
£ 2 / 06
-4 \ ] 0.4
\ /
\
6 - / 02
-8 0
-10 - 02= L L L L ' L I I d
-10 -8 6 -4 2 0 2 0 50 100 150 200 250 300 350 400 450 500
Real Axis Offset=0

Grafica 107: Comportamiento de un sistema de segundo orden con polo en el origen, con PS, una
desviacion del 5% y una ganancia de 45.

Resulta complicado de ver, pero para este sistema, el diagrama de Nyquist,
rodea 4 veces al punto critico -1, y seguimos obteniendo 4 polos inestables(0.0792
+ 9.2246i, 0.0792 - 9.2246i, 0.6997 + 5.3742i, 0.6997 - 5.3742i), por tanto, esta
vez, el sistema es estable.

Para este caso la inestabilidad se debe a que pasamos de dar 4 vueltas, a dar
unicamente dos vueltas, por ello el sistema se termina volviendo inestable.
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833 =0.1

A continuacién vamos a suponer que se comete un error de 0.1, es decir, del
10%. Para este caso el sistema se vuelve inestable con una ganancia igual a 11.

Nyquist Diagram

Imaginary Axis
-
‘
|
w
Y/

05 / \ )
\ /

a
o 00 200 200 o w0 w00 700 2 -5 o 0.5 0 05
Offset=0 Real Axis

Grafica 108: Comportamiento de un sistema de segundo orden con polo en el origen, con PS, una
desviacion del 10% y una ganancia de 11.

Si se observa el diagrama de Nyquist, y los polos del sistema, se observa que
no da ninguna vuelta al punto critico, y el nimero de polos inestables de la cadena
directa es 2 (0.3575 + 3.8549i, 0.3575 - 3.8549i), por tanto, es normal que el
sistema se comporte de forma inestable.

Sin embargo si obtenemos para una K = 10, se aprecia que da dos vueltas al
punto critico, y para esta ganancia sigue teniendo 2 polos inestables 0.3030 +
3.7715i, 0.3030 - 3.7715i. Por tanto la causa de que el sistema se vuelva inestable,
es que en el diagrama de Nyquist, al aumentar la K hace que a bajas frecuencias
no llegue a corta el eje de abcisas, sino que, da un giro sin llegar a cortar, y tiende
a cero. (Ver grafica)

Nyquist Diagram
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Gréfica 109: Comportamiento de un sistema de segundo orden con polo en el origen, con PS, una
desviacion del 10% y una ganancia de 10.
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de desviaciones en la identificacion del retardo.
8.4 Conclusiéon

Para este sistema pasa de forma similar al anterior, en bucle cerrado el
sistema se inestabilizaba con tan solo una K = 1.17. Sin embargo el PS ideal lo
estabiliza para cualquier valor de K. Pero cuanto mayor es la desviacion en el
célculo del retardo, mas disminuye el valor de la ganancia para el cual el sistema
se vuelve inestable.

93



ans  Universidad
Sensibilidad del Predictor de Smith respecto 18i  Zaragoza

de desviaciones en la identificacion del retardo.

9. Sistema de segundo orden con cero

El ultimo de los sistemas a analizar en este TFG, va a ser un sistema de
segundo orden con cero. El cual se corresponde con:

G _ by + bys —x 1+1.s
O(S)_a +a,s+a,s? 28 1
otais+a; 14255 4 =52
w, w,,?

Por simplicidad, al igual que en el caso “7. Sistema de segundo orden
simple”, se va considerar que el sistema tiene un polo real doble y se va afiadir un
controlador proporcional (K).

_ (1 +7.5)
o= iy
9.1 El efecto del retraso puro en bucle cerrado.

Nuevamente, analizamos el efecto del retardo en bucle cerrado para el
sistema actual:

con (I Tes) -Ts
K Go(s) = K 1+ 15)° e )

Figura 8: Sistema en bucle cerrado.

Si se obtiene la funcion de transferencia, el retardo se encontrard en el
denominador. Y en base a la experiencia de los sistemas anteriores, esto puede
causar la inestabilidad. Dicha suposicidon se va a comprobar mediante el Criterio
de Nyquist.

(1 + TCjW) e_TjW

CD(jw) =K 1+ jw)?

En primer lugar analizamos el diagrama polar, sin el retardo, es decir:

(1 + 7 jw)

ChGw) = K 1+ tjw)?

T1: Analizamos a bajas frecuencias, cuando w — 0:

(o) -k LH7D { ICDGw)| = K

(1+10)2 " |Arg(cD(w)) = 0°
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T2: Analizamos a frecuencias altas, cuando w — oo:

CD(00) = K(l +17,0) { |[CD(jw)| =0

(1+10)2  |Arg(CD(w)) = —90°

T3: Calculamos los puntos de corte:

CDGw) = K (1 + 1 jw) l 1—72w?+ 217 ,w? tw(l—1%w?) —2tw |
w) = =
(

(1+w)2z 1—12w?)2 +4712w?2 (1 —12w?2)?2 + 472w? J
Buscamos cuando la parte imaginaria es cero:

tow(l—1°w?) — 2w
(1—12w?)? + 4r2w?’

Sucede para w = 0, y para w = oo, Esto se corresponde con los puntos
calculados anteriormente, donde la parte real es K (cortando en el semieje
positivo) y 0.

De esta forma el diagrama polar, para una 7. = 0.5 y 7 =1, y distintos
valores de K, queda de la forma:

Nyquist del sistema sin retardo

Imaginary Axis

-4

-6

2 0 2 6 8 10

ReaI!leis
Grafica 110: Nyquist del sistema sin retardo

Se puede observar que para el sistema sin retardo, el diagrama polar, nunca
corta el semieje negativo, por tanto se puede asegurar la estabilidad para este
sistema de segundo orden con cero sin retardo.

Pero, ¢Qué sucede si al sistema que antes era estable en bucle cerrado, se le
afiade un retardo? Analizamos el diagrama polar, del sistema con retardo, es decir,
cuando su cadena directa es:

(1 + TCjW) e_T]'W

ChGw) = K 1+ jw)?

T1: Analizamos a bajas frecuencias, cuando w — 0:
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CD(0) = Kwe_m _ { |ICD(Gw)| = K

(1 +70)? Arg(CD(jw)) = 0°
T2: Analizamos a frecuencias altas, cuando w — oo:

D (o0) = k EFT®) o rjeo _ { ICD(w)| = 0

(1 + 700)2 Arg(CD(jw)) = —

Por tanto, al afiadirle el retardo, su fase a frecuencias altas es —oo, lo que
significa que el diagrama de Nyquist, hara una espiral en torno a cero, cortando asi
con el semieje negativo, y abriendo una puerta a la inestabilidad.

T3: Calculamos el primer punto de corte:

1+t w) o=TiW _
1+ tjw)?

( . \/ 1—12w? + 2t7,W? 2 tw(l —12w2) — 21w 2
J[CD(IW)1=K ( ) +( )
|

\

CD(jw) =K

(1 —12w?)2 + 4712wW? (1 —12w?)2 + 412w?

t.w(l—12w?) — 2tw

Arg(CD(jw)) = tan™? —Tw

1—12w? + 27T,W?

A continuacion calculamos cuando el argumento es -180° Para ello
representamos la funcion en Matlab y calculamos el punto de corte, para los
valorest, =051t=1yT=1.

_,0.5w(1 —w?) — 2w

tan
1—w?+w?

—Tw=—-m—>tan " }(—-15w—-05w3) =w—m

Grafica 111: Representacion del argumento, con el objetivo de obtener el primer corte en el semieje
negativo de abcisas.
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Se obtiene que el primer punto de corte sucede para w = 1.7559. Por tanto
sustituyendo en la parte real.

[CD(iw)] = KJ (Tlm)z * (%

Por tanto, cuando 0.3259K > 1, alcanzara el punto critico, y esto sucede
para K > 3.068.

2
) = 0.3259K

El criterio de Nyquist, nos dice que: “el sistema es estable si el nimero de
rodeos en sentido contrario al de las agujas del reloj es igual al nimero de polos
G(s)H(s) en el semiplano derecho del plano s; de lo contrario, el sistema es

inestable.”

Por tanto, obtenemos los polos para una K = 4, por ejemplo: -5.0319 +
8.9853i, -5.0319 - 8.9853i, -7.4714 + 5.2525i, -7.4714 - 5.2525i, -8.4967 +
1.7350i, -8.4967 - 1.7350i, -1.0000 + 0.0000i, -1.0000 + 0.0000i. Se observa que
no hay polos en el semiplano derecho, por tanto cundo K > 3.07, el sistema se
volvera inestable.

Las graficas siguientes ilustran el DN y la respuesta del sistema en bucle
cerrado ante una entrada escalon con y sin retardo (T=1seg) para valores
diferentes de K:

Nyquist Diagram

Imaginary Axis

-2 -1 0 1 2 3 4
Real Axis

(8,1

Grafica 112: Diagrama de Nyquist.
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Step Response

K=1
K=3
K=5

Amplitude

0 5 10 15 20 25 30
Time (seconds)

Grafica 113: Comportamiento sistema en bucle cerrado, ante entrada escalon.

Como se observa en el diagrama de Nyquist, la trayectoria para K = 3, aun
no alcanza el punto critico, sin embargo, si aumentamos un poco mas la ganancia
(K=5), ya se alcanza el punto -1, y el sistema se comporta de forma inestable.

También es de interés observar las diferencias entre el diagrama de Nyquist
sin retardo, y el que contiene el retardo, pues se observa que el retardo es lo que
provoca que mi sistema se vuelva inestable.

Por ello en el siguiente apartado se emplea el Predictor de Smith, con el
objetivo de que al elevar la ganancia en el sistema con retardo, el sistema no se
vuelva inestable.

