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This paper explores three novel approaches to improve the performance of speaker verification (SV) 
systems based on deep neural networks (DNN) using Multi-head Self-Attention (MSA) mechanisms and 
memory layers. Firstly, we propose the use of a learnable vector called Class token to replace the average 
global pooling mechanism to extract the embeddings. Unlike global average pooling, our proposal takes 
into account the temporal structure of the input what is relevant for the text-dependent SV task. The 
class token is concatenated to the input before the first MSA layer, and its state at the output is used to 
predict the classes. To gain additional robustness, we introduce two approaches. First, we have developed 
a new sampling estimation of the class token. In this approach, the class token is obtained by sampling 
from a list of several trainable vectors. This strategy introduces uncertainty that helps to generalize better 
compared to a single initialization as it is shown in the experiments. Second, we have added a distilled 
representation token for training a teacher-student pair of networks using the Knowledge Distillation 
(KD) philosophy, which is combined with the class token. This distillation token is trained to mimic the 
predictions from the teacher network, while the class token replicates the true label. All the strategies 
have been tested on the RSR2015-Part II and DeepMine-Part 1 databases for text-dependent SV, providing 
competitive results compared to the same architecture using the average pooling mechanism to extract 
average embeddings.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The performance in speaker verification (SV) tasks has im-
proved greatly in recent years thanks to the deep learning (DL) 
advances in signal representations and optimization metrics [1–5]
that have been adapted from the state-of-the-art face verification, 
image recognition, or text-modelling systems. In these systems, 
Convolutional Neural Network (CNN) or Time Delay Neural Net-
work (TDNN) [2] are still the most employed approaches to ob-
tain the signal representations or embeddings. Nevertheless, self-
attention mechanisms are becoming a dominant approach in many 
fields beyond text-related tasks. For example, Transformers [6] are 
spreading to many tasks [7–10] where large scale databases are 
available. In SV tasks, this kind of architecture has started to be 
successfully applied in text-independent SV [11–14] where there 
are no constraints in the uttered phrase and big databases are 
available. However, in text-dependent SV, there is still room for 
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improvement since the amount of public data is not very large. 
Besides, text-dependent SV consists of deciding whether a speech 
sample has been uttered by the correct speaker pronouncing the 
fixed passphrase selected. So, the phonetic information of the sig-
nal is relevant to determine the identity. Therefore, keeping the 
temporal structure is needed to obtain representations that encode 
correctly both phrase and speaker information.

In the context of text-dependent SV tasks, our previous works 
[15–17] showed the advantages of replacing the traditional pool-
ing mechanism based on averaging the temporal information with 
an external alignment mechanism to obtain a supervector embed-
ding. This supervector allowed to keep the temporal structure and 
represent both phrase and speaker information, but the temporal 
alignment had to be performed by using an external method as 
a phone decoder, a Gaussian Mixture Model (GMM) [18,19] or a 
Hidden Markov Model (HMM) [20]. As an alternative approach, in 
[21], we introduced Multi-head Self-Attention (MSA) mechanisms 
[6] combined with memory layers [22] to substitute the alignment 
mechanisms. The use of MSA allowed the model to focus on the 
most relevant frames of the sequence to discriminate better among 
utterances and speakers. However, the proposed architecture based 
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on MSA employed an average pooling mechanism to obtain the fi-
nal representation embedding.

In this work, to substitute the global average pooling, we have 
introduced a learnable vector known as Class token, which is in-
herited from Natural Language Processing (NLP) [7], and recently, 
many image recognition systems [8]. However, this approach has 
not yet been applied to SV tasks. To introduce this vector into the 
system based on DNN with MSA and memory layers, the class to-
ken is concatenated to the input before the first MSA layer, and the 
state at the output is employed to perform the class prediction. 
During training, the temporal information is encoded in the token, 
and this token interacts with the whole input sequence through 
self-attention and learns a global description similar to a super-
vector approach [16,23] since the multiple heads act as slots of 
the supervector. A similar mechanism has also been used recently 
in [10]. Therefore, the average pooling mechanism is not needed to 
obtain a representation. The multiple heads can encode more de-
tails about the sequence order than the average, playing the role 
of the states and improving the results as shown in [16], [17]
with the use of external alignment mechanisms based on HMM 
and GMM. In addition, the information encoded in these multiple 
heads can be represented and analyzed, which improves the in-
terpretability of the results of this kind of approach. To improve 
the performance obtained with the class token approach, we also 
introduce a novel multiple initialization sampling mechanism to 
reduce possible initialization problems and give more robustness 
against the lack of data to model predictions. Since it is a case of 
use in the industry to develop custom specific systems with small 
in-domain datasets and this kind of approach could be a possible 
solution.

