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Abstract. We consider compact complex manifolds endowed with a
pseudo-Kähler structure and study their stability under deformations.
It is known that if the Bott-Chern number b1,1BC(Xt) is constant along a
deformation Xt whose central fiber X0 is pseudo-Kähler, then Xt also
admits a pseudo-Kähler structure, at least for sufficiently small t. Here
we find another condition for stability related to the cohomological de-
composition of complex manifolds.
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1 Introduction

Complex geometry deals with the study of complex manifolds, namely, spaces
that locally look like Cn and whose changes of charts are biholomorphic. Any
complex manifold X of complex dimension n is, in particular, a differentiable
manifold M of real dimension 2n. Therefore, if one endows M with a certain
(real) geometric structure, it is natural to wonder how this structure interacts
with X, the complex counterpart of M .

By the well-known Newlander-Nirenberg theorem, any complex manifold X
can be equivalently seen as a pair (M,J), where M is an even-dimensional dif-
ferentiable manifold and J is a complex structure on M . If M is equipped with
a pseudo-Riemannian metric g, then J and g are said to be compatible when

g(JX, JY ) = g(X,Y ), ∀X,Y ∈ X(M), (1)

where X(M) denotes the Lie algebra of smooth vector fields on M . This com-
patibility condition allows to define the fundamental 2-form of g as

F (X,Y ) = g(JX, Y ), ∀X,Y ∈ X(M). (2)

Note that this 2-form is in one-to-one correspondence with g. Furthermore, it
satisfies Fn 6= 0.
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When g is positive-definite the manifold (M,J, g) is said to be Hermitian.
Imposing different conditions to F several special metrics arise, such as the
strong Kähler with torsion (SKT) or the balanced metrics. When dF = 0, i.e.
the metric is Kähler, it is well-known that the compact manifold M satisfies
strong topological conditions. If we no longer require the positive definiteness of
the metric g but preserve the condition dF = 0, the metric g is called pseudo-
Kähler. The pair (J, g) is also known as a pseudo-Kähler structure on M . Notice
that F provides a symplectic form on M , both in the indefinite and in the
positive-definite case.

In this work, we are interested in compact complex manifolds (M,J) with
dimIRM = 2n endowed with a pseudo-Kähler metric g. It is worth to observe [1]
that the compatibility condition (1) is then equivalent to J being parallel with
respect to the Levi-Civita connection of g, i.e., ∇J = 0. Moreover, the signature
of g is precisely (2k, 2n − 2k), where k = n corresponds to the Kähler case.
There are many compact pseudo-Kähler manifolds with no Kähler metrics, the
simplest example being the compact complex surface known as the Kodaira-
Thurston manifold [28].

Pseudo-Kähler structures have been broadly studied in the literature, both
independently and in relation with other geometric structures (see for instance
[5], [7], [9], [13], [14], [26], [30] or [31], among others). However, the stability of
these structures under small holomorphic deformations of the complex manifold
has only recently been analized. In [21], it was shown that if X is a compact
pseudo-Kähler manifold, then a sufficiently small deformation of X does not nec-
essarily admit a pseudo-Kähler metric. This contrasts with the positive-definite
case, already studied in 1960 by Kodaira and Spencer [18]. Trying to under-
stand the differences between these two situations, the authors find in [21] some
conditions that guarantee the stability of pseudo-Kähler structures. In this pa-
per we continue working in this line, providing a new condition under which
the existence of pseudo-Kähler metrics is, eventually, also preserved under small
deformations of the complex structure.

This paper is organized as follows.

In Section 2 we recall the basic notions about complex manifolds and present
some previous results about the stability of pseudo-Kähler structures.

The notion of cohomologically pseudo-Kähler manifold is introduced in Sec-
tion 3, as a natural condition satisfied by any compact manifold with a pseudo-
Kähler structure. Then, we prove that if a small deformation of a compact
pseudo-Kähler manifold is C∞-full, then the resulting deformed manifolds are
cohomologically pseudo-Kähler for sufficiently small values of the deformation
parameter (see Theorem 1 for the precise formulation of this stability result).
The C∞-fullness condition was defined and studied by Li and Zhang in [22] in
the context of cohomological decomposition of symplectic manifolds.

In Section 4 we focus on solvmanifolds and show that, under a certain as-
sumption on these spaces, the cohomologically pseudo-Kähler condition guaran-
tees the existence of a pseudo-Kähler metric. We finally provide some examples
to illustrate our result.
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2 Bott-Chern cohomology and pseudo-Kähler stability

In this section we introduce the basic notions that will be used throughout the
paper and recall some previous results. This will also serve us to fix the notation.

