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Abstract

The Evaporative Demand Drought Index (EDDI), based on atmospheric evapo-

rative demand, was proposed by Hobbins et al. (2016) to analyse and monitor

drought. The EDDI uses a nonparametric approach in which empirically

derived probabilities are converted to standardized values. This study evaluates

the suitability of eight probability distributions to compute the EDDI at 1-, 3-

and 12-month time scales, in order to provide more robust calculations. The

results showed that the Log-logistic distribution is the best option for generat-

ing standardized values over very different climate conditions. Likewise, we

contrasted this new parametric methodology to compute EDDI with the origi-

nal nonparametric formulation. Our findings demonstrate the advantages of

adopting a robust parametric approach based on the Log-logistic distribution

for drought analysis, as opposed to the original nonparametric approach. The

method proposed in this study enables effective implementation of EDDI in

the characterization and monitoring of droughts.

KEYWORD S

atmospheric evaporative demand, EDDI, Log-logistic distribution, parametric approach,
reference evapotranspiration

1 | INTRODUCTION

Drought is one of the main climate hazards affecting soci-
ety and the environment, with severe impacts on agricul-
ture, natural ecosystems and water supplies
(Wilhite, 1993; Wilhite and Pulwarty, 2017). It is not easy
to identify and quantify droughts in terms of intensity,
magnitude, duration and spatial extent (Wilhite and
Glantz, 1985; Vicente-Serrano, 2016). For this reason, a
great deal of effort has been invested in developing objec-
tive methods to quantify drought severity, as well as the
impacts on various natural and socioeconomic sectors.

Climatic drought indices are one of the most broadly
used approaches in identifying and quantifying this type
of event (Heim, 2002; Keyantash and Dracup, 2002;
Mukherjee et al., 2018). Currently, there is a wide variety
of drought indices (Mishra and Singh, 2010) based on cli-
matic information, and typically used in drought analysis
and monitoring (Mckee et al., 1993a; McKee et al., 1993b;
Vicente-Serrano et al., 2010).

Traditionally, drought indices are calculated from
precipitation data. However, this perspective is insuffi-
cient in that it does not include all the variables causing
drought severity, among which the atmospheric evapora-
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tive demand (AED) is also highly significant (Hobbins
et al., 2017; Vicente-Serrano et al., 2020). Several studies
have suggested that AED is crucial in the development
and intensification of certain drought events (Ciais
et al., 2005; Hunt et al., 2014; Otkin et al., 2016; Zhang
and He, 2016; García-Herrera et al., 2019). Thus, recent
drought indices include AED in calculations, among
others the Standardized Precipitation Evapotranspiration
Index (SPEI; Vicente-Serrano et al., 2010; Beguería
et al., 2014) or the Standardized Evapotranspiration Defi-
cit Index (SEDI; Kim and Rhee, 2016; Vicente-Serrano
et al., 2018).

Hobbins et al. (2016) and McEvoy et al. (2016) for-
mulated the Evaporative Demand Drought Index
(EDDI), based exclusively on AED data. Adopting the
AED as a unique metric of drought severity could give
rise to problems in certain circumstances given its com-
plex influence on drought severity (Vicente-Serrano
et al., 2020), although it could be very useful during
periods of very low soil moisture and strong land-
atmosphere feedbacks (Hobbins et al., 2017; Miralles
et al., 2019). Thus, the EDDI could identify anomalous
increases in the AED that can trigger drought conditions
(Pendergrass et al., 2020). Given the complexity of
droughts, as many drought indices as possible should be
included, since they can complement each other and
provide a more accurate picture of drought severity, so
the EDDI is a valuable tool that must be tested and used
and, if possible, improved.