Moreover, this work contributes with another approach based 
on Transformer architecture and Knowledge Distillation (KD) [24,
9]. We propose a teacher-student approach combined with Ran-
dom Erasing data augmentation [25,26] which allows modelling 
the uncertainty in the parameters of a teacher model with a com-
pact student model and get more reliable predictions. Following 
the idea proposed in [9], we have also introduced the Distillation 
token in the student network to replicate the predictions of the 
teacher network, while the class token is trained to reproduce the 
true label as Fig. 3 depicts. Unlike the objective in [9], in our work, 
the distillation process is not intended to compress the teacher 
model, but rather both models are trained together and the stu-
dent model learns to better capture the intrinsic variability of the 
teacher predictions.

To summarize, the main contributions are:

• We replace the global average pooling mechanism by a learn-
able class token to obtain a global utterance descriptor associ-
ated to the concept of supervector in speaker verification.

• We propose a new approach based on a sampling approxima-
tion to estimate the class token.

• We introduce a teacher-student architecture with an addi-
tional token known as distillation token which is combined 
with the class token to provide robustness to the learned stu-
dent model.

This paper is organized as follows. In Section 2, we show an 
overview of the MSA and memory layers. Section 3 explains the 
strategy of introducing a learnable class token using sampling. In 
Section 4 we introduce the approach based on KD combined with 
the tokens employed to develop our system. Section 5 describes 
the system used. In Section 6, we present the experimental data, 
and Section 7 explains the results achieved. Conclusions are pre-
sented in Section 8.
2

2. Overview of transformer encoder

The original transformer architecture [6] is composed of two 
main parts: the encoder and decoder parts. However, in many 
tasks, the transformer encoder is the only part used to create the 
DL systems. The core mechanism of each encoder block is Multi-
head Self-Attention (MSA) layer which is composed of multiple 
dot-product attention. As we only employ the encoder part, the 
input to this attention mechanism is the same for the query, key 
and value signals (Q , K , V ):

Q h = x · W Q
h , Kh = x · W K

h , Vh = x · W V
h , (1)

where x is the input to this layer, and W Q
h , W K

h , W V
h are learn-

able weight matrices to make the linear projections. After these 
projections, a softmax operation is performed over the temporal 
axis, which allows each head to focus on certain frames of the in-
put sequence. The result of this softmax operation is known as the 
self-attention matrix for each head and can be defined as:

Ah = sof tmaxt

(
Q h · Kᵀ

h√
dk

)
, (2)

where dk is the number of dimensions of the query/key vector, 
and ᵀ denotes transpose. This self-attention matrix learns the most 
relevant information among the different data. Using this infor-
mation, the value V feature vectors are aggregated to obtain the 
output of each head. The final output of each head can be calcu-
lated as,

Hh = Ah · Vh. (3)

Thus, MSA is defined as the concatenation of the outputs from 
each head Hh:

M S A(X) = [H1, H2 . . . Hdhead ] · W head, (4)

where X is the input to the attention layer, W head is a learnable 
weight matrix to make a final linear projection, and dhead is the 
number of attention heads in the h − th layer.

The transformer encoder alternates the MSA layer with a sec-
ond layer which is the feed-forward (FF) layer. However, in [21], 
we proposed the replacement of FF layers by memory layers as in 
[22]. With this layer, the input data is compared with all the keys 
using a product key-attention, and the scores obtained are used to 
select the closest keys, which have the highest scores. After that, 
the associated weight vectors are computed with the following ex-
pression:

w = sof tmaxn(x · U K ), (5)

where x is the input to the layer, U K is the keys matrix, and 
the softmax is computed over the memory index axis to focus on 
certain contents of the memory that will be used to provide the 
output. Once these vectors are obtained, these weights are com-
bined with the memory values of the selected keys, and the output 
is concatenated with the previous attention output:

xout = x + w · U V , (6)

where w are the weights of the selected keys obtained with (5), 
and U V are the memory values associated with the keys. After 
the encoder blocks are applied, an average pooling mechanism is 
usually employed to reduce the temporal information and repre-
sent variable-length utterances with fixed-length vectors. However, 
this averaging may neglect the order of the phonetic information, 
which is relevant for text-dependent SV tasks.
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3. Representation using class token

