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Abstract: Water quality control and the control of contaminant spill in water in particular are becom-
ing a primary need today. Gradient descent sensitivity methods based on the adjoint formulation
have proved to be encouraging techniques in this context for river and channel flows. Taking into
account that most channels and rivers include junctions with other branches, the objective of this
study is to explore the adjoint technique on a channel network to reconstruct the upstream boundary
condition of the convection-reaction equation. For this purpose, the one-dimensional shallow water
equations and the transport equation for a reactive solute are considered. The control is formulated
through the gradient-descent technique supplied with a first-order iterative process. Both the physical
and the adjoint equations are supplied with suitable internal boundary conditions at the junction
and are numerically solved using a finite volume upwind scheme. The results reveal that the adjoint
technique is capable of reconstructing the inlet solute concentration boundary condition in an ac-
ceptable number of iterations for both steady state and transient configurations using a downstream
measurement location. It was also observed that the reconstruction of the boundary condition tends
to be less effective the further away the measurement station is from the target.

Keywords: adjoint; gradient-descent; junctions; transport equation

1. Introduction

Simulation tools based on hydrodynamic models combined with solute transport have
become an essential tool to help decision makers [1], with efficiency and accuracy being
both the fundamental keys of any mathematical model. Particularly, the geometry of the
cross sections as well as the presence of junctions must be included into the model, having
this last feature a greater impact on the physical and chemical properties of water. The
numerical simulation of water flow at channel junctions has been addressed by several
authors. In [2], it was concluded that it is possible to model the flow in a junction when the
Froude numbers are low assuming the same water stage at the junction for every channel.
Hsu et al. [3] derived an analytical approach through the junction over subcritical flows
and uniform beds. The validation of their model was supported by three experimental
tests with different junction angles, showing a good correlation between the numerical data
and experimental values. The hydrodynamic details of flows at junctions have also been
studied in [4–8] with experimental data and with field measurements. Likewise, the flow
propagation in open-channel junctions was analyzed in [9], showing acceptable numerical
results for supercritical transitions with small junction angles.

The influence of geometry in large-scale junctions was evaluated by [10]. It was
concluded that there is a domain of the Kelvin–Helmholtz (KH) mode and the wake mode
within the mixing interface, as the angle of the junction is altered. Based on the flow
structure in the confluences, Constantinescu et al. [11] determined that the mixing interface
can be either in the KH mode or in the wake mode. Both cases are dominated by quasi
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two-dimensional (2-D) eddies whose growth in the first case is boosted by the KH instability
whereas, in the latter case, the mixing interface is populated by eddies with opposing senses
of rotation. The influence of the mixing interface eddies and vortical characteristics on the
mean velocity and turbulent kinetic energy patterns was also analyzed in [12]. Using the
detached eddy simulation model, they were able to capture in detail the flow and turbulent
structure in the confluence zone. This behavior was verified by a real data event at the
confluence of the Kaskaskia River and Copper Slough. The morphological characteristics
of the channel were also considered in [13,14]. In these studies, it was observed that
sediment deposition is within and beyond the flow separation region, forming a large
bank-attached bar.

On the other hand, the chemical change generated by the junction of two streams
has been much more limited due to the requirements on the experimental data. Burguete
et al. [15] demonstrated the innovative aspects for fertigation in furrows and level furrow
systems with solute transport. This work was validated against experimental data and
incorporated a computationally efficient approach of the internal boundary conditions to
ensure the conservation of global mass. The behavior of the concentrations at junctions
was also analyzed in [16]. Detailed analysis at the junction showed that the concentration
distributions were controlled mainly by the shear layer and the two helical cells. The
detailed study for dynamic phosphorus contamination was also considered in [17,18],
showing and application for the Huiji and Ying rivers in eastern China. Additionally, it was
demonstrated that there is an alteration of the flow and the mixing interface in junctions
of two tributaries in natural rivers with large bed discordance due to the temperature
differences in the two inflows [19]. Particularly, the mixing interface is proved to be
very sensitive to inflow changes due to seasonal variations, which may cause significant
differences in density [20].

The quality of the predictions supplied by numerical models is strongly related with
the quality of the data used (initial conditions, boundary conditions or model parameters).
This information is not always available for different reasons, and thus, retrieval techniques
such as trial and error methods are necessary, sometimes resulting in tedious and not very
intuitive processes especially when there is not enough modeling experience. To overcome
this drawback, the gradient-descent method emerges as an alternative due to the use of the
functional gradient where the minimum of the objective function is efficiently found. In this
context, based on existing works [21–26], the adjoint method is considered to reconstruct a
part or all of the necessary information in predictive simulation models. In particular, it is
possible to efficiently reconstruct the boundary condition of a water quality model [27].

With this technique, the sensitivity of an objective function to the parameters of the
system—initial, boundaries or decay coefficients—can be found by solving the adjoint
equation backwards in time. This sensitivity is used in an iterative process, producing a
sequence of improved solutions that ends up providing the desired values.