Let J be an almost complex structure on a 2n-dimensional differentiable
manifold M , namely, J ∈ End

(
X(M)

)
such that J2 = −id. Let us observe that J

can be equivalently defined on the space Ω1(M) of smooth 1-forms on M , taking

(Jα)(V ) = α(JV ),

for every α ∈ Ω1(M) and V ∈ X(M). Extending J by C-linearity to the com-
plexified space Ω1

C(M) = Ω1(M)⊗ C, one obtains a decomposition

Ω1
C(M) = Ω1,0(M,J)⊕Ω0,1(M,J),

where Ω1,0(M,J) =
{
α ∈ Ω1

C(M) | Jα = i α
}

and Ω0,1(M,J) = {α ∈ Ω1
C(M) |

Jα = −i α}. Note that these spaces are conjugates of each other and that the
previous decomposition depends on J . If one similarly extends J to the com-
plexified space of k-forms, the following bigraduation arises

Ωk
C(M) =

⊕
p+q=k

Ωp,q(M,J).

Let us recall that the space Ω∗(M) of smooth forms on M is a differential
graded algebra endowed with a product ∧ and a differential d. Consequently,
also is Ω∗C(M). The almost complex structure J defined on M is integrable, that

is, (M,J) is a complex manifold, if and only if d : Ωp,q(M,J) → Ωp+q+1
C (M)

decomposes as
d = ∂ + ∂̄,

where ∂ : Ωp,q(M,J) → Ωp+1,q(M,J) and ∂̄ : Ωp,q(M,J) → Ωp,q+1(M,J).
Since d2 = 0, one easily obtains the following equalities:

∂2 = 0, ∂̄∂ = −∂∂̄, ∂̄2 = 0.

These differential operators allow to define some specific cohomologies of com-
plex manifolds such as Dolbeault and Bott-Chern, whose cohomology groups are
respectively given by:

H•,•
∂̄

(M,J) :=
ker ∂̄

im ∂̄
and H•,•BC(M,J) :=

ker ∂ ∩ ker ∂̄

im ∂∂̄
.

A holomorphic family of compact complex manifolds is a proper holomorphic
submersion π : X −→ B between two complex manifolds X and B [19]. This
implies that the fibres Xt = π−1(t) are compact complex manifolds of the same
dimension. In fact, a classical result of Ehresmann [11] states that any such
family is locally C∞ trivial (globally, if B is contractible), which means that the
C∞ manifold underlying each fibre Xt is the same for every t ∈ B. Consequently,
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any holomorphic family {Xt}t∈B can be equivalently seen as a fixed differentiable
manifold M endowed with a holomorphic family of complex structures {Jt}t∈B ,
i.e., for each t ∈ B one has Xt = (M,Jt).

In general, one can consider that B is an open ball centered at the origin 0
in Cm. We will also deal with differentiable families {Jt}t∈B of complex struc-
tures, in which case B will be an open ball around 0 ∈ IRm.

A property P is said to be stable if the following condition holds: given any
holomorphic (or differentiable) family {Xt}t∈B of compact complex manifolds
and any t0 ∈ B, if the fibre X = Xt0 satisfies P, then Xt also satisfies P for
every t ∈ B sufficiently close to t0. In our case, the property P is the existence of
a pseudo-Kähler metric on X = (M,J), namely, a pseudo-Riemannian metric g
compatible with J in the sense of (1) whose fundamental 2-form F defined by (2)
is closed. Note that F has type (1, 1) with respect to the bigraduation induced
by J .

In [21, Proposition 2.1], it is shown that the pseudo-Kähler property is in
general not stable under holomorphic deformations. However, the authors prove
that the existence of pseudo-Kähler metrics is guaranteed under additional as-
sumptions:

Proposition 1. [21, Proposition 2.5] Let {Xt}t∈(−ε,ε) be a differentiable family
of deformations of a compact pseudo-Kähler manifold X = X0, where ε > 0.
If the upper-semi-continuous function t 7→ dimH1,1

BC(Xt) is constant, then Xt

admits a pseudo-Kähler metric for every t close enough to 0.

This result explains why the pseudo-Kähler property is unstable in complex
dimension ≥ 3. However, one can prove that pseudo-Kähler compact complex
surfaces are stable, as an application of the previous proposition and a result of
Teleman [27] (see [21, Theorem 2.13]).

3 Cohomological decomposition and stability

In this section we prove a stability result for compact pseudo-Kähler manifolds
under a condition based on the cohomological decomposition property.

Given a compact almost-complex manifold (M,J), we consider the spaces

Ω±J (M) = {α ∈ Ω2(M) | Jα = ±α}

defined by the real 2-forms α on M which are J-invariant, resp. J-anti-invariant.
As already observed in [22], the relation between these two spaces and the bi-
graduation induced by J is given by

Ω+
J (M) = Ω1,1(M,J)IR := Ω1,1(M,J) ∩Ω2(M),

Ω−J (M) = Ω(2,0),(0,2)(M,J)IR :=
(
Ω2,0(M,J)⊕Ω0,2(M,J)

)
∩Ω2(M).