In many tasks of NLP and computer vision, the transformer ar-
chitecture uses a learnable vector called Class Token (xC L S ), as in 
the original BERT model [7] or Vision Transformer (ViT) [8], in-
stead of a global average pooling. To employ this token in the 
transformer encoder, the vector is concatenated to the input of the 
first MSA layer to perform the classification task. With this token, 
the self-attention is forced to capture the most relevant informa-
tion with the class token to obtain a representation as a global 
utterance descriptor similar to the supervector approach. Instead 
of mixing all the information with an average pooling mechanism, 
the temporal structure can be kept since the attention mechanism 
acts as a weighted sum of the temporal tokens for each layer. The 
output vector is the concatenation of different head subvectors and 
each of them is the result of a different attention outcome. Thus, 
the mechanism can be seen similar to those used in our previ-
ous work [16], where the heads play the role of the states and 
the supervector in [23]. The supervector mechanism is also simi-
lar to [27] but in that case, the task was text-independent SV and 
MSA layers were not used. Besides, this type of mechanism allows 
to enhance the interpretability of what the neural network learns 
through the self-attention layers.

In [23], this mechanism to obtain the supervector is defined 
similar to a conventional GMM supervector with the following ex-
pression:

sc =
∑

t xt · wtc∑
t wtc

=
∑

t

xt · w̄tc, (7)

where wtc are the weights obtained by a softmax function on the 
output of a learnable layer, sc are vectors per state/component C
of dimension D that summarize the information associated along 
the sequence of feature vectors xt of dimension D , and w̄tc are 
the normalized weights defined as wtc/

∑
t wtc . The final super-

vector is built by the concatenation of these vectors S = {s1, ..., sC }
and is used to represent the whole sequence. In this work, the 
output feature vectors for each head H of the MSA layer are ob-
Fig. 1. Evolution of the number of vectors in the token matrix that are available for sam
(iteration N). In each iteration, the dark vectors represent the enabled class tokens, while

3

tained with (3) as a weighted sum equivalent to (7), where w̄tc
corresponds to the rows of the matrix of self-attention weights Ah
obtained with (2). In particular, for the class token, the normalized 
weights would be obtained from the last row of Ah . Therefore, the 
final class token obtained with this mechanism is the concatena-
tion of the different head subvectors corresponding to the class 
token position, which can be expressed as the supervector pre-
sented previously SC L S = {s1−C L S , ..., sH−C L S}.

To introduce the class token in the system, one trainable vec-
tor parameter with the dimension of the feature vectors is defined 
when the network is initialized. For each batch, it is replicated 
and concatenated at the end of each input feature sequence in the 
training batch as an additional token. Hence, a single shared vector 
is trained to learn the final embedding representation.

In this work, we propose the use of a new sampling approach 
[28], and instead of having a single class token shared for the 
whole batch, we assume this sensitive parameter is the result of 
sampling a list of several vectors to be selected during the train-
ing by sampling them. In order to do that, we define a matrix of 
R vectors (T oken Matrix) and sample it to take one of them for 
each example in the batch introducing uncertainty in the class to-
ken (C L S T oken). However, the use of this approach leads to a 
complex and slower evaluation process since a sampling inference 
would have to be carried out to obtain the representations. For this 
reason, to avoid making the sampling inference, we have scheduled 
a forced reduction of the available vectors in the T oken Matrix
throughout the training process. Thus, at the end of this process, 
only one weight is different to zero, and the class token vector 
parameter is fixed. This strategy allows us to start the training 
(Iteration 1) with a matrix of several vectors to sample from and, 
gradually, we reduce the number of vectors as the training pro-
gresses to finish (Iteration N) with only one as the original class 
token as Fig. 1 depicts. Therefore, the training leads the system 
progressively to focus the relevant information on the first vector 
of the matrix. In addition, using this sampling approach, the sys-
tem is trained to capture the uncertainty introduced by initially 
having a T oken Matrix with R vectors to combine with the train-
ing batch data. Thus, each example from the batch is combined 
pling from the beginning of the training process (iteration 1) to the final iteration 
 the light vectors are the disabled tokens.
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Fig. 2. Example of the sampling steps in iteration n of the training process. In Step 1, the available vectors of the token matrix in that iteration are defined and the random 
indeces of batch size (B) are calculated. In Step 2, the class tokens are selected and added to the input of MSA layer.
Algorithm 1: Algorithm for sampling class token and intro-
ducing it before the pooling part.