9.2 El predictor de Smith ideal.

En el caso que nos ocupa (sistema de 2° orden simple con cero y retraso
puro):
G(S) — GO(S)e—Ts — %e—Ts
Supongase que se emplea una estructura de control basada en el predictor de
Smith, en la que se han identificado correctamente G,(s) y T, es decir: H(s) =
Go(s) y A =T. La cadena directa del control con el Predictor de Smith quedara
como sigue:

R(s)Gy(s)e™Ts
1+ R(s)Gy(s) — R(s)Gy(s)e~Ts

CD(s) =

K(1+ 1 jw)e TV

CD(jw) =
) 1+K—1?w?+ 2tjw + Kt jw — K(1 + 1. jw)eTs

La presencia del factor e~7/“ en el numerador no afecta al mddulo
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(tnicamente a la fase, indicando que el DN va a dar oo vueltas en torno al origen).
En cambio, la presencia de dicho factor en el denominador si afecta al médulo
(también al argumento), de forma que este presentard oscilaciones. La gréfica
siguiente muestra el DdB del sistema, en el que se aprecian las mencionadas
oscilaciones del médulo:

Bode Diagram

40
—~ 20 /= .
m e ==
z ~ \
g0 T~ \A ]
2 A
20 Wi, i
@ BRSNS
= 40l RS i

\\\
60 - | | | | L ~~
0 e . :

K=1 []
= K =10
& -5760 K=15|1
(0]

(2]

8 41520 .

o W
-17280 L 1 I 1 1 I

1072 107" 10° 10" 102 10° 10*

Frequency (rad/s)
Grafica 114: Diagrama de Bode del sistema de segundo orden con cero y PS.

Parece evidente que las mencionadas oscilaciones tendran méas protagonismo
cuanto mayor sea K. No obstante, en la grafica anterior se aprecian varias subidas
de médulo las cuales podria corresponderse con la presencia de 2 polos complejos
conjugados con parte real positiva, propias de un sistema inestable.

Por ello, se aplica la aproximacion de Padé de orden 6, y se comprueba su
validez, con el objetivo de poder obtener los polos del sistema.

Nyquist Diagram

0.8

06

04r

0.2

Imaginary Axis
o
©

02

-04

06

08 . i \
-1 -0.5 0 0.5 1
Real Axis

Gréfica 115: Exactitud de la aproximacion de Padé con la del retardo.

Por tanto se obtienen los siguientes polos:
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e ParaK=1:

-15.2248 +11.2264i, -15.2248 -11.2264i, -3.5225 +10.2412i, -3.5225 -
10.2412i, -2.1804 + 4.3206i, -2.1804 - 4.3206i, -1.7600 + 0.0000i, -0.3845 +
0.0000i.

e Para K=15:

-19.8410 +28.3452i, -19.8410 -28.3452i, -0.9385 +12.1761i, -0.9385 -
12.1761i, -0.2012 + 5.6428i, -0.2012 - 5.6428i, -1.9795 + 0.0000i, -0.0590 +
0.0000i.

Como para todos los valores de K, los polos se encuentran en el semiplano
izquierdo, si el diagrama de Nyquist, no rodea al punto -1, en sentido antihorario,
el sistema se comportara de forma estable. Por ello realizamos un analisis
detallado del Diagrama de Nyquist.

K(1+ 1 jw)eT/®

CD(jw) = -
) 1+K—1%2w? + 2tjw + Kt .jw — K(1 + 1. jw)e~T/®

T1: Analizamos a bajas frecuencias:

K { ICD(jw)| = K

lim CD(jw) = Arg(CD(jw)) = 0°

_—
w—0 1+K—K
T2: A altas frecuencias:

K(1+ 1 jw)e T/®
1+ K —12w?+ 2tjw + Kt jw — Ke Ti® — Kt jwe~T/®

. { |ICD(jw)| =0
Arg(CD(jw)) = —oo

lim CD(jw) =
wW— 00

La presencia del factor e~7/" en el numerador no afecta al modulo
(Unicamente a la fase, indicando que a altas frecuencias, el DN va a exhibir un
comportamiento ciclico en forma de espiral). En cambio, la presencia de dicho
factor en el denominador si afecta al médulo del sistema, por ello se analizan los
valores maximos y minimos de dicho médulo:

e Cuando wT = (2N)m, siendo e~ T/ = 1, tenemos un minimo en el
denominador (todos los términos que contienen el valor K se
cancelan), lo que hace que el mddulo del sistema presente un
maximo:

K(1+ T jw) 1+ 7 jw

—T2w? + 2t1jw - 1+ gjw)?

CDGw) = 7
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(

4

|ICD(Gw)| = |K] (

1+ 7.2w?

(1 + 2w?)2

)

Arg(CD(jw)) = tan"!(r,w) —tan 1 (2tw) — Tw
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Si observamos el modulo, este si que podria alcanzar el valor de 1, pero en
este caso no me importa, pues este valor siempre va a cortar en el eje positivo de
abcisas, por lo que el sistema no se inestabilizara a causa de este valor.

Cuando wT = (2N + 1)m, siendo e~ 7/¥ = —1, tenemos un maximo
en el denominador (todos los términos que contienen el valor K se
suman), lo que provoca que el modulo del sistema presente un

minimo:
CD (i) = K+ tjw) _
(o) = 1+ 2K —12w? + 2tw + 2KT,.W)j
'( ICDGw)| = K| kSl
{ Uw)l = (14 2K —12w?)%2 + (2tWw + 2KT.W)?

LArg(CD (jw)) = tan"(z.w) — tan~?! (

2t + 2Kt .w

_T
1+2K—r2w2) W

Si observamos el mddulo de dicha funcién, para ganancias muy elevadas, el
punto de corte tiende a 0.5, por tanto nunca llega a superar el punto critico -1.

Estos valores maximos y minimos se corresponden con multiplos de m, es

decir, cuando el moédulo presenta un valor méximo este siempre corta en el
semieje positivo de abcisas. Y cuando el moédulo presenta un minimo, este
intersecta en el eje negativo de abcisas, pero su moédulo es siempre menor que 1.
Por tanto podemos afirmar que el PS consigue estabilizar el sistema con retardo.

Imaginary Axis

Nyquist Diagram

K=1

-2

Grafica 116: Diagrama de Nyquist

0 2 4

6 8
Real Axis

10 12 14 1

Step Response

K=1 ||
K=10| |
K=15

Amplitude

2 3
Time (seconds)

Smith ideal.

4

o

Gréfica 117: Respuesta escalon al Predictor de
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Como se puede observar, en las gréaficas anteriores, y en los célculos
realizados anteriormente, con el Predictor de Smith, se logra, que el retardo no
afecte a la estabilidad de mi sistema.

9.3 Predictor de Smith real

Es importante notar, que para el buen funcionamiento de la estructura del
predictor de Smith, se ha calculado correctamente la H(s) = G,(s), y el retardo
puro, pero ahora se va a analizar la estructura del Predictor de Smith, suponiendo
que no se ha identificado correctamente el retardo puro.

Continuando con el sistema de estudio:

K1+ t.5)e”Ts
(1+71)2+ KA +1.8)— K+ 1.8)e T+d)s

CD(s) =

Al igual que en los sistemas de segundo orden anteriores, es necesario
obtener el nimero de Polos del sistema de la cadena directa, con el objetivo de
poder aplicar el criterio de Nyquist y llegar a la conclusién de si el sistema seguira
siendo estable o si se inestabilizara.

Por ello, para realizar el andlisis se propone sustituir dicho término oscilante
por una aproximacién polinomial (por ejemplo, la de Padé de un orden suficiente):

Nyquist Diagram

Exacta
Aprox

Imaginary Axis
o

Real Axis
Gréfica 118: Comportamiento aproximacion de Padé

En la grafica anterior, se ha empleado una K=50, y una aproximacion de

Padé de orden 12, y se puede observar como en la zona de interés se comporta de

la misma forma, que en el sistema que se ha empleado, la funcion del retardo. Por
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tanto se considera valida esta aproximacion. Si obtenemos los polos de la cadena
directa, podremos ver que todos sus polos son estables, por tanto si el diagrama de
Nyquist rodea el punto critico, el sistema se volvera inestable.

Por tanto, a diferencia de los sistemas de segundo orden tratados
anteriormente, los cuales presentaban polos inestables en la cadena directa, y su
diagrama rodeaba al punto critico en sentido antihorario, y aun asi se podia
comportar de forma estable. Este caso es mas similar a los sistemas de primer
orden, “3.Sistema de primer orden”, “6.Integrador”. En los que se podria obtener
también una expresion para obtener la ganancia maxima para el cual el sistema se
inestabliza.

Continuando con el caso dado:

K(1+ tjw)e TV
14+ K —12w2+ 21jw + Kt jw — K(1 + 1 jw)e~T+)s

CD(jw) =
Analicemos esta cuestion en detalle:

e T1: A bajas frecuencias (cuando @—0), el diagrama polar de la
CD (jw) parte de un valor finito K a 0°:

K { ICD(jw)| = K

Hm CDUW) = 77—k ~ \arg(cD(iw)) = 0°

T2: A altas frecuencias (cuando w—), el diagrama polar de la
CD (jw) termina en 0 con —oo°:

K1+t jw)e T/
1+ K —12w?%+ 2tjw + Kt jw — Ke T/® — Kt jwe~Ti®

ICD ()| = 0
-~ {Arg(CD(ja))) = —©

lim CD(jw) =
w—00

Al igual que antes la presencia del factor e~7/* en el numerador no afecta al
mddulo, pero la presencia del factor e~(T*+9Jw en el denominador si afecta al
mddulo, de forma, que los valores maximos y minimos son:

e Cuando w(T +6) = 2Nm, siendo e T+9/W =1 tenemos un
minimo en el denominador (los términos que contienen a la K se
cancelan), lo que hace que el moddulo del sistema presente un
maximo:

K1 +1jw) 1+ 7 jw
— 202 4+ 21jw (14 tjw)?

CDGW) =
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I( CD(i _ K 1+ 7.2w?
4 |ICD(Gw)| = |K] <m>

LArg(CD (jw)) = tan"(r,w) —tan"1(2tw) — Tw

e Cuando w(T +8) = (2N + 1)m, siendo e~T/% = —1, tenemos un
maximo en el denominador (los términos que contienen a la K se
suman), lo que hace que el médulo del sistema presente un minimo:

K1+t jw)

U0) = Tk — 207 + (2ow + 2Ko.w)]

I(ICD w)l = |K]| Sl
{ Gw)l = (142K —12w?)%? + (2tWw + 2K1,.W)?

