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Abstract Electromagnetic switching devices such as
electromechanical relays and solenoid valves suffer
from impacts and mechanical wear when they are
activated using a constant-voltage policy. This paper
presents a new control approach that aims at achieving
soft landing in these devices, i.e., a movement with-
out neither impacts nor bouncing. The hybrid nonlinear
dynamics of the system is firstly described taking into
account the limited range of motion that characterizes
this class of devices. Then, the nonlinear expression
of the control law is derived and a method to design
a soft-landing reference trajectory is proposed. It is
shown that, when certain conditions aremet, the design
methodology presented in the paper results in a con-
troller that achieves perfect tracking of the reference
trajectory and, hence, soft landing is accomplished. The
theoretical analysis is validated by simulation using a
dynamical model of a specific switching device.
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1 Introduction

Reluctance actuators are electromechanical devices
that feature high force density, good efficiency, andhigh
tolerance to faults. These features make these actua-
tors a promising choice for high-speed high-precision
applications [1] such as antivibration systems [2] or
equipment for the semiconductormanufacturing indus-
try [3], among others. On the other hand, they are also
the ideal actuation system for commercial switching
devices that require a modest performance [4] because
of their compactness, low cost, and low energy con-
sumption. In particular, electromechanical relays and
solenoid valves are devices whose operation is based
on the force created by a small single-coil reluctance
actuator with a limited range of motion.

Essentially, a single-coil reluctance actuator is an
electromagnet with a specifically designed moving
component commonly known as armature (see Fig. 1).
When the coil is energized, the magnetic force that
appears in the air gap pulls the armature towards the
yoke. Since this force is always attractive, the oppos-
ing force is generally produced by a spring. Commonly,
commercial switching devices are activated using a
constant voltage. This policy, however, leads to a con-
tinuously accelerated motion which ultimately results
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Fig. 1 Diagram of a single-coil reluctance actuator

in impacts, bouncing, mechanical wear, and a clicking
noise that may be undesirable in some applications.

Several control methods have been already applied
to improve the performance of electromechanical
switching devices. Starting with the early works of the
1990s [5–7], the literature contains proposals based on
sliding-mode control [7–9], optimal open-loop control
[10,11], or iterative techniques [12,13], among others.
The common goal of all these works is to achieve soft
landing, i.e., a controlledmovement bywhich the arma-
ture reaches the final position with zero velocity [14],
thus avoiding impacts and bouncing. The benefits of
this strategy are evident: the devices would suffer less
degradation and therefore have a longer service life,
and they would also be quieter. The solution, however,
is far from obvious, as these actuators exhibit hybrid,
nonlinear and very fast dynamics.

In this work, a new control approach to achieve
soft landing in electromechanical switching devices is
presented. The main contribution is the joint design
of the feedback controller and the soft-landing tra-
jectory, which includes a pre-movement stage to deal
with the hybrid dynamics of the system. The con-
troller is based on feedback linearization, a common
approach for nonlinear systems that has been suc-
cessfully applied to single-coil [15], double-coil [16],
and permanent-magnet [17] electromagnetic actuators.
Despite these works, there is still scope of improve-
ment in the design of the reference trajectory and its
effects on the controller performance. In the paper, a
hybrid dynamical model of the system including mag-
netic saturation, eddy currents, flux fringing and the
bouncing phenomenon is firstly presented. Then, the
equations of the control law are derived and the design
method for the reference trajectory, based on optimal
control theory, is described. Finally, the proposal is val-
idated through several simulations, in which we com-
pare both the controller and the trajectory designs with
other alternatives from the literature. It is assumed that
measurements of all the state variables are available.

State observers [18,19] could be used to address the
problem if only electrical measurements—voltage and
current—are available.

2 System dynamics

A diagram of a reluctance actuator is represented in
Fig. 2. This figure, which shows the coil, part of the
core, and the air gap of a generic single-coil linear-
motion actuator, will be used to explain the model pre-
sented in this section. The position of the armature is
defined by the gap length, z, which is physically limited
between zmin and zmax, 0 ≤ zmin < zmax. The coil is
wrapped around the iron core and has N turns. When
it is supplied with power, the electrical current i that
flows through the wire creates the magnetic flux φ and
the equivalent eddy current iec. Note that this diagram
can be used to describe most geometric designs, such
as E-core or plunger-type actuators.