Input: Input examples X , batch size B , examples of batch x, the number of 
layers L, the total number of tokens to sample R , and the number of 
epochs N

1. Define the vector with the number of sample vectors α available to select 
each epoch:

α = (α1, ..., αn, ..., αN ), αn = R, ..., 1, with R ∈ R

2. Define the random matrix of class token vectors:
T okenMatrix = random_matrix(R)

for n = 1 to N do

for x ∈ X do

3. Sampling Process

3.1 Step 1, every update B integer indexes are randomly generated 
from the available αn vectors:

inds = random_integer (αn , B)

3.2 Step 2, the correspondent tokens are selected:
C L ST oken = T okenMatrix[inds]
4. Network Training

4.1 Step 1, the class token is concatenated with the input to the 
MSA layer:

xl = [x||C L ST oken]
4.2 Step 2, the new input is introduced to the first MSA layer in the 

pooling part and the L layers are applied:

for l = 1 to L do
x′

l = xl + M S A(xl)

xl = x′
l + Memory(x′

l )

end

4.3 Step 3, the state at the output of the last layer in the pooling 
block of the class token is used as final representation:

xC L S = xend
l

end
end

with a random vector from the matrix which is reduced in size af-
ter each epoch until only one vector remains at the end, so more 
variability has to be modelled which helps to improve the robust-
ness of the system.

To carry out this process, we define the following vector, which 
indicates to the neural network the number of tokens available at 
each iteration of the training process:
4

α = (α1, ...,αn, ...,αN ),αn = R, ...,1, with R ∈R (8)

where R is the number of tokens defined in the matrix, and N
is the total number of iterations for training process. Among the 
number of tokens available at each iteration, a random selection 
of the batch size is made to select the index of the vectors. These 
vectors are selected from the distribution (T oken Matrix) and used 
as class tokens (C L S T oken) in the batch to concatenate to the 
input of the first MSA layer. The overall process is described in Al-
gorithm 1. Besides, Fig. 2 shows a graphical example of how this 
sampling process is made in an intermediate iteration (Iteration n). 
In this graphical explanation, it can be observed how in an inter-
mediate iteration the number of vectors has been reduced forcing 
the network to put the relevant information to represent the ut-
terances in the vectors still available.

4. Knowledge distillation with tokens

Motivated by the benefits obtained when the training databases 
are not very large with Teacher-Student architecture based on 
CNNs [26], we have implemented this architecture using two trans-
former networks as Fig. 3 depicts. Using a Bayesian approach 
similar to [29], the teacher-student architecture allows providing 
robustness to the system. In this approach, the teacher and stu-
dent networks are trained at the same time, unlike previous works 
[30,31] in which the teacher network is usually a pre-trained 
model to reduce complexity. Whether the teacher network had 
been a frozen model, negative training examples that obtain high 
posterior values in the teacher network would be learned as posi-
tive examples by the student network. Besides, different sources of 
distortion are applied to each of the input signals of both networks, 
so we have employed a data augmentation method called Random 
Erasing (RE) [25] to provide more variability to the input train-
ing data. With this kind of architecture, the teacher network has 
to predict augmented unseen data and the student network tries 
to mimic the label predictions produced by the teacher network 
using the class token output. This training strategy allows the stu-
dent network to capture the variability in the predictions produced 
by the first network and model this uncertainty in the parameters 
during the training process. However, inspired by [9], we have also 
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Fig. 3. Teacher-student architecture used to create the system, where the dashed line indicates the process of backpropagation of the gradients. Both networks are employed 
to train while for testing, the student network is the only used.
included an extra learnable token in the student network which 
is known as Distillation Token (Distill T oken). The introduction of 
this extra token allows to implement of a multi-objective optimiza-
tion by using the class token to reproduce the true label while 
the distillation token is trained to mimic the predictions of the 
teacher network. To achieve this, the Kullback-Leibler Divergence 
(KLD) loss between the student and teacher distributions is mini-
mized. The KLD loss can be formulated as,