In this work, a one-dimensional (1D) hydrodynamic model combined with the advec-
tion-reaction equation on a channel junction are used for the predictive simulation of the
flow evolution and solute transport, respectively. The adjoint methodology is adopted to
find a procedure to reconstruct the boundary condition of the transport equation using
a measure of the error at a location downstream the junction. To meet this objective, the
flow, the transport and the adjoint equations are solved using an explicit finite volume
method. Particular attention is paid to the following aspects: (a) reconstruction of the inlet
boundary condition of one or more solutes from downstream measurements after a junction;
(b) validation of the numerical technique against steady state and unsteady scenarios of
both flow and concentration; (c) characterization of the main strengths and limitations of
the adjoint method; (d) test the reconstruction of the information, with different decay rates
when more than one solute acts.

The rest of the paper is structured as follows: Section 2 presents the governing equa-
tions of the physical system together with the numerical method chosen to solve them.
The adjoint formulation is provided in Section 3 and is also presented together with the
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numerical discretization used. In Section 4, the proposed model control is validated with
some synthetic cases. The results of the model are presented in Section 5. Finally, the
conclusions are presented for some test cases are discussed in Section 6.

2. Flow Equations and Numerical Model

The 1D Saint Venant equations are here considered to model the water flow [28] while
the advection-reaction equation is used to model the solute transport with a first order
decay process [29,30]. Diffusion–dispersion effects (particularly longitudinal dispersion) are
important when modeling the behavior of solutes in rivers, mainly in accidental pollution
problems [31,32]. However, for the sake of clarity, they have not been included in this
work. The main reason for this is to simplify the development of this methodology without
introducing another degree of freedom and extra uncertainty in the derivation of the
equations and their resolution. Additionally, boundary conditions are needed for the whole
set of the equations both at the inlet and outlet points and at the junctions. All these items
are explained in the following paragraphs.

2.1. 1D Shallow Water Equations

The cross-sectional averaged 1D system of mass and momentum equations can be
expressed as follows [33]:

∂A
∂t

+
∂Q
∂x

= qL

∂Q
∂t

+
∂

∂x

(
Q2

A
+ gI1

)
= g[I2 + A(So − S f )]

(1)

where A[L2] is the wetted cross section area, Q[L3T−1] is the discharge, qL[L2T−1] is the
lateral inflow per unit width, g[LT−2] is the acceleration due to gravity, I1[L3] represents the
hydrostatic pressure force term, and I2[L2] accounts for the pressure forces due to channel
width change. The remaining two terms So [LL−1] and S f [LL−1] represent the bed slope
and friction slope, the latter formulated with the semi-empirical Manning’s law:

So = −
∂z
∂x

, S f =
n2|Q|Q
A2R4/3

h

, (2)

being z[L] the bed level, Rh[L] the hydraulic radius and n[TL−1/3] the Manning’s rough-
ness coefficient.

2.2. 1D Advection–Reaction Equation

The continuous change of concentration within the hydrodynamic system is generally
affected by the advection and reaction processes. The formulation of this transport equation
along every river or channel reach averaged in the cross section can be expressed as [34]:

∂(Aφ)

∂t
+

∂(Qφ)

∂x
= −AR, (3)

where φ[ML−3] is the cross sectional average concentration of the solute, and R [ML−3T−1]
is the first order rate or decay process:

R = κφ, (4)

where κ [T−1] is the reaction constant. As many transport equations as solutes must be
considered together with the corresponding reaction terms in the case of more than one
reactive solute in the system. This is accomplished simply by generalizing the concentration
φj and Rj in (3) where the subscript j indicates the number of reactive solutes [35].



Mathematics 2022, 10, 93 4 of 19

2.3. Numerical Model

The numerical solution of Equations (1) and (3) is achieved by applying an explicit
upwind finite volume method based on Roe’s linearization. This scheme has been proved
to be robust, well-balanced and efficient and has been verified in multiple scenarios: for the
1D and 2D the frameworks [36–38].

Following [15,38], the system (1) can be solved for each computational cell i of size ∆x:

Un+1
i =Un

i −
∆t
∆x

[(
∑
m

λ̃+γ̃ẽ

)m

i−1/2

+

(
∑
m

λ̃−γ̃ẽ

)m

i+1/2

]n

, (5)

where U = (A, Q), n is the discrete time level, and λ̃ and ẽ are the eigenvalues and
eigenvectors, respectively; γ̃ is the linearized term that contains the fluxes and source
strengths; m is the eigenvalues counter, and ∆t is the time step size. This expression (5) is
solved for the interior points in each of the channels considered in the system.

The complete discretization of the transport equation follows [39]:

(Aφ)n+1
i = (Aφ)n

i −
∆t
∆x

[
(qφ)↓i+1/2 − (qφ)↓i−1/2

]n
+ ∆t(AR)n

i , (6)

where the variables q↓ and φ↓ are defined in order to decouple conservatively this equation
from the hydrodynamic system. This formulation ensures solute positivity and a non-
oscillatory solution in both space and time [35]. The scheme in (6) is used to solve for each
solute at all the interior points of each channel.