2.1 Free motion dynamics

When the armature is moving between the two position
boundaries, i.e., zmin < z < zmax the dynamics of the
system can be described by a set of continuous non-
linear differential equations. Two fundamental equa-
tions describe the electromagnetic dynamics. Firstly,
the electrical equation of the coil,

u = R i + N φ̇, (1)

where u is the voltage applied to the coil terminals—
and input of the system—and R is the internal resis-

Fig. 2 Diagram of a single-coil linear-motion reluctance actua-
tor. The sign convention adopted for i , φ, and iec is indicated by
arrows
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tance. Recall that the magnetic flux is the integral of
the flux density B on the cross section of the magnetic
circuit.

φ =
∫∫

B · ds (2)

The second equation results from applying Ampère’s
law on the surface � (see Fig. 2),∮

∂�

H · dl =
∫∫

�

J · ds, (3)

whereH is the magnetic field intensity, J is the current
density, and ∂� is the contour of �, selected to match
the main path of the flux. Assuming that the relation
between the field intensity and the flux density can be
described by means of the magnetic permeability μ as
H = B/μ, the previous equation can be simplified [20]
into

φ R(z, φ) = N i + iec, (4)

whereR(z, φ) is the reluctance of themagnetic system,
which is in general a function of the armature position
and the magnetic flux. Several methodologies can be
used toobtain such function, includingnumericalmeth-
ods [2] and analytical expressions [21]. Without loss of
generality, the reluctance of a single-coil actuator can
be divided into two terms,

R(z, φ) = Rgap(z) + Rcore(φ), (5)

where Rgap is the air gap component, which only
depends on z, andRcore is the iron core part, depending
only on φ. In this paper, these two terms are modeled
by means of the following analytical expressions,

Rgap(z) =
z

μ0 Acore

1 + z√
Acore

log

(
2 lw
z

) , (6)

Rcore(φ) = Rcore0

1 − |φ| /φsat
, (7)

where Acore, lw, Rcore0, and φsat are positive param-
eters and μ0 is the magnetic permeability of vacuum.
The air gap reluctance is based on the correction fac-
tor proposed by McLyman [22] in order to account for
flux fringing effects. In addition, magnetic saturation
is incorporated to the model by using the Fröhlich-
Kennelly relation [21] in the expression of Rcore.

In order to model the currents induced in the iron,
it is assumed that the magnetic flux density is uni-
form across the core section. Under this assumption,

the equivalent eddy current is proportional to the time
derivative of the magnetic flux [3],

iec = −kec φ̇, (8)

where kec > 0 depends on the electrical conductivity
and the geometry of the core. As a result, the presented
model includes most of the electromagnetic phenom-
ena that may appear in reluctance actuators [3,20], i.e.,
eddy currents, flux fringing, and magnetic saturation.

The armature motion is described by Newton’s sec-
ond law,

m z̈ = Fmag(z, φ) − F(z, ż), (9)

where m is the armature mass, Fmag(z, φ) is the mag-
netic force that produces the motion, and F(z, ż)
describes the spring, friction, and gravity forces. The
simplest approach to describe this latter force is to con-
sider a linear spring-damper model,

F(z, ż) = ks z + c ż + F0, (10)

where ks is the spring stiffness constant, c is the damp-
ing coefficient, and F0 accounts for gravity and the
spring preload force. If necessary, more sophisticated
models can be found in the literature [23] that could
also be used. On the other hand, the magnetic force can
be expressed in terms of the reluctance [21] as

Fmag(z, φ) = −1

2
φ2 R′

gap(z), (11)

where

R′
gap(z) = ∂Rgap(z)

∂z
(12)

is in general a strictly positive functionof z for all z ≥ 0.
In particular, whenRgap ismodeled using (6), its partial
derivative with respect to z is given by

R′
gap(z) =

1

μ0 Acore

(
1 + z√

Acore

)

(
1 + z√

Acore
log

(
2 lw
z

))2 . (13)

A third-order state-spacemodel can then be obtained
by combining all the previous equations. If the state is
selected as

x = [
z v φ

]T
, (14)

where v = ż is the velocity of the armature, the explicit
dynamical equations of the system are

ż = ϕ1(x) = v, (15)
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v̇ = ϕ2(x) = − φ2