2t + 2Kt .w )
—Tw

LATg(CD(]W)) = tan_l(TCW) —tan~! (1 + 2K — 122

El DN va a presentar una forma de espiral que tiende al origen, y debido a la
incorrecta identificacion del retardo, estos valores maximos y minimos se
corresponden con los valores: (1+2N)r/(1+8/T) y 2N7/(1+6/T), es decir, cada uno
de los valores extremos se producen con T/ & argumentos diferentes. Por tanto,
para que ahora el sistema sea estable, ambos mddulos deben de ser menor que 1.
Se trata por tanto de encontrar el modulo a la frecuencia para la cual, el primer
maximo alcanza el semieje negativo de abcisas:

La frecuencia para la cual se dan los maximos es:

2Nt
T+6

w(T+6)= 2Nm > w =

Queda saber en cuantas vueltas (I6bulos) se alcanza el semieje negativo de
abcisas. Contando con que a frecuencias suficientemente elevadas, el aporte de

fase correspondiente al término K% es de -90° y que en 360° se dan T/

I6bulos, puede concluirse que el nimero de I6bulos necesario para alcanzar el
semieje negativo de abcisas es N=T/ (48). Sustituyendo dicho valor en la ecuacion
anterior, podemos obtener el valor del médulo a dicha frecuencia:

_2N7T_ T
YITxs 28(T +0)

Sustituyendo w en la expresion del mddulo:
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|ICDGw)| = K

T 2
2 T
1+ t.2w?2 L+ (25(T+5))
=K
1+ 72w? 1472 ( Tn )2
T \26(T ¥ 5)
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Para este caso, los polos del sistema se encuentran en el semiplano
izquierdo. Por ello, si se supera el punto critico -1, el sistema se comportara de
forma inestable, por lo que dicho mddulo debe ser inferior a la unidad. Por
consiguiente, el valor maximo de K que hace al sistema estable es:

5 Tn )2
1+7 <_26(_T +3)

Kmax -
T )2

2 _
L+ (26(T o)

A continuacion se muestra el efecto del error en la estimacion de este
sistema, para un valor de T=1, Tt = 1, 7. = 1. Por ejemplo para una ganancia de
50, se observa como al cometer mas desfase, se aproxima mas el punto critico, y
esto es debido a que contra mas desfase, se llega al semieje negativo con un valor
de la frecuencia menor.

40

30

201

Imaginary Axis

-20

-30

-40

Nyquist Diagram

10 r

-10

deltaT=0.01
deltaT=0.05 | |
deltaT=0.1

5 0 5 10 15 20 25 30 35 40

Real Axis

Gréfica 119: Efecto al cometer un error en la estimacion del retardo

Al igual que en los sistemas de segundo orden anteriores, se va a buscar el
limite de la ganancia para el cual se hace inestable con SIMULINK y a
continuacion se corroborara con el diagrama de Nyquist.

105



iss  Universidad
Sensibilidad del Predictor de Smith respecto 18i  Zaragoza
de desviaciones en la identificacién del retardo.

931 6=0.01

En el caso de que se cometa un error de un 1% si se aplica la férmula
obtenida anteriormente:

5 Tn )2 2( 1m )2
LA (26(T+6) _ M ooiraroon) .,

Tr 2 1 2
2~ = 2
L+ (26(T T 5)) 1+05 (2 ~001*(1F 0.01))

Kmax

Se obtiene que para una ganancia igual a 311, el sistema se comportara de
forma inestable.

Vamos a comprobarlo mediante el Diagrama de Nyquist (Grafica 122).

0.8

0.6

0.4

0.2

Imaginary Axis
o

-0.2

-04

-06

-08

-2 -1.5 -1 o -0.5 O 05 1
Real Axis
Grafica 120: DN del sistema de segundo orden con cero, PS y desviacion del 1%.
A causa de la desviacién en la estimacién del retardo, se produce un desfase
y el valor con frecuencia w(T + &) = (2N)m, se va desplazando, llegando a
cortar con el semieje negativo de abcisas. Aunque el modulo de este valor se
divida por la frecuencia y esta valla en aumento, si el valor de K es lo
suficientemente grande se alcanzara el punto critico. Causando asi la inestabilidad

(Grafica 123).

Step Response

K=280
K=330| ]

Amplitude

0 5 10 15 20 25 30 35 40
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Gréfica 121: Respuesta del sistema de segundo orden con cero, PSy desviacion del 1%.
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Si se comete una desviacion en la estimacion del retardo de un 5%, para
ganancias mayores a 60,7 el sistema se comportara de forma inestable.

1m

2%0.05 * (1 + 0.05)

;

1m

5 T )2 . (
I+7 (25(T+5) 1+1
Kmax = =
T 2
2 L1t 2
I+ (25(T + 5)) 1+0.5 (

2
2 0.05* (1 + 0.05))

= 60.7

A continuacién se puede comprobar el resultado obtenido mediante el

diagrama de Nyquist (Grafica 124).

Imaginary Axis

Real Axis

Grafica 122: Diagrama de Nyquist con un error en la estimacion del retardo de un 5%.

Para este sistema, se alcanza antes el punto critico para valores de la
ganancia menor, esto es debido a que cuanto més desfase, menor es el valor de la

frecuencia al llegar al semieje negativo de abcisas.

A continuacion se muestra la estabilidad del sistema.

Step Response

Amplitude

-3

K=20
K=50
K=70
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30

35

40

Gréfica 123: Respuesta del sistema de segundo orden con cero, con un error en la estimacion del

retardo de un 5%.
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933 6=0.1

Si se comete un error en la estimacion del retardo, el sistema se inestabiliza
para valores de la ganancia mayores que 29,28.

T 2 1m 2
1472 (—) 1412 ( )
Ko 25(T+3))  _ Z 0L A30D) 9,0
T 2 1m 2
2 - - 2
1+ (25(T T 5)) 1+0.5 (z ~01+=(1F 0.1))

Se puede corroborar con el diagrama de Nyquist:

Nyquist Diagram

—— K=10
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K=35
g b _ 1
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@ O0r
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2
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—_—— -
B H 1
8r .
10 ; i . . o
2 -1 0 1 2 3 4 5
Real Axis
Grafica 124: DN del sistema de segundo orden con cero con un error en la estimacion del retardo de
un 10%.

Para este caso todavia se hace mas patente lo comentado anteriormente.

Step Response
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Gréfica 125: DN del sistema de segundo orden con cero con un error en la estimaciéon del retardo de
un 10%.
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10.Conclusion

Ya se ha visto, que un sistema con retardo puro puede volverse inestable en
bucle cerrado con facilidad, a poco que se eleve la ganancia. El Predictor de Smith
consigue resolver el problema satisfactoriamente en todos los casos, permitiendo
un disefio del regulador como si tal retardo no existiese.

Sin embargo, un error en la estimacion del retardo en el Predictor de Smith,
puede ser fatal, pues en todos los casos existen valores de la ganancia de la cadena
directa que hacen al sistema inestable, a diferencia de lo que sucede con el
Predictor de Smith ideal, en el que se han identificado con exactitud, tanto la
dinamica del sistema a controlar, como su retardo.

Lo unica diferencia entre unos sistemas y otros es el valor de la ganancia
para el cual el sistema se inestabiliza, es decir, en algunos sistemas con pequefios
errores de estimacion, el sistema se inestabiliza para valores de la ganancia
elevados, sin embargo, en otros sistemas, el minimo error en la estimacion del
retardo, ya causa la inestabilidad del sistema para ganancias pequefias (K > 2).

Dicho esto, dentro de los sistemas de primer orden podemos diferenciar dos
tipos:

e Por un lado tenemos los sistemas que si se comete un error en la
estimacion del retardo por minimo que sea, se vuelven inestables para el
mismo valor de la ganancia, sin importar si se ha cometido un error del
1% o del 10% (aunque puede haber alguna excepcion).

Este tipo se corresponde con el sistema de primer orden completo, vy el

sistema de primer orden completo + PI. Por ejemplo, en el primer caso, si

K% > 1, el sistema se vuelve inestable, sin depender del error que se
cometa en la estimacion del retardo.

Como se puede observar, ocurre en sistemas que presentan el mismo

orden en el numerador y en el denominador o, si se prefiere, que tienen un

cero en su cadena directa. Esto es debido a que a la hora de realizar el
andlisis de Nyquist, el retardo junto con el cero, van a provocar dos
valores extremos que se mantienen constantes (ciclo limite), y debido al
desfase que se produce a causa del error en la estimacion, el valor

maximo, va a terminar cortando con el eje negativo de abcisas.

e Por otro lado, tenemos los sistemas en los que la inestabilidad va a
depender de la ganancia y a la vez, del error cometido en la estimacion del
retardo, siendo asi, que si el error cometido es muy pequefio, se volvera
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inestable, para ganancias muy elevadas (mayores que 100), pero si el error
es mayor, se volvera inestable para ganancias menores.

Este se corresponde con sistemas, que no presentan el mismo orden en el
numerador que en el denominador, como por ejemplo, el sistema de
primer orden, o el caso del integrador. Esto de debe a que, esos maximos
y minimos que se producen, depende del valor de la frecuencia, de forma
que si el desfase que se produce es muy pequefio, le cuesta mas lobulos
(vueltas) alcanzar el eje negativo de abcisas, y la frecuencia va
aumentando y como esta se encuentra en el divisor del médulo, logra que
para valores de la ganancia no muy elevados, no se alcance el punto
critico. Pero en el caso contrario, en los que el error en la estimacion del
retardo es grande, el desfase que se produce es mayor, y el valor de la
frecuencia es menor al llegar al eje negativo de abcisas, por ello, se
inestabilizara con ganancias mas pequefias.