Let us also denote Z+
J (M) ⊂ Ω+

J (M), resp. Z−J (M) ⊂ Ω−J (M), the space of
closed real 2-forms that are J-invariant, resp. J-anti-invariant. Li and Zhang



Stability of pseudo-Kähler manifolds and cohomological decomposition 5

considered in [22] the subspaces H+
J (M) and H−J (M) of the second de Rham

cohomology group H2
dR(M ; IR) given by

H±J (M) :=
{
a = [α] ∈ H2

dR(M ; IR) | α ∈ Z±J (M)
}
.

Recall that the almost-complex structure J is said to be C∞-pure if

H+
J (M) ∩H−J (M) = {0}, (3)

and it is called C∞-full if

H+
J (M) +H−J (M) = H2

dR(M ; IR). (4)

If both properties are satisfied, then we have the decomposition

H2
dR(M ; IR) = H+

J (M)⊕H−J (M), (5)

and the almost-complex structure J is called C∞-pure-and-full. Drǎghici, Li and
Zhang proved in [10] that every compact 4-dimensional almost-complex manifold
is C∞-pure-and-full.

Here we focus on the integrable case, that is, X = (M,J) is a compact
complex manifold, and we will denote by H±(X) the subgroups H±J (M) if there
is no confusion from the context. If X is a compact Kähler manifold (or, more
generally, if X satisfies the ∂∂̄-Lemma [8]) then the C∞-pure-and-full property is
satisfied (see [3, 10, 22]). Indeed, in such case the subgroups H±(X) are precisely
the (real) Dolbeault cohomology groups, i.e.,

H+(X) = H1,1

∂̄
(X) ∩H2

dR(M ; IR),

H−(X) =
(
H2,0

∂̄
(X)⊕H0,2

∂̄
(X)

)
∩H2

dR(M ; IR).

In addition, since the ∂∂̄-property is stable by small deformations of the com-
plex structure J [4, 29], any sufficiently small holomorphic deformation Xt of a
compact ∂∂̄-manifold X = (M,J) is also C∞-pure-and-full.

However, in complex dimension greater than or equal to 3, there are small
deformations of C∞-pure-and-full manifolds that are neither pure nor full [3].
Furthermore, there exist small deformations of C∞-pure-and-full manifolds along
which the C∞-full property is lost while the C∞-pure property is preserved, and
vice versa (see [20, Propositions 3.1 and 3.3]).

Thus, for arbitrary dimensions it seems a difficult problem to understand
which compact complex manifolds satisfy the “Hodge type” decomposition (5).

Let X be a compact pseudo-Kähler manifold of complex dimension n with
pseudo-Kähler 2-form F . Since the real form F is closed and J-invariant, it
defines a class [F ] ∈ H+(X). Clearly, the de Rham cohomology classes [F ]k are
non-zero for every 1 ≤ k ≤ n because F is non-degenerate. In particular:

Lemma 1. Let X be a compact complex manifold with dimCX = n. If X admits
a pseudo-Kähler metric, then h+(X) := dimH+(X) ≥ 1. Moreover, there exists
a cohomology class a ∈ H+(X) satisfying an 6= 0.
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We introduce the following notion, similarly to the symplectic case:

Definition 1. A compact complex manifold X, of complex dimension n, is said
to be cohomologically pseudo-Kähler if there exists a class a ∈ H+(X) such that
an 6= 0.

In the following result we will prove that any sufficiently small deformation
of a compact pseudo-Kähler manifold is cohomologically pseudo-Kähler if the
deformation satisfies the C∞-full property (4), together with an additional con-
dition that we next explain.

Let X be a C∞-full compact complex manifold, and let F be any closed real
2-form on X. We define

∆(X,F ) = {γ ∈ Ω1(X) | dγ = F −(α+β), for some α ∈ Z+(X), β ∈ Z−(X)}.

Note that ∆(X,F ) is non-empty due to the C∞-full property. Indeed,

[F ] ∈ H2
dR(X; IR) = H+(X) +H−(X),

so there exists a cohomology class a ∈ H+(X) and a cohomology class b ∈
H−(X) such that [F ] = a + b. This implies the existence of a representative α
in the class a and a representative β in the class b satisfying

F = α+ β + dγ,

for some real 1-form γ on X, hence γ ∈ ∆(X,F ).
Now, let {Xt}t∈(−ε,ε) be a differentiable family of compact complex manifolds

such that X0 = X. If Xt is C∞-full, then one has ∆(Xt, F ) 6= ∅. Thus, there
is a real 1-form γt such that dγt = F − (αt + βt) for some αt ∈ Z+(Xt) and
βt ∈ Z−(Xt). Recall that Z±(Xt) depend on the complex structure of Xt.
Moreover, the exterior derivative d decomposes as d = ∂t + ∂̄t on the complex
manifold Xt.