2.4. Junction Boundary Conditions

Appropriate boundary conditions are needed to solve the system of flow and solute
equations formed by (1) and (3). The number of boundary conditions at the inlet, outlet and
junction points depends on the flow regime [2]. For the sake of simplification, this work
only considers sub-critical cases. Regarding the flow equations, it is enough to impose one
boundary condition upstream and downstream. Generally, a discharge hydrograph Q(t) is
imposed upstream while a gauging curve or a water surface level is set downstream. As
for the solute, only an upstream boundary condition is required.

When considering junctions such as the one represented in Figure 1, internal boundary
conditions are needed. In the present work, uniform water surface level together with
discharge continuity at the junction is assumed [40]:

(h + z)imax,1 = (h + z)0,2 = (h + z)imax,3,

Q0,2 = Qimax,1 ±Qimax,3,
(7)

where the number of cells goes from 0 to imax in each channel. As for the internal condition
of the solute, a mass balance at the junction is formulated as in [15]:

(Qφ)0,2 = (Qφ)imax,1 ± (Qφ)imax,3. (8)

Figure 1. Spatial domain of junctions.
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3. Adjoint Equations and Gradient Descent Method
3.1. Solute Transport Adjoint Equation

This study focuses on identifying the sensitivity of the objective function to the inlet
boundary condition of one or more solutes on a network of channels with junctions. For
this purpose, an objective function is defined in order to measure the error between the
values of the concentration predicted by the numerical simulation and those measured at a
certain location (xM):

J(p) =
1
2

∫ T

0

∫ L

0

[
δD(x− xM)(φ(p)− φ̂)2

]
dxdt, (9)

where δD() is the Dirac-delta function, φ(p) is the computed concentration based on a
parameter p which the functional depends on, φ̂ is the target at location xM, T[T] is the
total simulation time, and L[L] refers to the length of the computational domain.

The method to derive the adjoint equation from the configuration shown in Figure 1,
where the measurement point is assumed in channel 2, is summarized in the following
steps: (1) The transport Equation (3) is multiplied by an adjoint variable (σ [MTL−5]) and
integrated in space and time for each channel k:

I =
∫ T

0

∫ ximax,1

x0,1

σ1

[
∂(Aφ)

∂t
+

∂(Qφ)

∂x
+ AR

]
1
dxdt

+
∫ T

0

∫ ximax,2

x0,2

σ2

[
∂(Aφ)

∂t
+

∂(Qφ)

∂x
+ AR

]
2
dxdt

+
∫ T

0

∫ ximax,3

x0,3

σ3

[
∂(Aφ)

∂t
+

∂(Qφ)

∂x
+ AR

]
3
dxdt = 0.

(10)

(2) Integrating (10) by parts, the partial derivatives are passed over to the adjoint variable:

I =
∫ T

0

∫ ximax,1

x0,1

[
−(Aφ)

∂σ

∂t
− (Qφ)

∂σ

∂x
+ AσR

]
1
dxdt

+
∫ T

0
σQφ

∣∣∣∣ximax,1

x0,1

dt +
∫ ximax,1

x0,1

σAφ

∣∣∣∣T
0

dx

+
∫ T

0

∫ ximax,2

x0,2

[
−(Aφ)

∂σ

∂t
− (Qφ)

∂σ

∂x
+ AσR

]
2
dxdt

+
∫ T

0
σQφ

∣∣∣∣ximax,2

x0,2

dt +
∫ ximax,2

x0,2

σAφ

∣∣∣∣T
0

dx

+
∫ T

0

∫ ximax,3

x0,3

[
−(Aφ)

∂σ

∂t
− (Qφ)

∂σ

∂x
+ AσR

]
3
dxdt

+
∫ T

0
σQφ

∣∣∣∣ximax,3

x0,3

dt +
∫ ximax,3

x0,3

σAφ

∣∣∣∣T
0

dx = 0.

(11)

(3) As I = 0, we can redefine (9) as J = J + I and taking the first variation of the
functional with respect to φ leads to
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δJ =
∫ T

0

∫ ximax,1

x0,1

[
−(Aδφ)

∂σ

∂t
− (Qδφ)

∂σ

∂x
+ A

∂R
∂φ

δφ

]
1
dxdt

+
∫ T

0
σQδφ

∣∣∣∣ximax,1

x0,1

dt
∫ ximax,1

x0,1

σAδφ

∣∣∣∣T
0

dx

+
∫ T

0

∫ ximax,2

x0,2

δD(x− xM)
∂ξ

∂φ
δφdxdt+

+
∫ T

0

∫ ximax,2

x0,2

[
−(Aδφ)

∂σ

∂t
− (Qδφ)

∂σ

∂x
+ A

∂R
∂φ

δφ

]
2
dxdt

+
∫ T

0
σQδφ

∣∣∣∣ximax,2

x0,2

dt +
∫ ximax,2

x0,2

σAδφ

∣∣∣∣T
0

dx

+
∫ T

0

∫ ximax,3

x0,3

[
−(Aδφ)

∂σ

∂t
− (Qδφ)

∂σ

∂x
+ A

∂R
∂φ

δφ

]
3
dxdt

+
∫ T

0
σQδφ

∣∣∣∣ximax,3

x0,3

dt +
∫ ximax,3

x0,3

σAδφ

∣∣∣∣T
0

dx,

(12)

with

ξ =
1
2
(φ(p)− φ̂)2. (13)

(4) With the aim of finding the sensitivities of the objective function with respect to the
upstream boundary condition of the first channel, certain restrictions are applied:

σ(xk, T) = 0, k = 1, ..., 3,

δφ(xk, 0) = 0, k = 1, ..., 3,

δφ(ximax,2, t) = δφ(x0,3, t) = 0.