2m
R′

gap(z) − F(z, v)

m
, (16)

φ̇ = ϕ3(x, u) = − R φ R(z, φ)

N kN
+ u

kN
, (17)

where

kN = N + R kec
N

. (18)

Assuming thatφ is bounded due tomagnetic saturation,
i.e., φ ∈ (−φsat, φsat), where φsat > 0 is the saturation
flux, the previous dynamical equations are valid in the
domain

D = [zmin, zmax] × R × (−φsat, φsat) . (19)

2.2 Dynamics of switching devices

Reluctance actuators used in high-precision applica-
tions [1] operate generally in the continuous regime.
However, electromechanical switching devices are
specifically designed to switch between zmin and zmax.
In that case, the constraints imposedby theposition lim-
its lead to hybrid dynamics, i.e., dynamics that combine
both continuous and discrete events.

The dynamics of the system when considering these
limits can be modeled by the hybrid automaton of
Fig. 3. Each transition between dynamic modes is
described by its corresponding guard condition (in
blue) and reset map (in green), respectively before and
after an arrow (⇒). The reset map is explicitly pre-
sented only for the velocity, which is the only state that
may change during jumps. For those transitions that do
not imply jumps, only the guard condition is shown.
The value of the velocity after a jump is indicated by
the use of the superscript +. Functions ϕ1(x), ϕ2(x),
and ϕ3(x, u) are those in (15)–(17).

The operation of the automaton is as follows. If the
armature is moving (Mode 2) and hits any of the limit
positionswith a low impact velocity (0 ≤ |v| ≤ vε), the
model jumps to the correspondingnon-motiondynamic
mode (Mode 1 or 3) and v is reset to zero. Then, when
ϕ2(x) has the right sign to start the movement, the
automaton returns to the motion mode. If, on the other
hand, the impact occurs with a greater kinetic energy
(|v| > vε), the armature bounces as defined by the
coefficient of restitution γ . The threshold parameter vε

allows for controlling the level of detail of the bounc-

Fig. 3 Hybrid automaton that models the dynamics of an elec-
tromechanical switching device

ing phenomenon in simulation, ranging from vε = 0
for full bouncing to vε = ∞ for no bounces.

3 Design of the controller

As stated, the controller proposed in this work is based
on exact feedback linearization. This section presents
the design of the linearizing law and the tracking
controller. For generalization purposes, no particular
model of the force F or the reluctanceR is considered
in the design of the controller.

3.1 Linearizing law

The system (15)–(17) is a single-input affine dynamical
system, i.e., it has the form

ẋ = f (x) + g(x) u, (20)

with x ∈ D ⊂ R
3 given by (14), domain D as defined

in (19), and vector fields f and g equal to

f (x) =

⎡
⎢⎢⎢⎣

v

− φ2

2m
R′

gap(z) − F(z, v)

m

− R φ R(z, φ)

N kN

⎤
⎥⎥⎥⎦ , (21)

g(x) =
⎡
⎣ 0

0
1/kN

⎤
⎦ . (22)
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In order to be feedback linearizable, there must exist
an output function h : D → R such that the system has
relative degree three. That is, we must be able to find a
function h that satisfies

Lg h(x) = 1

kN

∂h

∂φ
(x) = 0, (23)

Lg L f h(x) = −φ R′
gap(z)

m kN

∂h

∂v
(x) = 0, (24)

Lg L2
f h(x) = −φ R′

gap(z)

m kN

∂h

∂z
(x) �= 0, (25)

where L f and Lg denote the Lie derivatives with
respect to f and g, respectively, and L2

f = L f L f .
Assuming thatR′

gap(z) is strictly positive for all z ∈
[zmin, zmax], two conclusions can be drawn from the
previous expressions. Firstly, that the system cannot
be feedback linearized when φ = 0 because (25) is
not satisfied in that case. And secondly, that the output
function h must satisfy

∂h

∂φ
(x) = 0,

∂h

∂v
(x) = 0,

∂h

∂z
(x) �= 0, (26)

i.e., it must depend only on z.
Since the variable to be controlled is in fact the posi-

tion of the armature, z, let the output function h be
simply selected as

y = h(x) = z. (27)

Note that, by simple inspection of the equations (15)–
(17) it can be seen that z is indeed a flat output of
the system. Firstly, if z and its derivatives are known,
(16) constitutes a differential equation from which φ

can be obtained. Then, using (17), the input u of the
system could also be calculated in terms of the position,
velocity, acceleration, and jerk of the armature. Thus,
all the time-dependent variables of the system can be
parameterized in terms of z and its derivatives up to
order three.