Theorem 1. Let X be a compact complex manifold endowed with a pseudo-
Kähler form F , and let {Xt}t∈(−ε,ε) be a differentiable family of deformations
of X0 = X, where ε > 0. If the complex manifold Xt is C∞-full and there exists
γt ∈ ∆(Xt, F ) satisfying ∂t∂̄tγt = 0, for every t 6= 0, then Xt is cohomologically
pseudo-Kähler for any sufficiently small t.

Proof. Let M be the differentiable manifold underlying the family {Xt}t∈(−ε,ε).
Denote by πp,q

t : Ω∗C(M)→ Ωp,q(Xt) the projection of the space of complexified
forms on M onto the space of (p, q)-forms on Xt. Let F be a pseudo-Kähler
metric on X. Viewing F in Ω2

C(M), one can write

F = F+
t + F−t ∈ Ω+(Xt)⊕Ω−(Xt), (6)

where F+
t = π1,1

t (F ) ∈ Ω1,1(Xt)IR and F−t = π2,0
t (F )+π0,2

t (F ) ∈ Ω(2,0),(0,2)(Xt)IR

since F is real. Moreover, F = F+
0 because F has bidegree (1, 1) with respect



Stability of pseudo-Kähler manifolds and cohomological decomposition 7

to J0 for being a pseudo-Kähler metric on X. The above decomposition is unique
and the family {F+

t }t is smooth in t; however, F+
t may not be a closed form.

By the hypothesis, for every t 6= 0 we can choose γt ∈ ∆(Xt, F ) satisfying
∂t∂̄tγt = 0. Thus, there exist αt ∈ Z+(Xt) and βt ∈ Z−(Xt) so that the 2-form
F can be written as

F = αt + βt + dγt, (7)

with ∂t∂̄tγt = 0, for every t 6= 0. Notice that αt is a (real) closed 2-form of
bidegree (1, 1) with respect to the complex structure of Xt, but the family {αt}t
may not be smooth in t.

Next we show that there exists a form τt of total degree 2n− 1 on Xt, where
n is the complex dimension of Xt, such that

(F+
t )n = αn

t + dτt, for every t 6= 0. (8)

To prove it, we first notice that (6) and (7) give

F+
t = αt + ∂̄tηt + ∂tηt, t 6= 0,

where we use that the real 1-form γt can be written as γt = ηt + ηt, for a
(1, 0)-form ηt on Xt. Since ∂t∂̄tγt = 0, we also have that ∂t∂̄tηt = 0 = ∂t∂̄tηt.

The equality (8) comes directly from the following equalities:

(F+
t )n =

(
αt + ∂̄tηt + ∂tηt

)n
=

n∑
r=0

n−r∑
s=0

(
n

r

)(
n− r
s

)
αn−r−s
t ∧

(
∂̄tηt

)s ∧ (∂tηt)
r

= αn
t +

n−r∑
s=1

(
n

s

)
αn−s
t ∧

(
∂̄tηt

)s
+

n∑
r=1

n−r∑
s=0

(
n

r

)(
n− r
s

)
αn−r−s
t ∧

(
∂̄tηt

)s ∧ (∂tηt)
r

= αn
t +

n−r∑
s=1

(
n

s

)
αn−s
t ∧ (dηt)

s

+

n∑
r=1

n−r∑
s=0

(
n

r

)(
n− r
s

)
αn−r−s
t ∧

(
∂̄tηt

)s ∧ (dηt)
r

= αn
t + d

(
n−r∑
s=1

(
n

s

)
αn−s
t ∧ ηt ∧ (dηt)

s−1

)

+ d

(
n∑

r=1

n−r∑
s=0

(
n

r

)(
n− r
s

)
αn−r−s
t ∧

(
∂̄tηt

)s ∧ ηt ∧ (dηt)
r−1

)
.
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In the fourth equality we are substituting (∂̄tηt)
s by (dηt)

s and (∂tηt)
r by (dηt)

r,
as each summand has top bidegree (n, n). The last equality holds due to the
hypothesis and the closedness of αt.

The forms (F+
t )n and αn

t in (8) are both real 2n-forms on the manifold M .
By conjugation we have that (F+

t )n = αn
t + dτt, so we get

(F+
t )n = αn

t + dρt, t 6= 0,

where ρt = (τt + τt)/2 is a real form on M of degree 2n− 1. By Stokes’ theorem
one has ∫

M

(F+
t )n =

∫
M

αn
t , t 6= 0.