Unlike other widely used drought indices such as the
Standardized Precipitation Index (SPI; Mckee
et al., 1993a, 1993b) and the SPEI, the EDDI is based on a
nonparametric approach using empirically derived proba-
bilities to obtain a standardized index that can be com-
pared in space and time. This methodological approach is
very flexible as it can be used without adopting a specific
probability distribution for the reference variable
(e.g., precipitation, AED, soil moisture, etc.). Given that
nonparametric approaches do not assume that there is a
suitable probability distribution representative of the
data, there is no need to estimate parameters and evalu-
ate goodness-of-fit, which is a computational advantage
(Farahmand and AghaKouchak, 2015). However, as para-
metric approaches are not bound by the highest and low-
est observed values, they have the advantage over
nonparametric approaches. This is critical for drought
monitoring, as if the new value corresponds to the lowest
and highest ones, the index cannot be adequately mod-
elled above or below these maximum and minimum
values. Thus, parametric methods are more suitable than
nonparametric approaches to calculate drought indices
based on a defined reference period so that a new value
can be easily placed within the range of the theoretical
probability distribution (Beguería et al., 2014; Stagge

et al., 2015; Vicente-Serrano and Beguería, 2016;
Svensson et al., 2017). In addition, the range of index
values in nonparametric methods is a function of the
length of the reference climatology, which limits their
use when long-term data are not available.

In general, parametric approaches are better at model-
ling distribution tails corresponding to the most extreme
values (Vicente-Serrano and Beguería, 2016), and at deter-
mining the anomalous character of a single value, because
they are not heavily constrained by the available observa-
tions, as in the case of nonparametric approaches. This is
a very relevant issue in accurate drought characterization,
as these extreme values are crucial for determining the
severity and intensity of drought episodes.

If the EDDI is intended to be included in precise
drought quantification and monitoring, it is necessary to
find the most accurate approach (i.e., probability distribu-
tion) to calculate it parametrically. Studies have been
made to determine the most accurate probability distribu-
tions for calculating the SPI, SPEI and SEDI (Mckee et
al., 1993a; 1993b; Stagge et al., 2015; Vicente-Serrano and
Beguería, 2016; Vicente-Serrano et al., 2018). There is
general agreement that the Gamma distribution performs
better in calculating the SPI, and the Log-logistic distribu-
tion provides the best results for the SPEI and the SEDI.
In this study, we tested several probability distributions
and proposed a method to calculate the EDDI by means
of a parametric approach. Likewise, we compared this
new EDDI formulation based on a parametric approach
with the original nonparametric formulation proposed by
Hobbins et al. (2016). For this purpose, we used a
recently developed high spatial resolution gridded dataset
of the AED in Spain (Tom�as-Burguera et al., 2019), since
Spain is characterized by large spatial and seasonal differ-
ences in the AED (Vicente-Serrano et al., 2014; Tomas-
Burguera et al., 2017; Tomas-Burguera et al., 2021), and
enabling the capacity of different probability distributions
to be assessed over a wide range of climate conditions.

2 | DATA AND METHODS

2.1 | Atmospheric evaporative demand
dataset

This study used a high spatial resolution (1.21 km2)
gridded climate dataset with coverage for mainland Spain
and the Balearic Islands at monthly temporal resolution
over the period 1961–2018. The dataset is based on the
entire daily observational information from the National
Spanish Meteorological Service (AEMET), which was
subjected to a thorough quality control and homogeniza-
tion process (Tom�as-Burguera et al., 2016). Details of the
process followed in developing the dataset are available

NOGUERA ET AL. 835
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in Tomas-Burguera et al. (2019). The reference evapo-
transpiration (ETo), a robust metric of the AED (Vicente-
Serrano et al., 2020), was calculated from the maximum
and minimum temperature, relative humidity, wind
speed, and sunshine duration, using the FAO-56
Penman–Monteith equation (Allen et al., 1998).