K LD = −
I∑

i=1

J∑
j=1

pT (ycls
i |x j) · log (pS(ydist

i |x j)) + const, (9)

where i and j are the speaker and utterance indices, x j is the input 
signal, pT (ycls

i |x j) is the output posterior probability of the label 
ycls

i from the class token of the teacher model, pS (ydist
i |x j) is the 

output posterior probability of the label ydist
i from the distillation 

token of the student network for the same example, and const is 
defined in [29]. Hence, to train the teacher-student architecture 
showed in Fig. 3, we employ the following two loss expressions 
for teacher and student networks:

LossT = C E(ycls
T , y), (10)

LossS = K LD(ydist
S , ycls

T ) + C E(ycls
S , y), (11)

where C E is the cross-entropy loss, ycls
S is the class token output 

from the student network, and y are the ground truth labels.

5. System description

In this section, we describe the system architecture used in this 
work for text-dependent SV. Fig. 3 depicts this architecture where 
a teacher-student approach is employed. Both architectures follow 
the structure described in [21] with the same backbone and pool-
ing parts. The backbone is based on two Residual Network (RN) 
[32] blocks with three layers each block. Additionally, these ar-
chitectures need embeddings with positional information to help 
guiding the attention mask in the MSA layers. In this work, these 
embeddings (eph) are extracted by a phonetic classifier network 
instead of using temporal position information [27]. For the pool-
ing part, two MSA layers of 16 heads combined with two mem-
ory layers are employed. Moreover, before the first MSA layer, the 
5

class token is concatenated to the input. In the case of the stu-
dent network, the distillation token is also included. Thanks to 
the self-attention mechanism, these tokens learn to obtain a global 
representation for each utterance without applying the global av-
erage pooling. These representations, similar to supervector, are 
more convenient for text-dependent SV task since these global 
representations do not neglect the sequence order and are ob-
tained automatically thanks to the self-attention mechanism. So 
external alignment mechanisms are not necessary to obtain them 
as in [15–17], where GMM or HMM posterior probabilities are 
needed to align speech frames to supervectors. Besides, the use 
of memory layers increases the amount of knowledge obtained 
by the network that can be stored. After training the system, a 
cosine similarity over the token representations is applied to per-
form the verification process. Note that this kind of system based 
on teacher-student consists of training of two architectures at the 
same time. Therefore, this process may involve a higher computa-
tional cost. However, during inference, only the student network is 
employed to extract the embeddings, so there is no extra inference 
time.

6. Experimental setup

6.1. Datasets

For the experiments, two text-dependent speaker verification 
datasets have been employed. The first set of experiments has 
been reported on the RSR2015 text-dependent speaker verification 
dataset [33]. This dataset comprises recordings from 157 males 
and 143 females. For each speaker, there are 9 sessions with 30 
different phrases. This data is divided into three speaker subsets: 
background (bkg), development (dev) and evaluation (eval). In this 
paper, we develop our experiments with Part II, which is composed 
of short control command with a strong overlap of lexical content, 
and we employ only the bkg data for training. The eval part is used 
for enrollment and trial evaluation. This dataset has three evalua-
tion conditions, but in this work, the most challenging, which is 
the Impostor-Correct case, is the only one that has been evalu-
ated and employed in the text-dependent SV. Note that there are 
other systems that obtain relevant results for this dataset, similar 
to those presented below. Nevertheless, such systems are based on 
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traditional models such as Hidden Markov Models (HMMs) [33,34]
or neural network architectures focused on two different streams 
for speaker and utterance information [35,36].

The second dataset used is the DeepMine database [37]. This 
corpus consists of three different parts of which we employ the 
files selected for the Short-duration Speaker Verification (SdSV) 
Challenge 2020 [38] from Part 1. Part 1 is the text-dependent part 
which is composed of 5 Persian and 5 English phrases and con-
tains 963 females and males speakers. This data is divided into 
two subsets: train with 101.063 audio files and evaluation with 
69.542 audio files. Finally, the phonetic classification network [27]
has been trained using LibriSpeech [39] to extract phonetic em-
beddings. Unlike other works presented in the challenge [40,41], 
we have not used VoxCeleb 1 and 2 datasets [42,43] in the neural 
network training process. Motivated by the fact that in some situ-
ations and applications is required the implementation of custom 
systems with the few available in domain-data. For this reason, we 
have developed systems only with the in-domain data.