Dentro de los sistemas de sequndo orden, (donde el analisis resulta bastante
mas complejo), la estructura del Predictor de Smith Real, sigue sin estabilizar el
sistema para cualquier valor de la ganancia. Pudiendo diferenciar también dos
tipos:

e Por un lado tenemos el sistema de segundo orden con cero, donde la
diferencia del orden del denominador respecto del numerador, es de uno.
De forma que este sistema se comporta muy similar a los de primer orden.
Pues en este caso su diagrama de Nyquist, también se corresponde con
una espiral, y cuando encontramos un desfase, el valor maximo del
modulo intersecta con el semieje negativo de abcisas. Pero este valor
también depende de la frecuencia, y por tanto, se la desviacion en la
estimacion del retardo es pequefia, el desfase que se produce es pequefio,
y el valor de la frecuencia al cortar con el eje negativo de abcisas es
mayor, y por tanto sera estable para ganancias mayores.

e Por otro lado tenemos el Sistema de segundo orden simple, y el Sistema
de segundo orden con un polo en el origen. En estos casos el estudio de
estos sistemas resulta bastante mas complejo debido a que, como se ha
visto en los diagramas de Bode, puede presentar un aumento de la fase a
la vez que su modulo crece por encima de la unidad, lo que supone,
rodear al punto critico en sentido antihorario, de forma que para conocer
su estabilidad, es necesario mirar el nimero de polos inestables de la
cadena directa.

Por tanto, aqui ya no se produce ese ciclo limite, y con el objetivo de
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conocer para que valores de la ganancia el sistema se vuelve inestable, se
ha decidido analizar el sistema graficamente, mediante la obtencidn de
gréficas del Diagrama de Nyquist.

A continuacién se puede observar una tabla que muestra las conclusiones de
cada apartado (Figura 9).

Sin retardo
Estable para todo K
(ConT=1y t=1)
Bucel cerrado
Con retardo
Estable para K<2.2618
(ConT=1yt=1)
Sistema de primer
) P Predictor de Smith tedrico Estable para todo K
orden simple.
Estable para ganancias menores a:
- 0 2
Predictor de Smith Real _ Tn -
nex = [14* (557755)
Sin retardo Estable para todo K
Bucel cerrado Estable si:
Con retardo stabie st K r—; < 1.
Sistema de primer
orden completo Predictor de Smith tedrico Estable para todo K
Estable si: e
Predictor de Smith Real K—<1,
T
Sin retardo Estable para todo K
Bucel cerrado i- T
Conretardo Establesi: Kc < T_c
Sistema de primer
orden completo + Pl Predictor de Smith tedrico Estable para todo K
Estable si: T
Predictor de Smith Real KKg < r_!
[
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Sin retardo Estable para todo K

Integrador

Bucel cerrado

Estable si:

Con retardo

K<Z
2

Predictor de Smith tedrico

Estable para todo K

Predictor de Smith Real

Estable para ganancias menores a:

Kmaxr =

Tm
26(T+4)

Sistema de segundo
ordne simple

Bucel cerrado

Sin retardo

Estable

Con retardo
(T=1,t=2)

Inestable para K>5

Predictor de Smith tedrico

Estable para todo K

Sistema de segundo
orden con uno de
sus polos en el

Predictor de Smith 0.01 Estable para K < 775
Real (ConT=1,t=2y
0.05 Estable para K < 197
empleando metodos
graficos) 0.1 Estable para K < 45
Sin retardo Estable

Bucel cerrado

Con retardo
(T=1, t=1)

Estable para K<1.13

Predictor de Smith tedrico

Estable para todo K

. Predictor de Smith 0.01 Estable para K < 194
origen Real (ConT=1,1=1
=LY 0.05 Estable para K < 50
empleando metodos
graficos) 0.1 Estable para K< 11
Sin retardo Estable

Bucel cerrado Con retardo

(T=1, =1y 1c=0.5)

Inestable para K<3.07

Predictor de Smith tedrico Estable paratodo K

Sistema de segundo

Estable para ganancias menores a:

T z
2
1+7 (2 T+ ))

jl ‘”fz(z ?+ ))

orden con cero

Predictor de Smith Real Kmax =

2

Figura 9: Resumen de los resultados obtenidos.

Por tanto una conclusion extra que se puede obtener, es que cuanto mayor
sea el orden en el denominador respecto al numerador, el Predictor de Smith, sera
mas reacio a inestabilizar el sistema, cuando presente errores en la estimacion del
retardo.
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12. Anexos

A RESPUESTA EN FRECUENCIA

Los métodos de respuesta en frecuencia son los mas potentes en la teoria de
control convencional. También son indispensables en la teoria de control robusto.

La salida en estado estacionario de una funcion de transferencia de un
sistema se puede obtener directamente de la funcidn de transferencia sinusoidal, es
decir, después de alcanzar el estado estacionario, la respuesta en frecuencia se
puede calcular sustituyendo en la funcion de transferencia s porjw, donde w es la
frecuencia. La cual se puede dar como

G(jw) = Mel? = MArg (o)

Donde M es el cociente de amplitud de las sefales sinusoidales de entrada y
salida y ¢ es el desplazamiento de fase entre ambas sefiales.

Si tenemos un sistema de la forma

Y(s) = GEXE) > 6(s) = 2o

= - —_—
S S S S X(S)
donde X(s) es la entrada del sistema, e Y(s) la salida del sistema. Este sistema
después de alcanzar las condiciones en estado estacionario, la respuesta en
frecuencia se puede calcular sustituyendo en la funcién de transferencia s porjw,

donde w es la frecuencia. La cual se puede dar como
G(jw) = Mel? = MArg (o)

donde M es el cociente de amplitud de las sefales sinusoidales de entrada y salida,
es decir, el modulo de la respuesta en frecuencia de nuestra funcion de
transferencia (funcion de transferencia sinusoidal)

Y(jw)
X(w)

y @ es el angulo de G(jw), que representa el desplazamiento de fase entre ambas
sefales.

GGwW)| =

parte imaginaria de G(jw)

— ] = -1
@ = Arg(G (]W)) tan l parte real de G(jw)

con ello se obtiene la expresion

G(w) = |G(w)le/?
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La funcion de transferencia sinusoidal, funcion compleja de la frecuencia w,
se caracteriza por su magnitud y éangulo de fase, con la frecuencia como
pardmetro. Por lo general se usan tres representaciones gréficas de las funciones
de transferencia sinusoidales:

1. El diagrama de Bode.
2. El diagrama de Nyquist.
3. Diagrama de Nichols (Este no se emplea durante el TFG)

B DIAGRAMA DE BODE

Un diagrama de Bode estd formado por dos graficas: una representa el
médulo de la funcidn de transferencia y otra representa el angulo de fase, de la
funcion de transferencia. La unidad utilizada en esta representacion para la
magnitud es el decibelio (dB), y para el angulo de fase grados.

La ventaja principal de utilizar el diagrama de Bode es la facilidad relativa
de dibujar las curvas de la respuesta en frecuencia. Pero en este TFG, se ha
empleado el diagrama de Bode para obtener informacion general sobre las
caracteristicas de la respuesta en frecuencia.

C DIAGRAMA DE NYQUIST o DIAGRAMA POLAR

Es un método de respuesta en frecuencia para el analisis y disefio de sistemas
de control.

El diagrama polar de una funcion de transferencia sinusoidal G (jw) es una
grafica de la magnitud de G(jw) con respecto al angulo de fase de la funcion
G (jw) en coordenadas polares, cuando w varia de cero a infinito. Por tanto, el
diagrama polar es el lugar geométrico de los vectores |G(jw)|Arg(G(jw))
cuando w varia de 0 a infinito. El diagrama polar, se denomina, a menudo,
diagrama de Nyquist. Cada punto en el diagrama polar de G(jw) representa el
punto terminal de un vector en un valor determinado w.

Im

| B [ For] —e

Diagrama polar.

Figura 10: Diagrama polar.
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A continuacion se puede observar diagramas polares de funciones de
transferencia sencillas.

1
1 [} o= T+ Ty (1 = JaTa 1 = Jaa)
I= - el ! 1m

|
Im |
- wam
1 : | . i [ oo 4 EE 1'_
w == | CE S . o =0~ f Re
ws0 Yump Ll | K sl
" | T+ juaT
a re | [ [ o=l
| _ z L+ juil
St = Lo josd + ] Tl + juTy) 01+ julyh
. Im o Im im hY Im 1

. T;.' -
= - = iIrdi e
\ '-;- = o - off R
—_— % - B -
o= w ] ¥r o l‘\_ I Ba ""'\ -
wall By
U

a

Figura 11: Diagrama polar, de distintas funciones de transferencias.

D CRITERIO DE ESTABILIDAD DE NYQUIST

El criterio de estabilidad de Nyquist determina la estabilidad del sistema en
lazo cerrado a partir de la respuesta en frecuencia en lazo abierto y los polos en
lazo abierto. Este criterio es muy atil en ingenieria de control, debido a que
permite determinar graficamente la estabilidad absoluta del sistema en lazo
cerrado.

Considere un sistema en lazo cerrado. Donde la funcién de transferencia en
lazo cerrado es:

G(s)
1+ G(s)H(s)

FdT(s) =

para la estabilidad todas las raices de la ecuacion caracteristica F(s) =1+
G(s)H(s) = 0 deben estar en el semiplano izquierdo del lado s. El criterio de
estabilidad de Nyquist relaciona la respuesta en frecuencia en lazo abierto
G(jw)H (jw) con el nimero de ceros y polos de 1 + G(s)H(s) que se encuentran
en el semiplano derecho del plano s.

La trayectoria de Nyquist encierra el semiplano derecho del plano s asi como
todos los ceros y polos de 1 + G(s)H(s) que tienen partes reales positivas. [Si no
hay ceros de 1 + G(s)H(s) en el semiplano derecho del plano s, no hay polos en
lazo cerrado, y el sistema es estable.]

La estabilidad del sistema en lazo cerrado se averigua examinando los
rodeos del punto -1 + jO mediante el lugar geométrico de G (jw)H (jw). El nUmero
de rodeos en el sentido de las agujas del reloj del punto —1 + jO se encuentra
contando el nimero de rotaciones en el sentido de las agujas del reloj del vector.