The AED is driven by a radiative component,
reflecting the available energy to vaporize water, and an
aerodynamic component that reflects the capacity of the
air to store water (Hobbins et al., 2016). The role of AED
in the development and intensification of droughts can
be very complex and it is closely related to climatic char-
acteristics, exhibiting large contrasts between humid
regions characterized by energy-limited conditions and
dry regions characterized by water-limited conditions
(Vicente-Serrano et al., 2020). Thus, under the former,
increases in AED are not expected to result in a drought,

TABLE 1 Cumulative distribution functions F(x) of the eight

probability distributions tested

Probability distribution F(x)

General extreme value F xð Þ=1− 1− κ
α x−εð Þ� �1=κ

Log-logistic
F xð Þ= 1+ α

x−γ

� �β
� �−1

Lognormal F xð Þ=Φ ln x−að Þ−μ
σ

Pearson III
F xð Þ= 1

αΓ βð Þ
Ðx
γ

x−γ
α

� 	β−1
e−

x−γ
αð Þ

Generalized Pareto F xð Þ=1− 1− κ
α x−εð Þ� �1=κ

Weibull F xð Þ=1−e−
x−m
að Þb

Normal F xð Þ=Φ x−μ
σ

� 	
Exponential F xð Þ=1−e−

x−ε
αð Þ

FIGURE 1 Flowchart followed to

select the optimal probability distribution

to calculate the EDDI [Colour figure can

be viewed at wileyonlinelibrary.com]
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while its influence on the latter, and also under strong
land–atmosphere coupling, would trigger or intensify
drought conditions (Hobbins et al., 2017; Miralles
et al., 2019).

2.2 | Evaluation of different probability
distributions for EDDI computation

We tested eight probability distributions to calculate the
EDDI, including the three-parameter General Extreme
Value, Log-logistic, Lognormal, Pearson III, Generalized
Pareto and Weibull distributions, and the two-parameter
Normal and Exponential distributions. The probability
distributions have been widely tested for different
hydroclimatic applications (Hosking, 1990; Rao and
Hamed, 2000) and are the most commonly used for sci-
entific and applied purposes (Bobee and Ashkar, 1991;
Guttman, 1999; Vicente-Serrano et al., 2010, 2012, 2018;
Stagge et al., 2015; Barker et al., 2016). Although some
studies suggest using other distributions to calculate
standardized drought indices (e.g., the Tweedie distribu-
tion; Svensson et al., 2017), our preference was for those
more widely used by the scientific community. The
cumulative distribution functions of the eight probabil-
ity distributions tested for EDDI computation are
described in the Table 1. More details about the
probability distributions are described in depth in
Hosking et al. (1985), Hosking (1986, 1990), Singh
et al. (1993), and Rao and Hamed (2000). The parame-
ters of each probability distribution were calculated
using unbiased probability weighted moments

(UB-PWMs; Hosking, 1990). Each monthly AED series
aggregated at different time scales (i.e., 1, 3 and
12 months) over the period 1961–2018 were fitted to
each of the eight probability distributions. If the proba-
bility distribution proved suitable for fitting monthly
AED series, the cumulative probabilities of AED values
were calculated and transformed into a normal distribu-
tion with a standard deviation equal to 0 and 1 [N(0,1)]
to obtain standardized units (i.e., values of EDDI) using
the classic approach of Abramowitz and Stegun (1965).
The EDDI was calculated for 1-, 3- and 12-month time
scales, reversing the index sign (i.e., higher AED results
in lower EDDI values).

The flowchart followed to select the optimal probabil-
ity distribution to calculate the EDDI is presented in
Figure 1. We used four approaches to test the suitability
of the different distributions:

1. Visual checking of the goodness-of-fit of probability
density functions to monthly AED series: for a first
evaluation of the suitability of the probability distribu-
tions, we examined the fit of the probability density
functions of each distribution to the monthly AED
series aggregated at 1, 3 and 12 months in locations
and seasons with significant climatic contrasts.