6.2. Experimental description

To carry out the experiments with the RSR2015 dataset, a set 
of features composed of 20 dimensional Mel-Frequency Cepstral 
Coefficients (MFCC) with their derivates are employed as input. 
While for the experiments using the DeepMine dataset, we have 
employed a feature vector based on mel-scale filter banks. With 
this feature extractor, we obtain two log filter banks of sizes 24 
and 32, which are concatenated with the log energy to obtain a fi-
nal input dimension of 57. Moreover, phonetic embeddings of 256 
dimensions have been used as positional information. As the op-
timizer for the experiments in this work, the Adam optimizer is 
employed with a learning rate that increases from 10−3 to 5 ∗10−3

during 60 epochs and then decays from 5 ∗ 10−3 to 10−4. In addi-
tion, training data is fed into the systems with a minibatch size of 
32.

7. Results

In this paper, two sets of experiments have been carried out 
to evaluate the proposals with both databases. We compare the 
different approaches to obtain the representations with a single 
neural network using the same architecture as the teacher net-
work: the use of the traditional global average pooling (AV G), 
the attentive pooling (AT T ) and the introduction of the learnable 
class token (C L S). For the class token approach, we evaluate our 
proposal of sampling a matrix of R vectors and reducing it until 
having a single vector (Sampling). This parameter is also swept for 
different values of R , including R = 1 that corresponds to the orig-
inal idea of having a single token and repeating it. Moreover, we 
analyze the effect produced by the fact of using a teacher-student 
architecture with an extra distillation token (C L S − D I ST ).

In order to evaluate these experiments, we have measured the 
performance using three metrics. Equal Error Rate (EER) which 
measures the discrimination ability of the system. NIST 2008 and 
2010 minimum Detection Cost Functions (DCF08, DCF10) [44,45]
which measure the cost of detection errors in terms of a weighted 
sum of false alarm and miss probabilities for a decision threshold, 
and a priori probability.

7.1. Class token study

A first set of experiments was performed to compare the use of 
a class token to obtain global utterance descriptors with the use of 
a global average pooling method or the attentive pooling proposed 
in [46]. Thus, we study the two approaches to introduce this vector 
6

explained during this work and the effect of the number of vectors 
chosen for the sampling approach.

Table 1 presents EER, DCF08 and DCF10 results for the exper-
iments with RSR2015-part II dataset. Regardless of the number of 
vectors in the sampling for class tokens, if we apply our proposed 
strategy to introduce the tokens with a sampling alternative, the 
obtained performance is better. In addition, the results show how 
employing a learnable token outperforms the use of an average 
embedding or an attentive pooling embedding. Note that the to-
ken is trained through self-attention and keeping the temporal 
structure to obtain a global utterance representation, while the av-
erage embedding neglects this information that is relevant to the 
SV task. As we can also observe with the sweep of R value, the use 
of several vectors to create the token matrix is better than using 
a single vector and repeating it for the whole batch, which corre-
sponds to the original way of applying this approach. The case of 
having a single vector and repeat it corresponds with the experi-
ments with R = 1. However, when the number of available tokens 
is too large, the performance begins to degrade. This degradation 
could be caused by the introduction of too much variability that 
the system is not able to model as the architectures employed are 
not so large, which means that there are a limited number of dif-
ferent tokens to carry out the training process.

In Table 2, the results obtained in DeepMine-part 1 database 
are shown. Unlike the other dataset, the training data in DeepMine 
is larger, which indicates that the lack of data is not so critical to 
train a powerful and robust system. Therefore, the replacement of 
the average embedding or attentive pooling embedding by a class 
token improves the performance only slightly. Besides, the sweep 
of R value shows that the evolution of the female and male results 
separately do not follow the same trend as occurs in the RSR-Part 
II results.