Un analisis similar es aplicable para los sistemas con un retardo de
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transporte. La estabilidad de un sistema con retardo de transporte se determina a
partir de las curvas de respuesta en frecuencia en lazo abierto examinando el
numero de rodeos en el punto —1 + j0, al igual que en el caso de un sistema cuya
funcion de transferencia en lazo abierto es un cociente de dos polinomios en s.

En resumen:

1. Este criterio se expresa como
Z=N+P

donde Z es el nimero de ceros de 1 + G(s)H(s) en el semiplano derecho
del plano s, N es el numero de rodeos en el sentido de las agujas del reloj
del punto —1 + jO y P es nimero de polos de G(s)H(s) en el semiplano
derecho del plano s
Si P no es cero, para un sistema de control estable, se debe tener Z =0 o
N = -P, lo cual significa que se deben tener P rodeos del punto —1 + jO en
el sentido de las agujas del reloj.
Si G(s)H(s) no tiene polos en el semiplano derecho del plano s, entonces
Z = N. Por tanto, para la estabilidad no se debe rodear el punto —1 + O
mediante el lugar geométrico G(Gjw)H (jw).

2. Debe tenerse cuidado en el momento de probar la estabilidad de sistemas

multilazo, debido a que pueden incluir polos en el semiplano derecho del
plano s. Una simple revision de los rodeos del punto —1 + jO mediante el
lugar geométrico G(jw)H(jw) no es suficiente hay que determinar los
polos, que se hace con facilidad aplicando el criterio de estabilidad de
Routh al denominador de G(s)H(s).
Si se incluyen en G (s)H (s) funciones trascendentes, tales como el retardo
de transporte e~TS, deben aproximarse mediante una expansion
(Aproximacion de Pade) en serie antes de aplicar el criterio de estabilidad
de Routh.

Un andlisis de la estabilidad:

Al examinar la estabilidad de los sistemas de control lineales mediante el
criterio de estabilidad de Nyquist, se observa que se pueden presentar tres casos.

1. El punto —1 + j0 no esta rodeado. Esto implica que el sistema es estable
si no hay polos de G(s)H(s) en el semiplano derecho del plano s; de lo
contrario, el sistema es inestable.

2. El punto —1 + jO queda rodeado una o varias veces en sentido contrario
al de las agujas del reloj. En este caso, el sistema es estable si el nUmero
de rodeos en sentido contrario al de las agujas del reloj es igual al nimero
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de polos G(s)H(s) en el semiplano derecho del plano s; de lo contrario, el
sistema es inestable.

3. El punto —1 + j0 queda rodeado una o varias veces en el sentido de las
agujas del reloj. En este caso el sistema es inestable.

E APROXIMACION DE PADE

Las aproximaciones de Padé son un tipo particular de aproximacion
en fracciones racionales respecto al valor de una funcion f(x). La idea es que
dicha aproximacion coincida con el desarrollo en serie de Taylor de la misma funcién
en la medida de lo posible. La aproximacion de Padé de orden (m, n) es la funcion
racional:

. Po +p1$+p2m2+...+pm$m
1+ gz + gz + -+ gz"

R(z)

Trasladando la aproximacion de Padé como tal a este Trabajo Fin de Grado, se
reduce al ajuste a una funcion racional propia de la expansion en serie de una sola
funcion trascendental, la exponencial e ~7Sdonde T es la cantidad de tiempo que se toma
el sistema analizado en responder. Esto se debe a que si se considera un retardo
puro T, no se puede utilizar como funcion de transferencia debido a que no se
trata de una divisién polinémica, por tal motivo se utiliza esta aproximacién cuando
existe un retardo, que se presenta en sistemas de orden superior. Padé permite
representar el retardo como polos y ceros permitiendo considerar sus efectos al analizar
el lugar de la raiz.

Un ejemplo de la aproximacion de Pade de orden 6, que es muy empleada durante
el Trabajo fin de Grado:

s® —42s%+ 840s* — 1008053 + 7560052 — 332640s + 665280

—jow —
€ s6 + 4255+ 840s* 4+ 10080s3 + 7560052 + 332640s + 665280

%$%Declaracidédn de variables.
tau = 1;

T=1;

K=1;

%$Sistema sin retraso
misis O=tf (1, [tau 1]);
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$Sistema con retraso
misis=tf (1, [tau 1], '"'iodelay',T);

%$Sistema en bucle abierto

figure(1l); hold on %Respuesta escaldn bucle abierto
step (K*misis 0,K*misis)

legend('Sin retardo', 'Con retardo'), grid on

title ('Respuesta escalon unitario')

$Sistema en bucle cerrado

cadena directa = K*misis/ (1 + K*misis)

cadena directa 0 = K*misis 0/ (1 + K*misis 0)

figure (2); hold on %Nyguist

nyquist (K*misis 0,K*misis, 0.000001:0.001:1000)
legend('Sin retardo', 'Con retardo')

roots([tau 1]) %$Los polos del sistema sin retardo,
importante para Nyqgquist

[num pade,den pade]=pade(l,6) % Aproximacion de pade
de orden 6

num_aprox bc=K*num pade

den aprox bc=conv([tau 1],den pade)

cadena directa PS teorico aprox bc=tf (num aprox bc,den
_aprox _bc) % Sistema aprox bc

figure (3); hold on %Nygquist

nyquist (K*misis, cadena directa PS teorico aprox bc,0.0
00001:0.001:1000)

legend ('Exacto', "Aproximado")

roots (den_aprox bc) SLos polos del sistema con
retardo, importante para Nyquist

figure(4); hold on

step (cadena directa 0,cadena directa)

legend ('Sin retardo', 'Con retardo')

$Predictor de Smith Teorico

num= K*misis;

den=1+K*misis O-K*misis;

cadena directa PS teorico exacto=num/den % Sistema
exacto

figure (5)

bode (cadena directa PS teorico exacto)

[num pade,den pade]=pade(l,6) % Aproximacion de pade
de orden 6

num aprox=K*num pade

den aprox=conv ([tau 1],den pade)+[0 K* (den pade-
num pade) ]

roots (den aprox) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST
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cadena directa PS teorico aprox=tf (num aprox,den aprox
) % Sistema con aproximacidén de padé (orden 6)

figure (6); hold on

nyquist (cadena directa PS teorico exacto,0.03:0.0001:1
00) ;

nyquist (cadena directa PS teorico aprox,0.03:0.0001:10
0) 7

legend('Exacta', "Aprox");

figure (7); hold on

step (cadena directa PS teorico exacto/ (l+cadena direct
a PS teorico exacto),50);

step (cadena directa PS teorico aprox/ (l+cadena directa
_PS teorico aprox),500);
legend ('Exacta', 'Aprox');

$Predictor de Smith Real

Kp = 4

taup =1

Tp = 1

deltaT=0.5;

misis Op=tf (1, [taup 11])

misis p=tf (1, [taup 1], 'iodelay', Tp)

misis delta p=tf (1, [taup 1], 'iodelay',6 Tpt+deltaT)

num p= Kp*misis p;

den p=1+Kp*misis Op-Kp*misis delta p;

cadena directa PS teorico exacto p=num p/den p

[num pade,den pade]=pade (Tp, 6)

[num pade p,den pade p]=pade (Tpt+deltaT,6) %
Aproximacidén de padé de orden 6

num aprox p=Kp*conv (num pade,den pade p)

den aprox p=conv([taup 1], conv(den pade,den pade p)) -
[0 Kp*conv (num pade p,den pade) ]+[0

Kp*conv (den pade p,den pade) ]

cadena directa PS teorico aprox p=tf (num aprox p,den a
prox p) % Sistema con aproximacidén de padé (orden 6)
roots (den aprox p) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

figure (8); hold on %$Miramos si sale bien

nyquist (cadena directa PS teorico exacto p,0.03:0.0001
:100);

snyquist (cadena directa PS teorico aprox p,0.03:0.0001
:100) ;

%legend('K= 32','K = 30");

figure (9); hold on

step (cadena directa PS teorico exacto p/(l+cadena dire
cta PS teorico exacto p),500);
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e =

tauc = 0.5;
tau = 1;
T=1;

K=1;

%$Sistema sin retardo
misis O=tf([tauc 1], [tau 1]);

%$Sistema con retado
misis=tf([tauc 1], [tau 1], 'iodelay',6T);

sComportamiento en bucle abierto

figure(1l); hold on;

step (K*misis 0,K*misis)

legend('Sin retardo', 'Con retardo'), grid on
title ('Respuesta escalon unitario')

bode (misis 0O,misis)

legend ('Sin retardo', 'Con retardo'), grid on
$ title ('Bode')

o oo

tComportamiento en bucle cerrado

figure (2); hold on;

nyquist (K*misis 0,K*misis, 0.000001:0.001:1000) SNyquist
en bucle abierto

legend ('Sin retardo', 'Con retardo')

cadena directa 0 = K*misis 0/ (1 + K*misis 0)

cadena directa = K*misis/ (1 + K*misis);

figure (3); hold on;

step (cadena directa 0,cadena directa)

legend ('Sin retardo', 'Con retardo'), grid on
figure(4); hold on;

bode (cadena directa 0,cadena directa)

legend('Sin retaardo', 'Con retardo'), grid on

[num pade,den pade]=pade(l,6) % Aproximacion de padée
de orden 6

num aprox bc=K*conv ([tauc 1],num pade)

den aprox bc=conv([tau 1],den pade)

cadena directa PS teorico aprox bc=tf (num aprox bc,den
_aprox bc) % Sistema aprox bc

figure (5); hold on %Nyguist
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nyquist (K*misis, cadena directa PS teorico aprox bc,0.0
00001:0.001:1000)

legend ('Exacto', "Aproximado"')

roots (den aprox bc) S$Los polos del sistema con
retardo, importante para Nyquist

sComportamiento del Predictor de Smith ideal

num= K*misis;

den=1+K*misis O-K*misis;

cadena directa PS teorico exacto=num/den % Sistema
exacto

figure (6); hold on;

bode (cadena directa PS teorico exacto)