2. Determining the percentage of monthly AED series
that cannot be fitted by the selected distribution and
do not provide a solution for the EDDI: to check the
goodness-of-fit of the probability distributions, we
fitted the probability density functions of each of the
eight distributions to monthly AED series aggregated
at 1, 3 and 12 months. Given that the parameters from
a specific probability distribution cannot be fitted to
the AED data, a solution cannot be found for the
EDDI. Also, there are some cases in which the origin
parameter of the distribution can be higher than the
lowest observed AED value, again providing no solu-
tion for the EDDI. In order to evaluate the robustness
of the eight probability distributions, we calculated
the percentage of monthly series for each probability
distribution with no solution for the EDDI.

3. Examining the normality of the resulting EDDI series:
to determine the normality of the resulting EDDI series
from the probability distributions, we used the Shapiro–
Wilks test. A rejection rate of p < .05, corresponding to a
95% confidence level, was selected to accept that the
EDDI series follows a normal distribution.

4. Analysing the frequency of high and low EDDI
values: since distributions model the low and high
values, they are very important in assessing the qual-
ity of the fit (Vicente-Serrano and Beguería, 2016;
Vicente-Serrano et al., 2018). Therefore, we also com-
pared the frequency of low and high EDDI values

FIGURE 2 Average annual AED (mm) on mainland Spain and

the Balearic Islands over the period 1961–2018, and the locations

used to compare the parametric and nonparametric formulation

of EDDI [Colour figure can be viewed at wileyonlinelibrary.com]
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(on 1-, 3- and 12-month time scales) and the associ-
ated return period obtained by the most suitable prob-
ability distributions. More specifically, we compared
the relative frequency of negative extreme EDDI
values (threshold of −2.58, corresponding to a return
period of 1 in 200 years).

2.3 | Comparison between parametric
and nonparametric EDDI formulation

We contrasted the new parametric approach suggested in
this study with the original nonparametric formulation
proposed by Hobbins et al. (2016) for EDDI computation.

FIGURE 3 February and August AED series from (a) Santander, (b) Zaragoza, (c) Valladolid, (d) Madrid, (e) Valencia and (f) Seville

aggregated at 1, 3 and 12 months' time scales, with the eight theoretical distributions that fit the data [Colour figure can be viewed at

wileyonlinelibrary.com]
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For this purpose, we compared the EDDI series obtained
by both approaches at 1-, 3- and 12-month time scales
over the period 1961–2018 in several locations of Spain
that represent a wide variety of annual AED values
(Figure 2). In order to illustrate some of the advantages
of the parametric approach, especially those related to
drought characterization and monitoring, we also calcu-
lated and compared the EDDI series obtained by both
approaches based on a reference period (i.e., 1961–1989)
at 1-, 3- and 12-month time scales over the period 1961–
2018 as well as during two extreme drought events. The
sign of the nonparametric EDDI was also reversed
(i.e., higher AED results in lower EDDI values).

3 | RESULTS

3.1 | Evaluation of different probability
distributions for EDDI computation

The eight candidate probability distributions for EDDI
calculation were evaluated and successively filtered fol-
lowing the four criteria proposed (see Figure 1):

1. Figure 3 presents several examples from the February
and August AED series from different locations over
Spain aggregated at 1-, 3- and 12-month time scales
with the eight theoretical distributions that fit the
data. In general, all probability distributions exhibit
great flexibility and goodness-of-fit, with the exception
of Exponential and Generalized Pareto distributions
that, in most cases, do not fit the AED data and are
therefore unsuitable for EDDI calculation. As
depicted, both the peak and the lower and upper tails
of the probability density function of General Extreme
Value, Log-logistic, Lognormal, Pearson III, Weibull
and Normal distributions are generally well adapted
to AED histograms, regardless of the time-scale and
climatic conditions. Therefore, and given that these
six probability distributions exhibit a similar fit at this
stage, it is difficult to determine which distribution is
most suitable for EDDI computation.