7.2. Effect of knowledge distillation using tokens

In this section, we analyze the effect of introducing an ap-
proach based on Knowledge Distillation philosophy which consists 
of a teacher-student architecture. Furthermore, in this approach, an 
extra distillation token (C L S − D I ST ) is incorporated [9]. This ap-
proach has been employed to compare the performance obtained 
in the case of the average global pooling as well as in the proposed 
sampling approach to use the class token. In this second case, we 
have developed the teacher-student architecture using the R value 
of the best configuration obtained in the previous section, and also, 
the case of R = 1 as it is the usual way to apply this class token 
approach in the literature.

Results of these experiments in RSR-Part II are shown in Ta-
ble 3. Regardless of the kind of approach to obtain the representa-
tions used, we can observe that the use of an architecture based on 
a teacher-student approach improves the robustness and achieves 
better performance in all the alternatives to extract the represen-
tations. Moreover, the best performance is obtained applying our 
proposed strategy to introduce the tokens with a sampling alter-
native with more than a single vector.

On the other hand, Table 4 presents the performance of systems 
with DeepMine-part 1. In this case, the results show that the ap-
plication of only the teacher-student architecture does not improve 
the systems. However, the use of the teacher-student architecture 
and the extra distillation token (C L S − D I ST ), combined with the 
sampling strategy with several token vectors also allows achieving 
a more robust system and a significant improvement in the results.

7.3. Analysis of class token self-attention representations

In view of the relevant results obtained, we have also conducted 
an analysis to interpret what the self-attention matrix A is learn-
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Table 1
Experimental results on RSR2015 Part II [33] eval subset, showing EER%, DCF08 and DCF10. These results were obtained to compare the different approaches to obtain the 
representations: average, attentive or sampling strategies.

Architecture Female Male Female + Male

Type T/S Sampling EER% DCF08 DCF10 EER% DCF08 DCF10 EER% DCF08 DCF10

AVG no − 4.64 0.228 0.669 4.92 0.244 0.716 4.79 0.237 0.706
ATT no − 4.07 0.188 0.618 4.44 0.211 0.615 4.53 0.213 0.646
CLS no R=1 3.71 0.174 0.580 4.27 0.215 0.679 4.12 0.201 0.634

R=50 3.37 0.169 0.580 4.04 0.199 0.601 3.75 0.187 0.606
R=100 3.33 0.158 0.552 3.68 0.182 0.552 3.57 0.173 0.565
R=200 3.55 0.171 0.562 4.09 0.199 0.607 3.86 0.189 0.587

Table 2
Experimental results on DeepMine [37] eval subset, showing EER%, DCF08 and DCF10. These results were obtained to compare the different approaches to obtain the 
representations: average, attentive or sampling strategies.

Architecture Female Male Female + Male

Type T/S Sampling EER% DCF08 DCF10 EER% DCF08 DCF10 EER% DCF08 DCF10

AVG no − 3.92 0.135 0.411 3.02 0.137 0.676 3.58 0.136 0.521
ATT no − 5.73 0.193 0.468 5.39 0.210 0.664 5.60 0.200 0.551
CLS no R=1 3.81 0.128 0.389 3.32 0.143 0.697 3.60 0.134 0.520

R=50 3.92 0.131 0.393 3.19 0.140 0.668 3.62 0.134 0.519
R=100 3.69 0.124 0.379 3.09 0.137 0.658 3.43 0.129 0.505
R=200 3.89 0.133 0.417 2.92 0.133 0.655 3.50 0.133 0.521

Table 3
Experimental results on RSR2015 Part II [33] eval subset, showing EER%, DCF08 and DCF10. These results were obtained to compare the use of a teacher-student architecture 
for the different approaches to obtain the representations: average or sampling strategies.

Architecture Female Male Female + Male

Type T/S Sampling EER% DCF08 DCF10 EER% DCF08 DCF10 EER% DCF08 DCF10

AVG no − 4.64 0.228 0.669 4.92 0.244 0.716 4.79 0.237 0.706
yes − 3.52 0.170 0.587 3.78 0.186 0.579 3.74 0.185 0.602

CLS no R=1 3.71 0.174 0.580 4.27 0.215 0.679 4.12 0.201 0.634
CLS-DIST yes R=1 3.01 0.148 0.548 3.40 0.173 0.557 3.31 0.167 0.558
CLS no R=100 3.33 0.158 0.552 3.68 0.182 0.552 3.57 0.173 0.565
CLS-DIST yes R=100 2.47 0.122 0.414 2.83 0.138 0.463 2.68 0.133 0.443

Table 4
Experimental results on DeepMine [37] eval subset, showing EER%, DCF08 and DCF10. These results were obtained to compare the use of a teacher-student architecture for 
the different approaches to obtain the representations: average or sampling strategies.