(14)

(5) The adjoint equations are formulated at every channel reach k:[
−A

∂σ

∂t
−Q

∂σ

∂x
+

∂ξ

∂φ
− Aσ

∂R
∂φ

]
k
= 0. k = 1, .., 3 (15)

The adjoint advection–reaction equations are in charge of transporting the error regis-
tered at the measurement station (xM) to the reconstruction point, which is in this case the
inlet boundary of channel 1.

(6) Now, applying the constraints of Equations (14) and (15) on expression (12) leads to

δJ =
∫ T

0

[(
σQδφ

)
ximax,1

−
(

σQδφ

)
x0,1

−
(

σQδφ

)
x0,2

+

(
σQδφ

)
ximax3

]
dt. (16)

(7) Like the flow and transport equations, the adjoint equations also require an internal
boundary condition at the junction.(

σQδφ

)
ximax1

−
(

σQδφ

)
x0,2

+

(
σQδφ

)
ximax,3

= 0. (17)

(8) Accordingly, the sensitivity of the objective function to the boundary condition of
channel 1 is

∇J =
δJ
δφ

∣∣∣∣
(0,t)1

= −(σQ)(0, t)1. (18)

Therefore, the regulation can be applied by means of the perturbation in the value
of the boundary condition φ(0, t) using the discrete version of (18) at every time tn. This
development is part of an iterative process that is detailed later.
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Note that the technique described above is analogous to reconstruct the boundary
condition at channel 3.

3.2. Numerical Model and Gradient Descent Method

The adjoint equations (15) can be discretized (see Figure 2) following the same proce-
dure used in (6). Therefore, the expression that updates the adjoint variables at cell i for
time tn is [27]:

Figure 2. Discretization of time and space in the adjoint equation.

σn
i = σn+1

i +
∆t
∆x

[(
u−δσ

)n+1
i−1/2 +

(
u+δσ

)n+1
i+1/2

]
+ ∆t(σR)i + ∆t

(
∂ξ

∂φ

1
A

)
i

(19)

where u = Q/A is the cross sectional average flow velocity. It is worth highlighting
that finding the solution of the adjoint variable σ for each channel requires to solve the
system backwards in time, that is, updating the time as tn = tn+1 − ∆t. Note that the
upwind contributions (positive or negative superindex in the flow velocity) are opposite
to those on the transport equation. As seen, the solution of Equation (19) also requires
some information such as the time step ∆t, the flow velocity un

i and the wetted area An
i

at every time level tn. For this purpose, all the information regarding the hydrodynamic
part is saved at each time step and at each computational cell in a previous first forward
simulation. Due to the explicit character of the scheme, the time step size is restricted by
stability reasons in order to fulfill the CFL condition [35,41].

To obtain the best reconstructed values for the boundary condition, the gradient-
descent method is used. The form of the iterative algorithm is described as follows:

φ(0, t)n+1 = φ(0, t)n − εn(∇J)n, (20)

where n indicates the level of the iteration, ε is the step length, and ∇J is the gradient of J.
Accordingly, as long as all the hydrodynamic information is available, only of the adjoint
equation (backwards) and the transport equation (forward) are necessary to converge to
the minimum of the function with a certain tolerance.

The step length ε is considered a constant value and is obtained through trial and error.
Regarding the target, the location of the measuring station xM does not follow a defined
rule; however, according to a previous work [42], it is known that this location could be
crucial when reconstructing the information at a given point.

Figure 3 illustrates the flowchart followed to reconstruct the information of the solute
boundary condition. This process is summarized in two fundamental stages: the so-called
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flow simulation and the control simulation. In the flow simulation, the flow equations
are solved using (5) with the known initial and boundary conditions, while the transport
equation is computed with an estimated boundary condition (initial guess, generally 0)
using (6). All the hydrodynamic information necessary for the next stage is stored during
this process.

For the control simulation, two main parts are considered: the forward simulation and
the backward simulation. This process is repeated until the functional is below a tolerance.
The backward simulation calculates the value of the adjoint variable using (19) and the
available velocity field and time step size at each time level and at each computational cell.
The upstream boundary condition, i.e., the new value of the concentration at every time
level, is obtained through the gradient method using (20).

Figure 3. Scheme to reconstruct the information of the boundary condition through the adjoint and
gradient-descent method.

4. Test Cases

The robustness and accuracy of the proposed technique is verified with some synthetic
cases. In all of them, a first simulation is performed using a known upstream boundary
condition in order to store time series of concentration values at the measurement point
to be used as the target. These values are then used as the “experimental data” for the
adjoint technique in order to evaluate the ability of the proposed method to reconstruct the
upstream solute boundary condition.