As a remark note that, using (27) as output func-
tion, the system satisfies the conditions (23)–(25) in
the regions

D+
0 = {x ∈ D | φ > 0} , (28)

D−
0 = {x ∈ D | φ < 0} , (29)

i.e., for all x ∈ D such that φ �= 0. Thus, it is feedback
linearizable in either D+

0 or D−
0 . In this paper, D+

0 is
arbitrarily chosen as the working domain.

The existence of an output function h that satisfies
conditions (23)–(25) implies that the dynamics of the
system can be expressed as

d3z

dt3
= L3

f h(x) + Lg L2
f h(x) u, (30)

where L3
f = L f L2

f . Besides, since Lg L2
f h(x) �= 0,

it is possible to define a feedback linearizing law

u = α(x) + β(x) w, (31)

where

α(x) = − L3
f h(x)

Lg L2
f h(x)

, β(x) = 1

Lg L2
f h(x)

, (32)

that transforms the system into a third-order integrator,

d3z

dt3
= w. (33)

Considering (21), (22), and (27), the functions α and β

of the linearizing control law are given by

α(x) = R φ R(z, φ)

N
− kN v φ R′′

gap(z)

2R′
gap(z)

− kN Fz(z, v) v

φ R′
gap(z)

+ kN Fv(z, v) φ

2m

+ kN Fv(z, v) F(z, v)

m φ R′
gap(z)

, (34)

β(x) = − m kN
φ R′

gap(z)
, (35)

where

R′′
gap(z) = ∂2Rgap(z)

∂z2
, (36)

Fz(z, v) = ∂F(z, v)

∂z
, Fv(z, v) = ∂F(z, v)

∂v
. (37)

The feedback law (31) results in the LTI system (33),
which can be expressed in Brunovsky canonical form,
i.e.,

ξ̇ = A ξ + B w, (38)

where w ∈ R is the input, ξ consists of the position,
velocity, and acceleration of the armature,

ξ = [
ξ1 ξ2 ξ3

]T =
[
z

dz

dt

d2z

dt2

]T
, (39)

and the state and input matrices are

A =
⎡
⎣0 1 0
0 0 1
0 0 0

⎤
⎦ , B =

⎡
⎣0
0
1

⎤
⎦ . (40)

123



E. Ramirez-Laboreo et al.

The linearizing state is related to the original state
(14) by the change of coordinates

ξ = T (x) =

⎡
⎢⎢⎣

z
v

− φ2

2m
R′

gap(z) − F(z, v)

m

⎤
⎥⎥⎦ . (41)

Furthermore, considering that x ∈ D+
0 , the inverse

transformation is given by

x = T−1(ξ) =

⎡
⎢⎢⎢⎣

ξ1
ξ2√

−2
(
m ξ3 + F(ξ1, ξ2)

)
R′

gap(ξ1)

⎤
⎥⎥⎥⎦ , (42)

and it has no singularities given that R′
gap > 0.

3.2 Trajectory tracking controller

Once the system (15)–(17) is linearized and trans-
formed into an equivalent LTI system, position con-
trollers can be designed using classical linear tech-
niques. In particular, the main goal is to design a con-
troller such that the position of the armature follows
a predefined soft-landing reference trajectory zr (t).
Since the linearizing state ξ is composed of the posi-
tion, velocity, and acceleration of the armature, the
desired position trajectory can be used to define a time-
dependent reference for the entire state vector. This
state reference, ξr (t), is composed of zr (t) and its first
two time derivatives.

ξr (t) = [
zr (t) żr (t) z̈r (t)

]T
(43)

Let the tracking error be defined as ξ̃ = ξr − ξ .
Considering (38), the error dynamics is given by

˙̃
ξ = ξ̇r − ξ̇ = ξ̇r + A ξ̃ − A ξr − B w. (44)

Since the equivalent LTI system is a chain of integra-
tors, with A and B in the form of (40), it can be shown
that

ξ̇r − A ξr = B z(3)r , (45)

where

z(3)r = d3zr
dt3

. (46)

Consequently, the error dynamics can be reformulated
as

˙̃
ξ = A ξ̃ − B

(
w − z(3)r

)
. (47)

Then, by using the feedback-feedforward control law

w = K ξ̃ + z(3)r , (48)

where K ∈ R
1×3, the closed-loop error dynamics

becomes

˙̃
ξ = (A − BK ) ξ̃ . (49)

By choosing K such that A− BK is Hurwitz, the error
dynamics can be made exponentially asymptotically
stable at the origin and, thus, the actuator will track the
predefined trajectory with an exponentially decreasing
error.