2. Table 2 shows the percentage of monthly AED series
computed at the time scales of 1-, 3- and 12-months
with no solution from each of the eight probability
distributions tested. As expected, the Generalized
Pareto and Exponential distributions exhibited a

TABLE 2 Percentage of the total monthly series of AED with no fitting solution tested through the eight probability distributions at 1-,

3- and 12-month time scales on mainland Spain and the Balearic Islands

GEV Log-logistic Lognormal Pearson III Pareto Weibull Normal Exponential

1 Month

January 20.40 0 84.69 1.91 99.82 4.57 0 100

February 4.77 0 83.49 0 100 0.87 0 100

March 2.25 0 53.98 0 99.95 7.22 0 100

April 2.89 0 55.41 0 100 5.98 0 100

May 0 0 15.21 0 100 2.35 0 100

June 4.24 0 27.57 0.01 100 9.15 0 100

July 0.82 0 11.56 0 99.99 26.78 0 100

August 0.04 0 9.32 0.09 100 24.9 0 100

September 2.54 0 12.49 0.01 99.86 11.43 0 100

October 2.47 0 62.23 0.14 99.90 2 0 100

November 44.24 0 95.40 11.35 100 18.18 0 100

December 27.21 0 74.43 6.25 100 26.72 0 100

3 Months

February 14.77 0 64.94 0.47 99.99 5.44 0 100

May 11.69 0 79.50 0 99.90 0.02 0 100

August 9.96 0 40.70 0 100 5.58 0 100

November 9.64 0 40.33 0 99.96 5.09 0 100

12 Months

December 10.46 0 80.31 0.06 100 2.92 0 100

NOGUERA ET AL. 839
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percentage of series with no solution for the EDDI
close to 100% in all months and time scales, so they
were rejected for EDDI calculation. The Weibull, Log-
normal and General Extreme Value (GEV) distribu-
tions also showed high percentages of monthly series
with no solution at 1-, 3- and 12-month time scales, so
they were also discarded as unreliable alternatives for
calculating the EDDI. Thus, further evaluations were
based on only the three distributions that exhibited a
low percentage of monthly AED series with no fitting
solution (i.e., the Log-logistic, Pearson III and Normal
distributions) to EDDI computation at 1-, 3- and
12-month time scales.

3. Table 3 depicts the percentage of monthly EDDI series
obtained at 1-, 3- and 12-month time scales from the
three remaining probability distributions (Log-logistic,
Pearson III and Normal) that follow a normal distri-
bution according to the Shapiro–Wilks normality test
(95% confidence level). The Log-logistic and Pearson
III distributions were the highest overall, with values
that commonly exceeded 95% at 1-, 3- and 12-month

time scales. The normal distribution exhibited the
highest percentage of series in which the normality of
the series is rejected, especially in November and
December at short time scales.

Figure 4 shows the spatial distribution of monthly
EDDI series calculated through Log-logistic, Pearson
III and Normal for which the null hypothesis of nor-
mality was rejected over mainland Spain and the Bal-
earic Islands. The EDDI calculated by the Log-logistic
returned series that follow a normal standard distribu-
tion for almost all months and time scales over the
whole of Spain. Similarly, the EDDI series obtained by
Pearson III distribution followed a normal distribution
in most of the study area at 1-, 3- and 12-month time
scales. In addition, Log-logistic and Pearson III did
not reveal any spatial biases. On the contrary, the nor-
mal distribution showed wide areas in which the null
hypothesis of normality was rejected, especially in
November and January at the 1-month time scale, but
also in central regions in July and September. Like-
wise, there are wide areas of the northwest in August
at 3-month and southwest at 12-month time scales in
which the series do not follow a normal distribution.
Therefore, only Log-logistic and Pearson III distribu-
tions were used for further assessment.