The optimization process starts by solving the transport equation with an initial guess
inlet solute boundary condition φ(0, t)1 = 0 g/m3. The adjoint equation is then solved
backwards to obtain the sensitivity for the optimization algorithm. The process is repeated
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until the functional value is below a tolerance level. This procedure is applied in all
cases presented.

4.1. Cases 1 and 2: Steady State of Both Flow and Concentration

In this scenario, we consider a 90° junction of three 10 m wide rectangular flat and
frictionless channels of lengths L1, L2 and L3 and widths B1, B2 and B3 as shown in Figure 4.
The initial conditions are

Q(x, 0)1 = 1 m3/s Œ(x, 0)1 = 1 g/m3 x ∈ [0, L1]

Q(x, 0)2 = 2 m3/s Œ(x, 0)2 = 0.5 g/m3 x ∈ [0, L2]

Q(x, 0)3 = 1 m3/s Œ(x, 0)3 = 0 g/m3 x ∈ [0, L3]

Figure 4. Case 1. Schematic of the three channels at a 90° confluence.

The inlet flow boundary condition is defined by the following values: Q(0, t)1 =
Q(0, t)3 = 1 m3/s for both channel 1 and channel 3 for t ∈ [0, T]. The solute inlet boundary
condition for channel 3 is φ(x, 0)3 = 0 g/m3 for x ∈ [0, L3]. The inlet boundary con-
dition for the solute of the first channel to be reconstructed by means of the control is
φ(0, t)1 = 1 g/m3 for t ∈ [0, T]. For this case, the reaction constant κ = 0.

The measurement station is located in channel 2 at xM = 25.5 m (see Figure 4). As
previously mentioned, these values are obtained through a first simulation with all the
known parameters.

The time evolution of the solute concentration both at the inlet of channel 1 and at
the target location in channel 2 obtained with CFL = 1, ∆x = 1 m and ε = 7 are shown
in Figure 5. The numerical solution with the proposed scheme is plotted for iterations 1,
2, 5, 10, 15 and 20 (colored lines) for both the boundary conditions (a) and the target (b).
The numerical solution of the last iteration converges to the theoretical solution (black line)
with an acceptable accuracy. Small differences show up at the beginning of the simulation
(t ∈ [0, 150 s]) for the boundary reconstruction. This behavior has already been reported
and analyzed in the literature [27] and is attributed to the numerical diffusion. The target is
however successfully achieved at iteration 20.
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Figure 5. Case 1. Evolution of the reconstruction of the boundary condition (a) and evolution of the
target (b) at some iterations.

This test case has been repeated to evaluate the influence of the mesh size using the
following number of cells (MNC): 100, 200 and 400. The results of both the reconstruction of
the boundary condition in the last iteration and the evolution of the objective functional are
plotted in Figure 6. Particularly, Figure 6a shows the variations that occur at the beginning
of the simulation. They can be attributed to the numerical diffusion as well that tends to
decrease as the mesh number of cells (MNC) increases.
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Figure 6. Case 1. Reconstruction of the boundary condition at iteration 100 (a) and evolution of the
objective function at each iteration (b) for different number of cells.

The results of the objective function also show the same trend, i.e., its value decreases
as the number of cells increases. Furthermore, it is evident that the functional does not
decrease in the same way for the range of iterations, especially in the first 20 iterations. For
example, for a fixed J = 1.0× 10−4, the number of iterations is different: ten iteration for
MNC = 400, three iterations for MNC = 100. This trend changes after 20 iterations.

In the context of Case 1, new cases are considered (Case 2), to test the influence of
the inlet discharge of channel. For this purpose, three scenarios were carried out. The
initial conditions (I.C.) and boundary conditions (B.C.) of the flow of the three scenarios are
displayed in Table 1.
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Table 1. Initial and inlet boundary conditions to evaluate the reconstruction of the inlet boundary
condition of the solute at channel 3.

Case
I.C. Q(x, 0)m3/s B.C. Q(0, t)m3/s

Channel 1 Channel 2 Channel 3 Channel 1 Channel 3

Case 2.1 1 1.5 0.5 1 0.5
Case 2.2 1 2 1 1 1
Case 2.3 1 3 2 1 2

The initial condition of the solute for the three channels and for the three proposed cases is
φ(x, 0) = 1 g/m3, and the boundary condition is determined by the following expression:

φ(0, t)1 =

{
1 0 ≤ t ≤ 100 s
0 t ≥ 100 s

φ(0, t)3 =

{
1 0 ≤ t ≤ 2000 s
0 t ≥ 2000 s

The results show that the value of the functional tends to decrease the higher the inlet
flow is. The discussion and the Root Mean Square Error (RMSE) of this set of test cases is
presented later.