This final step completes the design of the nonlinear
controller for the actuator via feedback linearization.
The complete control law to track the reference zr (t)
can be obtained by combining all the previous expres-
sions.

u(x, t)=α(x)+β(x)
(
K

(
ξr (t) − T (x)

)
+ z(3)r (t)

)

(50)

4 Design of the trajectory

The soft-landing reference trajectory proposed for the
actuator has the form

zr (t) =
⎧⎨
⎩
z0, if 0 ≤ t < t0,
zm(t), if t0 ≤ t ≤ tf ,
zf , if t > tf ,

(51)

where z0 is the initial position, zf is the final position,
and zm(t) is the position trajectory for the movement
stage. Two different cases are considered: the trajectory
for the closing operation, where z0 = zmax and zf =
zmin, and that for the opening, where z0 = zmin and
zf = zmax.

In order to achieve soft landing at t = tf , the refer-
ence trajectory must be such that

zm(tf) = zf , żm(tf) = 0, z̈m(tf) = 0, (52)

i.e., it must arrive at z = zf at t = tf with zero velocity
and acceleration. Note that the acceleration condition
is necessary in order for the mover to stay at the final
position for t > tf (see Fig. 3). Assuming that the
armature is at rest at z = z0 and t = t0—a logical
assumption in switching devices—it is advantageous
that the reference trajectory also satisfies

zm(t0) = z0, żm(t0) = 0, z̈m(t0) = 0. (53)
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In that case, the tracking error at t = t0 will be iden-
tically zero, i.e., ξ̃ (t0) = [ 0 0 0 ]T. Thus, considering
that the error dynamics is given by (49), where A−BK
is Hurwitz by design, the tracking error will be equal to
zero during the entire trajectory. As a consequence, the
controller will achieve perfect tracking in the nominal
case, unless the input saturates or the state moves out
of the linearizable region.

When perfect tracking is accomplished, ξ(t) =
ξr (t) ∀ t . Thus, if the input u is limited between umin

and umax, where umin < umax, the condition to avoid
input saturation during the motion can be derived from
(31) and (38)–(40) as

umin ≤ α(xr ) + z(3)m β(xr ) ≤ umax, ∀ t ∈ [t0, tf ] ,

(54)

where

xr = xr (t) = T−1(ξr (t)) (55)

is the reference trajectory in the original state space.
The conditions to keep the state inside the linearizable
region D+

0 can be also obtained bymeans of the inverse
transformation. Using (19) and (28), these are given by

−φ 2
sat

2
<

m z̈m + F
(
zm, żm

)
R′

gap

(
zm

) < 0, ∀ t ∈ [t0, tf ] ,

(56)

zmin ≤ zm ≤ zmax, ∀ t ∈ [t0, tf ] . (57)

Several approaches can then be used to find a tra-
jectory that satisfies all the previous conditions. The
simplest alternative is to define zm(t) as a fifth degree
polynomial whose coefficients are chosen such that
the trajectory satisfies the conditions in (52) and (53).
Without much difficulty, it can be shown that the result-
ing polynomial is monotone in [t0, tf ], so the condi-
tion in (57) is directly met. The conditions in (54) and
(56), on the other hand, can be satisfied by a proper
choice of the length of the interval [t0, tf ]. Polyno-
mial trajectories are indeed the standard solution in the
design of soft-landing feedback controllers for elec-
tromechanical devices [17,24–26]. In this paper, how-
ever, an energy-optimal reference trajectory is obtained
using optimal control theory [10,27]. Considering the
model (15)–(17), the dynamic optimization problem is
formulated as

min.
u(t)

J =
∫ tf

t0
u2 dt, (58)

s. t. ẋr = [ ϕ1(xr ) ϕ2(xr ) ϕ3(xr , u) ]T , (59)

umin ≤ u ≤ umax, (60)

xr (t f ) = T−1
(

[ zf 0 0 ]T
)