[num pade,den pade]=pade(l,6) % Aproximaciodn de pade
de orden 6

num aprox=K*conv ([tauc 1],num pade)

den aprox=conv ([tau 1],den pade)+K*conv ([tauc

1], (den_pade-num pade))

roots (den aprox) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

cadena directa PS teorico aprox=tf (num aprox,den aprox
) % Sistema con aproximacidén de padé (orden 6)
figure(7); hold on

nyquist (cadena directa PS teorico exacto,0.03:0.0001:1
00);

nyquist (cadena directa PS teorico aprox,0.03:0.0001:10
0) 7

legend ('Exacta', "Aprox"'");

figure (8); hold on

step (cadena directa PS teorico exacto/ (l+cadena direct
a_PS teorico_exacto),50);

step (cadena directa PS teorico aprox/ (l+cadena directa
_PS teorico aprox),500);

legend ('Exacta', 'Aprox');

sComportamiento del Predictor de Smith real
taucp=0.5;

taup=1;

Tp=1

Kp = 1;

deltaT = 0.05;

misis Op=tf ([taucp 1], [taup 1]);

misis p=tf([taucp 1], [taup 1], 'iodelay',Tp);
misis delta p=tf([taucp 1], [taup

1], '"iodelay', Tp+deltaT) ;

num p= Kp*misis p;

den p=l1+Kp*misis Op-Kp*misis delta p;
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$cadena directa PS teorico exacto p=num p/den p;
cadena directa PS teorico exacto p=Kp*misis p/ (1+Kp*mi
sis Op-Kp*misis delta p);

[num pade,den pade]=pade (Tp, 24) ;

[num pade p,den pade p]=pade (Tpt+tdeltaT, 24);
Aproximacidén de padé de orden 6

num aprox p=Kp*conv ([taucp

1], conv (num pade,den pade p))

den aprox p=conv([taup 1],conv(den pade,den pade p)) -
Kp*conv ([taucp

1], conv (num pade p,den pade))+Kp*conv ([taucp

1], conv(den pade p,den pade))

cadena directa PS teorico aprox p=tf (num aprox p,den a
prox p) % Sistema con aproximacién de padé (orden 6)
roots (den_aprox p)

figure (9); hold on %$Miramos si sale bien

nyquist (cadena directa PS teorico exacto p,0.000001:0.
001:1000) ;

nyquist (cadena directa PS teorico aprox p,0.000001:0.0
01:1000) ;

legend ('Exacta', "Aprox"');

o\°

[e)

% %Ayuda para las simulaciones

taucp=0.5;

taup=1;

Tp=1;

Klp=1;

K10p=2.5;

K20p=3.5;

misis Op=tf ([taucp 1], [taup 1]);

misis p=tf([taucp 1], [taup 1], 'iodelay',6 Tp);
misis delta p=tf([taucp 1], [taup

1], 'iodelay',Tp*1.01);

cadena directa lp=Klp*misis p/ (1+Klp*misis Op-
Klp*misis delta p);

cadena directa 10p=KlOp*misis p/(1+K1lO0p*misis Op-
Kl0p*misis delta p);

cadena directa 20p=K20p*misis p/ (1+K20p*misis Op-
K20p*misis delta p);

figure (10) ;hold on;

nyquist (cadena directa 1p,0.000001:0.001:1000)
snyquist (cadena directa lp,cadena directa 10p,cadena d
irecta 20p,0.000001:0.001:1000)

$legend ('K=1"','K=2.5",'K=3.5")

figure(11l); hold on;

step (cadena directa 1lp/(l+cadena directa 1p),50);
step (cadena directa 10p/(l+cadena directa 10p),50);
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step(cadena_directa_ZOp/(1+cadena_directa_20p),50);
legend ('K=1", '"K=2.5",'K=3.5")

o

% bode (cadena directa p)

e = =

%$Sistema sin retardo
misis O=tf([tauc 1], [taul 0]);

$Sistema con retardo
misis=tf([tauc 1], [taui 0], 'iodelay',T);

$%$Comportamiento en bucle abierto

figure(1l); hold on;

step (kkc*misis 0, kkc*misis)

legend('Sin retardo', 'Con retardo'), grid on
title ('Respuesta escalon unitario')

tComportamiento en bucle cerrado

cadena directa 0 = kkc*misis 0/(1 + kkc*misis 0);
cadena directa = kkc*misis/ (1 + kkc*misis);

figure (2); hold on;

nyquist (kkc*misis 0, kkc*misis, 0.000001:0.001:1000) SNyg
uist en bucle abierto

legend ('Sin retardo', 'Con retardo')

figure (3); hold on;

step (cadena directa 0,cadena directa)

legend ('Sin retardo', 'Con retardo'), grid on

[num pade,den padel=pade(l,6) % Aproximaciodn de pade
de orden 6

num_aprox bc=kkc*conv ([tauc 1],num pade)

den aprox bc=conv([taui 0],den pade)

cadena directa PS teorico aprox bc=tf (num aprox bc,den
_aprox bc) % Sistema aprox bc

figure(4); hold on;

nyquist (kkc*misis,cadena directa PS teorico aprox bc,0
.000001:0.001:1000)

legend ('Exacto', "Aproximado")
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roots (den aprox bc) SLos polos del sistema con
retardo, importante para Nyquist
figure (5); hold on;

nyquist (kkc*misis, 0.000001:0.001:1000)
nyquist (1.5*misis, 0.000001:0.001:1000)
nyquist (2.5*misis, 0.000001:0.001:1000)
legend('K=1",'K=1.5",'K=2.5")

figure (6); hold on;

step(l*misis/ (1 + 1l*misis))
step(1.5*misis/ (1 + 1.5*misis))
step(2.5*misis/ (1 + 2.5*misis))

legend ('K=1"', 'K=1.5", '"K=2.5")

$Comportamiento del Predictor de Smith ideal

num= kkc*misis;

den=1+kkc*misis O-kkc*misis;

cadena directa PS teorico exacto=num/den % Sistema
exacto

figure (7); hold on;

bode (cadena directa PS teorico_exacto)

[num pade,den pade]=pade(1l,6) % Aproximacion de pade
de orden 6

num_aprox=kkc*conv ([tauc 1],num pade)

den aprox=conv ([taul 0],den pade)+kkc*conv ([tauc

1], (den pade-num pade))

roots (den aprox) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

cadena directa PS teorico aprox=tf (num aprox,den aprox
) % Sistema con aproximacidén de padé (orden 6)

figure (8); hold on

nyquist (cadena directa PS teorico exacto,0.03:0.0001:1
00) 7

nyquist (cadena directa PS teorico aprox,0.03:0.0001:10
0)7

legend ('Exacta', "Aprox"'");

figure (9); hold on

step (cadena directa PS teorico exacto/ (l+cadena direct
a PS teorico exacto),50);

step (cadena directa PS teorico aprox/ (l+cadena directa
_PS teorico aprox),50);

legend ('Exacta', "Aprox"'");

$Comportamiento del Predictor de Smith real
taucp=0.5;

tauip=1;

Tp=1

Kp = 2;
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deltaT = 0.05;

misis Op=tf([taucp 1], [tauip 0]);

misis p=tf([taucp 1], [tauip 0], "iodelay',Tp);

misis delta p=tf([taucp 1], [tauilp

0], 'iodelay', TptdeltaT);

num p= Kp*misis p;

den p=1+Kp*misis Op-Kp*misis delta p;

cadena directa PS teorico exacto p=Kp*misis p/ (1+Kp*mi
sis Op-Kp*misis delta p);

[num pade,den pade]=pade (Tp, 32) ;

[num pade p,den pade pl=pade (Tpt+deltaT, 32);
Aproximacidén de padé de orden 6

num aprox p=Kp*conv ([taucp

1], conv (num pade,den pade p))

den aprox p=conv ([taulip 0], conv(den pade,den pade p)) -
Kp*conv ([taucp

1], conv (num pade p,den pade))+Kp*conv ([taucp
1],conv(den pade p,den pade))

cadena directa PS teorico aprox p=tf (num aprox p,den a
prox p) % Sistema con aproximacién de padé (orden 6)
roots (den_aprox p)

figure (10); hold on %$Miramos si sale bien

nyquist (cadena directa PS teorico exacto p,0.000001:0.
001:1000) ;

nyquist (cadena directa PS teorico aprox p,0.000001:0.0
01:1000) ;

legend ('Exacta', "Aprox"'");

o\°

CASO 5: INTEGRADOR

% Impacto de la errdnea identificacidn del retardo
puro en los

% controladores basados en el proedictor de Smith
% E1 caso de un sistema de primer orden completo /
control proporcional

$Declaracidén de variables
K=2,; T=1; deltaT=0.1;tau = 1;

%$Sistema sin retraso
misis 0 = tf (1, [tau 0])

%$Sistema con retraso
misis = tf (1, [tau 0], "ioDbelay',T)

$%$Comportamiento en bucle abierto
figure(1l); hold on;
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step (K*misis 0,K*misis)
legend('Sin retardo', 'Con retardo'), grid on
title ('Respuesta escalon unitario')

sComportamiento en bucle cerrado

cadena directa 0 = K*misis 0/(1 + K*misis 0);

cadena directa = K*misis/ (1 + K*misis);

figure (2); hold on;

nyquist (K*misis, 0.000001:0.001:1000) SNygquist en bucle
abierto

nyquist (1.5*misis,0.000001:0.001:1000) 3Nygquist en
bucle abierto

nyquist (2*misis, 0.000001:0.001:1000) SNygquist en bucle
abierto

legend ('K=1","K=1.5",'"K=2")

%legend('Sin retardo', 'Con retardo')

figure (3); hold on;

step (K*misis/ (1 + K*misis))

step(1.5*misis/ (1 + 1.5*misis))

step (2*misis/ (1 + 2*misis))

legend ('K=1","K=1.5",'K=2")