4.2. Case 3: Unsteady Flow with Gaussian Pulse for Both Flow and Concentration

This test case considers the same configuration displayed in Figure 4. The following
initial conditions for both flow and solute are imposed:

Q(x, 0)1 = 1.14 m3/s φ(x, 0)1 = 0 g/m3 x ∈ [0, L1]

Q(x, 0)2 = 2.14 m3/s φ(x, 0)2 = 0.46 g/m3 x ∈ [0, L2]

Q(x, 0)3 = 1 m3/s φ(x, 0)3 = 1 g/m3 x ∈ [0, L3]

The hydrodynamic inlet boundary condition for channel 1 is defined with a Gaussian
function expressed as

Q(0, t)1 = ae−
(t−b)2

2c2 a = 3, b = 250, c = 180 t ∈ [0, T] (21)

The solute boundary condition φ(0, t)1 used to generate the target to be reconstructed
by the adjoint method follows:

φ(0, t)1 = ae−
(t−b)2

2c2 . a = 2, b = 250, c = 30 t ∈ [0, T] (22)

On the other hand, the inlet boundary conditions at channel 3 are defined as

Q(0, t)3 =


1 m3/s t ∈ [0, 100 s]
3 m3/s t ∈ [100 s, 200 s]
1 m3/s t ∈ [200 s, 500 s]

φ(0, t)3 = 1 g/m3 t ∈ [0, T] (23)

No reaction or decay processes are considered (κ = 0). The downstream measurement
station is located in channel 2 at xM = 5.5 m. As for the optimization method, ε = 8. The
numerical results are plotted in Figure 7. The method efficiently reconstructs the signals
regardless of their distributions. Particularly, the shape of the target (see Figure 7b) contain-
ing a plateau and the Gaussian pulse coming from the input signals from channels 1 and 3
are satisfactory achieved. With only 15 iterations, it is possible to reconstruct the boundary
condition at channel 1 and achieve a great level of accuracy at the target (channel 2) without
any non-physical concentrations or oscillations.



Mathematics 2022, 10, 93 12 of 19

	0

	0.5

	1

	1.5

	2

	2.5

	0 	100 	200 	300 	400 	500

ϕ	
[g
/m

3 ]

Time	[s]

Theor.	BC
iter	1
iter	2
iter	3

iter	5
iter	10
iter	15

(a)

	0

	0.5

	1

	1.5

	2

	2.5

	0 	100 	200 	300 	400 	500

ϕ	
[g
/m

3 ]

Time	[s]

Target
iter	1
iter	2
iter	3

iter	5
iter	10
iter	15

(b)

Figure 7. Case 3. Evolution of the reconstruction of the boundary condition (a) and evolution of the
target (b) in some iterations.

4.3. Case 4: Analysis of the Influence of the Measurement Station, Geometry and the Type
of Reconstruction

The purpose of the next set of cases is to observe the influence of the location of the
measurement station and the geometry of the case (length, slope) in the performance of
the adjoint technique for the reconstruction of the upstream solute boundary condition of
either channel 1 or channel 3. The configuration of the channel system is similar to that
shown in Figure 4. Initial conditions for these scenarios are

Q(x, 0)1 = 1 m3/s φ(x, 0)1 = 0 g/m3 x ∈ [0, L1]

Q(x, 0)2 = 2 m3/s φ(x, 0)2 = 0 g/m3 x ∈ [0, L2]

Q(x, 0)3 = 1 m3/s φ(x, 0)3 = 0 g/m3 x ∈ [0, L3]

The boundary conditions for all the cases presented are

Q(0, t)1 =


1 t ∈ [0, 100 s]
2 t ∈ [100, 1100 s]
1 t ≥ 1100 s

φ(0, t)1 =


0 t ∈ [0, 100 s]
2 t ∈ [100, 1100 s]
0 t ≥ 1100 s

Q(0, t)3 =


0.5 t ∈ [0, 100 s]
1 t ∈ [100, 1100 s]
0.5 t ≥ 1100 s

φ(0, t)3 =


0 t ∈ [0, 100 s]
1 t ∈ [100, 1100 s]
0 t ≥ 1100 s

The roughness coefficient is 0.035 sm−1/3, and ∆x = 5 m. This analysis is carried out
by changing the length, slope and target location as shown in Table 2. The results with
ε = 1, CFL = 1 and number of total iterations equal to 100 are plotted in Figure 8. According
to the location of the measurement station (Figure 2a), the study shows that the further it
is from the reconstruction point, the bigger that value of the functional is. Regarding the
length, the functional adopts different forms according to the reconstruction, and when
the reconstruction is on channel 1 (see Figure 2b), there are small differences between the
functional. However, when the information of channel 3 is reconstructed (Figure 2d), there
are large variations, especially when the length of channel 3 is 1500 m. On the other hand,
when the slope is 2%, the value of the functional decreases considerably with respect to the
1% slope (see Figure 2c).
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Table 2. Case 4. Location of the target measuring station (channel 2) and geometric properties.

Channel
Recons.