, (61)

xr (t0) = T−1
(

[ z0 0 0 ]T
)

. (62)

Note that the two last conditions are equivalent to (52)
and (53). A solution is then found by means of the
Pontryagin method. Firstly, the Hamiltonian is built as

H (xr , p, u) = u2 + p1 ϕ1 (xr )

+p2 ϕ2 (xr ) + p3 ϕ3 (xr , u) , (63)

where p = [ p1 p2 p3 ]T is the costate. Then, the
expression for the optimal input is obtained by applying
the Pontryagin principle,

H (
x∗
r , p∗, u∗) ≤ H (

x∗
r , p∗, u

) ∀u∈[umin, umax],(64)

where x∗
r , p

∗ and u∗ are respectively the optimal trajec-
tory, costate, and input. By using (63) and (15)–(17),
the expression for the optimal input is obtained.

u∗ = u∗(x∗
r , p∗) = argmin

u∈[umin,umax]

(
u2 + p∗

3 u

kN

)

=

⎧⎪⎪⎨
⎪⎪⎩

umax if p∗
3 < −2 kN umax

− p∗
3

2 kN
if −2 kN umax ≤ p∗

3 ≤ −2 kN umin

umin if p∗
3 > −2 kN umin

(65)

Note that, since ϕ3 (x, u) is input-affine, the Hamilto-
nian is convex in u, which makes u∗ the global mini-
mum of H. The equations of the Hamiltonian system
are then obtained as

ẋ∗
r (t) = +∂H∗

∂p∗ , ṗ∗(t) = −∂H∗

∂x∗
r

, (66)

where H∗ = H(
x∗
r , p∗, u∗(x∗

r , p∗)
)
and, finally, the

trajectory is numerically computed solving the bound-
ary value problem (BVP) with (61) and (62) as bound-
ary conditions.

A remaining issue in the design of the trajectory (51)
is the purpose of the interval [0, t0). In this regard, it
must be noted that the system has hybrid dynamics
and it is assumed to be initially at either Mode 1 or
Mode 3 (see Fig. 3). Thus, the linearizing state ξ3 at
t = 0 does not actually represent the armature acceler-
ation, which is equal to zero. Instead, as described by
(41), it is the sum of the magnetic, elastic, friction, and
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Table 1 Model parameters

R 75 � m 2g

N 1200 ks 50N/m

kec 1500A/V c 0.1Ns/m

Acore 20mm2 F0 −0.75N

lw 15mm γ 0.5

Rcore0 3 · 106 H−1 vε 1 · 10−3 m/s

φsat 25µWb [zmin, zmax] [0, 1]mm

gravity forces divided by the armature mass. In other
words, it does not include the contact force that appears
at the limit positions. The goal of the aforementioned
period is that, regardless of the initial magnetic flux,
the controller forces the system to reach a stationary
state at some t < t0 such that Fmag and F are in bal-
ance at t = t0, i.e., ξ3(t0) = ξ̃3(t0) = 0. By a proper
choice of t0, this interval prepares the actuator for take-
off and allows the movement to start immediately at
t = t0. Otherwise, ξ̃3(t0) may be nonzero and thus
perfect tracking would not be guaranteed. An alterna-
tive procedure to overcome this problem [17] consists
in designing a reference trajectory for ξ3 during the
pre-movement stage, but the proposal of this paper is
simpler and leads to very similar results.

5 Results and discussion

In this section, the nonlinear soft-landing controller is
validated by simulation. With the aim of incorporat-
ing the effects of the position limits, the evaluation
is performed using the hybrid automaton of Fig. 3.
Table 1 presents the parameter values used in the simu-
lations. The voltage is limited between umin = −24 V
and umax = +24 V. The simulations have been car-
ried out for the two possible operations—closing and
opening—of any electromechanical switching device.
In all the cases, the proportional gain K of the con-
troller has been selected to achieve a settling time of 1
ms.