4. Figure 5 shows the percentage of the total monthly
EDDI series which returned values of less than −2.58
(corresponding to a return period of 1 in 200 years)
for Log-logistic and Pearson III distributions at 1-, 3-
and 12-month time scales. Given the available length
of the AED series (1961–2018), it was expected that
these extreme values would be infrequent. Neverthe-
less, the Pearson III distribution provided a large per-
centage of series with extreme values, which
unrealistically overestimates the frequency of these
extreme drought events in comparison with a more
coherent frequency provided by the Log-logistic distri-
bution. The spatial distribution of these extreme
values showed wide variability at 1-, 3- and 12-month
time scales (Figure 6). In general, the Log-logistic dis-
tribution displayed a low frequency of extreme nega-
tive values in all months and across the whole study
area, regardless of the time scale. On the contrary, the
Pearson III distribution provided a high number of
extreme negative values in several months at 1-, 3-
and 12-month time scales. For example, in December
and July EDDI series at the 1-month time scale
showed cases below −2.58 across most of the study
area. Likewise, large parts of the study area exhibited
EDDI series with cases below −2.58 in February and
November at the 3-month time scale, and also at the
12-month time scale in western regions. This demon-
strates that the Pearson III distribution generally

TABLE 3 Percentage of the total EDDI series calculated

through the remaining three probability distributions (i.e., the Log-

logistic, Pearson III and Normal) at 1-, 3- and 12-month time scales

on mainland Spain and the Balearic Islands for which the null

hypothesis of normality was rejected by the SW test at a confidence

level p < .05

Log-logistic Pearson III Normal

1 Month

January 96.09 95.23 85.33

February 93.84 99.43 93.35

March 85.98 99.32 94.01

April 99.99 99.90 99.22

May 98.60 100 98.92

June 99.42 99.90 99.89

July 99.87 97.40 87.73

August 99.36 98.30 95.94

September 99.49 99.62 82.81

October 95.69 99.24 97.16

November 99.67 82.85 63.01

December 99.26 81.94 63.73

3 Months

February 98.96 97.98 90.94

May 94.85 99.79 99.39

August 99.68 95.48 83.33

November 99.95 99.89 94.92

12 Months

December 99.76 99.33 87.92

840 NOGUERA ET AL.
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provides an unrealistic frequency of extreme EDDI
values.

Figure 7 illustrates the relationship between EDDI
values at 1-, 3- and 12-month time scales and the asso-
ciated return periods obtained by the Log-logistic and
Pearson III distributions. The EDDI values obtained
by both distributions at different time scales showed a
high degree of consistency over a wide range (±1.80σ)
in which the Log-logistic and Pearson III distribution
provided similar values. However, there are notable
differences in the lower and upper tails of distribu-
tions, corresponding to the extreme EDDI values. As
depicted, the Pearson III distribution exhibited more
extreme negative and positive EDDI values than the
Log-logistic across all time scales, but especially at
short time scales. Consequently, the associated return
periods obtained through the Pearson III distribution
are higher than for the Log-logistic, regardless of time

scale. It was noted that Pearson III resulted in some
cases in return period of 1 in 500 years for EDDI
values, which reported periods shorter than 1 in
100 years with the Log-logistic distribution. Therefore,
the Pearson III distribution was rejected in favour of
the Log-logistic distribution, which provides much
more coherent extreme values and associated return
periods for EDDI computation.

3.2 | Comparison between parametric
and nonparametric EDDI formulation

The parametric approach providing the best performance
for EDDI computation (i.e., the Log-logistic distribution)
was contrasted with the original nonparametric approach
(i.e., that of Hobbins et al. (2016)) at a variety of time
scales and climatic conditions. For several locations in

FIGURE 4 Spatial distribution of monthly EDDI series calculated through the Log-logistic, Pearson III and Normal at 1-, 3- and