Since the left-hand-side of this equality is smooth in t ∈ (−ε, ε) and non-zero for
t = 0 (because F0 = F is the given pseudo-Kähler form), we have that

∫
M
αn
t is

non-zero for any t close enough to 0. This implies that αn
t cannot be exact, so

the cohomology class a t = [αt] satisfies an
t = [αn

t ] 6= 0.
In conclusion, since αt is Jt-invariant, one has a t ∈ H+(Xt) and the com-

pact complex manifold Xt = (M,Jt) is cohomologically pseudo-Kähler for any
sufficiently small t. ut

The next example provides a compact pseudo-Kähler manifold X0 and a
deformation Xt of it with no pseudo-Kähler structure for t 6= 0. The behaviour
of this deformation was analized in [21] in relation to the Bott-Chern cohomology
(see Proposition 1). We here show that the non stability of the pseudo-Kähler
property can also be explained by the lost of the C∞-full condition, in accord to
Theorem 1.

Example 1. For each t ∈ B = {t ∈ C | |t| < 1}, let Xt be the nilmanifold
endowed with an invariant complex structure defined by the equations

dω1
t = dω2

t = 0, dω3
t = ω12̄

t − t ω21̄
t . (9)

Here {ω1
t , ω

2
t , ω

3
t } is a complex basis of invariant (1,0)-forms on Xt, and we write

ω12̄
t instead of ω1

t ∧ ω2
t , and so on.

The invariant 2-form F = i ω11̄
0 +ω23̄

0 +ω2̄3
0 defines a pseudo-Kähler structure

on the manifold X0, and {Xt}t∈B is a holomorphic deformation of X0. In the
proof of [21, Proposition 2.1], it is shown that Xt admits pseudo-Kähler metrics
if and only if t = 0.

Due to the results in [20], the subspaces H±(Xt) can be directly computed
from the structure equations (9) (see Section 4 for more details). Indeed, one can
show that Xt is C∞-full only for t = 0. More precisely, for the compact complex
manifold X = X0 we have the following subspaces:

H+(X0) = 〈 [ iω11̄ ], [ iω22̄ ], [ω23̄ − ω32̄ ], [ i (ω23̄ + ω32̄) ] 〉,

and

H−(X0) = 〈 [ω12 + ω1̄2̄ ], [ i (ω12 − ω1̄2̄) ], [ω13 + ω1̄3̄ ], [ i (ω13 − ω1̄3̄) ] 〉.
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The second Betti number of the manifold is b2 = 8 and H+(X0)∩H−(X0) = {0},
so the complex manifold X0 is C∞-pure-and-full. However, for any t ∈ B − {0},
the subspaces H±(Xt) are

H+(Xt) = 〈 [ iω11̄
t ], [ iω22̄

t ] 〉, H−(Xt) = 〈 [ω12
t + ω1̄2̄

t ], [ i (ω12
t − ω1̄2̄

t ) ] 〉,

so the compact complex manifold Xt is not C∞-full for t 6= 0.

4 Cohomologically pseudo-Kähler solvmanifolds

In this section we consider pseudo-Kähler structures on certain solvmanifolds
M = Γ\G and study the behaviour of the pseudo-Kähler property along small
deformations on such spaces. We recall that a solvmanifold is a compact quo-
tient of a connected and simply connected solvable Lie group G by a discrete
subgroup Γ of maximal rank (lattice).

Any 2n-dimensional compact symplectic manifold M is cohomologically sym-
plectic, i.e. it has a class a ∈ H2

dR(M ; IR) such that an 6= 0. However, the
converse is in general not true; for instance CP 2# CP 2 is cohomologically sym-
plectic but not symplectic. This problem has been studied by several authors,
as Geiges for T2-bundles over T2 [12], Ishida for real Bott manifolds [16], or
Kasuya for solvmanifolds [17], among others. We next show that for compact
solvmanifolds M = Γ\G satisfying the Mostow condition and endowed with an
invariant complex structure, the cohomologically pseudo-Kähler condition im-
plies the existence of a pseudo-Kähler metric.

Let AdG(G) and AdG(Γ ) denote the subgroups of GL(g) generated by eadZ

for all Z in the respective Lie algebras of G and Γ . The solvmanifold M = Γ\G is
said to satisfy the Mostow condition if the real algebraic closuresA(AdG(G)) and
A(AdG(Γ )) are isomorphic. In that case, the de Rham cohomology H∗dR(M ; IR)
of the solvmanifold can be computed by means of the Chevalley-Eilenberg co-
homology H∗(g) of the Lie algebra g of G [23], i.e.