5.1 Nominal results

We first analyze the results in the nominal case, i.e.,
when the controller and trajectory proposed in the pre-
vious sections are jointly applied to control the actuator

Fig. 4 Results corresponding to closing (left) and opening
(right) operations using the designed energy-optimal reference
trajectory. From top to bottom, linearizing states (ξ1 = z, ξ2 = v,
and ξ3), magnetic flux φ, and input u

motion. The trajectory used in this case corresponds to
t0 = 1ms and tf = 6ms and has been obtained by
solving the BVP using the MATLAB function bvp4c
[28]. This function implements a collocation method
that requires an initial solution. For this purpose, we
take advantage of the fact that the Hamiltonian system
is differentially flat in z [26], which allows us to pro-
pose an initial sub-optimal soft-landing trajectory for
the position and, from this, to obtain the corresponding
trajectory for all the remaining state variables. Thanks
to the initially supplied solution, the algorithm requires
less than 2 seconds of computation on a 9th generation
Intel Core i5 processor. In order to highlight the advan-
tages of optimally-designed trajectories over polyno-
mial ones, the optimal arcs have been obtained for an
input bounded between -20 V and +20 V. This results
in a more robust design, since there is still an available
4-volt band that can be used by the feedback term of
the controller to correct deviations with respect to the
nominal situation.

As shown in Fig. 4, the results are in accordance
with the theoretical analysis of the previous section:
The controller achieves perfect trackingof the proposed
trajectory and soft landing is achieved. The errors in the
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position (z = ξ1) and velocity (v = ξ2) are identically
zero during the entire simulation. By contrast, an ini-
tial error has been considered in ξ3 in order to analyze
the performance of the controller during the interval
[0, t0). Note that, although the position error is zero
for all t < t0, the controller still forces the magnetic
flux to reach a value for which Fmag and F are in equi-
librium. Since t0 is large enough, the tracking error at
t = t0 is equal to zero and thus the motion starts imme-
diately. In this regard, any available information about
the initial value ofφ could be used to estimate the initial
error ξ̃3(0) and, hence, to set a proper value for t0. As
expected, the state stays inside the linearizable region
D+
0 .

5.2 Trajectory comparison

In order to emphasize the importance of a proper tra-
jectory design, Figs. 5 and 6 present additional results
of cases where the conditions to ensure perfect track-
ing are not satisfied. In these simulations, piecewise
polynomial functions are used as reference trajectories.
For comparative purposes, these have been also defined

Fig. 5 Results corresponding to closing (left) and opening
(right) operations using a piecewise polynomial reference trajec-
tory. In this case, the input u saturates in the interval [t0, tf ] =
[1, 6] ms, which results in loss of perfect tracking

between t0 = 1 ms and tf = 6 ms. On the one hand,
Fig. 5 presents two cases where the condition (54) does
not hold, i.e., the input saturates in some parts of the
interval [t0, tf ]. As can be seen, the desired trajectories
require high variations of the acceleration which can-
not be given by the controller and, thus, tracking errors
appear during themotion. On the other hand, the results
of Fig. 6 correspond to cases where perfect tracking
is lost because the state escapes from the linearizable
region. More specifically, the condition (56) does not
always hold because the acceleration required in some
parts of the desired trajectory is incompatible with the
physics of the system. Note that, as the magnetic flux
approaches zero, the action given by (50) increases and
results in input saturation, so (54) is not met either dur-
ing these periods. Furthermore, when φ reaches and
crosses the zero level, the state jumps between the lin-
earizable regions D+

0 and D−
0 . As a result, the control

adopts a high-frequency switching behavior between
umin and umax (shaded region in the figure), similarly
as in a sliding-mode controller.

The results presented in these two latter figures show
that the loss of perfect tracking may lead to two dif-

Fig. 6 Results corresponding to closing (left) and opening
(right) operations using a piecewise polynomial reference trajec-
tory. In this case, the state escapes from the linearizable region
D+
0 , which results in loss of perfect tracking and input chattering

(shaded region, the solid line indicates the average value)
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ferent scenarios with regard to soft landing. When it
occurs at the beginning of the motion, the controller
may be able to eliminate the error before the end of
the trajectory and thus soft landing may still be accom-
plished (see the closing operation in Fig. 5, and the
opening operation in Fig. 6). However, if the track-
ing error appears near the end of the trajectory, the
actuator will probably arrive to the final position with
a nonzero impact velocity and bouncing will appear
(opening operation in Fig. 5, and closing operation
in Fig. 6). Thus, in order to achieve soft landing in
reluctance actuators, it can be concluded that it is
advantageous to define reference trajectories which are
less demanding—in terms of control—as the armature
approaches the final position.

