000121009 001__ 121009 000121009 005__ 20240319081023.0 000121009 0247_ $$2doi$$a10.3390/math10010093 000121009 0248_ $$2sideral$$a129526 000121009 037__ $$aART-2022-129526 000121009 041__ $$aeng 000121009 100__ $$aGordillo, Geovanny 000121009 245__ $$aSolute Transport Control at Channel Junctions Using Adjoint Sensitivity 000121009 260__ $$c2022 000121009 5060_ $$aAccess copy available to the general public$$fUnrestricted 000121009 5203_ $$aWater quality control and the control of contaminant spill in water in particular are becoming a primary need today. Gradient descent sensitivity methods based on the adjoint formulation have proved to be encouraging techniques in this context for river and channel flows. Taking into account that most channels and rivers include junctions with other branches, the objective of this study is to explore the adjoint technique on a channel network to reconstruct the upstream boundary condition of the convection-reaction equation. For this purpose, the one-dimensional shallow water equations and the transport equation for a reactive solute are considered. The control is formulated through the gradient-descent technique supplied with a first-order iterative process. Both the physical and the adjoint equations are supplied with suitable internal boundary conditions at the junction and are numerically solved using a finite volume upwind scheme. The results reveal that the adjoint technique is capable of reconstructing the inlet solute concentration boundary condition in an acceptable number of iterations for both steady state and transient configurations using a downstream measurement location. It was also observed that the reconstruction of the boundary condition tends to be less effective the further away the measurement station is from the target. 000121009 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00 000121009 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000121009 590__ $$a2.4$$b2022 000121009 592__ $$a0.446$$b2022 000121009 591__ $$aMATHEMATICS$$b23 / 329 = 0.07$$c2022$$dQ1$$eT1 000121009 593__ $$aComputer Science (miscellaneous)$$c2022$$dQ2 000121009 593__ $$aMathematics (miscellaneous)$$c2022$$dQ2 000121009 593__ $$aEngineering (miscellaneous)$$c2022$$dQ2 000121009 594__ $$a3.5$$b2022 000121009 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000121009 700__ $$0(orcid)0000-0001-6961-7250$$aMorales-Hernández, Mario$$uUniversidad de Zaragoza 000121009 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, Pilar$$uUniversidad de Zaragoza 000121009 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos 000121009 773__ $$g10, 1 (2022), 93 [19 pp.]$$pMathematics (Basel)$$tMathematics$$x2227-7390 000121009 8564_ $$s1338266$$uhttps://zaguan.unizar.es/record/121009/files/texto_completo.pdf$$yVersión publicada 000121009 8564_ $$s2724680$$uhttps://zaguan.unizar.es/record/121009/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000121009 909CO $$ooai:zaguan.unizar.es:121009$$particulos$$pdriver 000121009 951__ $$a2024-03-18-16:24:02 000121009 980__ $$aARTICLE