Hk
dR(M ; IR) ∼= Hk(g), for any k. (10)

Recall that for completely solvable Lie groups G, i.e. those for which the linear
operators adZ : g −→ g have only real eigenvalues for every Z ∈ g, any lattice Γ
of G satisfies the Mostow condition. In particular, the Mostow condition holds
for nilmanifolds, as their Lie group G is nilpotent and thus adZ has only zero
eigenvalues for every Z ∈ g. The isomorphism (10) for nilmanifolds and for
completely solvable solvmanifolds was first proved respectively by Nomizu in [25]
and by Hattori in [15].

Proposition 2. Let X = (M,J) be a compact complex manifold, where M =
Γ\G is a solvmanifold satisfying the Mostow condition and J is an invariant
complex structure on M . If X is cohomologically pseudo-Kähler, then there exists
a pseudo-Kähler metric on X.
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Proof. Let us first recall that for the compact quotient manifold M = Γ\G, the
natural map ι : Hk(g) −→ Hk

dR(M ; IR) is injective. Since the Mostow condition
is satisfied, we have by (10) that the map ι is an isomorphism, with inverse
map ι−1 given by symmetrization. This means that for any closed k-form α on
M = Γ\G there is a left-invariant closed k-form α̃ on G which descends to a
k-form on the quotient M = Γ\G, also denoted by α̃, such that [α] = [α̃] in
Hk

dR(M ; IR). That is, α is cohomologous to the invariant form α̃ obtained by the
symmetrization process.

Since the complex structure J is invariant, we have J̃α = Jα̃, which implies
that the natural map

ι|
H

+
J

(g)
: H+

J (g) −→ H+(X) (11)

is an isomorphism with inverse map given again by symmetrization. In fact, if α
is a closed 2-form such that Jα = α, then the 2-form α̃ is closed and satisfies
Jα̃ = J̃α = α̃ .

Now, since X is cohomologically pseudo-Kähler by hypothesis, there exists a
class a ∈ H+(X) satisfying an 6= 0. Hence, there is a closed element F̃ ∈

∧2
(g∗)

such that JF̃ = F̃ that represents the class a , i.e. [F̃ ] = a . Since [F̃n] = an 6= 0,

we get that F̃n 6= 0 in
∧2n

(g∗). In conclusion, F̃ defines an (invariant) pseudo-
Kähler metric on X. ut

In the following result we combine Theorem 1 and Proposition 2 to obtain a
stability result for compact pseudo-Kähler solvmanifolds.

Proposition 3. Let X = (M,J, F ) be a compact pseudo-Kähler solvmanifold
M = Γ\G satisfying the Mostow condition and endowed with an invariant com-
plex structure. Let {Xt = (M,Jt)}t∈(−ε,ε), with ε > 0, be a differentiable family
of deformations of X = X0 such that Jt is an invariant complex structure for
every t. Suppose that Xt is C∞-full for every t 6= 0 and ∂t∂̄t(g

∗
C) = 0, where g

denotes the Lie algebra of G. Then, Xt admits a pseudo-Kähler metric for any
sufficiently small t.

Proof. The same argument as for (11) proves that the natural map

ι|
H

−
J

(g)
: H−J (g) −→ H−(X) (12)

is an isomorphism for any invariant complex structure J , with inverse map given
again by symmetrization. By the hypothesis, note that we have isomorphisms
(11) and (12) for every Jt.

Let F̃ be an invariant pseudo-Kähler metric on X, obtained from F as in
the proof of Proposition 2. Then, [F̃ ] = [F ] ∈ H2

dR(X; IR) and by the C∞-full
property and the above isomorphisms, we get

[F̃ ] ∈ H2(g) = H+
Jt

(g) +H−Jt
(g),

for every t 6= 0. Thus, there exist αt ∈ Z+
Jt

(g) and βt ∈ Z−Jt
(g) that allow us to

write the 2-form F̃ as F̃ = αt + βt + dγt, for some left-invariant 1-form γt ∈ g∗.
In fact, observe that the 1-forms in ∆(Xt, F̃ ) can be chosen to be left-invariant.
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Since ∂t∂̄t(g
∗
C) = 0, our 1-form γt ∈ ∆(Xt, F̃ ) satisfies ∂t∂̄tγt = 0. Hence,

Theorem 1 ensures that Xt is cohomologically pseudo-Kähler for any sufficiently
small t, so Xt is pseudo-Kähler by Proposition 2. ut

The following result provides a large class of examples where the condition
∂∂̄(g∗C) = 0 in the previous proposition holds.

Proposition 4. Let X = (M,J) be a compact complex manifold, where M =
Γ\G is a solvmanifold satisfying the Mostow condition and J is an invari-
ant complex structure on M . Denote by g the Lie algebra of G. The condition
∂∂̄(g∗C) = 0 in Proposition 3 is satisfied in the following cases:

(i) the complex structure J is abelian;

(ii) the Lie algebra g is 2-step nilpotent;

(iii) J is a nilpotent complex structure on a 6-dimensional Lie algebra g.