%legend('Sin retardo', 'Con retardo'), grid on

[num pade,den pade]=pade(1l,6) % Aproximacion de pade
de orden 6

num aprox bc=K*conv (1l,num pade)

den aprox bc=conv([tau 0],den pade)

cadena directa PS teorico aprox bc=tf (num aprox bc,den
_aprox bc) % Sistema aprox bc

figure (4); hold on;

nyquist (K*misis, cadena directa PS teorico aprox bc,0.0
00001:0.001:1000)

legend ('Exacto', "Aproximado")

roots (den aprox bc) $Los polos del sistema con
retardo, importante para Nyquist

figure (5); hold on;

nyquist (K*misis, 0.000001:0.001:1000)

nyquist (1.5*misis, 0.000001:0.001:1000)

nyquist (2.5*misis, 0.000001:0.001:1000)

legend ('K=1", '"K=1.5","K=2.5")

figure (6); hold on;

step(1*misis/ (1 + 1*misis))

step(1l.5*misis/ (1 + 1.5*misis))

step(2.5*misis/ (1 + 2.5*misis))

legend ('K=1", '"K=1.5","K=2.5")

$Comportamiento del Predictor de Smith ideal
num= K*misis;
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den=1+K*misis 0O-K*misis;

cadena directa PS teorico exacto=num/den % Sistema
exacto

figure(7); hold on;

bode (cadena directa PS teorico exacto)

[num pade,den pade]=pade(l,6) % Aproximaciodn de pade
de orden ©

num_aprox=K*num pade

den aprox=conv ([tau 0],den pade)+[0 K* (den pade-

num pade) ]

roots (den aprox) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

cadena directa PS teorico aprox=tf (num aprox,den aprox
) % Sistema con aproximacidén de padé (orden 6)

figure (8); hold on

nyquist (cadena directa PS teorico exacto,0.03:0.0001:1
00) 7

nyquist (cadena directa PS teorico aprox,0.03:0.0001:10
0)7

legend ('Exacta', 'Aprox');

figure (9); hold on

step (cadena directa PS teorico exacto/ (l+cadena direct
a PS teorico exacto),50);

step (cadena directa PS teorico aprox/ (l+cadena directa
_PS teorico aprox),50);

legend ('Exacta', "Aprox"'");

sComportamiento del Predictor de Smith real

taup=1;

Tp=1

Kp = 3;

deltaT = 0.5;

misis Op=tf (1, [taup 0]);

misis p=tf (1, [taup 0], 'iodelay', Tp);

misis delta p=tf(l, [taup 0], 'iodelay', Tpt+tdeltaT);

num p= Kp*misis p;

den p=l1+Kp*misis Op-Kp*misis delta p;

cadena directa PS teorico exacto p=Kp*misis p/ (1+Kp*mi
sis Op-Kp*misis delta p);

[num pade,den pade]=pade (Tp, 6) ;

[num pade p,den pade pl=pade(Tpt+deltaT,6); %
Aproximacidén de padé de orden 6

num aprox p=Kp*conv (num pade,den pade p)

den aprox p=conv ([taup 0], conv(den pade,den pade p))-
[0 Kp*conv (num pade p,den pade) ]+[0

Kp*conv (den pade p,den pade) ]
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cadena directa PS teorico aprox p=tf (num aprox p,den a
prox p) % Sistema con aproximacidén de padé (orden 6)
roots (den aprox p)

figure (10); hold on %Miramos si sale bien

nyquist (cadena directa PS teorico exacto p,0.000001:0.

001:1000) ;

figure (11); hold on;
step (cadena directa PS teorico exacto p/(l+cadena dire
cta PS teorico exacto p))

% Impacto de la errdnea identificacidédn del retardo
puro en los

controladores basados en el proedictor de Smith
El caso de un sistema de 2° orden simple (polo

e s e e s e e e e e S e e s e e e e e e e e e S S S e e e S = = = = =

e e e

[e)

% Sistema sin retraso

misis 0= tf (1, [tau*tau 2*tau 1])
% Sistema con retraso

misis= tf([1l], [tau*tau 2*tau 1], "iobelay',6T)

%Respuesta bucle abierto

figure (1) ;hold on;

step (K*misis 0,K*misis, 20)

legend ('Sin retardo', 'Con retardo'), grid on
title ('Respuesta escalon unitario')

$Estudio en bucle cerrado
figure (2); hold on;
nyquist (K*misis 0,0.01:0.0001:100)
nyquist (10*misis 0,0.01:0.0001:100)
nyquist (15*misis 0,0.01:0.0001:100)
figure (3); hold on;

step (K*misis 0/ (1+K*misis 0));
step(10*misis 0/ (1+10*misis 0)
step(15*misis 0/ (1+15*misis 0)

) ;
) o

4
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legend ('K=1", '"K=10"', "K=15")

figure (4); hold on;

nyquist (K*misis,0.01:0.0001:100)
nyquist (1.5*misis, 0.01:0.0001:100);
nyquist (2*misis, 0.01:0.0001:100)
figure (5); hold on;

step (K*misis/ (1+K*misis));

step (2*misis/ (1+2*misis));

step (3*misis/ (1+3*misis))
%Obtenemos los polos de la cadena directa

[num pade,den pade]=pade(l,6) % Aproximaciodn de pade
de orden 6

num_aprox bc=K*num pade

den aprox bc=conv ([tau*tau 2*tau 1],den pade)
roots(den_aprox_bc) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

cadena directa bc=tf (num aprox bc,den aprox bc)
figure (6); hold on

nyquist (K*misis, 0.01:0.0001:100);

nyquist (cadena directa bc,0.01:0.0001:100);

legend ('Exacta', "Aprox"')

.
’

[e)

% Sistema con predictor de Smith tedrico

num= K*misis;

den=1+K*misis 0-K*misis;

cadena directa PS teorico exacto=num/den % Sistema
exacto

figure(7); hold on;

bode (K*misis 0/ (1+K*misis 0))

bode (cadena directa PS teorico exacto)

legend('Sin PS', '"Con PS'")

[num pade,den pade]=pade(1l,6) % Aproximacion de pade
de orden 6

num_aprox=K*num pade

den aprox=conv ([tau*tau 2*tau 1],den pade)+[0 O

K* (den pade-num pade) ]

roots (den aprox) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

cadena directa PS teorico aprox=tf (num aprox,den aprox
) % Sistema con aproximacidn de padé (orden 6)

figure (8); hold on

nyquist (cadena directa PS teorico exacto,0.01:0.0001:1
00) 7

nyquist (cadena directa PS teorico aprox,0.01:0.0001:10
0) 7

legend ('Exacta', "Aprox") ;

figure (9); hold on
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bode (cadena directa PS teorico exacto,0.01:0.0001:100)

bode (cadena directa PS teorico aprox,0.01:0.0001:100);
legend('Exacta', "Aprox");

figure (10); hold on;

nyquist (cadena directa PS teorico exacto,0.01:0.0001:1
00) ;

figure(1l1l); hold on;

step (cadena directa PS teorico exacto/ (l+cadena direct

a PS teorico exacto))

[e)

% Sistema con predictor de Smith real

deltaT=0.5;

K=10;

misis delta= tf(l, [tau*tau 2*tau

1], 'ioDelay',T+deltaT) % Sistema identificado con
error

num2= K*misis;

den2=1+K*misis 0-K*misis delta;

cadena directa exacto 2=num2/den2;

figure (12); hold on;

bode (cadena directa exacto 2);

[num pade 2,den pade 2]=pade(l,12) % Aproximacion de
padé de orden 6 misis

[num pade 2 delta,den pade 2 delta]=pade(l+deltaT,12)5%
Aproximacidén de padé de orden 6 misis delta

num aprox 2=conv (K*num pade 2,den pade 2 delta)

w=conv ([tau*tau 2*tau 1],den pade 2)

den aprox 2=conv(w,den pade 2 delta)+[0 O

(conv (K*den pade 2,den pade 2 delta)-

[conv (K*num pade 2 delta,den pade 2)])]
roots (den aprox 2) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

cadena directa aprox 2=tf (num aprox 2,den aprox 2); %
Sistema con aproximacién de padé (orden 6)

figure (13); hold on

nyquist (cadena directa exacto 2,0.03:0.0001:100);
nyquist (cadena directa aprox 2,0.03:0.0001:100);
legend ('Exacta', "Aprox"'");

figure (14); hold on

bode (cadena directa exacto 2,0.01:0.0001:100);

bode (cadena directa aprox 2,0.01:0.0001:100);

legend ('Exacta', 'Aprox');

figure (15); hold on

step (cadena_directa exacto 2/ (l+cadena directa exacto
2),500);

figure (16); hold on
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nyquist (cadena directa exacto 2,0.03:0.0001:100);

CASO 7: SISTEMA DE SEGUNDO ORDEN CON POLO EN EL

0000000000000 000 0

[e)

% Sistema sin retraso

misis 0= tf (1, [tau 1 0])

% Sistema con retraso

misis= tf(l,[tau 1 0], '"'ioDbelay',T)

%Estudio en bucle abierto

figure(1l); hold on;

step (K*misis 0,K*misis, 20)

legend('Sin retardo', 'Con retardo'), grid on
title ('Respuesta escalon unitario')

%Estudio en bucle cerrado

figure (2); hold on;

nyquist (K*misis 0,0.01:0.0001:100)
nyquist (10*misis 0,0.01:0.0001:100)
nyquist (15*misis 0,0.01:0.0001:100)
figure (3); hold on;

step (K*misis 0/ (1+K*misis 0));
step(10*misis 0/ (1+10*misis 0));

step (15*misis 0/ (1+15*misis 0));

legend ('K=1"', "K=10", "K=15")

figure(4); hold on;

nyquist (K*misis, 0.01:0.0001:100)

nyquist (1.5*misis,0.01:0.0001:100);
nyquist (2*misis, 0.01:0.0001:100)

figure (5); hold on;

step (K*misis/ (1+K*misis)) ;

step (2*misis/ (1+2*misis)) ;

step (3*misis/ (1+5*misis));

%Obtenemos los polos de la cadena directa
[num pade,den pade]=pade(l,6) % Aproximacion de pade
de orden 6

num aprox bc=K*num pade

den aprox bc=conv([tau 1 0],den pade)
roots (den aprox bc) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST
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cadena directa bc=tf (num aprox bc,den aprox bc)

figure (6); hold on

nyquist (K*misis,0.01:0.0001:100)

nyquist (cadena directa bc,0.01:0.0001:100);

legend ('Exacta', "Aprox")

pause

% Sistema con predictor de Smith tedrico

num= K*misis;

den=1+K*misis 0O-K*misis;

cadena directa PS teorico exacto=num/den % Sistema
exacto

figure(7); hold on;

bode (cadena directa PS teorico exacto);