Case L1 (m) L2 (m) L3 (m) (So)1−3 xM (m)

channel 1

Case 3.1 1000 1000 1000 1% 100
Case 3.2 1000 1000 1000 1% 500
Case 3.3 1000 1000 1000 1% 900
Case 3.4 500 1000 1000 1% 100
Case 3.5 1000 1000 1000 1% 100
Case 3.6 1500 1000 1000 1% 100
Case 3.7 1000 1000 1000 0.5% 100
Case 3.8 1000 1000 1000 1% 100
Case 3.9 1000 1000 1000 1.5% 100

channel 3
Case 3.10 1000 1000 500 1% 100
Case 3.11 1000 1000 1000 1% 100
Case 3.12 1000 1000 1500 1% 100
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Figure 8. Case 4. Evolution of the functional in the different proposed scenarios.

4.4. Case 5: Unsteady Flow with Step Pulse for Both Flow and Concentration with Reaction

The purpose of this case is to observe the behavior of the reconstruction of the channel 1
upstream boundary condition given by a solute step pulse on the same configuration of
Case 1 in presence of reaction. The initial conditions are set according to

Q(x, 0)1 = 1 m3/s x ∈ [0, L1]

Q(x, 0)2 = 2 m3/s x ∈ [0, L2]

Q(x, 0)3 = 1 m3/s x ∈ [0, L3]

φ(x, 0)1 = φ(x, 0)2 = φ(x, 0)3 = 1 g/m3 x ∈ [0, Lk]

(24)

and the boundary conditions are
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Q(0, t)1 =


1 m3/s t ∈ [0, 100 s]
3 m3/s t ∈ [100 s, 400 s]
1 m3/s t ∈ [400 s, 1000 s]

φ(0, t)1 =


1 g/m3 t ∈ [0, 100 s]
3 g/m3 t ∈ [100 s, 400 s]
1 g/m3 t ∈ [400 s, 1000 s]

Q(0, t)3 =


1m3/s t ∈ [0, 200 s]
3 m3/s t ∈ [200 s, 600 s]
1 m3/s t ∈ [600 s, 1000 s]

φ(0, t)3 =


1 g/m3 t ∈ [0, 200 s]
3 g/m3 t ∈ [200 s, 600 s]
1 g/m3 t ∈ [600 s, 1000 s]

The reaction solute constant decay is set to κ = 1× 10−3 s−1 for all channels. With
these conditions, ∆x = 1 m and xM = 5.5 m at channel 2, the flow, the transport and
the adjoint equation are solved following the iterative procedure. Figure 9 plots the time
evolution of the flow at xM and follows the imposed conditions, achieving a bounded and
oscillation-free solution.
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Figure 9. Case 5. Temporal evolution of flow-rate at xM,2 = 5.5 m.

Figure 10 shows the numerical solutions at some iterations for both the reconstruction
of the boundary condition and the target. Figure 10a shows small variations in the last
iteration that can be attributed to the considered solute pulse shape, differences that are
totally reduced when the signal to be reconstructed is smoother (Case 4) also observed
in [27]. Figure 10b shows the target reached in only 60 iterations with satisfactory results.
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Figure 10. Case 5. Evolution of the reconstruction of the boundary condition (a) and evolution of the
target (b) in some iterations.
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4.5. Case 6: Unsteady Flow with Two Solutes and Friction

In this case, two solutes φ1 and φ2 with different decay rates kφ1 and kφ2 , respectively,
are considered. The hydraulic characteristics (see Figure 4) include now slope and friction
for all channels: S0 = 0.001 and n = 0.035 sm−1/3. The initial conditions for the flow are

Q(x, 0)1 = 1.14 m3/s φ1(x, 0)1 = 0 g/m3 Œ2(x, 0)1 = 0 g/m3 x ∈ [0, L1]

Q(x, 0)2 = 1.35 m3/s φ1(x, 0)2 = 0 g/m3 Œ2(x, 0)2 = 0 g/m3 x ∈ [0, L2]

Q(x, 0)3 = 0.21 m3/s φ1(x, 0)3 = 0 g/m3 Œ2(x, 0)3 = 0 g/m3 x ∈ [0, L3]

On the other hand, the flow boundary conditions for channels 1 and 3 are a transient
configuration defined by (21) using a1 = 3, b1 = 250, c1 = 180 for channel 1 and a3 = 2.5,
b3 = 400, c3 = 180 for channel 3. The theoretical solute upstream boundary conditions to
be reconstructed are highlighted in grey in Table 3 and are also defined by Equation (22).
The remaining parameters and the decay rates are defined in Table 3.

Table 3. Case 6. Gaussian function parameters and decay rates of the three channels.

Variables

Channel φ1(0, t) φ2(0, t) Decay Rate (s−1)

a b c a b c kφ1 kφ2

channel 1 2 250 30 4 250 30 1× 10−5 2× 10−2

channel 2 - - 4× 10−3 2× 10−3

channel 3 1 400 30 2 400 30 8× 10−6 1.5× 10−6

The measurement station is located downstream of the junctions at xM = 35.5 m in
channel 2. The mesh size used in this test case is ∆x = 1 m, with a CFL = 1 and a step
length ε = 10. The numerical results are plotted in the Figure 11. Figure 11a shows the
numerical solution of the flow measured at xM free of disturbances. Figure 11b,d displays
the reconstructions of the inlet boundary condition for solutes φ1 and φ2, respectively,
showing an acceptable convergence to a stable solution after 100 iterations.