Proof. For part (i), let us simply recall that any abelian complex structure J
satisfies ∂(g1,0) = 0. In the case of (ii), the result comes from the structure of
2-step nilpotent Lie algebras, as one has ∂̄(g∗C) ⊂ ker ∂. Let us then focus on (iii),
namely, 6-dimensional s-step nilpotent Lie algebras g endowed with a nilpotent
complex structure J . Note that it suffices to prove the result for s ≥ 3. It is
well-known (see for instance [20]) that for any such (g, J) there is a (1,0)-basis
{ω1, ω2, ω3} satisfying equations of the form

dω1 = 0, dω2 = ω11̄, dω3 = ρω12 +B ω12̄ + c ω21̄,

where ρ ∈ {0, 1}, B ∈ C, c ∈ IR≥0, with (ρ,B, c) 6= (0, 0, 0). A direct calculation
allows to check that ∂∂̄ωk = 0 for every 1 ≤ k ≤ 3; hence ∂∂̄(g∗C) = 0. ut

We note that the condition ∂∂̄(g∗C) = 0 is also satisfied for any complex par-
allelizable structure (indeed, ∂̄(g1,0) = 0); however, one cannot find any pseudo-
Kähler structures in this setting. In more detail, let X = Γ\G be a compact
holomorphically parallelizable solvmanifold, i.e. G is a simply-connected complex
solvable Lie group and Γ is a lattice in G. Yamada proved in [30, Proposition 1.1]
that if X satisfies the Mostow condition, then X has a pseudo-Kähler metric if
and only if X is a complex torus, extending in this way the corresponding result
for nilmanifolds proved in [6, Theorem 3.2]. As a consequence of Yamada’s result
and Proposition 2, one gets

Corollary 1. Let X be a compact holomorphically parallelizable solvmanifold
satisfying the Mostow condition. Then, X is cohomologically pseudo-Kähler if
and only if X is a complex torus.

In the following example we study a family of left-invariant complex struc-
tures in the conditions of Proposition 4 (iii). We apply Proposition 3 to guarantee
the existence of a pseudo-Kähler structure along the deformation.
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Example 2. Let us consider the differentiable family {Xt}t∈(−1,1) of compact
complex nilmanifolds given in [21, Example 2.3], which are defined by the com-
plex structure equations

dω1
t = 0, dω2

t = ω11̄
t , dω3

t = ω12
t + t ω12̄

t . (13)

For t = 0, the manifold X0 is pseudo-Kähler as, for instance, F0 = i ω13̄
0 + i ω31̄

0 +
i ω22̄

0 is a symplectic form of bidegree (1,1) with respect to the complex structure
of X0.

Note that all the complex structures above are nilpotent, so it follows from
Proposition 4 (iii) that ∂t∂̄tγt = 0, for every invariant 1-form γt on Xt. We next
show, following again the ideas in [20], that Xt is C∞-full for any t ∈ (−1, 1).

From the structure equations (13), a direct calculation leads to

H+(Xt) = 〈 [ω12̄
t − ω21̄

t ], [ i (ω12̄
t + ω21̄

t ) ], [ i (ω13̄
t + ω31̄

t ) + i (1 + t)ω22̄
t ] 〉. (14)

Let us observe that for t = 0 the subspace H−(X0) is given by

H−(X0) = 〈 [ω13
0 + ω1̄3̄

0 ], [ i (ω13
0 − ω1̄3̄

0 ) ] 〉,

whereas for t 6= 0 one has

H−(Xt) = 〈 [ω13
t + ω1̄3̄

t ], [ i (ω13
t − ω1̄3̄

t ) ], [ω12
t + ω1̄2̄

t ], [ i (ω12
t − ω1̄2̄

t ) ] 〉.

Furthermore, the following cohomological relations hold:

[ω12
t + ω1̄2̄

t ] = −t [ (ω12̄
t − ω21̄

t ) ], [ i (ω12
t − ω1̄2̄

t ) ] = −t [ i (ω12̄
t + ω21̄

t ) ].

Therefore, the intersection of H+(Xt) and H−(Xt) is

H+(Xt) ∩H−(Xt) = 〈 [ω12
t + ω1̄2̄

t ], [ i (ω12
t − ω1̄2̄

t ) ] 〉, for t 6= 0.