[num pade,den pade]=pade(l,6) % Aproximacion de pade
de orden 6

num_aprox=K*num pade

den aprox=conv([tau 1 0],den pade)+[0 0 K*(den pade-
num_ pade) ]

roots (den_ aprox) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

cadena directa PS teorico aprox=tf (num aprox,den aprox
) % Sistema con aproximacidén de padé (orden 6)

figure (8); hold on

nyquist (cadena directa PS teorico exacto,0.01:0.0001:1
00);

nyquist (cadena directa PS teorico aprox,0.01:0.0001:10
0)7

legend ('Exacta', "Aprox"'");

figure (9); hold on

bode (cadena directa PS teorico exacto,0.01:0.0001:100)
bode (cadena directa PS teorico aprox,0.01:0.0001:100);
legend ('Exacta', "Aprox"'");

figure (10); hold on;

nyquist (cadena directa PS teorico exacto,0.01:0.0001:1
00);

figure(11l); hold on;

step (cadena directa PS teorico exacto/ (l+cadena direct
a PS teorico exacto))

% Sistema con predictor de Smith real

deltaT=0.5;

K=2;

misis delta= tf(l,[tau 1 0], 'ioDelay',T+deltaT) %
Sistema identificado con error

num2= K*misis;

den2=1+K*misis 0-K*misis delta;
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cadena directa exacto 2=num2/den2;

[num pade 2,den pade 2]=pade(l,12) % Aproximaciodn de
padé de orden 6 misis

[num pade 2 delta,den pade 2 delta]=pade(l+deltaT,12)%
Aproximacidén de padé de orden 6 misis delta

num aprox 2=conv (K*num pade 2,den pade 2 delta)

w=conv ([tau 1 0],den pade 2)

den aprox Z2=conv(w,den pade 2 delta)+[0 O

(conv (K*den pade 2,den pade 2 delta)-

conv (K*num pade 2 delta,den pade 2))]
roots (den aprox 2) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

cadena directa aprox 2=tf (num aprox 2,den aprox 2) %
Sistema con aproximacidédn de padé (orden 6)

figure (12); hold on

nyquist (cadena directa exacto 2,0.03:0.0001:100);
nyquist (cadena directa aprox 2,0.03:0.0001:100);
legend ('Exacta', "Aprox"');

figure (13); hold on

bode (cadena directa exacto 2,0.01:0.0001:100);
figure (14); hold on

step (cadena directa exacto 2/ (l+cadena directa exacto
2),500);

figure (15); hold on;

nyquist (cadena directa exacto 2,0.03:0.0001:100);
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$Sistema sin retardo
misis O=tf([tauc 1], [tau*tau 2*tau 1]);

%$Sistema con retardo
misis=tf ([tauc 1], [tau*tau 2*tau 1], 'iodelay',6T);
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%Estudio en bucle abierto

figure(l); hold on;

step (K*misis 0,K*misis)

legend('Sin retardo', 'Con retardo'), grid on
title ('Respuesta escalon unitario')

$Estudio en bucle cerrado

cadena directa 0 = K*misis 0/(1 + K*misis 0);

cadena directa = K*misis/ (1 + K*misis);

figure(2); hold on

nyquist (1*misis 0,5*misis 0,10*misis 0,0.000001:0.001:
1000)

%legend('Sin retardo', 'Con retardo')

legend ('K=1", 'K=5", "K=10")

title('Nyquist del sistema sin retardo')

figure (3); hold on;

nyquist (K*misis, 0.000001:0.001:1000) 3Nyquist en bucle
abierto

nyquist (3.5*misis, 0.000001:0.001:1000) %Nyquist en
bucle abierto

nyquist (4*misis, 0.000001:0.001:1000) SNygquist en bucle
abierto

legend ('K=1", '"K=3", '"K=5")

%legend('Sin retardo', 'Con retardo')

figure(4); hold on;

step (K*misis/ (1 + K*misis))

step(3.5*misis/ (1 + 3.5*misis))

step (4*misis/ (1 + 4*misis))

legend ('K=1", 'K=3"', "K=5")

$legend('Sin retardo', 'Con retardo'), grid on

[num pade,den padel=pade(l,6) % Aproximaciodn de pade
de orden 6

num_aprox bc=K*conv ([tauc 1],num pade)

den aprox bc=conv ([tau*tau 2*tau 1],den pade)

cadena directa PS teorico aprox bc=tf (num aprox bc,den
_aprox bc) % Sistema aprox bc

figure (5); hold on;

nyquist (K*misis, cadena directa PS teorico aprox bc,0.0
00001:0.001:1000)

legend('Exacto', "Aproximado")

roots (den aprox bc) SLos polos del sistema con
retardo, importante para Nyquist

e e e e e e e e e e e e e e e e e e e e e e e e

e e = =
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% Sistema con predictor de Smith tedbdrico

num= K*misis;

den=1+K*misis 0O-K*misis;

cadena directa PS teorico exacto=num/den % Sistema
exacto

figure (6) ;hold on;

bode (cadena directa PS teorico exacto)

%legend('K = 1','K = 10','K = 15")

grid;

figure(7); hold on;

nyquist (cadena directa PS teorico exacto,0.000001:0.00
1:1000)

%legend('K = 1','K = 10','K = 15")

figure (8); hold on

step (cadena directa PS teorico exacto/ (l+cadena direct
a_PS teorico exacto));

$legend('K = 1','K = 10','K = 15")

[num pade,den pade]=pade(1l,6) % Aproximacion de padeée
de orden 6

num aprox=K*conv ([tauc 1],num pade)

den aprox=conv ([tau*tau 2*tau 1],den pade)+[0

K*conv ([tauc 1],den pade)]-[0 K*conv ([tauc

1] ,num pade) ]

roots (den_aprox) % IMPORTANTE MIRARLO PARA APLICAR
NYQUIST

cadena directa PS teorico aprox=tf (num aprox,den aprox
) % Sistema con aproximacidén de padé (orden 6)

figure (9); hold on

nyquist (cadena directa PS teorico exacto,0.01:0.0001:1
00) 7

nyquist (cadena directa PS teorico aprox,0.01:0.0001:10
0)7

legend ('Exacta', "Aprox"'");

hold off

%$Sistema del predictor de Smith Real
deltaT=0.01;

K=700;

misis delta= tf([tauc 1], [tau*tau 2*tau

1], '"iobDelay',T+deltaT) % Sistema identificado con
error

num2= K*misis;

denZ2=1+K*misis 0-K*misis delta;

cadena directa exacto 2=num2/den2;

figure (10); hold on;

nyquist (cadena directa exacto 2,0.01:0.0001:100);
title('Diagrama de Nyquist, deltaT:0.05")
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$figure(1l); hold on; $%MEJOR OBTENERLO CON SIMULINK%S
$step (cadena directa exacto 2/ (l+cadena directa exacto
2)) 7

[num pade 2,den pade 2]=pade(l,12) % Aproximaciodn de

padé de orden 6 misis

[num pade 2 delta,den pade 2 delta]=pade(l+deltaT,12)5%

Aproximacidén de padé de orden 6 misis delta

h=conv (num pade 2,den pade 2 delta)

num aprox 2=conv (K*[tauc 1],h)

w=conv ([tau*tau 2*tau 1],den pade 2)

t=conv (den pade 2,den pade 2 delta)

p=conv (num pade 2 delta,den pade 2)

den aprox Z2Z2=conv(w,den pade 2 delta)+[0 conv (K*[tauc
1],t)]-[0 conv (K*[tauc 1],p)]

roots (den_aprox 2) % IMPORTANTE MIRARLO PARA APLICAR

NYQUIST

cadena directa aprox 2=tf (num aprox 2,den aprox 2) %

Sistema con aproximacidédn de padé (orden 6)

figure (12); hold on

nyquist (cadena directa exacto 2,0.03:0.0001:100);

nyquist (cadena directa aprox 2,0.03:0.0001:100);

legend ('Exacta', 'Aprox');

figure (13); hold on

bode (cadena directa exacto 2,0.01:0.0001:100);

bode (cadena directa aprox 2,0.01:0.0001:100);

legend ('Exacta', "Aprox"'");

EXTRA

eclaracidén de variables.

$%Comparacidén K/ (tau*s + 1) y K/ (tau*s + 1)*e”-Ts en
bucle abierto

misis O=tf (k, [tau 1]);

misis=tf (k, [tau 1], '"'iodelay',T);

misis 3=tf(k, [tau 1], 'iodelay',6T3);

figure(l); hold on

step (misis 0)

title ('Respuesta a una entrada escaldn sin retardo')
figure(2); hold on

step (misis O, misis,misis_3)

title ('Respuesta a una entrada escaldn con y sin
retardo')
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legend('Sin retardo', 'Con retardo(T=1)"', '"Con

retardo (T=3) '), grid on

$%%%%%%%Puntos de corte para el cédlculo de funciones
fal = @(x) atan(-x)-x+pi;

x = linspace(0.01,5,100);

y = fal(x);

plot(x,vy),grid

x0 = 1;

x = fzero(fal, x0)
$%%%%%%%50tro punto de corte
fa2 = @(x) atan(-1.5.*x-0.5.*x.*x.*x)-x+pi;
x = linspace(0.01,5,100);

y = fa2(x)

plot(x,y),grid

x0 = 1;

x = fzero(faz2,x0)
3%%%%%%%50tro punto de corte
fa3 = @(x) atan(l./x)-x-pi;
x = linspace(0.01,5,100);

y = fa3(x)

plot (x,y),grid

x0 = 0;

x = fzero(fa3, x0)
$%%%%%%%Mas puntos de corte

fad = Q@(x) -atan((4.*x)./(1-(4.*x.*x)))-x+pi;
x = linspace(0.01,5,100);

y = fad (x)
plot(x,y),grid
x0 = 0;

x = fzero(fad, x0)
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