000120936 001__ 120936
000120936 005__ 20241125101125.0
000120936 0247_ $$2doi$$a10.1113/JP283698
000120936 0248_ $$2sideral$$a131440
000120936 037__ $$aART-2023-131440
000120936 041__ $$aeng
000120936 100__ $$aHug, François
000120936 245__ $$aCommon synaptic input, synergies and size principle: Control of spinal motor neurons for movement generation
000120936 260__ $$c2023
000120936 5060_ $$aAccess copy available to the general public$$fUnrestricted
000120936 5203_ $$aUnderstanding how movement is controlled by the CNS remains a major challenge, with ongoing debate about basic features underlying this control. In current established views, the concepts of motor neuron recruitment order, common synaptic input to motor neurons and muscle synergies are usually addressed separately and therefore seen as independent features of motor control. In this review, we analyse the body of literature in a broader perspective and we identify a unified approach to explain apparently divergent observations at different scales of motor control. Specifically, we propose a new conceptual framework of the neural control of movement, which merges the concept of common input to motor neurons and modular control, together with the constraints imposed by recruitment order. This framework is based on the following assumptions: (1) motor neurons are grouped into functional groups (clusters) based on the common inputs they receive; (2) clusters may significantly differ from the classical definition of motor neuron pools, such that they may span across muscles and/or involve only a portion of a muscle; (3) clusters represent functional modules used by the CNS to reduce the dimensionality of the control; and (4) selective volitional control of single motor neurons within a cluster receiving common inputs cannot be achieved. Here, we discuss this framework and its underlying theoretical and experimental evidence.
000120936 536__ $$9info:eu-repo/grantAgreement/EC/H2020/847648 /EU/Junior Leader la Caixa Postdoctoral Fellowship Programme: Shaping the new generation of leaders in research/JUNIOR LEADER$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 847648 -JUNIOR LEADER
000120936 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000120936 590__ $$a4.7$$b2023
000120936 592__ $$a1.708$$b2023
000120936 591__ $$aPHYSIOLOGY$$b10 / 85 = 0.118$$c2023$$dQ1$$eT1
000120936 593__ $$aSports Science$$c2023$$dQ1
000120936 591__ $$aNEUROSCIENCES$$b63 / 310 = 0.203$$c2023$$dQ1$$eT1
000120936 593__ $$aPhysiology$$c2023$$dQ1
000120936 594__ $$a9.7$$b2023
000120936 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000120936 700__ $$aAvrillon, Simon
000120936 700__ $$0(orcid)0000-0001-8439-151X$$aIbáñez, Jaime$$uUniversidad de Zaragoza
000120936 700__ $$aFarina, Dario
000120936 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000120936 773__ $$g601, 1 (2023), 11-20$$pJ. physiol.$$tJOURNAL OF PHYSIOLOGY-LONDON$$x0022-3751
000120936 8564_ $$s2282419$$uhttps://zaguan.unizar.es/record/120936/files/texto_completo.pdf$$yVersión publicada
000120936 8564_ $$s2410164$$uhttps://zaguan.unizar.es/record/120936/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000120936 909CO $$ooai:zaguan.unizar.es:120936$$particulos$$pdriver
000120936 951__ $$a2024-11-22-11:57:24
000120936 980__ $$aARTICLE