Consequently, Xt does not satisfy the C∞-pure property (3) for t 6= 0.
Since the second Betti number of the manifoldsXt equals 5, from the previous

calculations one can check that

H2
dR(Xt; IR) = H+(Xt) +H−(Xt), t ∈ (−1, 1);

that is to say, Xt has the C∞-full property for every t ∈ (−1, 1). Hence, by
Proposition 3, the manifold Xt admits a pseudo-Kähler metric for any sufficiently
small t. Indeed, one can give explicit pseudo-Kähler metrics on Xt for every
t ∈ (−1, 1). It is not difficult to prove that the space of invariant pseudo-Kähler
forms Ft on Xt is given by

Ft = i a ω11̄
t + uω12̄

t − ū ω21̄
t + i b

(
ω13̄
t + ω31̄

t + (1 + t)ω22̄
t

)
,

where a, b ∈ IR with b 6= 0 and u ∈ C. Then, it follows from (14) that the
cohomology classes of the pseudo-Kähler forms Ft in H+(Xt) are given by

[Ft] = <(u) [ω12̄
t − ω21̄

t ] + =(u) [ i (ω12̄
t + ω21̄

t ) ] + b [ i (ω13̄
t + ω31̄

t ) + i (1 + t)ω22̄
t ],

where <(u) and =(u) are the real and imaginary parts, respectively, of the com-
plex coefficient u.
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In the following example we consider a small deformation of the holomor-
phically parallelizable Nakamura manifold [24]. It was already studied in [21,
Proposition 2.9] in relation to the variation of the Bott-Chern number h1,1

BC

along the deformation. We here analyze it with respect to the cohomological
decomposition property.

Example 3. The first example of a non-toral compact holomorphically paral-
lelizable pseudo-Kähler solvmanifold X = Γ\G was constructed by Yamada
in [30, Theorem 2.1] (see [14] for an extension of this result). Let G be the
simply-connected complex solvable Lie group given by the semi-direct product
G = C nϕ C2, where

ϕ(z1) =

(
ez1 0
0 e−z1

)
, z1 ∈ C.

There is a lattice Γ = Γ1 nϕ ΓC2 , with Γ1 = aZZ + 2πiZZ and ΓC2 a lattice
in C2. On the compact holomorphically parallelizable solvmanifold X = Γ\G
there is a pseudo-Kähler structure F defined as follows [30].

Let (z2, z3) be the coordinates on C2. The following forms

ω1 = dz1, ω2 = e−z1 dz2, ω3 = ez1 dz3,

constitute a basis of left-invariant forms of bidegree (1,0) on the complex Lie
group G. We have

dω1 = 0, dω2 = −ω1 ∧ ω2, dω3 = ω1 ∧ ω3.

Now, the (1,1)-form

F = i ω1 ∧ ω1̄ + e2i Im z1 ω2 ∧ ω3̄ + e−2i Im z1 ω2̄ ∧ ω3, (15)

where the functions e2i Im z1 and e−2i Im z1 are Γ -invariant, defines a pseudo-
Kähler structure on X since F is closed and non-degenerate.

Angella and Kasuya studied in [2, Section 4] the small deformations Xt of X.
We are interested in the deformation given in case (1), which is determined by
t ∂
∂z1
⊗ dz̄1 ∈ H0,1(X;T 1,0X). Note that this deformation defines a holomorphic

family {Xt}t∈B , where B = {t ∈ C | |t| < 1} and X0 = X. An important result,
proved in [2, Proposition 4.2], is that in case (1) the compact complex manifolds
Xt satisfy the ∂∂̄-Lemma for t 6= 0, thus every Xt is C∞-pure-and-full.

The complex structure Jt onXt comes from a left-invariant complex structure
on G. There is a basis of (1,0)-forms given by

ω1
t = dz1 − t dz̄1, ω2

t = e−z1dz2, ω3
t = ez1dz3, (16)

whose differentials satisfy
dω1

t =0,

dω2
t =− 1

1−|t|2 ω
12
t + t

1−|t|2 ω
21̄
t ,

dω3
t = 1

1−|t|2 ω
13
t − t

1−|t|2 ω
31̄
t .
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Now, we study the condition on ∆(Xt, F ) in the statement of Theorem 1.
From (15) and (16), a direct calculation shows that

F =
i

1− |t|2
ω1
t ∧ ω1̄

t + e2i Im z1 ω2
t ∧ ω3̄

t + e−2i Im z1 ω2̄
t ∧ ω3

t ,

so the form F is Jt-invariant for any t ∈ B. In other words, the cohomology
class [F ] in the decomposition [F ] ∈ H2

dR(Xt; IR) = H+(Xt) + H−(Xt) can
be written (in a unique way for t 6= 0 because Xt is C∞-pure-and-full) as [F ] =
[αt]+[βt], where βt = 0 and αt = F . Moreover, we can choose γt = 0 in ∆(Xt, F ).

Notice that in this deformation the result is stronger that in Theorem 1
because Xt is a pseudo-Kähler manifold, with the same metric F for every t ∈ B.
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