12-month time scales for which the null hypothesis of normality was rejected by the SW test at a confidence level p < .05 on mainland Spain

and the Balearic Islands over the period 1961–2018
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Spain, the EDDI was estimated using both approaches at
1-, 3-, and 12-month time scales and using two different
reference periods: a 29-year period from 1961 to 1989 and
the full 58-year period of record from 1961 to 2018. In
general, both approaches exhibited a robust performance
to model EDDI values when the index was calculated ret-
rospectively for long-term periods regardless of time scale
and climatic conditions (Figure 8). Only in few cases
(i.e., very extreme dry/wet episodes) did the nonparamet-
ric approach show limitations in modelling extreme

EDDI values when the entire period (1961–2018) was
used to calculate the index. However, when the shorter
reference period (1961–1989) is used to compute the
EDDI, a common practice in operational drought moni-
toring, the nonparametric approach cannot model the
extreme values at different time scales if the new values
exceed the maximum or minimum value of the reference
climatology (Figure 9). As depicted, the limitations of a
nonparametric approach to modelling extreme EDDI
values are frequent and easily recognized during dry/wet

FIGURE 6 Spatial distribution of monthly EDDI series with cases below −2.58 (return period of 1 in 200 years) at 1-, 3- and 12-month

time scales on mainland Spain and the Balearic Islands over the period 1961–2018

FIGURE 5 Percentage of the total monthly EDDI series with cases below −2.58 (return period of 1 in 200 years) at 1- (all months),

3- (February, May, August and November) and 12-month (December) time scales on mainland Spain and the Balearic Islands
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periods at different time scales and climatic conditions,
but especially at long time scales as evidenced in Madrid
(Figure 9d) or Seville (Figure 9f). This issue of nonpara-
metric approaches to modelling EDDI values at long time
scales is very common during drought episodes in central
and southern Spain (Figure 10), since these areas gener-
ally show a positive trend in AED and the periods charac-
terized by strong increases in AED were recurrent over
the last two decades. In contrast, the parametric
approach based on Log-logistic distribution shows well-
modelled extreme EDDI values, even if the new values
are outside of the reference climatology, regardless of

time scale and climatic conditions (Figure 9). Likewise,
this approach reported a robust performance with series
that show a trend or high frequency of extreme drought
episodes (Figure 10).

To illustrate the relevance of this issue in detail, we
compared the EDDI series obtained through parametric
and nonparametric approaches based on the 29-year ref-
erence period (i.e., 1961–1989) at 12-month time scales in
several locations during two extreme drought episodes
in 1990 and 2017 (Figure 11). During these periods char-
acterized by severe drought conditions affecting large
areas of northern (Figure 11a), central, and southern

FIGURE 7 Relationship between EDDI

values and the associated return periods

calculated with Log-logistic and Pearson III

distribution at 1-, 3- and 12-month time

scales. The colours represent the point

density, with the highest density shown

in red [Colour figure can be viewed at

wileyonlinelibrary.com]
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Spain (Figure 11b) and lasting for approximately 1 year,
the nonparametric approach cannot adequately model
EDDI values because these anomalous AED values are
outside the climatology used as a reference to compute
the index. On the other hand, the parametric approach
based on Log-logistic provides very relevant information
on the severity and intensity of the drought events,

making it possible to accurately identify how the drought
conditions developed over time and space. Thus, for
example, it can be seen how the drought of 1990 reached
its maximum intensity in summer (Figure 11a) or how
the drought of the 2017 progressed in intensity from the
central (i.e., Madrid) to the southern regions of Spain
(i.e., Mérida and Seville) over the period (Figure 11b).