5.3 Controller comparison

Besides the trajectory design, the other critical part of
the proposed control is the feedback linearization tech-
nique. In order to show the advantage of this method,
it is compared with an alternative controller. It follows
the general structure of the sliding-mode controller pre-
viously proposed in [8] for reluctance actuators.

Firstly, the sliding surface is defined by the scalar
equation s = 0, where, for a third-order system, s is

s = (d/dt + λ)2 (zr − z), (67)

in which λ is a constant that determines the settling
time of the position when s = 0. Then, the control law
is defined as

u = −U sgn(s), (68)

where U is another constant, which must be large
enough to ensure that the sliding surface is reached
in finite time. In order to be consistent with the speci-
fication of the feedback linearization, the constants are
selected so that the settling time is 1 ms and the maxi-
mum voltage is 24 V (i.e., λ = 4745 s−1, U = 24V).

Both controllers are tested and compared for dif-
ferent sampling rates. To evaluate the tracking perfor-
mance, the rootmean square error of the position during
motion is obtained as follows:

RMSEz = 1

t f − t0

∫ t f

t0

(
z(t) − zr (t)

)2 dt. (69)

Given the soft landing objective, another important per-
formance index are the impact velocities. Thus, for each

Fig. 7 Control performance comparison as a function of the
sampling period: root-mean-square errors of the tracked posi-
tion (top) and equivalent velocities (bottom) in closing (left) and
opening (right) operations

operation, an equivalent velocity is calculated as

veq =
√∑

i

vi 2, (70)

where {vi } is the set of impact velocities. Note that it
corresponds to the same kinetic energy as the combi-
nation of every impact velocity. Thus, it accounts for
multiple impacts caused by bouncing.

The main results are presented in Fig. 7. It depicts
the rootmean square errors and equivalent velocities for
different sampling periods Ts ranging from 1 to 100µs.
Notice the logarithmic scale in the plots. The proposed
controller based on feedback linearization proves to
track better the desired position for every tested sam-
pling rate, as the root mean square errors are consis-
tently smaller. Consequently, the soft-landing perfor-
mance is better, as the equivalent velocities demon-
strate.

In order to further illustrate the improvement of the
proposed solutionwith respect to the sliding-mode con-
troller, the full control results are shown for a particular
case. The worst-case scenario of the studied cases has
been chosen, which corresponds to a sampling period
of 100µs. Fig. 8 presents the results using our proposal.
In this scenario, the input saturates frequently, which
causes tracking errors in the linearizing states and the
magnetic flux. Still, the tracking performance is very
good, particularly at the end of the operations. Thus,
the impact velocities are very small. In contrast, Fig. 9
presents the results using the sliding-mode controller.
In this case, the tracking errors are appreciably larger,
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Fig. 8 Results corresponding to closing (left) and opening
(right) operations using our control proposal with a sampling
rate of 10 kHz (Ts = 100µs)

Fig. 9 Results corresponding to closing (left) and opening
(right) operations using the alternative sliding-mode controller
with a sampling rate of 10kHz (Ts = 100µs). Note the impact
velocity and the big bounce at the end of the closing operation

which leads to significant impact velocities, especially
in the closing operation.

6 Conclusion

This paper has considered the design of a nonlinear
feedback controller to achieve soft landing in elec-
tromechanical switching devices. As shown, the con-
troller is able to track the reference trajectory with zero
error thanks to the joint design of the tracking controller
and a soft-landing trajectory that satisfies certain con-
ditions also given in the paper. As a result, the device is
able to switch between the two possible states without
impacts or bounces. Special attention has been paid to
emphasize the importance of the trajectory design. It
has been shown that, even when working with a nom-
inal model, a wrong design of the desired trajectory
may lead to undesired results with respect to soft land-
ing. Apart fromminimizing the energy required for the
motion, the use of optimal control theory is also advan-
tageous because it permitsmore flexibility in the design
of the trajectory. The controller has been designed for a
generic reluctance actuator independently of its specific
design or final application, so it may also be applied to
control the motion—or the force—of other reluctance
actuators used in high-precision systems. Future work
will focus on the evaluation of the controller on per-
turbed systems and the use of state observers based
only on measurements of the electrical variables.
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