000120950 001__ 120950
000120950 005__ 20230111103847.0
000120950 0247_ $$2doi$$a10.3390/biophysica2040043
000120950 0248_ $$2sideral$$a131235
000120950 037__ $$aART-2022-131235
000120950 041__ $$aeng
000120950 100__ $$0(orcid)0000-0002-0005-6712$$aPolanco, David$$uUniversidad de Zaragoza
000120950 245__ $$aCharacterisation of Amyloid Aggregation and Inhibition by Diffusion-Based Single-Molecule Fluorescence Techniques
000120950 260__ $$c2022
000120950 5060_ $$aAccess copy available to the general public$$fUnrestricted
000120950 5203_ $$aProtein amyloid aggregation has been associated with more than 50 human disorders, including the most common neurodegenerative disorders Alzheimer’s and Parkinson’s disease. Interfering with this process is considered as a promising therapeutic strategy for these diseases. Our understanding of the process of amyloid aggregation and its role in disease has typically been limited by the use of ensemble-based biochemical and biophysical techniques, owing to the intrinsic heterogeneity and complexity of the process. Single-molecule techniques, and particularly diffusion-based single-molecule fluorescence approaches, have been instrumental to obtain meaningful information on the dynamic nature of the fibril-forming process, as well as the characterisation of the heterogeneity of the amyloid aggregates and the understanding of the molecular basis of inhibition of a number of molecules with therapeutic interest. In this article, we reviewed some recent contributions on the characterisation of the amyloid aggregation process, the identification of distinct structural groups of aggregates in homotypic or heterotypic aggregation, as well as on the study of the interaction of amyloid aggregates with other molecules, allowing the estimation of the binding sites, affinities, and avidities as examples of the type of relevant information we can obtain about these processes using these techniques.
000120950 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B49-20D$$9info:eu-repo/grantAgreement/ES/DGA/LMP175_21$$9info:eu-repo/grantAgreement/ES/FEDER/Una manera de hacer Europa$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PGC2018-096335-B100$$9info:eu-repo/grantAgreement/ES/MCIN/AEI/10.13039/501100011033
000120950 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000120950 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000120950 700__ $$0(orcid)0000-0002-9760-194X$$aCarrancho, Alejandra$$uUniversidad de Zaragoza
000120950 700__ $$aGracia, Pablo
000120950 700__ $$0(orcid)0000-0002-9138-6687$$aCremades, Nunilo$$uUniversidad de Zaragoza
000120950 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000120950 773__ $$g2, 4 (2022), 506-524$$pBiophysica$$tBiophysica$$x2673-4125
000120950 8564_ $$s2430840$$uhttps://zaguan.unizar.es/record/120950/files/texto_completo.pdf$$yVersión publicada
000120950 8564_ $$s2848099$$uhttps://zaguan.unizar.es/record/120950/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000120950 909CO $$ooai:zaguan.unizar.es:120950$$particulos$$pdriver
000120950 951__ $$a2023-01-11-10:11:13
000120950 980__ $$aARTICLE