FIGURE 8 EDDI series from (a) Santander, (b) Zaragoza, (c) Valladolid, (d) Madrid, (e) Valencia and (f) Seville at 1-, 3- and 12-month

time scales computed through a parametric and a nonparametric approach based on the entire period available (1961–2018) [Colour figure
can be viewed at wileyonlinelibrary.com]
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4 | CONCLUSIONS

This study assessed the suitability of eight parametric dis-
tributions of probability to calculate the Evaporative
Demand Drought Index (EDDI). This was tested in main-
land Spain and the Balearic Islands over the period 1961–
2018. The majority of the tested probability distributions
had no fitting solution to calculate the EDDI and were

rejected. From the eight probability distributions tested,
only the Log-logistic, Pearson III, and Normal provided
solutions for EDDI calculation over most of the study
area at 1-, 3- and 12-month time scales. However, the
normal distribution was also discarded because it
exhibited a high percentage of EDDI series that did not
follow a normal distribution relative to the Pearson III
and Log-logistic distributions. Finally, the Pearson III

FIGURE 9 EDDI series from (a) Santander, (b) Zaragoza, (c) Valladolid, (d) Madrid, (e) Valencia and (f) Seville at 1-, 3- and 12-month

time scales computed through a parametric and a nonparametric approach based on a reference period (1961–1989) [Colour figure can be

viewed at wileyonlinelibrary.com]
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FIGURE 10 EDDI series from

Toledo, Mérida and Granada at

12-month time scale over the

period 1961–2018, computed

through a parametric and a

nonparametric approach based on

a reference period (1961–1989)
[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 11 EDDI series

during drought events of (a) 1990

(Oviedo, Santander and Bilbao)

and (b) 2017 (Madrid, Mérida and

Seville) at 12-month time scale,

computed through a parametric

and a nonparametric approach

based on a reference period (1961–
1989) [Colour figure can be viewed

at wileyonlinelibrary.com]
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distribution was also discarded because it yielded a
higher frequency of positive and negative extreme values
and longer return periods than Log-logistic distribution,
regardless of the time scale analysed. Therefore, we con-
clude that the Log-logistic is the most suitable and robust
probability distribution for EDDI computation using a
parametric approach.

The parametric approach based on Log-logistic distri-
bution proposed in this study also performed better when
compared to the original nonparametric approach, which
is heavily constrained by the length of the series since the
distribution is bound by the highest and lowest observa-
tional values, which limits the modelling of new values
more extreme than that observed in the reference clima-
tology. Thus, the original nonparametric approach
showed very similar values to the parametric
approach based on Log-logistic distribution when the
index is computed retrospectively and long-term periods
are available, but it exhibited notable limitations in
modelling new EDDI values when the index calculations
are based on a previous reference period. This demon-
strates the issues of adopting a nonparametric approach
to modelling the extreme values of EDDI, especially if
long-term series are not available. In contrast, the para-
metric approach based on Log-logistic distribution mod-
elled extreme EDDI values very well, even when using a
reference period, as it can model the new values outside
the reference climatology, providing an important advan-
tage for drought analysis and monitoring.

Therefore, based on the results obtained in this study,
we recommend the use of Log-logistic distribution to cal-
culate the Evaporative Demand Drought Index (EDDI).
This distribution proved to be the best fit to AED series
for EDDI calculation and provided robust results, regard-
less of the time scale and climate region. Likewise, Log-
logistic distribution also returned a better performance
compared to the original nonparametric formulation for
EDDI computation, since this parametric approach is less
limited by the length of the climatology. The Log-logistic
distribution has already been recommended for calculat-
ing other drought indices such as SPEI (Vicente-Serrano
et al., 2010; Vicente-Serrano and Beguería, 2016) and
SEDI (Vicente-Serrano et al., 2018) worldwide. Our study
focused exclusively on Spain, but given the wide range of
climatic conditions characteristic of the country and the
absence of spatial bias in fitting AED series, we consider
that the results seen here may be representative for other
regions; we therefore also recommend the Log-logistic
distribution for calculating the EDDI in other areas of the
world. In summary, this study provided a robust para-
metric approach for EDDI computation, indicating that
this standardized drought index can be optimally
implemented in drought analysis and monitoring. The

code used to calculate EDDI based on the Log-logistic
distribution in the R programming language is available
on (https://github.com/ivannoguera/EDDI-Log-logistic).
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