Architecture Female Male Female + Male

Type T/S Sampling EER% DCF08 DCF10 EER% DCF08 DCF10 EER% DCF08 DCF10

AVG no − 3.92 0.135 0.411 3.02 0.137 0.676 3.58 0.136 0.521
yes − 4.07 0.135 0.401 3.04 0.141 0.646 3.65 0.138 0.501

CLS no R=1 3.81 0.128 0.389 3.32 0.143 0.697 3.60 0.134 0.520
CLS-DIST yes R=1 3.80 0.131 0.395 3.25 0.144 0.621 3.57 0.135 0.494
CLS no R=100 3.69 0.124 0.379 3.09 0.137 0.658 3.43 0.129 0.505
CLS-DIST yes R=100 3.51 0.122 0.385 2.68 0.122 0.652 3.19 0.123 0.492
ing in each system. To perform this analysis, we have employed the 
system with the best performance from each database, and within 
these systems, the last MSA layer of the student model has been 
selected to make the representations. In addition, we have chosen 
different utterances to analyze in Fig. 4 and Fig. 5. For each utter-
ance, three figures are plotted: the spectrogram of the utterance, 
the matrix of attention weights corresponding to the class token 
for each of the 16 heads of the MSA layer, and the sum of the 
weights of these class token attentions.

In Fig. 4, two examples of utterances of different phrases (“Call 
sister”, “Call brother”) pronounced by the same speaker are shown. 
These examples are obtained from the evaluation set of the RSR-
Part II database. Whether we look in the middle and bottom fig-
ures, we can observe the relevant information learned by the self-
attention weights to correctly determine the phrase and speaker of 
each utterance using the class token. Note that these two phrases 
of example begin exactly the same with the word Call, so focus-
ing on the beginning of the figures, we observe how the self-
7

attention gives similar relevance in both cases to the areas of same 
phonemes. Moreover, we can also see that the weights do not pay 
attention to the area at the beginning and end of the utterances 
that correspond to moments of silence.

Fig. 5 represents two examples of utterances of the same phrase 
(“OK Google”) pronounced by different speakers. In this case, the 
examples are obtained from the evaluation set of the DeepMine 
database. Note that since these figures are of the same phrase, self-
attention is focused on the same areas, but different relevance is 
given to some of them. Besides, the effect of not focusing on the 
beginning and end of the utterance also occurs in these examples.

8. Conclusion

In this paper, we have presented a novel approach for the SV 
task. This approach is based on the use of a learnable class to-
ken to obtain a global utterance descriptor instead of employing 
the average pooling. Moreover, we have developed an alternative 
to create the class token with a sampling strategy that introduces 
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Fig. 4. Visualizing two examples of different phrases of RSR-Part II which are pronounced by the same speaker. In both cases, three representations are presented. The figure 
on top shows the spectrogram of each phrase. In the middle, the attention weights learnt by the class token for each of the 16 heads in the last MSA layer are depicted. 
Finally, the plot on bottom is the sum of the rows of the previous weight attention matrix.

Fig. 5. Visualizing two examples of the same phrase of DeepMine which are pronounced by different speakers. In both cases, three representations are presented. The figure 
on top shows the spectrogram of each phrase. In the middle, the attention weights learnt by the class token for each of the 16 heads in the last MSA layer are depicted. 
Finally, the plot on bottom is the sum of the rows of the previous weight attention matrix.
uncertainty that helps to generalize better. Apart from the previous 
approach, we have also employed a teacher-student architecture 
combined with an extra distillation token to develop a more robust 
system. Using this architecture, the distillation token in the stu-
dent network learns to replicate the predictions from the teacher 
network. Both proposals were evaluated in two text-dependent SV 
databases. Results achieved show in RSR2015-part II that each of 
8

the approaches introduced to obtain a robust system and reduce 
potential underperformance due to the lack of data improves the 
overall performance. However, in DeepMine-part 1, the results ob-
tained replacing only the average embedding by the class token 
present a small improvement, while the use of a teacher-student 
architecture achieves a great improvement and confirms the power 
of this kind of approach to train the systems.
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