Figure 11c,e shows the target for φ1 and φ2 after some iterations (dashed lines in colors),
requiring 100 iterations to successfully converge to the registered downstream shape.
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Figure 11. Case 4. Temporal evolution of flow-rate at xM,2 = 35.5 m (a) and reconstruction of the
boundary condition φ1 and φ2 (b,d) and target at xM,2 = 35.5 m (c,e).

5. Discussion

This study presents a predictive explicit model for surface flow and transport of a
non-conservative solute in a channel junction together with the adjoint formulation of the
conservative and non-conservative transport equations. All the test cases used are synthetic
and followed the channel network shown in Figure 4. In this section, the numerical results,
the keys of the scheme, the combination of the hydrodynamic, transport, adjoint and
first-order gradient models, and the limitations of the proposed strategy are analyzed.

The technique is completely stable under the CFL condition when considering the
hydrodynamic source terms (slope and friction) and the source term of the adjoint and
physical transport equation (decay rate). Together with appropriate junction boundary
conditions, this technique is demonstrated to solve satisfactorily both steady state and
unsteady scenarios in a channel junction.

Optimization models considered in the literature frequently require hundreds of calls
of both the hydrodynamic and transport models to find the best accordance between
computed and observed state variables (model components) by variation of a number of
parameters [43,44], so a model with these features will require considerable computational
burden. Among the different alternatives for the inverse modeling offered by predictive
models, the adjoint formulation has demonstrated to be an efficient and flexible tool. This
works explores the extension of the adjoint technique to reconstruct the solute boundary
condition in hydrodynamic models with solute transport at junction of channels.

The adjoint equations are solved using the same numerical scheme, computational
grid and time step size as the physical equations. Moreover, they are supplied with the
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hydrodynamic information previously stored in the first simulation. This allows the error to
be transported from the measurement point to the control point. Consequently, the gradient
is used in the optimization method, allowing the boundary condition to be reconstructed
efficiently and with relevant accuracy in all the scenarios proposed in this work. This
is justified by the value of the functional in the last iteration, generally reduced by a
99.9% factor.

The versatility of the method to reconstruct the information at different channels
has also been demonstrated. This was evidenced in Case 4 where the convergence of
the functional achieves satisfactory results in both cases (Figure 8b,d). These results are
evidenced with the evaluation of the root mean square error (RMSE) of the reconstructed
upstream boundary condition at the last iteration (see Table 4). The evaluation criterion used
reveals that the predictive precision and the fit of the model by means of the adjoint method
have a better performance when the solute transported in unsteady flow is Gaussian. For
this case, an RMSE = 0.0088 g/m3 is reached compared to an RMSE = 0.361 g/m3 in Case
3.3 when the solute pulse is a stepwise function.

Table 4. Root mean square error of the reconstructed boundary conditions.

Case RMSE (g/m3)

Case 1 0.02013
Case 2 MNC 100 0.0101
Case 2 MNC 200 0.0105
Case 2 MNC 400 0.0123

Case 2.1 0.208
Case 2.2 0.085
Case 2.3 0.034
Case 3.1 0.299
Case 3.2 0.3
Case 3.3 0.361
Case 3.4 0.298
Case 3.5 0.299
Case 3.6 0.301
Case 3.7 0.359
Case 3.8 0.299
Case 3.9 0.284

Case 3.10 0.196
Case 3.11 0.198
Case 3.12 0.314

Case 4 0.008
Case 5 0.154
Case 6 0.025

This work is an encouraging step forward to extend the method presented in [27] for
water quality optimization analysis in branched channel or river networks. However, the
main limitation of the model is the oscillatory trend for the reconstruction of a stepwise
signal, leading to notable differences, especially in sudden changes in concentration. An
example of this is Case 5, where the concentration varies sharply from 1 to 3 g/m3 in a
period of time of 1s (see Figure 10a). Another potential downside of the method is the
necessity of storing of all the flow information in each computational cell and each time
step. This downside could be overcome with techniques such as check pointing [45] which
can be analyzed in future works of this nature.

6. Conclusions

This study reveals that the transport equation model can serve as a first step to under-
stand the relationships between the channel network and the control of the concentration
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of a solute downstream junction. The results showed that the accuracy of the boundary
condition reconstruction depends largely on the shape of the signal to be reconstructed.
However, these variations can be reduced by refining the computational mesh and increas-
ing the number of iterations. The numerical solutions also indicate that, as the measurement
station moves away from the reconstruction point, the final functional value in the last
iteration becomes larger. Furthermore, it is demonstrated that few iterations in both steady
state and unsteady scenarios are required to reconstruct the inlet boundary conditions of
one or more solutes at a time.

Finally, the efficiency of the technique requires that the same computational mesh,
the hydrodynamic characteristics and time step size be used when solving the transport
equation and the adjoint equation in the optimization process. Besides this restriction, the
optimization model presented in this work has been proved to be robust, accurate and
efficient for different hydrodynamic and solute configurations.
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